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Petascale revolution

National Petascale Computing Facility
Blue Waters Supercomputer
x86 with GPU-acceleration
Champaign, IL

Computing systems capable of calculating 
at least 1015 floating point operations per 
second 
(1 petaFLOPS)

Perilla et al., Current Opinion in Structural Biology, 31 (64-74), 2015
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Exascale computing
Computing systems capable of calculating 
at least 1018 floating point operations per 
second (1 exaFLOPS)

Japan’s Fugaku Supercomputer – First exaScale Computer
ARM architecture-based.

• What the new generation of Computers look 
like?

• What can we do with this new generation of 
Computers?

• What are the challenges in the software 
development?

• What we are doing at the NIH Center for 
Macromolecular Modeling and Visualization.
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Petascale Computing cost-drop
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You can have your own Petascale Computer in 1 node

5 petaFLOPS of AI 
performance

NVIDIA DGX A-100
U$ 199,000 MSRP
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Having a Petascale Computing Lab

960 GB of GPU memory
8x (200 Gbps) Infiniband NICs per node
15 PetaFLOPS of AI performance

Peak performance for NAMD of 1 node 
is equivalent to 400 Blue Waters 
Supercomputer Nodes

Computational Biophysics Group at Auburn University
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Mechanobiology
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In Silico Single-Molecule Force Spectroscopy
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Single-Molecule Force Spectroscopy (SMFS)
• Atomic Force Microscopy

• Centrifugal Force Microcopy

• Magnetic Tweezers

• Optical Tweezers

Atomic Force Microscope (AFM)
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EL Florin, et. al.; Science, 1994
GU Lee, et. al.; Langmuir, 1994
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Steered Molecular Dynamics
Fo
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Extension

Klaus Schulten
Univ. of Illinois

H Grubmüller, et. al.; Science, 1996
S Izrailev, et. al.; Biophysical Jounal, 1997

• Molecular Dynamics Simulations

• Pulling with a spring (Hooke’s Law):
!	 = 	−%	 & ∆(

HOLD

PULL

Molecule 2

Molecule 1
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In Silico Single Molecule Force Spectroscopy

• Pulling and anchoring points that 
are similar to experiments.

• Thousands of simulation replicas. 

• Dozens to hundreds of 
microseconds of all-atom SMD.

• Dozes of Terabytes of trajectory 
data.

• Dynamical Network Analysis.

• Dimensionally reduction tools.

• AI tools for predicting mutations.
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So…

! = # $ %
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Computational Biophysics Group

Software Development

• Dynamical Network Analysis

• Hybrid QM/MM NAMD

• NAMD 3.0

• QwikMD

• QwikFold

• VMD 2.0

• … R24 GM-145965
Resource for Macromolecular 

Modeling and Visualization

MCB-2143787
CAREER: In Silico Single-

Molecule Force Spectroscopy

Study Mechanoactive Proteins

• Bacterial Adhesion

• Virus Adhesion

• Parasites Adhesion

• Muscular Proteins

• Drug Delivery Systems

• …



• Mechanosensing activates signal transduction in neurons;

• Mechanical stress alters Filamin affinity to molecules in the cytoplasm;

• Bacteria adhesion is mostly regulated by mechanoactive proteins. 

Closed
State

Open
StateK2P K+ Channel

Mutations in Filamins are 
associated with genetic diseases

Changes in the
membrane

PhD Work
RC Bernardi, et. al.; Molecular Physics, 2009

RC Bernardi & PG Pascutti; JCTC, 2012

Collaboration with Ulla Pentikäinen 
University of Jyväskylä, Finland

J Seppälä & RC Bernardi, et. al.; Scientific Reports, 2017
TJK Haataja & RC Bernardi, et. al.; Structure, 2019

Mechanobiology: force matters in biology
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Force Resilience in Biology: Filamins and mechanosensing
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AJ Sutherland-Smith; Biophysical Reviews, 2011

