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Serving a Large and Fast Growing Community

Deploying Center’s flagship programs NAMD
and VMD on all major computational platforms
from commodity computers to supercomputers

Consistently adding user-requested features
e simulation, visualization, and analysis

Covering broad range of scales (orbitals to cells)
and data types

Enhanced software accessibility
e QwWikMD, interactive MDFF, ffTk, simulation
in the Cloud, remote visualization




Exploiting State of the Art Hardware Technology

o Software available and optimized on all national
supercomputing platforms (even before they
come online)

» Decade-long, highly productive relationship with
NVIDIA

» The first CUDA Center of Excellence funded by
NVIDIA

« Consistently exploring opportunities for new
hardware technology
« Remote visualization
» Virtual Reality ‘ amazon |
 Handheld devices '

webservices™




Technology Made Highly Accessible to the
Community
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interactive MDFF

QwikMD
VMD Plugin for Setup and
Analysis of NAMD Simulations

Developed primarily for experimental users g
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Vigorous Training Through Hands-On Workshops

a )
53 Workshops on Computational Biophysics

* Online Workshops on Simulating Membrane Channels
* In-residence workshops for visiting researchers
* Local workshops on hardware and coding

A /

- 1600+ Researchers Trained Since 2003 -

High school students to professional faculty
Computational to experimental backgrounds
- National to international and minority communities -

a N

~2,000 Pages of Self-Study Tutorial Material

Slides, recorded lectures, and video tutorials also available
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Microscopic View of Molecular Phenomena

4+ Mechanisms in Molecular Biology
4+ Molecular Basis of Disease
4+ Drug Design

4+ Nano-biotechnology
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Binding of a small molecule to a binding site
Y. Wang & E.T. PNAS 2010



Microscopic View of Molecular Phenomena

0.00 us

Dror et al., PNAS 2011

Drug binding to a GPCR
Dror, ..., Shaw, PNAS, 108:13118-13123 (2011)



Microscopic View of Molecular Phenomena
Nano-biotechnology

Functionalized nanosurface with antibodies

HIV subtype
identification

Lab Chip 2012




Most Detailed and Dynamic Microscopic View

S. Mansoor, ..., E. Tajkhorshid, E. Gouaux, Nature, 2016.



Battling the Timescale

non-Equilibrium MD simulations

Free Energy Methods

Enhanced Sampling Techniques

12



Battling the Timescale - Case |

Steered Molecular Dynamics is a
non- equullbr'lum method by nature

A wide variety of events that are inaccessible to
conventional molecular dynamics simulations can be
probed.

* The system will be driven, however, away from
equilibrium, resulting in problems in describing the
energy landscape associated with the event of
Interest.

Second law of thermodynamics — W = AG
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Jarzynski's Equality

AG ()
— Transition between two equilibrium states —
ePp(W) <W> >AG
T T
A= A(t)
>
work W -
heat Q
W
AG=G, -G, &

C. Jarzynski, Phys. Rev. E, 56, 5018 (1997) — e

C. Jarzynski, Phys. Rev. Lett., 78, 2690 (1997) <e - ﬁW >

In principle, it is possible to obtain free
energy surfaces from repeated non-equilibrium
experiments.




Constructing the Potential of Mean Force

4 trajectories
y=10.03, 0.015 A/ps
k=150 pN/A

cytoplasm |

time / ns

J (@) =—klz(t) -z, - 1]

force / 100 pN

W (1) = ﬁ) di' vt

work / kcal mol-’




Three fold higher barriers
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AqpZ 22.8 kcal/mol
GlpF 7.3 kcal/mol

Y. Wang, K. Schulten, and E. Tajkhorshid Structure 13, 1107 (2005)



Battling the Timescale - Case |
Biased (nonequilibrium) simulations

mO O ] ]
o ll: Ill? '

J. Li, ..., E. Tajkhorshid. (2015) COSB, 31: 96-105.

4+ Neurotransmitter Uptake
» Norepinephrine, serotonin, dopamine, glutamate,...
+ Gastrointestinal Tract
» Active absorption of nutrients
» Secretion of ions
4+ Kidneys
» Reabsorption
» Secretion
+ Pharmacokinetics of all drugs
» Absorption, distribution, elimination
» Multi-drug resistance in cancer cells




Diverse Structural Transitions Involved
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BIASING TECHNIQUES ARE REQUIRED.



Complex Processes Require Complex Treatments

I.1 Defining Practical
Collective Variables

Empirical search for practical collective
variables for inducing the conformational
changes involved in the transition.

