
Jérôme Hénin

Enhanced Sampling
and Free-Energy Calculations
 Urbana, 12 September 2018

Designing, Implementing and Optimizing

Collective Variables in VMD and NAMD

How to:
● define colvars?
● analyze colvars?
● choose colvars?
● bias colvars?

??

Collective Variables Module

Giacomo Fiorin
Temple University

Versatile biases in generalized coordinates

● arbitrary dimension

● run-time combination of variables

● many variables available

● time-dependent biases

● → adaptive free energy methods
(metadynamics, ABF)

● included in NAMD, LAMMPS, VMD

● extensible through C++ or Tcl

Example Targeted MD

colvar {
 name RMSD

 rmsd {
 atoms {
 atomsFile beta.pdb
 atomsCol O
 }
 refPositionsFile beta.pdb
 }
}

harmonic {
 colvars RMSD

 centers 5.3
 targetCenters 0.0
 targetNumSteps 200000
 forceConstant 100.
}

colvar simulation = collective variable + bias

Getting Colvars 1: with precompiled binaries

● recent versions of NAMD and VMD include Colvars

1) Download NAMD or VMD binaries

2) use Colvars

3) …

4) Profit!

Getting Colvars 2: source repository

● public repository on GitHub http://github.com/Colvars/colvars

● always up-to-date code

● documentation

● automated regression tests

● issue tracker

● we rely on user feedback

Where can I find documentation?

Information 1: reference manuals

● Colvars chapter in the NAMD and VMD user guides

● available as online HTML at http://colvars.github.io

● details in reference publication (Open Access)

http://colvars.github.io/

Information 2: online examples

● Simple, runnable examples:

http://github.com/Colvars/examples

● Various advanced examples used in Colvars publication

http://github.com/Colvars/colvars/tree/master/examples

http://github.com/Colvars/examples
http://github.com/Colvars/colvars/tree/master/examples

Information 3: mailing lists

● NAMD and VMD mailing lists offer searchable archives

● if the answer is not there, send a precise question to the most relevant mailing list
(namd-l or vmd-l)

A tour of Colvars features

Collective variable modeling workflow

basis functions

polynomials

custom functions

● classic algorithms
● adaptive sampling
● multiple-walker sampling
● scripted biases

colvar design

colvar implementation biased simulation

trajectory analysis

(aka components)

VMD

NAMD LAMMPS

Components (basis functions)

distance center-of-mass distance between two groups
distanceZ projection of a distance vector on an axis
distanceXY modulus of the projection of a distance vector on a plane
distanceVec distance vector between two groups
distanceDir distance unit vector between two groups
distanceInv mean distance between two groups of atoms
distancePairs set of pairwise distances between two groups
cartesian vector of atomic Cartesian coordinates
angle angle between three groups
dipoleAngle angle between two groups and dipole of a third group
dihedral torsional angle between four groups
polarTheta polar angle in spherical coordinates
polarPhi azimuthal angle in spherical coordinates
coordNum coordination number between two groups
selfCoordNum coordination number between atoms within a group
hBond hydrogen bond between two atoms
rmsd root mean square displacement (RMSD) from reference positions
rmsd-based path collective variables
eigenvector projection of the atomic coordinates on a vector
gyration radius of gyration of a group of atoms
inertia total moment of inertia of a group of atoms
inertiaZ total moment of inertia of a group of atoms around a chosen axis
orientation orientation from reference coordinates
orientationAngle angle of rotation from reference coordinates
orientationProj cosine of the angle of rotation from reference coordinates
spinAngle angle of rotation around a given axis
tilt cosine of the rotation orthogonal to a given axis
alpha α-helix content of a protein segment
dihedralPC protein dihedral principal component

distances

raw data

angles

coordination

collective

orientation

protein structure

Write your own colvar (WYOC):

Custom functions with the Lepton library

Combine existing basis functions with custom expressions

colvar {
 name myVariable

 # This is a 2-vector function of a 4-vector
 customFunction x - r1
 customFunction cos(x) + r1 + r2 + r3

 distance {
 name x
 group1 { atomNumbers 4 }
 group2 { atomNumbers 99 }
 }
 distanceVec {
 name r
 group1 { atomNumbers 50 }
 group2 { atomNumbers 60 }
 }
}

harmonic {
 colvars myVariable
 centers (20, -5)
 forceConstant 100
}

Scripted function: path collective variables

colvar {
 name s
 rmsd {
 atoms { atomNumbers { 10 20 30 } }
 refpositionsfile string-1.pdb ;# coordinates of the first bead
 componentExp 1 ;# index of the first bead
 }
 rmsd {
 atoms { atomNumbers { 10 20 30 } }
 refpositionsfile string-2.pdb ;# coordinates of the second bead
 componentExp 2 ;# index of the second bead
 }
 scriptedFunction pathCV
}

proc calc_pathCV { args } {
 global pathCVlambda; global pathCVu; global pathCVv
 set N [llength $args]
 set i 0; set u 0.0; set v 0.0
 foreach x $args {
 set u [expr {$u + $i * exp(-$lambda * $x * $x)}]
 set v [expr {$v + exp(-$lambda * $x * $x)}]
 incr i
 }
 return [expr {1.0 / ($N - 1.0) * $u / $v}]
}

proc calc_pathCV_gradient { args } {
 global pathCVlambda; global pathCVu; global pathCVv
 set N [llength $args]
 set grad {} ; set i 0
 foreach x $args {
 set uprime [expr {-2.0* $i * $lambda * $x * exp(-$lambda*$x*$x)}]
 set vprime [expr {-2.0 * $lambda * $x * exp(-$lambda*$x*$x)}]
 incr i
 lappend grad [expr {1.0/($N-1.0)*($uprime*$v - $vprime*$u)/($v*$v)}]
 }
 return $grad
}

