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Interactions span many orders of magnitude in space and time

Femtoseconds MicrosecondsPicoseconds

Molecules to Macromolecular assemblies

 Whole Cells and Colonies 2

Biological Modeling at Different Scales
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Probability*of*Cellular*State***
Stochas3c*Dynamics*

•  Chemical*Master*Equa3on**–*Well<s3rred*reac3ons*(Gillespie*SSA)**

•  Reac3on<Diffusion*Master*Equa3on*(RDME)*

3*

*Noisy*cell*in*sea*of**IPTG*

Heterogeneous*cellular*environment*–*50%*volume*packed*with*macromolecules***

Exp.%Baumeister,%Or1z,%Xie,%Elf,%Moerner,%Ha,%%
%%%%%%%Woodson,%Williamson,%Kuhlman%

Exp.*proteomics*

dP(x, t)
dt

= −ar (
x)P(x, t)+ ar (

x − sr )P(
x − sr, t)

r

R

∑

dP(x, t)
dt

= −ar (
xv )P(x, t)+ ar (

xv −
sr )P(x − sr1v, t)

r=1

R

∑
v∈V
∑

             + −dij
αxi

αP(x, t)+ dji
α (x j

α +1j
α )P(x +1j

α −1i
α, t)

α=1

N

∑
j∈V
∑

i∈V
∑

State*x*(#*mRNA,O,I…)***



               Stochastic Cell Simulations 
Promotes Integration of Theory and Experiments

Cell is fundamental unit of life • Packing & Diffusion Data < > SRI, CET, -omics

• Reactions & Parameters < > Biochem, SM, MD

• RDME Cell Model Simulations < > Lattice Microbe 
       Multi-GPU Code over cell cycles

•    Population (Constrained) FBA: Steady-state fluxes in
       cellular networks and growth rate distributions > E. coli, 
       yeast, M. mycoides, stem cells, M. acetivorans

•     Hybrid Reaction/Diffusion/FBA Models < > Cell Colonies

GPU-based Lattice Microbe code

Software Released through http://www.scs.illinois.edu/schulten/lm/ and NIH Center for 
Macromolecular Modeling and Bioinformatics at Beckman Institute



 2014-2016 Achievements with LM 

• Built on GPUs from ground up 
• 300X’s faster than other codes 
• Runs on Multi-GPUs systems 
• Hour long bacterial cell simulations 
    with molecular crowding 

 

Systems	
  Biology	
  Popula1on	
  FBA	
  –	
  	
  2013/2016	
  
• P.	
  Labhsetwar,	
  J.	
  Cole,	
  Z.	
  Luthey-­‐Schulten,	
  PNAS	
  2013	
  (Ecoli)	
  	
  
• P.	
  	
  Labhsetwar,	
  et	
  al.	
  (2016	
  submi?ed)	
  (Yeast/C13	
  Fluxes)	
  
Time	
  scale	
  separa1ons	
  –	
  2014	
  
• Cole,	
  Luthey-­‐Schulten,	
  Whole	
  Cell	
  Modeling:	
  From	
  Single	
  Cells	
  
	
  	
  	
  	
  to	
  Colonies	
  Isr.	
  J.	
  Chem.,	
  2014,	
  (Nobel	
  Prize	
  Symposium	
  Now&Then)	
  
• Cole,	
  	
  Hallock,	
  Labhsetwar,	
  	
  Peterson,	
  Stone,	
  ZLS	
  
	
  	
  	
  	
  	
  	
  	
  in	
  ComputaFonal	
  Systems	
  Biology:	
  From	
  Molecular	
  Mechanisms	
  	
  
	
  	
  	
  	
  	
  to	
  Disease,	
  Eds.	
  Kriete	
  and	
  Eils,	
  Elsevier,	
  2014	
  
Mul1-­‐GPU	
  code	
  for	
  yeast	
  &	
  human	
  cells-­‐	
  2014/16	
  
• 	
  	
  Hallock,	
  	
  Stone,	
  Roberts,	
  Fry,	
  ZLS,	
  Parallel	
  CompuFng,	
  2014	
  	
  
• Hallock	
  &	
  ZLS,	
  Parallel	
  &	
  Distr.	
  Comp.	
  (IEEE	
  Workshop),	
  2016	
  
