Part III - Evolutionary Studies Using Multiseq in VMD

Aminoacyl tRNA Synthetases
 tRNA
 Aquaporins

Frankfurt, 2006, Computational Biology Workshop

University of Illinois at Urbana-Champaign Luthey-Schulten Group Theoretical and Computational Biophysics Group

Evolution of Biomolecular

Structure

Class II tRNA-Synthetases and tRNA

MultiSeq Developers: Elijah Roberts John Eargle Dan Wright Prof. Zan Luthey-Schulten Patrick O'Donoghue Anurag Sethi Brijeet Dhaliwal March 2006.

Canonical Pattern & Horizontal Gene Transfer

- "The aminoacyl-tRNA synthetases, perhaps better than any other molecules in the cell, eptiomize the current situation and help to understand the effects of HGT" Woese (PNAS, 2000; MMBR 2000)
- Carl Woese Crafoord Prize 2003

Step 1: Explore active site in catalytic domain and anticodon domain in AspRS from Ecoli

Charging the tRNA

tRNA-dependent amino acid modification

Woese, Olsen (UIUC), Ibba (Panum Inst.), Soll (Yale) Micro. Mol. Biol. Rev. March 2000.

Amino Acid Biosynthesis and tRNA Charging

Direct Pathway
(1a)
$$Asp + ATP \xleftarrow{AspRS} Asp-AMP + PP_i$$

(aspartyl-adenylate)
(1b) $Asp-AMP + tRNA^{Asp} \xleftarrow{AspRS} Asp-tRNA^{Asp} + AMP$

Indirect Pathway (2a) $Asp + ATP + tRNA^{Asn} \xleftarrow{AspRS} Asp-tRNA^{Asn} + AMP + PP_i$ (2b) $Gln + Asp-tRNA^{Asn} + ATP \xleftarrow{amidetramiferror} Asn-tRNA^{Asn} + ADP + P_i + Glu$

Indirect Pathway - AspRS is non-discriminating. Some organisms do not contain genes to make Asn and use Gln as source of ammonia. In that case ID pathway is the only way to obtain Asn and a direct AsnRS not found in the organism. Similar SepRS/SepCysS

Step 1: Creation of the Aminoacyl-Adenylate Complex

In step 1, an O atom of the amino acid a-carboxyl attacks the P atom of the alpha phosphate of ATP. The products are Aminoacyl-AMP containing a mixed carboxy-phosphoanhydride bond and pyrophosphate.

Step 2: Creation of the Aminoacyl-tRNA

In step 2, the 2' or 3' OH of the terminal adenosine of the 3' end of the tRNA attacks the amino acid carbonyl C atom, creating a ribose ester.

Aminoacyl-tRNA Synthetase

Summary of the 2-step reaction:

- 1. amino acid + ATP \rightarrow aminoacyl-AMP + PP_i
- 2. aminoacyl-AMP + tRNA \rightarrow aminoacyl-tRNA + AMP

Overall Reaction:

amino acid + ATP + tRNA \rightarrow aminoacyl-tRNA + AMP

 $+ PP_i$

Next step: EF and Ribosome for Protein Synthesis

Structure of the E. coli Ribosome

The cutaway view at right shows positions of tRNA (P, E sites) & mRNA (as orange beads).

Figure: Laboratory of Joachim Frank, Wadsworth Center cryo-EM and 3D image reconstruction

The cutaway view at right shows that the **tunnel** in the yeast large ribosome subunit, through which nascent polypeptides emerge from the ribosome, **lines up** with the lumen of the ER **Sec61 channel**.

Horizontal Gene Transfer in Protein Structure

Sequence Phylogeny AspRS-AsnRS Group

Multiseq extension in VMD

Conservation

Core Structure Conserved

Sequence Identity of Core Less than 15%

tRNA Structure

5' GCGGAUUUAGCUC<mark>AGDDGGGA</mark>GAGCGCCAGA<mark>CUGAAYAY</mark>CUGGAGGUCCUGUGT<mark>YCGAUC</mark>CACAGAAUUCGCACCA 3'

anticodon

tRNA Secondary Structure

Most RNAs have secondary cloverleaf structure, consisting of stem & loop domains.

Double helical **stems** arise from **base pairing** between complementary stretches of bases within the same strand.

Loops occur where lack of complementarity, or the presence of modified bases, prevents base pairing.

Hydrogen bonds link 2 complementary nucleotide bases on separate nucleic acid strands, or on complementary portions of the same strand.

Conventional base pairs: A & U (or T); C & G.

Guanine

Genetic code

The **genetic code** is based on the sequence of bases along a nucleic acid.

Each **codon**, a sequence of **3 bases** in mRNA, codes for a particular amino acid, or for chain termination.

Some amino acids are specified by 2 or more codons.