Filamin cross-linking F-actin is 
fundamental to balance cytoskeleton 

and extracellular matrix tension

Mutations were found to affect 
mechanosensing and cause 

phenotype changes in humans

J Seppälä, RC Bernardi, et. al.; Skeletal Dysplasia Mutations Effect on Human Filamins’ Structure and Mechanosensing. Scientific Reports, 2017
TJK Haataja, RC Bernardi, et. al.; Non-syndromic Mitral Valve Dysplasia Mutation Changes the Force Resilience and Interaction of Human Filamin A. Structure, 2019



Force Resilience in Biology: Pulling Geometry Matters
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• Strongest binding affinity of any receptor:ligand complex;
• Extensivily used in biotechnology;
• Streptavidin has femtomolar affinity to biotin (aka vitamin B7);
• First protein system to be studied with AFM-based SMFS;
• Strongest complex under force known until 2014;

Tetravalent streptavidin tetramer bound to biotin molecules

Site-directed mutagenesis kill’s affinity for biotin

Monovalent streptavidin tetramerUnfolding vs Unbinding 

SM Sedlak*, LC Schendel*, MCR Melo, DA Pippig, Z Luthey-Schulten, HE Gaub, RC Bernardi; Direction Matters – Monovalent Streptavidin/Biotin Complex under Load. Nano Letters, 2019
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Force Resilience in Biology: The danger of unspecific tethering
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Depending on tethering geometry
mechanical resilience can be 

completely different

~15,000 papers published in the last 25 years using 
Streptavidin:Biotin biotechnology for force spectroscopy

Web of Science’s search terms: “Biotin” and “Force”

SM Sedlak*, LC Schendel*, HE Gaub, RC Bernardi; Streptavidin/Biotin: Tethering Geometry Defines Unbinding Mechanics. Science Advances, 2020
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Force Resilience in Biology

100 200 400 700 1000 2000 4000
Force (pN)

Covalent Bonds

Most Proteins
Streptavidin:Biotin

Ion Channels, Filamins, …

BIOLOGY CHEMISTRY



100 200 400 700 1000 2000 4000
Force (pN)

Covalent Bonds

Cellulosome
CttA:CohE

Cow Rumen

Most Proteins
Streptavidin:Biotin

Ion Channels, Filamins, …

C Schoeler*, KH Malinowska*, RC Bernardi, et. al.; Ultrastable cellulosome-adhesion complex tightens under load. Nature Communications, 2014
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Force Resilience in Biology
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19

Force Resilience in Biology

Cellulosome
ScaB:CohE

Cow Rumen

Cellulosome
CttA:CohE

Cow Rumen

Cellulosome
ScaB:CohE

Human Gut

C Schoeler*, KH Malinowska*, RC Bernardi, et. al.; Ultrastable cellulosome-adhesion complex tightens under load. Nature Communications, 2014

RC Bernardi, et al.; Mechanisms of Nanonewton Mechanostability in a Protein Complex Revealed by Molecular Dynamics Simulations and Single-Molecule Force Spectroscopy. JACS, 2019

Z Liu, H Liu, AM Vera, RC Bernardi, et. al.; High Force Catch Bond Mechanism of Bacterial Adhesion in the Human Gut. Nature Communications, 2020



Mechanoactive bonds: Cellulosomes

20

Main Building Blocks:

Dockerins Cohesins

Ed Bayer
(Weizmann)

Cellulosomes are a large consortium of enzymes arranged as highly efficient nanomachines.
C Schoeler*, KH Malinowska*, RC Bernardi, et. al.; Ultrastable cellulosome-adhesion complex tightens under load. Nature Communications, 2014

C Schoeler*, RC Bernardi*, et. al.; Mapping mechanical force propagation through biomolecular complexes. Nano Letters, 2015
I Cann, RC Bernardi, RI Mackie; Cellulose degradation in the human gut: Ruminococcus champanellensis expands the cellulosome paradigm. Environmental Microbiology, 2016

T Verdorfer, RC Bernardi, et. al.; Combining in Vitro and in Silico Single-Molecule Force Spectroscopy to Characterize and Tune Cellulosomal Scaffoldin Mechanics. JACS, 2017
RC Bernardi, et al.; Mechanisms of Nanonewton Mechanostability in a Protein Complex Revealed by Molecular Dynamics Simulations and Single-Molecule Force Spectroscopy. JACS, 2019

