Modeling and Molecular Dynamics of Membrane Proteins

Emad Tajkhorshid

NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute, University of Illinois at Urbana-Champaign

Why Do Living Cells Need Membrane

• Living cells also need to exchange materials and information with the outside world

Phospholipid Bilayers Are Excellent Materials For Cell Membranes

- Hydrophobic interaction is the driving force
- Self-assembly in water
- Tendency to close on themselves
- Self-sealing (a hole is unfavorable)
- Extensive: up to millimeters

Lipid Diffusion in a Membrane

Technical difficulties in Simulations of Biological Membranes

- Time scale
- Heterogeneity of biological membranes ③

60 x 60 Å Pure POPE 5 ns ~100,000 atoms

Also, increasing the time step by orders of magnitude.

by: J. Siewert-Jan Marrink and Alan E. Mark, University of Groningen, The Netherlands

Analysis of Molecular Dynamics Simulations of Biomolecules

- A very complicated arrangement of hundreds of groups interacting with each other
- Where to start to look at?
- What to analyze?
- How much can we learn from simulations?

It is very important to get acquainted with your system

Aquaporins

Monomeric pores 🐐 Water, glycerol, ... Tetrameric pore Perhaps ions???

<u>Aquaporins of known structure:</u> <u>GIpF</u> – E. coli glycerol channel (aquaglycerolporin) <u>AQP1</u> – Mammalian aquaporin-1 (pure water channel) <u>AqpZ</u> and AQP0 (2004)

Functionally Important Features

- Tetrameric architecture
- Amphipatic channel interior
- Water and glycerol transport
- Protons, and other ions are excluded
- Conserved asparagine-prolinealanine residues; NPA motif
- Characteristic half-membrane spanning structure

A Semi-hydrophobic channel

Molecular Dynamics Simulations

Protein: ~ Lipids (POPE): ~ Water: ~ Total: ~

15,000 atoms
40,000 atoms
51,000 atoms
106,000 atoms

NAMD, CHARMM27, PME NpT ensemble at 310 K Ins equilibration, 4ns production 10 days /ns - 32-proc Linux cluster 3.5 days/ns - 128 O2000 CPUs **0.35 days/ns - 512 LeMieux CPUs**

Protein Embedding in Membrane

Hydrophobic surface of the protein Ring of Tyr and Trp

Embedding GlpF in Membrane

77 A

122 A

112 A

Animation available at the Nobel web site

E. T., et al., *Science* 2002.

REMEMBER:

One of the most useful advantages of simulations over experiments is that you can modify the system as you wish: You can do modifications that are not even possible at all in reality!

This is a powerful technique to test hypotheses developed during your simulations. Use it!

Electrostatic Stabilization of Water Bipolar Arrangement

E. T., et al., *Science* 2002.

Characterizing Protein Forces

QM/MM MD of proton behavior in the channel

Water Bipolar Configuration in Aquaporins

Proton transfer through water

Battling the Timescale - Case I Steered Molecular Dynamics is a non-equilibrium method by nature

- A wide variety of events that are inaccessible to conventional molecular dynamics simulations can be probed.
- The system will be driven, however, away from equilibrium, resulting in problems in describing the energy landscape associated with the event of interest.

Second law of thermodynamics $\longrightarrow W \geq \Delta G$

- Both from *E. coli*
- AqpZ is a pure water channel
- GlpF is a glycerol channel
- We have high resolution structures for both channels

Steered Molecular Dynamics

SMD Simulation of Glycerol Passage

Constructing the Potential of Mean Force

Features of the Potential of Mean Force z/A -30 periplasm (a) (b) -20 -10 SF constriction region membrane NPA 0 10 20 cytoplasm -4 0 free energy / kcal mol-1

- Captures major features of the channel
- The largest barrier \approx 7.3 kcal/mol; exp.: 9.6±1.5 kcal/mol Jensen et al., *PNAS*, 99:6731-6736, 2002.

Features of the Potential of Mean Force

Asymmetric Profile in the Vestibules

Jensen et al., PNAS, 99:6731-6736, 2002.

Artificial induction of glycerol conduction through AqpZ

Y. Wang, K. Schulten, and E. Tajkhorshid Structure 13, 1107 (2005)

Three fold higher barriers

SF

NPA

Y. Wang, K. Schulten, and E. Tajkhorshid Structure 13, 1107 (2005)

Could it be simply the size?

Y. Wang, K. Schulten, and E. Tajkhorshid Structure 13, 1107 (2005)

Battling the Timescale - Case II Biased (nonequilibrium) simulations

Neurotransmitter Uptake

» Norepinephrine, serotonin, dopamine, glutamate,...