The Standard Genetic Code

บบบ	Phe	UCU	Ser	UAU	Tyr	UGU	Cys
UUC	Phe	UCC	Ser	UAC	Tyr	UGC	Cys
UUA	Leu	UCA	Ser	UAA	Stop	UGA	Stop
UUG	Leu	UCG	Ser	UAG	Stop	UGG	Trp
CUU	Leu	ccu	Pro	CAU	His	CGU	Arg
CUC	Leu	CCC	Pro	CAC	His	CGC	Arg
CUA	Leu	CCA	Pro	CAA	Gln	CGA	Arg
CUG	Leu	CCG	Pro	CAG	Gln	CGG	Arg
AUU	lle	ACU	Thr	AAU	Asn	AGU	Ser
AUC	lle	ACC	Thr	AAC	Asn	AGC	Ser
AUA	lle	ACA	Thr	AAA	Lys	AGA	Arg
AUG	Met	ACG	Thr	AAG	Lys	AGG	Arg
GUU	Val	GCU	Ala	GAU	Asp	GGU	Gly
GUC	Val	GCC	Ala	GAC	Asp	GGC	Gly
GUA	Val	GCA	Ala	GAA	Glu	GGA	Gly
GUG	Val	GCG	Ala	GAG	Glu	GGG	Gly

Synonyms (multiple codons for the same amino acid) in most cases differ only in the 3rd base. Similar codons tend to code for similar amino acids. Thus effects of mutation are minimized.

tRNA Databases and Web Resources

MFOLD : Prediction of RNA secondary structure (M. Zuker)

http://bioweb.pasteur.fr/seqanal/interfaces/mfold-simple.html

Vienna RNA Package (Ivo Hofacker)

http://www.tbi.univie.ac.at/~ivo/RNA/

DOE Joint Genome Institute

http://www.jgi.doe.gov/

Compilation of tRNA sequences and sequences of tRNA genes (Mathias Sprinzl)

http://www.uni-bayreuth.de/departments/biochemie/trna/

University of Illinois at Urbana-Champaign NIH Resource for Macromolecular Modeling and Bioinformatics Beckman Institute

Aquaporins

Aquaporin-0	Eye) Ions fiber cells	Ruid balance of the
Aquaporin-1	Red blood cells Kidney: protimal tubulus Eyel: siliery opthelium Brain: shorted plexus Lung: alvaciar opthelial	Osmotic protection Concentration of uritie Aqueous humor Production of CSF Alveolar hydration
Aquaporin-2	Ridney: collecting ducts	ADH hormone activity
Aguaporin-3	Kidney: collecting ducts Traches: epithelial cells	Reabsorption of water Secretion of water
Aquaporin-4	Hidney: collecting ducts Brain: geodymol to its Brain: hypothalamos Lung: bronchial	Reabsorption of water CSF fluid balance Own ocensing function?
Aquaporin-5	Salivary glands Lacrinul glands	Production of saliva Secretion of saliva Production of tears
Aquaporin-6	Hidney	Very low water permeability!
Aquaporin-7	Testa and sperm	
Aquaporin-8	Testis, pancreas, liver	
Aduaporin-9	Laukocytes	
Aquaporin-		

VMD Developers: Fatemeh Khalili John Stone Elizabeth Villa Dan Wright Emad Tajkhorshid John Eargle Brijeet Dhaliwal Zan Luthey-Schulten

Towards Understanding Membrane Channels *The versaltile, highly selective and efficent aquaporin*

GlpF Structure (Stroud et al)NAMD with full electrostaticsPeriodic boundary conditionsPeriodic boundary conditionsNpT ensemble at 310 KIns equilibrationProtein: ~ 15,000 atomsLipids: ~ 40,000 atomsWater: ~ 51,000 atomsTotal: ~ 106,000 atoms

4 hrs / ns – 1024 TSC CPUs

The Nobel Prize in Chemistry 2003

"for discoveries concerning channels in cell membranes"

"for the discovery of water channels" "for structural and mechanistic studies of ion channels"

Peter Agre 1/2 of the prize USA

Johns Hopkins University School of Medicine Baltimore, MD, USA b. 1949

Roderick MacKinnon

1/2 of the prize USA

Rockefeller University, Howard Hughes Medical Institute New York, NY, USA

b. 1956

Water and Glycerol Channels in the Human Body

Aquaporin-0	Eye: lens fiber cells	Fluid balance of the lens
Aquaporin-1	Red blood cells	Osmotic protection
	Kidney: proximal tubules	Concentration of urine
	Eye: ciliary epithelium	Aqueous humor
	Brain: choriod plexus	Production of CSF
	Lung: alveolar epithelial cells	Alveolar hydration
Aquaporin-2	Kidney: collecting ducts	ADH hormone activity
Aquaporin-3	Kidney: collecting ducts	Reabsorption of water
	Trachea: epithelial cells	Secretion of water
Aquaporin-4	Kidney: collecting ducts	Reabsorption of water
	Brain: ependymal cells	CSF fluid balance
	Brain: hypothalamus	Osmosensing function?
	Lung: bronchial epithelium	Bronchial fluid secretion
Aquaporin-5	Salivary glands	Production of saliva
	Lacrimal glands	Production of tears
Aquaporin-6	Kidney	Very low water
		permeability!
Aquaporin-7	Testis and sperm	
Aquaporin-8	Testis, pancreas, liver	
Aquaporin-9	Leukocytes	
Aquaporin-10		

Additional members are suspected to exist.

