Temperature Echoes in Proteins

- Coherent motion in proteins: Echoes Generation of echoes in ubiquitin via velocity reassignments

1) Temperature quench echoes
2) Constant velocity reassignment echoes
3) Velocity reassignment echoes

$$
\text { temperature } \Leftrightarrow \text { velocities }
$$

kinetic temperature:

$$
T(t)=\frac{2}{(3 N-6) k_{B}} \sum_{n=1}^{3 N-6} \frac{m_{n} v_{n}^{2}(t)}{2}
$$

Temperature Echoes

- are sharp, resonance-like features in the time evolution of the protein's temperature
- can be produced through 2 consecutive velocity reassignments
protein in equilibrium

Velocity Reassignments

protein \approx collection of weakly interacting harmonic oscillators having different frequencies
Dat $t_{1}=0$ the $1^{\text {st }}$ velocity reassignment: $v_{i}(0)=\lambda_{1} u_{i}$ synchronizes the oscillators (i.e., make them oscillate in phase)
Dat $t_{2}=\tau$ (delay time) the $2^{\text {nd }}$ velocity reassignment: $v_{i}(\tau)=\lambda_{2} u_{i}$ probes the degree of coherence of the system at that moment
degree of coherence is characterized by:

- the time(s) of the echo(es)
- the depth of the echo(es)

$$
\begin{aligned}
& \lambda_{1}=\lambda_{2}=0 \Rightarrow \text { temperature quench } \\
& \lambda_{1}=\lambda_{2}=1 \Rightarrow \text { constant velocity reassignment } \\
& \lambda_{1} \neq \lambda_{2} \neq 1 \Rightarrow \text { velocity reassignment }
\end{aligned}
$$

Producing Temperature Echoes by Velocity Reassignments in Proteins

Const velocity reassignment echoes: $v_{i}(0)=v_{i}(\tau)=u_{i}$

Generating T-Quench Echo: Step1

- your system is ubiquitin (1UBQ) in vacuum, pre-equilibrated at $T_{0}=300 \mathrm{~K}$
- run all simulations in the microcanonical
T / T
1 (NVE) ensemble
- psf, pdb and starting binary coordinate and velocity files are available in "common/"
- use NAMD2 configuration file "equil.conf" located in "01_equil_NVE/" to complete a 500 fs (\# simulation steps) run
- extract the temperature time series $T(t)$ from the NAMD2 log (output) file
- plot T(\dagger)
- calculate: $\langle T\rangle, \sqrt{\left\langle T^{2}\right\rangle}, C_{T T}=\langle\delta T(t) \delta T(0)\rangle$

Temperature Autocorrelation Function

$$
\begin{aligned}
& C(t)=\langle\Delta T(t) \Delta T(0)\rangle \\
& \rightarrow C\left(t_{i}\right) \approx \frac{1}{N-i} \sum_{n=1}^{N-i} \Delta T\left(t_{n+1}\right) \Delta T\left(t_{n}\right) \\
& C(t)=C(0) \exp \left(-t / \tau_{0}\right)
\end{aligned}
$$

Temperature relaxation time:

$$
\tau_{0} \approx 2.2 \mathrm{fs}
$$

Mean temperature:

$$
\langle T\rangle=299 K
$$

RMS temperature:

$$
\sqrt{\left\langle\Delta T^{2}\right\rangle}=\sqrt{C(0)}=6 K
$$

Generating T-Quench Echo: Step2

Perform the $1^{\text {st }}$ temperature $q u e n c h$

- start a new simulation using configuration file "quench.conf" located in "02_quencha/"

Generating T-Quench Echo: Step3

Perform the $2^{\text {nd }}$ temperature quench

- start a new simulation using configuration file "quench.conf" located in "03_quenchb/"

Explanation of the T-Quench Echo

Assumption: protein \approx collection of weakly interacting harmonic oscillators with dispersion $\omega=\omega_{\alpha}, \alpha=1, \ldots, 3 N-6$

Step 1: $t<0 \quad x(t)=A_{0} \cos \left(\omega t+\theta_{0}\right)$

$$
v(t)=-\omega A_{0} \sin \left(\omega t+\theta_{0}\right)
$$

Step2: $0<t<\tau$

$$
\left.\begin{array}{l}
x_{1}(t)=A_{1} \cos \left(\omega t+\theta_{1}\right) \\
v_{1}(t)=-\omega A_{1} \sin \left(\omega t+\theta_{1}\right)
\end{array}\right\} \xrightarrow{v_{1}(0)=0}\left\{\begin{array}{l}
A_{1}=A_{0} \cos \theta_{0} \\
\theta_{1}=0
\end{array}\right.
$$

Step3: $t>\tau$

$$
\left.\begin{array}{l}
x_{2}(t)=A_{2} \cos \left(\omega t+\theta_{2}\right) \\
v_{2}(t)=-\omega A_{2} \sin \left(\omega t+\theta_{2}\right)
\end{array}\right\} \xrightarrow{v_{2}(\tau)=0}\left\{\begin{array}{l}
A_{2}=A_{1} \cos \omega \tau \\
\theta_{2}=-\omega \tau
\end{array}\right.
$$

T-Quench Echo: Harmonic Approximation

$$
\begin{aligned}
T(t) & \approx \frac{T_{0}}{4}\left[1-\langle\cos (2 \omega(t-\tau))\rangle-\frac{1}{2}\langle\cos (2 \omega(t-2 \tau)\rangle]\right. \\
& \approx\left\{\begin{array}{l}
0 \quad \text { for } t=\tau \\
T_{0} / 8 \quad \text { for } t=2 \tau \\
T_{0} / 4 \quad \text { otherwise }
\end{array}\right.
\end{aligned}
$$

$$
\Rightarrow \text { echo depth }=T(2 \tau)-T_{0} / 4=T_{0} / 8
$$

$T(t)$ and $C_{T T}(t)$

It can be shown:

$$
\langle\cos (2 \omega t)\rangle=\frac{\langle\delta T(t) \delta T(0)\rangle}{\left\langle\Delta T^{2}\right\rangle}=C_{T T}(t), \quad \delta T(t)=T(t)-\langle T\rangle
$$

Accordingly,

$$
\begin{aligned}
& T(t) \approx \frac{T_{0}}{4}\left[1-\langle\cos (2 \omega(t-\tau))\rangle-\frac{1}{2}\langle\cos (2 \omega(t-2 \tau))\rangle\right] \\
& \downarrow \\
&=\frac{T_{0}}{4}\left[1-C_{T T}(t-\tau)-\frac{1}{2} C_{T T}(t-2 \tau)\right]
\end{aligned}
$$

T-Quench Echo: Harmonic Approximation

Dephasing Time of T-Quench Echoes

$$
\Delta T(\tau)=\Delta T(0) \exp \left[-\tau / \tau_{\text {dephase }}\right]
$$

Constant Velocity Reassignment Echo ?

Can we get temperature echo(es) by reassigning the same set of atomic velocities (corresponding to T_{0} !) at $t=0$ and $t=\tau$?

$$
v_{i}\left(0^{+}\right)=v_{i}\left(\tau^{+}\right)=u_{i}, i=1, \ldots, 3 N-6
$$

