Dynamical View of Energy Coupling Mechanisms in Active Membrane Transporters

Probing Permeation Pathway in Lactose Permease

Energy transduction in outer membrane transporters

Emad Tajkhorshid

Departments of Biochemistry and Pharmacology Beckman Institute Center for Biophysics and Computational Biology University of Illinois at Urbana-Champaign

ATP Driven Transport in ABC Transporters

Nucleotide Exchange Across Mitochondrial Membrane

Neurotransmitter uptake by GluT

Force-Induced Activation in Outer Membrane Transporters

TonB-dependent Transporters

BtuB – Communication in Action

BtuB – Communication in Action

lipid bilayer, water, 100 mM ions

~100,000 atoms

Simulations performed with NAMD2, CHARMM27 forcefield

T = 310 K, Periodic system

Total simulation time of over 100 ns

Pulled N-terminus down, toward cytoplasmic membrane

Will the two proteins separate immediately?

A small but strong connection

t=19ns

t=36ns

Reproduced in three simulations at three different pulling speeds (10 Å/ns, 5 Å/ns, 2.5 Å/ns)

Primary response of the luminal domain to mechanical stress

Max Force: 450 pN

Primary response of the luminal domain to mechanical stress

Experimental results strongly suggest the luminal domain leaves the barrel

Ma et al. (2007) JBC, 282: 397-406.

Another way to open(?): "Unplugging"

Max Force: 4500 pN, 10x unfolding!

Is this how TonB-dependent transport really happens?

- The coupling between TonB and BtuB is strong enough for mechanical activation of the transporter
- The primary response of the luminal domain to mechanical force is unfolding
- Very unlikely that an extension of about 100 A takes place in the periplasm

ABC Transporters

Crystal Structures of ABC Importers

B₁₂ importer

Locher et. al., Science, (2002)

Periplasmic open

Metal importer

Pinkett et. al., Science, (2007)

Cytoplasmic open

B₁₂ importer

Hvorup et. al., Science, (2007)

Occluded

Crystal Structures of ABC Importers

Oldham et. al., Nature, (2007)

Periplasmic open

MoO₄²⁻ importer Methionine importer

Gerber et. al., Science, (2008)

Cytoplasmic open Kabada et. al., Science, (2008)

Cytoplasmic open

Crystal Structures of ABC Exporters

Lipid A flippase / MDR

Bacterial exporter / MDR

Ward et. al., PNAS, (2007)

Mechanism revealed by MalK crystal structures

Chen *et. al.*, **Mol. Cell**, (2003)

Lu et. al., PNAS, (2005)

Simulation Systems

- MalK dimer (1Q12.PDB)
- Placing Mg²⁺
- Solvate (80,000 atoms)
- Equilibrium MD 75 ns
- 4 simulation systems
 - ATP / ATP
 - ADP-P_i / ATP
 - ATP / ADP-P_i
 - **ADP-P**_i / **ADP-P**_i

1 or 2 ATP hydrolysis? Hydrolysis or release of products?

Simulating the Immediate Effect of ATP Hydrolysis

- MalK dimer (1Q12.PDB)
- Placing Mg²⁺
- Solvate (80,000 atoms)
- Equilibrium MD 75 ns
- 4 simulation systems
 - ATP / ATP
 - ADP-P_i / ATP
 - ATP / ADP-P_i
 - **ADP-P**_i / **ADP-P**_i

ATP hydrolysis induces domain opening in NBDs

Single ATP hydrolysis Also induces domain opening

ATP

ADP-P_i

Simulation results

1 hydrolysis - bottom

Hydrolysis-Induced NBD Opening

P. Wen and E. Tajkhorshid, *Biophys. J.*, 2008.

Simulation Time Matters!