¥

1.2 Optimizing the
Biasing Protocols

Systematic search for a practical biasing
protocol by using different combinations of
collective variables.

Mahmoud Moradi
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Work

I1. Optimizing the
Transition Pathway

Use all of the conformations available to
generate the most reliable transition pathway:
1. Bayesian approach for combining the data
2. Post-hoc string method (analysis tool)

3. String method with swarms of trajectories

<

Empirical search for
reaction coordinates
and biasing protocols

Optimized
Protocol

Free Energy
Calculations

Path-Refining Algorithms*

Reaction Coordinate

M. Moradi and ET (2013) PNAS, 110:18916-18921.
M. Moradi and ET (2014) JCTC, 10: 2866—-2880.
M. Moradi, G. Enkavi, and ET (2015) Nature Comm., 6:8393.
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II1.1 Free Energy
Calculations

Using the most relevant collective variables
(from I.1), biasing protocol (from 1.2), and
initial conformations (from 1.2).

¥

II1.2 Assessing the
Sampling Efficiency

Detecting the poorly sampled, but potentially
important regions, e.g., by using PCA.




Aggresswe Search of the Space

Joogle earth

Imagery Date: 8/7/2011 P 1998 37°56'3B.98" N 107°46'41.55" W elev 3452 m Eye alt  7.29 km o




Non-equilibrium Driven Molecular Dynamics:
Applying a time-dependent external force to induce the transition

Along various pathways/mechanisms (collective variables)

Harmonic constant Initial state

|
Uar(x,6) = 3 (£06) - £+ (65— £0 )

l Final state

2

Biasing potential

Collective variables:
RMSD, distance,

v

Total simulation
time

lorientation quaternion

M. Moradi and ET (2013) PNAS, 110:18916-18921.
M. Moradi and ET (2014) JCTC, 10: 2866—-2880.
M. Moradi, G. Enkavi, and ET (2015) Nature Comm., 6:8393.



Progressively Optimizing the Biasing Protocol/Collective Variable
using non-Equilibrium Work as a Measure of the Path Quality

Work Mechanism
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Example set taken from a subset of 20 ns biased simulations
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i o
l'll‘\\ﬂ-_,\ £
-

IF-0

pr— A §

T T

TTHIfT FETTOT

=3 T3 >en >0 o

LTILas RN

>0 JTT Q. >To o) O

NWEE 1 O
p—

from Non-Equilibrium Simulations
120

80
t (ns)

Mechanistic Insight From Transition Pathways in ABC exporters
40

o o o 9
o o o O

Vo) <t on (@\| —
(Jout/jpoy) yI0M

00 ¢

M. Moradi and ET (2013) PNAS, 110:18916-18921.
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- Outward-Facing State
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NBD Doorknob Mechanism M. Moradi and ET (2013) PNAS, 110:18916-18921.



Describing a Complete Cycle (Adding Substrate)
Requiring a Combination of Multiple Collective Variables

30rx 20 ns
30rx 20 ns

12 replicas x 40 ns (H1/H7)
24 replicas x 20 ns (H1/H7)
200 replicas (2D) x 5 ns

50 replicas x 20 ns

12 replicas x 40 ns (H1/H7)
50 replicas x 20 ns (10 Hs)

30rx 20 ns
30rx20ns ¢
30rx 20 ns



Simulation protocols

Transition  Technique Collective # of Replicas

Variables x Runtime
1 BEUS (Q1,Q7) 12 x 40 ns 0.5 us
2 |IF,<<OF, SMwST {Q} 1000x 1 ns = 1 us
3 BEUS {Q} 50x20ns = 1 us
4 BEUS Zp; 30 x 40 ns 1.2 us
5 IF, <1k, BEUS ({Q}, Zp) 30x40ns = 1.2 ts
6 BEUS Zp; 30 x 40 ns 1.2 us
7 OF,<>OF, BEUS (1Q}, Zp) 30x40ns = 1.2 ﬁs
8 BEUS (Q1,Q7) 24x20ns = 0.5us
9 BEUS Zp; 15x30ns = 0.5us
10 | [F,<=OF, 2DBEUS (ARMSD, Zy) 200x5 ns = 1 us
11 SMwST ({Q}, Zp) 1000x 1 ns = 1 us
12 BEUS ({Q}, Zpi) 50x20ns = 1 us
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M. Moradi, G. Enkavi, and ET (2015) Nature Communication, 6: 8393.
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Battling the Timescale - Case
Multiscale Simulations

