6/13/13 IPython Notebook

Hands-on Session Examples

ProDy Examples

In [39]: from prody import parsePDB # we Iimported only a function that we need for

L I 3

In [40]: parsePDB ?

Let's parse some structures:

In [41]: P38 = parsePDB('1lp38")

@> PDB file is found in the local mirror (.\1p38.pdb).

DEBUG: .prody:PDB file is found in the local mirror (.\1p38.pdb).

@> 2962 atoms and 1 coordinate set(s) were parsed in 0.04s.

DEBUG: .prody:2962 atoms and 1 coordinate set(s) were parsed in 0.04s.

In [42]: p38

Out[42]: <AtomGroup: 1p38 (2962 atoms)>

p38 is an AtomGroup object. You can think of it as a list of atoms, and indexing will work in the same way.
In [43]: 1 = range(10)

In [44]: 1[0] # to get the first item in the 1list

Out[44]: 0

In [45]: p38[0] # to get the first atom in the atom group

Out[45]: <Atom: N from 1p38 (index 0)>
In [46]: n = p38[0]
In [47]: n

Out[47]: <Atom: N from 1p38 (index 0)>

127.0.0.1:8888/78aaf7e€9-90fd-4687-85b4-b466cb9bb98/print 1/8

6/13/13 IPython Notebook

Dictionaries

There are also similarities between AtomGroup objects and dictionaries. Dictionaries map keys to values.
In the following we will map some first names to last names:

In [48]: d = {}

KeyError Traceback (most recent call
last)

<ipython-input-50-94b25eedl65b> in ()

-——=> 1 d['ahmet']

KeyError: 'ahmet'

In [51]: d['ahmet'] = 'bakan'

In [52]: d

out[52]: {'ahmet': 'bakan'}

In [53]: d['tim'] = 'lezon'

In [54]: d

Out[54]: {'ahmet': 'bakan', 'tim': 'lezon'}

In [55]: d['ahmet']

Out[55]: 'bakan'

AtomGroups - Chains

AtomGroup objects map one letter chain identifiers, e.g. 'A' to chain objects.

127.0.0.1:8888/78aaf7e€9-90fd-4687-85b4-b466cb9bb98/print

6/13/13

IPython Notebook

In [56]: p38.numAtoms ()

Oout[56]: 2962

In [57]: p38.numChains/()

Oout[57]: 1

In [58]: p38['A']

Out[58]: <Chain: A from 1p38 (480 residues, 2962 atoms)>

In [59]: chA = p38['A']

In [60]: chA

Out[60]: <Chain: A from 1p38 (480 residues, 2962 atoms)>

In [61]: len(p38) # lengh of AtomGroup is number atoms, since AtomGroup 1is like a 1
1| i | b

Out[61l]: 2962

In [62]: len(chA) # whereas length of a chain object is number of residues, since c
1| 1 | b

Oout[62]: 480

Some calculations

In [63]: from prody import * # we now Iimport everything

In [64]: calcGyradius(p38) # we calculated radius of gyration for the AtomGroup

Out[64]: 22.057752024921747

In [65]: calcGyradius(chhA) # Chain object can also be an import to the same functic
a | m | »

Out[65]: 22.057752024921747

In [66]: chA

OQut[66]: <Chain: A from 1p38 (480 residues, 2962 atoms)>

127.0.0.1:8888/78aaf7e€9-90fd-4687-85b4-fb466cbObb98/print

3/8

6/13/13

IPython Notebook

In [67]: P38

Out[67]: <AtomGroup: 1p38 (2962 atoms)>

In [68]: p38.numAtoms ('water') # this gives us number of water atoms in the AtomGrc
4| m [b

Out[e6e8]: 129

In [69]: p38.numAtoms ('protein') # this give number of protein atoms

Oout[69]: 2833

In [70]: p38.select('protein') # we select protein atoms

Out[70]: <Selection: 'protein' from 1p38 (2833 atoms)>

In [71]: p38.protein # same selection simplified like this

Out[71]: <Selection: 'protein' from 1p38 (2833 atoms)>

In [72]: p38.protein == p38.select('protein') # they are the same thing

Out[72]: True

In [73]: calcGyradius (p38.protein) # this is what we would do if we wanted to perfc
'] | r

Out[73]: 21.960840914729118

Residues

In [74]: chA[l10] # get the residue number 10

Out[74]: <Residue: ARG 10 from Chain A from 1p38 (11 atoms)>

In [75]: calcPsi(chA[10]) # a residue can be an input to calcPsi function

Out[75]: 147.49025666398765

In [76]: calcPsi ?