P. Wen and E. Tajkhorshid, *Biophys. J.*, 2008.

Deep Look into the Active Site

P. Wen and E. Tajkhorshid, *Biophys. J.*, 2008.

ADP/ATP Carrier (AAC)

- Belongs to the Mitochondrial Carrier Family (MCF)
 - Three repeats of ~100 aa
 - MCF motif PX(D/E)XX(K/R)
- Two conformational states
- Unknowns:
 - ADP binding and biding site
 - Transition between the states

Key Structural Features

Pebay-Peyroula, et al. (2003) Nature, 426:39-44.

- Region I: salt bridge ring
- Region II: K22, R79, R279

MD Simulation Setup

80,000 atoms

	Time (ns)	Ensemble
NB1	200	NP _z T
NB2	260	NP _z T
NB3	36	NP _z T
NB4	193	NP _z T

Four sets of simulations are performed with *NAMD*. Altogether 0.7 μ s, ~150 days on 96 processors (0.22 day/ns).

Spontaneous Binding of ADP

- First complete ligand binding to a protein revealed by unbiased MD simulations.
- Spontaneous binding (<10ns)
- No biasing potential

Putative ADP Binding Site Y186 K22 **R79** R279 S227 R235 K32 R137

- Phosphate groups: K22, R79, R279, R235
- Adenine ring: stacking interaction with Y186
- ADP binding brings together region I and region II residues.

Unusually Strong Electrostatic Potential

Snapshots of a 0.1 μ s ADP binding simulaiton. Blue mesh: the 1.0V electrostatic potential isosurface.

Average electrostatic potential of AAC

• Exceptionally strong (~1.4V) positive potential at the AAC basin provides the driving force for ADP binding.

Y. Wang and E. Tajkhorshid, *PNAS*, 2008.

Unlocking of AAC by ADP

• ADP binding unlocks AAC by completely disrupting the salt bridge ring.

Commonality of Electrostatic Features in MCF Members

- The majority of yeast MCF members have a net positive charge.
- AVG (32 MCFs) = +15e AVG (1066 yeast membrane proteins) = +0.3e
- Many substrates of MCFs are negatively charged.
 - Substrate recruitment
 - Anchoring the proteins into the negatively charged inner mitochondrial membrane.

Carrier	Pe	Substrate	Se
Aac1p	+16	ADP/ATP	-3/-4
Aac2p	+20	ADP/ATP	-3/-4
Aac3p	+20	ADP/ATP	-3/-4
Sal1p [†]	+15	Mg-ATP/Pi	-2/-3
Leu5p	+17	*C _o A	-4
Flx1p	+18	*FAD	-2
Rim2p	+18	Py(d)NDP/Py(d)NTP	-3/-4
Ndt1p	+5	NAD +	-1
Ndt2p	+16	NAD +	-1
Ggc1p	+19	GDP/GTP	-3/-4
Tpc1p	+17	ThPP	-1
Ant1p	-6	AMP/ADP/ATP	-2/-3/-4
Mir1p	+9	Pi	-3
Pic2p	+17	Pi	-3
Oac1p	+13	oxaloacetate	-2
Dic1p	+14	malate	-2
Odc1p	+19	2-oxoglutarate	-2
Odc2p	+19	2-oxoglutarate	-2
Sfc1p	+19	succinate/fumarate	-2
Ctp1p	+14	citrate	-3
Agc1p [†]	+14	aspartate/glutamate-H +	-1/0
Crc1p	+17	carnitine	0
Ort1p	+10	ornithine	0
Pet8p	+13	S-adenosyl methionine	0
Mrs3p	+4	*Fe ⁺²	+2
Mrs4p	+2	*Fe ⁺²	+2
Yhm2p	+18	Unknown	
Ymc2p	+9	Unknown	-
Yfr045wp	+17	Unknown	
Ypr011cp	+13	Unknown	-
Ymc1p	+10	Unknown	-
Ydl119cp	+18	Unknown	
Ymr166	+7	Unknown —	
Mtm1p	+15	Unknown	