I Cann, …, RC Bernardi, et. al.; Thermophilic degradation of hemicellulose, a critical feedstock in the production of bioenergy and other value-added products. Applied Environmental Microbiology, 2020
Z Liu, H Liu, AM Vera, RC Bernardi, et. al.; High Force Catch Bond Mechanism of Bacterial Adhesion in the Human Gut. Nature Communications, 2020

Very efficient in digesting plant-
biomass – Ideal for 2nd 

generation biofuel production
CBM CBMR
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AFM
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What nature does

What I do

What my collaborators do Strongest Protein Complex (2014)

C Schoeler*, KH Malinowska*, RC Bernardi, et. al.; Ultrastable cellulosome-adhesion complex tightens under load. Nature Communications, 2014

Mechanoactive bonds: Cellulosomes



In silico Single-Molecule Force Spectroscopy: Simulations Predicting the Experiments
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Simulations were used to 
predict stronger complexes

Simulations were used to 
predict function of the 

X-module, a domain with 
previously unknown function

RC Bernardi, et al.; Mechanisms of Nanonewton Mechanostability in a Protein Complex Revealed by Molecular Dynamics Simulations and Single-Molecule Force Spectroscopy. JACS, 2019



Cellulosomes: the bond puzzle
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Molecular Finger Trap Puzzle

KD = 20 nM

Rupture Under Force = 500-1100 pN
Antibody-antigen rupture at only ~60 pN
About half the rupture force of a covalent 

gold-thiol bond
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C Schoeler*, KH Malinowska*, RC Bernardi, et. al.; Ultrastable cellulosome-adhesion complex tightens under load. Nature Communications, 2014
M Scheurer, P Rodenkirch, M Siggel, RC Bernardi, et. al.; PyContact: Rapid, customizable, and visual analysis of noncovalent interactions in MD simulations. Biophysical Journal, 2018

RC Bernardi, et al.; Mechanisms of Nanonewton Mechanostability in a Protein Complex Revealed by Molecular Dynamics Simulations and Single-Molecule Force Spectroscopy. JACS, 2019

Pulling Cohesin-Dockerin apart bring 
them closer together!
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Force Resilience in Biology

Cellulosome
ScaB:CohE

Cow Rumen

Cellulosome
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Human Gut

C Schoeler*, KH Malinowska*, RC Bernardi, et. al.; Ultrastable cellulosome-adhesion complex tightens under load. Nature Communications, 2014

RC Bernardi, et al.; Mechanisms of Nanonewton Mechanostability in a Protein Complex Revealed by Molecular Dynamics Simulations and Single-Molecule Force Spectroscopy. JACS, 2019

Z Liu, H Liu, AM Vera, RC Bernardi, et. al.; High Force Catch Bond Mechanism of Bacterial Adhesion in the Human Gut. Nature Communications, 2020



25

Force Resilience in Biology
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C Schoeler*, KH Malinowska*, RC Bernardi, et. al.; Ultrastable cellulosome-adhesion complex tightens under load. Nature Communications, 2014

LF Milles, K Schulten, HE Gaub, RC Bernardi; Molecular mechanism of extreme mechanostability in a pathogen adhesin. Science, 2018

RC Bernardi, et al.; Mechanisms of Nanonewton Mechanostability in a Protein Complex Revealed by Molecular Dynamics Simulations and Single-Molecule Force Spectroscopy. JACS, 2019

Z Liu, H Liu, AM Vera, RC Bernardi, et. al.; High Force Catch Bond Mechanism of Bacterial Adhesion in the Human Gut. Nature Communications, 2020
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Force Resilience in Biology
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C Schoeler*, KH Malinowska*, RC Bernardi, et. al.; Ultrastable cellulosome-adhesion complex tightens under load. Nature Communications, 2014
C Schoeler*, RC Bernardi*, et. al.; Mapping mechanical force propagation through biomolecular complexes. Nano Letters, 2015