Metabolic	
  Reprogramming	
  <-­‐>	
  Colony	
  –	
  2015	
  …	
  
• J.	
  Cole	
  et	
  al.,	
  SpaSally	
  resolved	
  metabolic	
  co-­‐operaSviSy	
  within	
  	
  
	
  	
  	
  	
  	
  dense	
  bacterial	
  colonies.	
  BMC	
  Sys	
  Bio.	
  2015	
  
Ribosome	
  Biogenesis<-­‐>	
  Cell	
  Division	
  –	
  2014-­‐16	
  …	
  	
  
• Kim,	
  …	
  ZLS,	
  T.	
  Ha,	
  S.	
  Woodson,	
  Nature,	
  2014	
  (MD/Exp)	
  
• T.	
  Earnest,	
  ..	
  J.	
  Williamson,	
  ZLS,	
  BPJ	
  2015	
  (LM/Exp)	
  
• Earnest,	
  …	
  Kuhlman,	
  ZLS	
  (2016	
  in	
  revision)	
  (LM/Theory/Exp)	
  	
  
	
  DNA	
  Replica1on	
  <-­‐>	
  mRNA	
  and	
  sRNA	
  	
  –	
  2015	
  …	
  
• J.	
  Peterson,	
  	
  J.	
  Fei,	
  Tj	
  Ha,	
  ZLS	
  	
  PNAS	
  2015	
  (LM/Theory/Exp)
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Kinetic Model of lac Genetic Switch 
K – in vitro kinetic experiment

S – single molecule experiment

M – model parameter fit to
       single-molecule distributions

Roberts,)…ZLS,)PloS)CompBio)2011)



Effect of in vivo crowding on repressor re-binding

 E. Roberts, J. Stone,L. Sepulveda, W.M. Hwu,  ZLS, IEEE, 2009



A Window into the Cell with VMD 
VMD and QuickSurf offer powerful visualization and analysis capabilities 

Ribosome Small Complexes/ 
Proteins 

Polymerases/ 
Large Complexes Lattice sites 

John%Stone%
John%Cole%



MoSvaSon:	
  Capture	
  Timescale	
  and	
  FracSon	
  of	
  Cells	
  Undergoing	
  
Phenotypic	
  Switching

Experimental data from Choi, Cai, Frieda, Xie (2008) Science               Simulations from Roberts, Magis, Ortiz, Baumeister, ZLS
                                                                                                                 PloS Comp. Biol. 2011
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  Growing	
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In vivo – Slow Growing E. coli 
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 Molecular Signatures in Evolution of Translation 
Kinetic Model Ribosome Biogenesis  

Roberts, … Woese, Luthey-Schulten (2008) PNAS,  Kim,… Luthey-Schulten, Ha, and Woodson 
"Protein-guided RNA dynamics during early ribosome assembly” (2014) Nature  
 
Earnest, ….Williamson, ZLS “Whole Cell Model of Ribosome Biogenesis” (2015), Biophys. J. 

Dynamical function of ribosomal signatures: idiosyncrasies in ribosomal RNA and/or 
proteins characteristic of the domains of life 

Universal Phylogenetic Tree 

Carl%Woese%
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In vitro kinetic model - 30S Assembly at 40 C



In vivo model  - 1330 reactions, 251 species

Reaction Data source

Assembly Sx + Ii ⟶ Ii+1
40ºC model, no 
modifications

Degradation mRNA ⟶ ∅ From expt. half life

Transcription DNA ⟶ DNA + mRNA 
DNA ⟶ DNA + rRNA

Chosen to match 
relative protein 
abundance

Translation 30S + mRNA + 50S ⟶ 30S + 
mRNA + 50S + n Protein From transcript lengths

Diffusion Xi(x) ⟶Xi(x+δj) Estimated or from SM 
experiments (Elf)