127.0.0.1:8888/78aaf7e€9-90fd-4687-85b4-fb466cbObb98/print 4/8

6/13/13 IPython Notebook

Show atoms

You can show atoms using the following function. For proteins only Calpha trace will be displayed.
Heterogeneous atoms will be shown as points or dots

In [77]: showProtein (p38)

Out[77]: <mpl toolkits.mplot3d.axes3d.Axes3D at 0x56a9%ed0>

In [78]: showProtein (chh)

Out[78]: <mpl toolkits.mplot3d.axes3d.Axes3D at 0x5b18170>

127.0.0.1:8888/78aaf7e€9-90fd-4687-85b4-fb466cbObb98/print 5/8

6/13/13

Arrays and Efficiency

In [79]: 1 = range(10)

IPython Notebook

In [80]: array(l) # this give us an array

Out[80]: array([O0, 1, 2, 3, 4, 5,

In [81]: 1 = range(100000) # we will make a long list to show how efficient arrays

L

In [82]: len(l)

Out[82]: 100000

In [83]: a = array(l)

In [84]: len(a)

Out[84]: 100000

We will time the operation of summing up items in a list and array. For lists, we will use built-in Python
function sum. For arrays, we will use array method . sum. Array methods are C code working on defined
types, and they can be much more faster than pure Python equivalents.

In [85]: %$timeit sum(l)

6, 7, 8, 9])

1]

10 loops, best of 3: 23.4 ms per loop

This operation took 23400 microseconds on my laptop.

In [86]: a.sum()
out[86]: 704982704

In [87]: a.max/()
Qut[87]: 99999

In [88]: %timeit a.sum()

10000 loops, best of 3:

127.0.0.1:8888/78aaf7e€9-90fd-4687-85b4-b466cb9bb98/print

128 us per loop

6/8

6/13/13 IPython Notebook

This operation took 124 micro seconds

In [89]: 23400/125

Out[89]: 187

Array summation is 187 times faster. ProDy uses NumPy arrays to store and modify data in structure file,

so most operations will be as fast as it would be using C code developed for the sampe purpose.

Plotting example

In [90]: plot(range(1l0)) # simple plot

Out[90]: [<matplotlib.lines.Line2D at 0x5926ef0>]

9 T T T T T T T T

In [91]: random.random(10) # this returns random numbers from uniform distribution

Out[91]: array([0.64976994, 0.36475811, 0.01070796, 0.21786143, 0.91924073,
0.27599671, 0.6306186 , 0.59448841, 0.90071934, 0.83750927])

In [92]: random.random((3,3))

Out[92]: array([[0.4052089 , 0.16822682, 0.18026583],
[0.60029805, 0.57140157, 0.37823275],
[0.32850192, 0.62418365, 0.1196399 11)

In [93]: random number = normal (10, 2, 1000) # will return 1000 random numbers fron

4 L

In [1]: hist(random number) # this show a distribution of numbers

127.0.0.1:8888/78aaf7e€9-90fd-4687-85b4-b466cb9bb98/print

7/8

6/13/13

IPython Notebook

NameError Traceback (most recent call
last)

<ipython-input-1-4fc3bba91e20> in ()

----> 1 hist (random number) # this show a distribution of numbers

NameError: name 'random number' is not defined

A crazy example

In this example, we will download an image from the internet and show it using Matplotlib

In [2]:
In [3]:
In [4]:
In [7]
Oout[7]

from urllib import urlopen # for reading online documents
from matplotlib import image # for reading image data

url handle = urlopen('http://www.csb.pitt.edu/ProDy/ static/logo.png') # n

1 | 1] | P

img data = image.imread(url handle) # this will read image data and conver

4 | mn [3

imshow (img data) # You see the image below

<matplotlib.image.AxesImage at 0x555e670>

5ProDy

- Proteiy Dyvamics & QF urrr¢ Analygh
0 lﬂﬂ 200 300 &00

LY N T T N T |

You can do much more with Matplotlib. Take a look at its gallery of plots: http://matplotlib.org/gallery.html
You can pick something similar to that you want to plot and then get the code example that was used to

plot it.

127.0.0.1:8888/78aaf7e€9-90fd-4687-85b4-fb466cbObb98/print 8/8

http://matplotlib.org/gallery.html