J Seppälä, RC Bernardi, et. al.; Skeletal Dysplasia Mutations Effect on Human Filamins’ Structure and Mechanosensing. Scientific Reports, 2017
T Verdorfer, RC Bernardi, et. al.; Combining in Vitro and in Silico Single-Molecule Force Spectroscopy to Characterize and Tune Cellulosomal Scaffoldin Mechanics. JACS, 2017

LF Milles, K Schulten, HE Gaub, RC Bernardi; Molecular mechanism of extreme mechanostability in a pathogen adhesin. Science, 2018
TJK Haataja, RC Bernardi, et. al.; Non-syndromic Mitral Valve Dysplasia Mutation Changes the Force Resilience and Interaction of Human Filamin A. Structure, 2019

SM Sedlak*, LC Schendel*, MCR Melo, DA Pippig, Z Luthey-Schulten, HE Gaub, RC Bernardi; Direction Matters – Monovalent Streptavidin/Biotin Complex under Load. Nano Letters, 2019
RC Bernardi, et al.; Mechanisms of Nanonewton Mechanostability in a Protein Complex Revealed by Molecular Dynamics Simulations and Single-Molecule Force Spectroscopy. JACS, 2019

SM Sedlak*, LC Schendel*, HE Gaub, RC Bernardi; Streptavidin/Biotin: Tethering Geometry Defines Unbinding Mechanics. Science Advances, 2020 
Z Liu, H Liu, AM Vera, RC Bernardi, et. al.; High Force Catch Bond Mechanism of Bacterial Adhesion in the Human Gut. Nature Communications, 2020

MS Bauer, …, RC Bernardi, et. al.; A Tethered Ligand Assay to Probe SARS-CoV-2:ACE2 Interactions. PNAS, 2022
MCR Melo, DEB Gomes, RC Bernardi; Molecular Origins of Force-Dependent Protein Complex Stabilization during Bacterial Infections. JACS, 2023

PSFC Gomes, …, RC Bernardi ; May the force be with you: the role of hyper-mechanostability of the bone sialoprotein binding protein during early stages of Staphylococci infections. Frontiers in Chemistry, 2023
RS Natividade, …, RC Bernardi, et. al.; Deciphering molecular mechanisms stabilizing the reovirus-binding complex. PNAS, 2023

S Gruber, …, RC Bernardi‡, J Lipfert‡; Mechanical properties of SARS-CoV-2:ACE2 interaction and the role of the variants of concern. Nature Nanotechnology, 2024



Force Resilience in Biology
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C Schoeler*, KH Malinowska*, RC Bernardi, et. al.; Ultrastable cellulosome-adhesion complex tightens under load. Nature Communications, 2014
C Schoeler*, RC Bernardi*, et. al.; Mapping mechanical force propagation through biomolecular complexes. Nano Letters, 2015

J Seppälä, RC Bernardi, et. al.; Skeletal Dysplasia Mutations Effect on Human Filamins’ Structure and Mechanosensing. Scientific Reports, 2017
T Verdorfer, RC Bernardi, et. al.; Combining in Vitro and in Silico Single-Molecule Force Spectroscopy to Characterize and Tune Cellulosomal Scaffoldin Mechanics. JACS, 2017

LF Milles, K Schulten, HE Gaub, RC Bernardi; Molecular mechanism of extreme mechanostability in a pathogen adhesin. Science, 2018
TJK Haataja, RC Bernardi, et. al.; Non-syndromic Mitral Valve Dysplasia Mutation Changes the Force Resilience and Interaction of Human Filamin A. Structure, 2019

SM Sedlak*, LC Schendel*, MCR Melo, DA Pippig, Z Luthey-Schulten, HE Gaub, RC Bernardi; Direction Matters – Monovalent Streptavidin/Biotin Complex under Load. Nano Letters, 2019
RC Bernardi, et al.; Mechanisms of Nanonewton Mechanostability in a Protein Complex Revealed by Molecular Dynamics Simulations and Single-Molecule Force Spectroscopy. JACS, 2019

SM Sedlak*, LC Schendel*, HE Gaub, RC Bernardi; Streptavidin/Biotin: Tethering Geometry Defines Unbinding Mechanics. Science Advances, 2020 
Z Liu, H Liu, AM Vera, RC Bernardi, et. al.; High Force Catch Bond Mechanism of Bacterial Adhesion in the Human Gut. Nature Communications, 2020