Gastrointestinal Tract

- » Active absorption of nutrients
- » Secretion of ions

Kidneys

- » Reabsorption
- » Secretion

Pharmacokinetics of all drugs

- » Absorption, distribution, elimination
- » Multi-drug resistance in cancer cells

Alternating Access Mechanism

Outward-facing

Jardetzky O. Nature 211: 969–970 (1966)

J. Li, ..., E. Tajkhorshid. (2015) COSB, 31: 96-105.

AsbA

Diverse Structural Transitions Involved

NON-EQUILIBRIUM METHODS ARE REQUIRED.

Complex Processes Require Complex Treatments

Aggressive Search of the Space

Non-equilibrium Driven Molecular Dynamics: Applying a time-dependent external force to induce the transition

Along various pathways/mechanisms (collective variables)

Harmonic constant Initial state

$$U_{dr}(\mathbf{x}, t) = \frac{1}{2} k \left(\boldsymbol{\xi}(\mathbf{x}) - \boldsymbol{\xi}_{A}^{\dagger} + (\boldsymbol{\xi}_{B} - \boldsymbol{\xi}_{A}) \frac{t}{T} \right)^{2}$$
Final state
Biasing potential
Collective variables:
RMSD, distance,
R_g, angle, ...
orientation quaternion

M. Moradi and ET (2013) **PNAS**, 110:18916–18921.

M. Moradi and ET (2014) JCTC, 10: 2866–2880.

M. Moradi, G. Enkavi, and ET (2015) Nature Comm., 6:8393.

Progressively Optimizing the Biasing Protocol/Collective Variable using non-Equilibrium Work as a Measure of the Path Quality

Example set taken from a subset of 20 ns biased simulations

Mechanistic Insight From Transition Pathways in ABC exporters from Non-Equilibrium Simulations

M. Moradi and ET (2013) **PNAS**, 110:18916–18921. M. Moradi and ET (2014) **JCTC**, 10: 2866–2880.

NBD Doorknob Mechanism

M. Moradi and ET (2013) PNAS, 110:18916–18921.

Describing a Complete Cycle (Adding Substrate) Requiring a Combination of Multiple Collective Variables

Simulation protocols

	Transition	Technique	Collective Variables	# of Replicas × Runtime		
1		BEUS	(Q_1, Q_7)	12×40 ns	=	0.5 µs
2	IF _a ⇔OF _a	SMwST	{Q}	1000×1 ns	=	1 μs
3		BEUS	{Q}	50×20 ns	=	1 µs
4		BEUS	Z_{Pi}	30×40 ns	=	1.2 µs
5	$\Pi_a \longrightarrow \Pi_b$	BEUS	$(\{Q\}, Z_{Pi})$	30×40 ns	=	1.2 µs
6	OF COF	BEUS	Z_{Pi}	30×40 ns	=	1.2 µs
7	$Or_a > Or_b$	BEUS	$(\{Q\}, Z_{Pi})$	30×40 ns	=	1.2 µs
8		BEUS	(Q_1, Q_7)	24×20 ns	=	0.5 µs
9		BEUS	Z_{Pi}	15×30 ns	=	0.5 μs
10	$IF_b \leftrightarrow OF_b$	2D BEUS	$(\Delta RMSD, Z_{Pi})$	200×5 ns	=	1 µs
11	-	SMwST	$({Q}, Z_{Pi})$	1000×1 ns	=	1 µs
12		BEUS	$({Q}, Z_{Pi})$	50×20 ns	=	1 μs
13	Full Cycle	BEUS	$(\{Q\}, Z_{Pi})$	150 × 50 ns	=	7.5 µs
Total Simulation Time18.7 μs						
$\begin{array}{c} \text{GlpT} & & & & & \\ \text{Crystal Structure} & & & & \\ & & & & & & \\ & $						
$\mathbb{S}^{\mathbb{N}} \mathbb{S}^{\mathbb{N}} \mathbb{S}$						

BLUE WATER NCSA

M. Moradi, G. Enkavi, and ET (2015) Nature Communication, 6: 8393.

M. Moradi, G. Enkavi, and ET (2015) Nature Communication, 6: 8393.

Battling the Timescale - Case III Multiscale Simulations

Membrane Budding/Fusion

Combining multiple replica simulations and coarsegrained models to describe membrane fusion

Workflow for Multi-Scale Modeling

Parametrically Defined Sine Function

Workflow for Multi-Scale Modeling

Christopher Mayne, Tajkhorshid Lab

Workflow for Multi-Scale Modeling

Battling the Timescale - Case IV Reduced Representations

Highly Mobile Membrane Mimetic model

.कूर्वे? 1849 में स्टिक्स के स्टिक्स 1955 में स्टिक्स के स्ट

ing in the second s

and the second s

and states

Sz. Mikiszie Mikiszie -age. Ather and a second s

Alexandratical Alexandratical Alexandratical Alexandratical

HANNAK MANNA)

