
6/13/13 IPython Notebook

127.0.0.1:8888/78aaf7e9-90fd-4687-85b4-fb466cb9bb98/print 1/8

Hands-on Session Examples

ProDy Examples

In [39]:

In [40]:

Let's parse some structures:

In [41]:

In [42]:

p38 is an AtomGroup object. You can think of it as a list of atoms, and indexing will work in the same way.

In [43]:

In [44]:

In [45]:

In [46]:

In [47]:

from prody import parsePDB # we imported only a function that we need for now

parsePDB ?

p38 = parsePDB('1p38')

@> PDB file is found in the local mirror (.\1p38.pdb).
DEBUG:.prody:PDB file is found in the local mirror (.\1p38.pdb).
@> 2962 atoms and 1 coordinate set(s) were parsed in 0.04s.
DEBUG:.prody:2962 atoms and 1 coordinate set(s) were parsed in 0.04s.

p38

Out[42]: <AtomGroup: 1p38 (2962 atoms)>

l = range(10)

l[0] # to get the first item in the list

Out[44]: 0

p38[0] # to get the first atom in the atom group

Out[45]: <Atom: N from 1p38 (index 0)>

n = p38[0]

n

Out[47]: <Atom: N from 1p38 (index 0)>

6/13/13 IPython Notebook

127.0.0.1:8888/78aaf7e9-90fd-4687-85b4-fb466cb9bb98/print 2/8

Dictionaries

There are also similarities between AtomGroup objects and dictionaries. Dictionaries map keys to values.
In the following we will map some first names to last names:

In [48]:

In [49]:

In [50]:

In [51]:

In [52]:

In [53]:

In [54]:

In [55]:

AtomGroups - Chains

AtomGroup objects map one letter chain identifiers, e.g. 'A' to chain objects.

In [56]:

d = {}

d ?

d['ahmet']

--
KeyError Traceback (most recent call
last)
<ipython-input-50-94b25eed165b> in <module>()
----> 1 d['ahmet']

KeyError: 'ahmet'

d['ahmet'] = 'bakan'

d

Out[52]: {'ahmet': 'bakan'}

d['tim'] = 'lezon'

d

Out[54]: {'ahmet': 'bakan', 'tim': 'lezon'}

d['ahmet']

Out[55]: 'bakan'

p38.numAtoms()

6/13/13 IPython Notebook

127.0.0.1:8888/78aaf7e9-90fd-4687-85b4-fb466cb9bb98/print 3/8

In [56]:

In [57]:

In [58]:

In [59]:

In [60]:

In [61]:

In [62]:

Some calculations

In [63]:

In [64]:

In [65]:

In [66]:

p38.numAtoms()

Out[56]: 2962

p38.numChains()

Out[57]: 1

p38['A']

Out[58]: <Chain: A from 1p38 (480 residues, 2962 atoms)>

chA = p38['A']

chA

Out[60]: <Chain: A from 1p38 (480 residues, 2962 atoms)>

len(p38) # lengh of AtomGroup is number atoms, since AtomGroup is like a list of atoms

Out[61]: 2962

len(chA) # whereas length of a chain object is number of residues, since chain is a container residues

Out[62]: 480

from prody import * # we now import everything

calcGyradius(p38) # we calculated radius of gyration for the AtomGroup

Out[64]: 22.057752024921747

calcGyradius(chA) # Chain object can also be an import to the same function

Out[65]: 22.057752024921747

chA

Out[66]: <Chain: A from 1p38 (480 residues, 2962 atoms)>

6/13/13 IPython Notebook

127.0.0.1:8888/78aaf7e9-90fd-4687-85b4-fb466cb9bb98/print 4/8

In [67]:

In [68]:

In [69]:

In [70]:

In [71]:

In [72]:

In [73]:

Residues

In [74]:

In [75]:

In [76]:

Out[66]: <Chain: A from 1p38 (480 residues, 2962 atoms)>

p38

Out[67]: <AtomGroup: 1p38 (2962 atoms)>

p38.numAtoms('water') # this gives us number of water atoms in the AtomGroup

Out[68]: 129

p38.numAtoms('protein') # this give number of protein atoms

Out[69]: 2833

p38.select('protein') # we select protein atoms

Out[70]: <Selection: 'protein' from 1p38 (2833 atoms)>

p38.protein # same selection simplified like this

Out[71]: <Selection: 'protein' from 1p38 (2833 atoms)>

p38.protein == p38.select('protein') # they are the same thing

Out[72]: True

calcGyradius(p38.protein) # this is what we would do if we wanted to perform the calculation for only protein atoms

Out[73]: 21.960840914729118

chA[10] # get the residue number 10

Out[74]: <Residue: ARG 10 from Chain A from 1p38 (11 atoms)>

calcPsi(chA[10]) # a residue can be an input to calcPsi function

Out[75]: 147.49025666398765

calcPsi ?