MS Bauer, …, RC Bernardi, et. al.; A Tethered Ligand Assay to Probe SARS-CoV-2:ACE2 Interactions. PNAS, 2022
MCR Melo, DEB Gomes, RC Bernardi; Molecular Origins of Force-Dependent Protein Complex Stabilization during Bacterial Infections. JACS, 2023

PSFC Gomes, …, RC Bernardi ; May the force be with you: the role of hyper-mechanostability of the bone sialoprotein binding protein during early stages of Staphylococci infections. Frontiers in Chemistry, 2023
RS Natividade, …, RC Bernardi, et. al.; Deciphering molecular mechanisms stabilizing the reovirus-binding complex. PNAS, 2023

S Gruber, …, RC Bernardi‡, J Lipfert‡; Mechanical properties of SARS-CoV-2:ACE2 interaction and the role of the variants of concern. Nature Nanotechnology, 2024 27

This is where Biology starts to challenge Chemistry!

Nature does not have labels!
Klaus Schulten
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Mechanics of bacteria infection

YF Dufrêne & A Persat; Nature Reviews Microbiology, 2020



Microbial Surface Components Recognizing Adhesive Matrix Molecules (MSCRAMMs)

Human targets include Fibrinogen (Fg, all chains), Fibronectin (Fn), Keratin, Collagen, Elastin, Complement Factor H, … 
Adapted from: Kavanagh, et. al.; Clinical Microbiology Reviews, 2018

Adhesion by Pathogenic Bacteria: Staphylococcus’ Cell Surface Proteins 
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Microbial Surface Components Recognizing Adhesive Matrix Molecules (MSCRAMMs)

Human targets include Fibrinogen (Fg, all chains), Fibronectin (Fn), Keratin, Collagen, Elastin, Complement Factor H, … 
Adapted from: Kavanagh, et. al.; Clinical Microbiology Reviews, 2018

Adhesion by Pathogenic Bacteria: Staphylococcus’ Cell Surface Proteins 
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How is the molecular complex formed by these proteins?

31

N2

N3
latch

Host Cell

B-domains

Bacteria

(Dock – Lock – Latch) DLL Mechanism

Yves Dufrêne
UCLouvain

Data not published
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Staphylococci Adhesins 



Receptor:Ligand
Rupture Event 

LF Milles, K Schulten, HE Gaub, RC Bernardi; Molecular mechanism of extreme mechanostability in a pathogen adhesin. Science, 2018

The Hyperstable SdrG:Fgb interaction

33

Receptor:Ligand
Rupture Event 

Lukas F. Milles Hermann Gaub
(LMU)
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Dudko-Hummer-Szabo (DHS) Theory: Simulation and experiments agreement

Two Force regimes:
1. Experiments are in the diffusive regime for unfolding (primarily driven by diffusion over the barrier)
2. Simulations are likely in a transition point to a deterministic regime (driven by fast extension with no contribution from diffusion)

T Verdorfer, RC Bernardi, et. al.; Combining in Vitro and in Silico Single-Molecule Force Spectroscopy to Characterize and Tune Cellulosomal Scaffoldin Mechanics. JACS, 2017
LF Milles, K Schulten, HE Gaub, RC Bernardi; Molecular mechanism of extreme mechanostability in a pathogen adhesin. Science, 2018

Dudko, et. al.; Physical Review Letters, 2006
Bullerjahn, et. al.; Nature Communications, 2014
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Dudko-Hummer-Szabo (DHS) Theory: Simulation and experiments agreement

Two Force regimes:
1. Experiments are in the diffusive regime for unfolding (primarily driven by diffusion over the barrier)
2. Simulations are likely in a transition point to a deterministic regime (driven by fast extension with no contribution from diffusion)

T Verdorfer, RC Bernardi, et. al.; Combining in Vitro and in Silico Single-Molecule Force Spectroscopy to Characterize and Tune Cellulosomal Scaffoldin Mechanics. JACS, 2017
LF Milles, K Schulten, HE Gaub, RC Bernardi; Molecular mechanism of extreme mechanostability in a pathogen adhesin. Science, 2018

Dudko, et. al.; Physical Review Letters, 2006
Bullerjahn, et. al.; Nature Communications, 2014

5 orders of magnitude GAP
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Bridging the Gap between Experiments and Simulations

DEB Gomes, …, RC Bernardi; Bridging the gap between in vitro and in silico single-molecule force spectroscopy. bioRxiv, 2022

Diego EB Gomes



37

Why do we need so many simulation replicas?