Branduardi et al. JCP 2007

Optimization: dynamic colvar components

● path collective variables

– depends on RMSD from all images on a discrete path – expensive

– dominated by a few terms nearby images

● Colvars implementation is a Tcl-scripted coordinate

– each RMSD is a colvar component (cvc)

● scripting command cvcflags is used to limit calculation to relevant RMSDs

Describing “soft-body” rotations

● least-squares fit, minimizing

● solved as eigenproblem with quaternion

representation of rotations
● use optimal rotation as coordinate

z

tilt

spin

Problem

describe collective rotation of flexible objects

● preferred axis z
● rotation decomposed into spin and tilt
● gives two rotation angles

Local frames of reference

● all coordinates based on atom groups

● atom groups can center and rotate themselves transparently to
fit reference positions, working in a separate frame of reference

– centerReference translation

– rotateReference best-fit rotation

– contribution of rotation to the gradients is calculated

Application 1: internal rotations in a dimer

To describe relative rotation of one helix
● fit pair of objects, minimizing

● fit of one object A, relative to pair

● rotation R
A
 split into spin and tilt

● gives two internal rotation angles

● defined at run-time, no coding needed

z

tilt

spin

Application 2: ligand binding coordinate

distance to bound configuration (DBC)
= ligand RMSD in receptor’s frame of reference

→ captures ligand position, orientation and conformation

→ independent of receptor position, orientation, and conformation

GPCR-cholesterol binding affinities

Brannigan, Hénin & coworkers, in press

● Bussi and coworkers (Ferrarotti et al. 2014)

● colvar forces are slow forces

● colvars can be coarse-grained in time

● biasing forces on colvars integrated at coarse time using impulses as in
r RESPA‑

● extended-Lagrangian case explicit coarse-time dynamics

Multiple time-step colvars

Write your own bias (WYOB)

Adiabatic Bias MD (Marchi et al. 1999) pushes a variable with a “ratchet
potential” that follows the variables high-water mark (highest level reached)

In a few lines of Tcl/Colvars:

proc calc_colvar_forces { ts } {
 if { $ts == 0 } {
 set max [cv colvar $cvname value]
 }

 set x [cv colvar $cvname value]
 if { $x > $max } { ;# above high-water mark?
 if { $x <= $xmax } { set max $x } ;# then raise it
 } else {
 cv colvar $cvname addforce [expr { $k * ($max - $x) }] ;# else apply bias
 }
}

(https://github.com/Colvars/colvars/blob/master/colvartools/abmd.tcl)

https://github.com/Colvars/colvars/blob/master/colvartools/abmd.tcl

The Colvars Dashboard in VMD

https://raw.githubusercontent.com/Colvars/colvars/dashboard/vmd/scripts/cv_dashboard.tcl

https://raw.githubusercontent.com/Colvars/colvars/dashboard/vmd/scripts/cv_dashboard.tcl

Practical tricks

● the Colvars module can read multiple configuration files / strings

– colvarsConfig <file> (NAMD only)

– cv configfile <file>

– cv config “<config string>”

● → you can split your input files to reuse common parts

● e.g. one file for variables only, one for biases

● config for variables can be written by Colvars Dashboard in VMD
(does not handle biases)

● depending on workflow, most convenient definition of atom groups:

– index file (see tma-aco/Common/write_index_file.tcl)

– PDB files with flags

– atom ID lists from VMD selections (Colvars Dashboard)

Performance-tuning tricks

● NAMD is highly parallelized

● Colvars is only partially parallelized → can be a bottleneck

● benchmark your own system and colvars on production hardware

● optimizations:

– use no more atoms than necessary (eg. RMSD on alpha carbons)

– variables that depend on centers of mass scale better

– have multiple colvars? Make sure SMP feature is enabled

– use multiple-timestep colvars if possible
(first, test carefully for physical consistency; fullElectFreq is often safe)

– if not all variables are needed at all times, write script setting cvcflags
(see pathCV example), or even creating or deleting colvars on-the-fly

under the hood: a developer's view

Interface with MD engines: the colvarproxy class

Colvars Module MD engine
(NAMD, LAMMPS, VMD)

atom
forces

atom
coordinates

force
field

in
te

gr
at

or

colvarproxycomponent b

component abias 1

colvar

coordinates

atom forcescolvar forcesbias 2

The dependency problem in a modular code

● hierarchy of objects

● objects have many features that can be combined

● modular combinations are key to functionality

● originally dependencies implemented as control structures in the code

● very hard to maintain there are more use cases than we can think of

colvar 1
component a component b

colvar 2
component a

bias 1 bias 2

atom group ag1 ag2

Draft dependency tree

Current dependency tree

active

active

scalar

active

linear

scripted
awake

apply force
gradient gradient

obtain total force

total force

extended Lagrangian

total force calculation
history-dependent

require scalar variables

calculate a PMF

awake

collect gradient

velocity from finite differences

inverse gradient

Jacobian derivative
Jacobian derivative

hide Jacobian force

Langevin dynamics

output velocity

output total force

subtract applied force from total force

lower boundary

upper boundary

grid

multiple timestep colvar

scalar

debug gradient

depends on group centers of mass

compute total force from one group

scalable calculation

scalable calculation of centers of mass

userstatic dynamic

colvarobject type

feature type

requires

incompatible

bias component

alternates

(generated from the code)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