Membrane Budding/Fusion

Combining multiple replica simulations and coarse-
grained models to describe membrane fusion



Workflow for Multi-Scale Modeling

Parametrically Defined Sine Function

Final Frame
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Christopher Mayne, Tajkhorshid Lab



Workflow for Multi-Scale Modeling

Christopher Mayne, Tajkhorshid Lab



Applications of Computational Methodologies to
Cell-Scale Structural Biology

Using simulations as a “structure-building” tool

The most detailed model of a chromatophore Computational model of a minimal cell envelope



Molecular Dynamics Flexible Fitting (MDFF)

Electron APS
Synchrotron

) (Ribosome-bound YidC)
Microscope 9

Match through MD

/ crystallographic

structure

cryo-EM density
map

[1] Trabuco et al. Structure (2008) 16:673-683.
[2] Trabuco et al. Methods (2009) 49:174-180.



Molecular Dynamics Flexible Fitting (MDFF)




Automated Protein Embedding into Complex Membrane Structures

Vesicle Construction Coarse Grain Protein CG Protein Placement ~ Combine Lipid + Protein

Distribution of proteins across the membrane surface
(dense environment)
- Ability the handle a variety of protein geometries
* Proper orientation of proteins in relation to the
membrane surface
- Generalizable and automated method for
membranes of arbitrary shape
Embedding proteins into the membrane
- Account for surface area occupied by proteins in
inner and outer leaflets
* Proper lipid packing around embedded proteins
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Automated Protein Embedding into Complex Membrane Structures

Vesicle Construction Coarse Grain Protein CG Protein Placement ~ Combine Lipid + Protein

Distribution of proteins across the membrane surface
(dense environment)
- Ability the handle a variety of protein geometries
* Proper orientation of proteins in relation to the
membrane surface
+ Generalizable and automated method for
membranes of arbitrary shape
Embedding proteins into the membrane
- Account for surface area occupied by proteins in
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113 million Martini particles
representing 1 billion atoms

Protein Components Copy 7

@ Aguaporin Z 97
@ Copper Transporter (CopA) 166
@ F1 ATPase 63
@ Lipid Flipase (MsbA) 29
@® Molybdenum transporter (ModBC) 130
© Translocon (SecY) 103
@® Methionine transporter (MetNI) 136
@® Membrane chaperon (YidC) 126
@ Energy coupling factor (ECF) 117
© Potassium transporter (KtrAB) 148
O Glutamate transporter (Glt7x) 41
@ Cytidine-Diphosphate diacylglycerol (Cds) 50
@ Membrane-bound protease (PCAT) 57
@ Folate transporter (FolT) 134

1,397

3.7 M lipids (DPPC), 2.4 M Na+ & Cl- ions,
104 M water particles (4 H2O / particle)



Applications of Computational Methodologies to
Cell-Scale Structural Biology

Guided Construction of Membranes from Experimental Data
Experimentally-Derived Membrane of Arbitrary Shape Builder

Terasaki Ramp
~4 Billion Atoms

A === Quter Leaflet
=== |nner Leaflet
=== Cholesterol

~1.59um
O
S

O Sphingomyelin

y G Cardiolipin

Keenan and Huang, J. Dairy Sci., 1972.

Terasaki et al., Cell, 2013.



Applications of Computational Methodologies to
Cell-Scale Structural Biology

Guided Construction of Membranes from Experimental Data
Experimentallv-Derived Membrane of Arbitrary Shape Builder

Terasaki Ramp
~4 Billion Atoms

=== Quter Leaflet
=== |nner Leaflet
=== Cholesterol

O Sphingomyelin
0 Cardiolipin

Keenan and Huang, J. Dairy Sci., 1972.

Terasaki et al., Cell, 2013.



Experimentally-Derived Membrane of Arbitrary Shape Builder
xMAS Builder




Nano-biotechno
Gold Nanoparticles as De

Schematic model with

Transmission no prediction power
Electron Micrograph
Cartoon representation of lipid Au NPs

Yang, J. A.; Murphy, C. J. Citrate Au NPs

Langmuir 2012, 28, 5404—
5416 W + ‘ ¥ ]
Liposomes Octadecanethiol

Experiment:
Murphy Lab

Ogy
ivery Vehicles

Modeling/Simulation:
Tajkhorshid Lab
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Workshop Instructors

Emad Tajkhorshid

Chris Chipot

Brian K. Radak
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Wei Jiang

Mahmoud Moradi

Rafael C. Bernardi

Jérome Hénin




Program

(subject to changes)