6/13/13 IPython Notebook

127.0.0.1:8888/78aaf7e9-90fd-4687-85b4-fb466cb9bb98/print 5/8

Show atoms

You can show atoms using the following function. For proteins only Calpha trace will be displayed.
Heterogeneous atoms will be shown as points or dots

In [77]:

In [78]:

showProtein(p38)

Out[77]: <mpl_toolkits.mplot3d.axes3d.Axes3D at 0x56a9ed0>

showProtein(chA)

Out[78]: <mpl_toolkits.mplot3d.axes3d.Axes3D at 0x5b18170>

6/13/13 IPython Notebook

127.0.0.1:8888/78aaf7e9-90fd-4687-85b4-fb466cb9bb98/print 6/8

Arrays and Efficiency

In [79]:

In [80]:

In [81]:

In [82]:

In [83]:

In [84]:

We will time the operation of summing up items in a list and array. For lists, we will use built-in Python
function sum. For arrays, we will use array method .sum. Array methods are C code working on defined
types, and they can be much more faster than pure Python equivalents.

In [85]:

This operation took 23400 microseconds on my laptop.

In [86]:

In [87]:

In [88]:

l = range(10)

array(l) # this give us an array

Out[80]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

l = range(100000) # we will make a long list to show how efficient arrays can be

len(l)

Out[82]: 100000

a = array(l)

len(a)

Out[84]: 100000

%timeit sum(l)

10 loops, best of 3: 23.4 ms per loop

a.sum()

Out[86]: 704982704

a.max()

Out[87]: 99999

%timeit a.sum()

10000 loops, best of 3: 128 us per loop

6/13/13 IPython Notebook

127.0.0.1:8888/78aaf7e9-90fd-4687-85b4-fb466cb9bb98/print 7/8

This operation took 124 micro seconds

In [89]:

Array summation is 187 times faster. ProDy uses NumPy arrays to store and modify data in structure file,
so most operations will be as fast as it would be using C code developed for the sampe purpose.

Plotting example

In [90]:

In [91]:

In [92]:

In [93]:

In [1]:

23400/125

Out[89]: 187

plot(range(10)) # simple plot

Out[90]: [<matplotlib.lines.Line2D at 0x5926ef0>]

random.random(10) # this returns random numbers from uniform distribution

Out[91]: array([0.64976994, 0.36475811, 0.01070796, 0.21786143, 0.91924073,
 0.27599671, 0.6306186 , 0.59448841, 0.90071934, 0.83750927])

random.random((3,3))

Out[92]: array([[0.4052089 , 0.16822682, 0.18026583],
 [0.60029805, 0.57140157, 0.37823275],
 [0.32850192, 0.62418365, 0.1196399]])

random_number = normal(10, 2, 1000) # will return 1000 random numbers from normal distribution around 10 with std dev 2

hist(random_number) # this show a distribution of numbers

6/13/13 IPython Notebook

127.0.0.1:8888/78aaf7e9-90fd-4687-85b4-fb466cb9bb98/print 8/8

In [1]:

A crazy example

In this example, we will download an image from the internet and show it using Matplotlib

In [2]:

In [3]:

In [4]:

In [7]:

You can do much more with Matplotlib. Take a look at its gallery of plots: http://matplotlib.org/gallery.html
You can pick something similar to that you want to plot and then get the code example that was used to
plot it.

hist(random_number) # this show a distribution of numbers

--
NameError Traceback (most recent call
last)
<ipython-input-1-4fc3bba91e20> in <module>()
----> 1 hist(random_number) # this show a distribution of numbers

NameError: name 'random_number' is not defined

from urllib import urlopen # for reading online documents

from matplotlib import image # for reading image data

url_handle = urlopen('http://www.csb.pitt.edu/ProDy/_static/logo.png') # we will read ProDy logo

img_data = image.imread(url_handle) # this will read image data and convert it to Numpy arrays

imshow(img_data) # You see the image below

Out[7]: <matplotlib.image.AxesImage at 0x555e670>

http://matplotlib.org/gallery.html