The Aquaporin Superfamily

Heymann and Engel News Physiol. Sci. 14, 187 (1999)

Phylogenetic Analysis of Aquaporins & Aquaglycerol Porins

Rooted AQP11

PIP,TIP,MIP AQP0,1,4,5,6,8

AQPM, AQPZ

GLPF AQP3,7,9,10

Yi Wang, A. Sethi ZLS - unpublished

Functionally Important Features of Aquaporins

- Water and glycerol transport
- Exclusion of ions and protons
- Tetrameric arrangement in membrane

<u>Aquaporins of known structure:</u> <u>GlpF</u> – E. coli glycerol channel (aquaglyceroporin) – Fu, et al., Science (2000) <u>AQP1</u> – Mammalian aquaporin-1 (pure water channel) -Sui et al, Nature (2001)

Highlighting Key Conserved Residues

	**:* : . :.	:*::		
AQPO HUMAN	NPARSFAPAILTGNFT	-NHWVYWVGPIIGGGLGSLI	YDFLLFP -	225
AQP1 HUMAN	NPARSFGSAVITHNFS	-NHWIFWVGPFIGGALAVLI	YDFILAP-	233
AQP2 HUMAN	NPARSLAPAVVTGKFD	-DHWVFWIGPLVGAILGSLI	YNYVLFP-	225
AQP3 HUMAN	NPARDFGPRLFTALAGWGSAVFTTGQ	HWWWVPIVSPLLGSIAGVFV	YQLMIGC -	267
AQP4 HUMAN	NPARSFGPAVIMGNWE	-NHWIYWVGPIIGAVLAGGI	YEYVFCPD	255
AQP5 HUMAN	NPARSFGPAVVMNRFSP	-AHWVFWVGPIVGAVLAAII	YFYLLFP-	227
AQP6 HUMAN	NPARSFGPAILIGKFT	-VHWVFWVGPLMGALLASLI	YNFVLFP-	237
AQP7 HUMAN	NPSRDLPPRIFTFIAGWGKQVFSNGE	NWWWVPVVAPLLGAYLGGII	YLVFIGS-	278
AQP8 HUMAN	NPARAFGPAVVANHWN	- FHWIYWLGPLLAGLLVGLL	IRCFIGD-	251
AQP9 HUMAN	NPARDLSPRLFTALAGWGFEVFRAGN	NFWWIPVVGPLVGAVIGGLI	YVLVIEI -	268
GLPF ECOLI	NPARDFGPKVFAWLAGWGNVAFTGGRD1	PYFLVPLFGPIVGAIVGAFA	YRKLIGR-	257
ruler			300	

Load Aquaporins 1j4n, 1fqy, 1lda, 1rc2 into VMD

Structure and Sequence Comparisons Water/Glycerol Channels

2 AQP1, GLPF, AQPZ from animal and bacteria **GLPF Sequence Conservation**

Showing Conserved Residues - Tetramer

ile Molecule Graphics Display	Mouse Extensio	ns Help	00	VMD 1.8.2b7 OpenGL Display	
D T A D F Molecule	Atoms Fram	es Vol		A and h	
A D F 1J4N	2029 1	0		AND ROOM	
	1661 1	0		and the second	
T A D F 1rc2	3530 1	ŏ			
			1		9
	N anaod				y
	Speed [Y COL	a complex	
O O O Graphical Represen	tations	and the second se			
Colorted Malar			0.00)
5: 1rc2	Jule		X	ALL ATOMA	
			C	A SUCO SUCO	Sh.
Create Rep	Delete Rep		R	N. YAR YA	D
Style Color	Selection			OT ON AB. THOR	F
Tube ColorID 3	chain A			BAR SCHART	~
				ALL	
			t	THE TO THE TOTAL	
Selected Aton	ne			and and a	
chain A					
Coloring Method	ctory Periodic				
	Dpaque -		01		
			(Ad	A ARTING AND A	
Drawing Method	Default				
	Delault				
		87 - E			
Radius 4	1 0.5	1994 - A.			
Boostution #					
Resolution					
Apply	Changes Apply				
Autom	atically				

Acknowledgements - Tutorials

Evolution AARS/tRNA

John Eargle
Elijah Roberts
Patrick
O'Donoghue
Rommie Amaro

Bioinformatics Aquaporins

Fatemeh AraghiElizabeth VillaYi WangAnurag Sethi

VMD Developers: Dan Wright, John Eargle, John Stone Editorial Assistant: Brijeet Dhaliwal