Location: Beckman Institute, Room 5602

Monday, September 10: Alchemical and Geometrical Free-Energy Calculations

09:00-09:20 Welcome and Brief Overview , Emad Tajkhorshid

09:20-09:45 Applications of Enhanced Sampling and Free-Energy Calculation Methods in Modern Biophysical Problems, Emad Tajkhorshid
09:45-10:00 Introduction to Alchemical and Geometrical Free-Energy Calculations, Chris Chipot

10:00-10:20 Coffee Break

10:20-12:20 Alchemical and Geometrical Free-Energy Calculations in NAMD, Chris Chipot

12:20-12:40 Q&A

12:40-14:00 Lunch Break

14:00-15:20 Tutorials

15:20-15:40 Coffee Break

15:40-18:00 Tutorials

Tuesday, September 11: Transition Path Sampling Methods and Constant pH Simulations

09:00-10:20 Transition Path Sampling Methods, Chris Chipot

10:20-10:40 Coffee Break

10:40-12:00 Hybrid Non-Equilibrium Molecular Dynamics/Metropolis Monte Carlo Calculations for Constant pH Simulations, Brian K. Radak
12:00-12:20 Q&A

12:20-14:00 Lunch Break

14:00-15:20 Tutorials

15:20-15:40 Coffee Break

15:40-18:00 Tutorials



Wednesday, September 12: Geometrical Transformations and Collective Variables

09:00-10:20
10:20-10:40
10:40-11:40
11:40-12:00
12:00-13:20
13:20-15:30
15:30-16:30
16:30-16:50
16:50-18:00
19:00-21:00

Geometrical Free-Energy Methods: Strengths and Limitations, Jérome Hénin

Coffee Break

Designing, Implementing and Optimizing Collective Variables in VMD and NAMD, Jérome Hénin
Q&A

Lunch Break

Tutorials

Coffee Break + Meet the Developers

Group Picture and Social

Tutorials

Workshop Dinner (place to be determined; sign in during the workshop)

Thursday, September 13: Specialized Algorithms for Enhanced Ergodic Sampling

09:00-10:20
10:20-10:40
10:40-12:00
12:00-12:20
12:20-14:00
14:00-15:20
15:20-15:40
15:40-18:00

Specialized Algorithms for Enhanced Ergodic Sampling, Chris Chipot

Coffee Break

Accelerating Convergence of Free-Energy Calculation with Replica Exchange Solute Tempering, Wei Jiang
Q&A

Lunch Break

Tutorials

Coffee Break

Tutorials

Friday, September 14: Complex Reaction Pathways & QM/MM Simulations

09:00-10:20
10:20-10:40
10:40-12:00
12:00-12:20
12:20-14:00
14:00-15:20
15:20-15:40
15:40-18:00

Exploring Complex Reaction Pathways, Mahmoud Moradi
Coffee Break

Free-Energy Calculations and Enhanced Sampling Methods in conjunction with QM/MM calculations, Rafael C. Bernardi

Q&A

Lunch Break
Tutorials
Coffee Break
Tutorials



Tutorials
Below are planned tutorials listed by workshop day. More TCBG tutorials are available here.
Monday, September 10: Alchemical and Geometrical Free-Energy Calculations
e A Tutorial on Alchemical Free Energy Perturbation Calculations in NAMD

¢ A Tutorial on Adaptive Biasing Force Calculations in NAMD
¢ Protein:ligand Standard Binding Free Energies: A Tutorial for Alchemical and Geometrical Transformations

Tuesday, September 11: Transition Path Sampling Methods and Constant pH Simulations

e String Method with Swarms of Trajectories: A Tutorial for Free-energy Calculations along a Minimum-action Path
e Constant pH tutorial

Wednesday, September 12: Geometrical Transformations and Collective Variables

Colvars module (source code and supporting material)

Performing Metadynamics Simulations Using NAMD

Protein:ligand Standard Binding Free Energies: A Tutorial for Alchemical and Geometrical Transformations
A Tutorial on Adaptive Biasing Force Calculations in NAMD

Thursday, September 13: Specialized Algorithms for Enhanced Ergodic Sampling

¢ Methods for calculating Potentials of Mean Force
e A Tutorial on One-dimensional Replica-exchange Umbrella Sampling
o Adaptive Multilevel Splitting Method: Isomerization of Alanine Dipeptide

Friday, September 14: Complex Reaction Pathways & QM/MM Simulations

e Exploring Complex Conformational Transition Pathways
e NAMD-QM/MM Tutorial



