

Thermal Motion of Ubiquitin from MD

Temperature Dependence of Crystal Diffraction (Debye-Waller factor)

Bragg's law

$$2\,d\,\sin\theta = \lambda$$

due to contributin from each copy j

 $f_j \exp[-i \vec{s} \cdot \vec{r_j}]$ structure factor f_j

But the atom carries out thermal vibrations around equilibrium position \vec{x}_i

$$\vec{r}_j(t) = \vec{x}_j + \vec{u}_j(t)$$

Accordingly:

$$\langle f_j \exp[-i\vec{s}\cdot\vec{r}_j] \rangle = f_j \exp[-i\vec{s}\cdot\vec{x}_j] \langle \exp[-i\vec{s}\cdot\vec{u}_j] \rangle$$

Thermal Motion of Ubiquitin from MD

Temperature Dependence of Crystal Diffraction (Debye-Waller factor)

One can expand:

$$\langle \exp[-i\vec{s}\cdot\vec{u}_j] \rangle = 1 - i \underbrace{\langle \vec{s}\cdot\vec{u}_j \rangle}_{=0} - \frac{1}{2} \langle (\vec{s}\cdot\vec{u}_j)^2 \rangle + \dots$$

Spatial average for harmonic oscillator: $\langle (\vec{s} \cdot \vec{u}_j)^2 \rangle = \frac{1}{3} s^2 \langle u_j^2 \rangle$

One can carry out the expansion further and show all further terms vanish

$$\langle \exp[-i\vec{s}\cdot\vec{u}_j] \rangle = \exp\left[-\frac{1}{6}s^2 \langle u_j^2 \rangle\right]$$

Using for the thermal amplitude of the harmonic oscillator

Equilibrium Properties of Proteins Energies: kinetic and potential $\int \sum_{j=1}^{n} \frac{1}{2} m_j v_j^2 \rangle$ Kinetic energy (quadratic) $U(\vec{R}) = \sum_{\substack{bonds}} \frac{k_b^{bond}(r_i - r_0)^2}{U_{and}} + \sum_{\substack{angles}\\U_{angles}} \frac{k_i^{angle}(\theta_i - \theta_0)^2 + \sum_{\substack{bonds}\\U_{angles}} \frac{k_i^{dine}[1 + \cos(n_i\phi_i + \delta_i)] + \sum_{\substack{bonds}\\\sum_{\substack{binds \\ i \ binds \\$

Definition of Temperature

$$\langle \sum_j \frac{1}{2} m_j v_j^2 \rangle = \frac{3}{2} N k_B T$$

$$T = \frac{2}{3N k_B} \left\langle \sum_j \frac{1}{2} m_j v_j^2 \right\rangle$$

The atomic velocities of a protein establish a thermometer, but is it accurate? Apparently not! Why!

Temperatur Fluctuations

Maxwell distribution

$$dP(v_n) = c \exp(-m v_n^2/2k_BT) dv_n \qquad (7)$$

The atomic velocity thermometer is inaccurate due to the finite size of a protein!

> 100 Temperature [K]

0.12

Individual kinetic energy $\epsilon_n = m v_n^2/2$.

$$dP(\epsilon_n) = (\pi T_0 \epsilon_n)^{-1/2} \exp(-\epsilon_n/k_B T_0) d\epsilon_n$$
 (8)

One can derive

$$\langle \epsilon_n \rangle = I_0/2 \tag{9}$$

$$\langle \epsilon_n^* \rangle = 3 T_0^* / 4$$
 (10)

$$\langle \epsilon_n^x \rangle - \langle \epsilon_n \rangle^2 = T_0^2/2 \tag{11}$$

The distribution of the total kinetic energy $E_{kin} = \sum_j \frac{1}{2} m_j v_j^2$, according to the central limit theorem, is approximately Gaussian

$$P(E_{kin}) = c \exp \left(\frac{-(E_{kin} - \langle E_{kin} \rangle)^2}{2\left(\frac{3Nk_B^2 T_0^2}{2}\right)}\right) \qquad (12)$$

The distribution function for the temperature ($T=2E_{kin}/3k_B$) fluctuations $\Delta T=T-T_0$ is then

$$P(\Delta T) = c \exp[-(\Delta T)^2/2\sigma^2], \quad \sigma^2 = 2T^2/3N$$
 (13)

For
$$T_0 = 100$$
K and $N = 557$, this gives $\sigma = 3.6$.

Simulated Cooling of Ubiquitin

- Proteins function in a narrow (physiological) temperature range. What happens to them when the temperature of their surrounding changes significantly (temperature gradient) ?
- Can the heating/cooling process of a protein be simulated by molecular dynamics ? If yes, then how?

 What can we learn from the simulated cooling/heating of a protein ?

Simulated Cooling - Result

t	$\langle T_{sim} \rangle$						
0.05	298.75	1.05	276.00	1.95	267.00	3.25	261.00
0.15	289.25	1.15	276.50	2.05	268.50	3.45	258.50
0.35	285.50	1.25	275.25	2.25	266.50	3.55	259.50
0.55	282.25	1.35	271.00	2.35	264.50	3.95	256.50
0.65	282.75	1.45	271.75	2.55	263.50	4.05	257.25
0.75	279.00	1.65	269.50	2.65	264.50	4.45	254.00
0.85	277.75	1.75	271.00	2.85	262.00	4.55	255.25
1.00	277.50	1.85	268.00	3.05	262.50	4.85	252.00

Table 1: Mean temperature $\langle T_{sim} \rangle$ [K] of the protein as a function of time t [ps].

Solution of the Heat Equation

$$\frac{\partial T(\mathbf{r},t)}{\partial t} = D \nabla^2 T(\mathbf{r},t) ,$$
$$D = K/\rho c ,$$

Initial condition

 $T(\mathbf{r}, 0) = \langle T_{sim} \rangle(0) \quad \text{for } r < R$,

Boundary condition

$$T(R,t) = T_{bath}$$
.