GpA insertion in 12 ns

Specific lipids regulate various functional aspects of membrane proteins

Integral membrane proteins

Peripheral membrane proteins

Lipid-Dependent Regulation and Activity of Peripheral Membrane Proteins

- Membrane binding is a key regulatory step in the function of diverse proteins:
 - ◆ Cytoplasmic enzymes (kinases, Ras, P450, synaptotagmin, ...)
 - Coagulation factors (GLA and C2 domains)
 - Membrane sculpting proteins (BAR domain)
 - ✦ Pathogenic systems viral fusion peptides, synuclein,
 - Immune/apoptotic system (TIM proteins)
- + Lipid-specificity is a common feature:
 - ◆ Mostly at the level of **head groups**: PS, PG, PIP2, PA, ...
 - Requiring all-atom representation of the head groups
 - Slow lateral diffusion of lipids within a bilayer environment makes simulation studies of membrane-associated phenomena even more challenging

Lipid Dependent Binding and Activation

Lipid Dependent Binding and Activation

Mode and specificity of lipid-protein interactions constitute one of the main mechanistic aspects

Simulation of Binding with Full Membrane Representation

Partial list of technical problems:

- Biased simulations
- Unknown depth of insertion
- Single binding event
- Frequently failing
- Minimal lipid reorganization

Z. Ohkubo and E. T., Structure, 16: 72-81 (2008)

HMMM model

Zenmei Ohkubo

Mark Arcario

Taras Pogorelov

Josh Vermaas

Javier Baylon

HMMM- Preserving the "Face" of the Lipid Bilayer

Perfect match in the membrane profile particularly in the head group region

Critical for proper description of lipid protein interactions

Enhanced Lipid Lateral Diffusion Without Compromising Atomic Details of the Headgroups

Enhanced Lipid Lateral Diffusion Without Compromising Atomic Details of the Headgroups

PS-Dependent Spontaneous Insertion of FVII-GLA

Zenmei Ohkubo

Spontaneous, Unbiased Membrane Binding Accelerated Process Allows for better sampling (*n = 10*)

Z. Ohkubo, ..., E.T., **Biophys. J.**, 102: 2130-2139 (2012) (Cover Article)

Final model converted to **full membrane** Stable in 100 ns simulations

M. Arcario and ET, **Biophys. J.**, 107: 2059–2069 (2014).

Revealing the *Hydrophobic Anchor*

Membrane Induced Domain Rearrangement of Talin

M. Arcario and ET, **Biophys. J.**, 107: 2059–2069 (2014).

Membrane Binding of Influenza Hemagglutinin Fusion Peptide

J. Baylon and E. T., J. Phys. Chem.B, 2015, in press.

Membrane Binding of Influenza Hemagglutinin Fusion Peptide

7 different initial orientation each simulated 3 times

J. Baylon and E. T., J. Phys. Chem.B, 2015.

Membrane Binding of Influenza Hemagglutinin Fusion Peptide

Spontaneous binding observed in the majority of the simulations: 21 independent simulations starting from 7 different orientations

J. Baylon and E. T., J. Phys. Chem.B, 2015.
Remarkable convergence of membrane binding simulations

Remarkable convergence of membrane binding simulations

J. Baylon and E. T., J. Phys. Chem.B, 2015.

Robust Tilting of the Anchor Domain in Snare Protein Synaptobrevin

Mark Arcario And

Andrew Blanchard

Robust Tilt Observed in Synaptobrevin

Membrane thickness mildly restrained: one carbon/tail k = 0.05 kcal/mole/A2

A. Blanchard*, M. Arcario*, K. Schulten, and ET, **Biophys. J.**, 107: 2112–21 (2014)

Identifying a Hinge

A. Blanchard*, M. Arcario*, K. Schulten, and ET, **Biophys. J.**, 107: 2112–21 (2014)

Cytochrome P450 3A4 (CYP3A4)

Yano et al., J Biol Chem, 279: 38091-38094, 2004

- Enzymes essential for the metabolism of xenobiotics and other compounds, found in all domains of life.
- In the human body, CYPs are membrane-bound proteins.
- The interaction with membrane mediates binding of substrates.
- CYP3A4: most abundant CYP in the human body, metabolizes about 50%- 60% of drugs that are metabolized in the body.

Insertion and Membrane-Induced Conformational Change of Cytochrome P450

J. Baylon, I. Lenov, S. Sligar and ET, JACS, 135: 8542–8551 (2013)

Insertion and Membrane-Induced Conformational Change of Cytochrome P450

Within 10 degrees of experimental measurement of the tilt angle (S. Sligar)

J. Baylon, I. Lenov, S. Sligar and ET, JACS, 135: 8542-8551 (2013)