WT
Mutant

MutantWT
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The mechanism of the hyperstable SdrG:Fgb interaction
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Hidrogen bond network

LF Milles, K Schulten, HE Gaub, RC Bernardi; Molecular mechanism of extreme mechanostability in a pathogen adhesin. Science, 2018



40LF Milles, K Schulten, HE Gaub, RC Bernardi; Molecular mechanism of extreme mechanostability in a pathogen adhesin. Science, 2018

Hidrogen bond network



41LF Milles, K Schulten, HE Gaub, RC Bernardi; Molecular mechanism of extreme mechanostability in a pathogen adhesin. Science, 2018

Hidrogen bond network



42LF Milles, K Schulten, HE Gaub, RC Bernardi; Molecular mechanism of extreme mechanostability in a pathogen adhesin. Science, 2018

Hidrogen bond network



43LF Milles, K Schulten, HE Gaub, RC Bernardi; Molecular mechanism of extreme mechanostability in a pathogen adhesin. Science, 2018

A bond with a twist!

The corkscrew shape 
makes the complex 

hyperstable

Hidrogen bond network
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Side-chain Independence: Sequence Independence

LF Milles, K Schulten, HE Gaub, RC Bernardi; Molecular mechanism of extreme mechanostability in a pathogen adhesin. Science, 2018

strong confinement
SdrG:Fgb WT

SdrG:GGGGGGGGG

Amino acid sequence is very important for binding 
affinity, but once it is bound even a polyglycine would 

become hyperstable
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Side-chain Independence: Sequence Independence

LF Milles, K Schulten, HE Gaub, RC Bernardi; Molecular mechanism of extreme mechanostability in a pathogen adhesin. Science, 2018

ClfB

K10

ClfB from S. aureus, same Dock, Lock & Latch 
mechanism, binds C-Terminal peptides:
Keratin K10 -> YGGGSSGGGSSGGGH
K10_GS  -> -GGGSSGGGSSGGG-

A sequence of GS-repeats is 
sufficient to withstand 2nN



46

But is this really a catch-bond? 



47

Catch Bonds

YF Dufrêne & A Persat; Nature Reviews Microbiology, 2020

Molecular Finger Trap Puzzle

Common Affinity
High Mechanostability
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Mechanics of Staphylococci Adhesins 

magnetic tweezer based SMFS 

atomic force microscopy based SMFS 
Experimental data: Huang et. al. JACS, 2022

Experimental data: Milles et. al. Science, 2018
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Mechanical vs Thermal Unbinding

MCR Melo, …, RC Bernardi; Molecular origins of force-dependent protein complex stabilization during bacterial infections. JACS, 2023
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Mechanical vs Thermal Unbinding

MCR Melo, …, RC Bernardi; Molecular origins of force-dependent protein complex stabilization during bacterial infections. JACS, 2023
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The interface between the Latch and the protein gets more rigid

51

Marcelo CR Melo

MCR Melo, …, RC Bernardi; Molecular origins of force-dependent protein complex 
stabilization during bacterial infections. JACS, 2023

BLUE = Stronger correlation in the AFM-like pulling
RED = Stronger correlation in the MT-like force clamping 
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tc

h

N2 Domain
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Catch-Bonds: Free Energy Landscape View of the Mechanoactive Bond
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How adhesins became so force-resilient? 



54

Ancestral sequence reconstruction

PSFC Gomes, Data not published

Outgroup: Srr1

SdrE

Bbp

SdrG

SdrD

ClfA

Fn
bB

FnbA

ClfB

UafA

SdrC

Als9 Als4 Als2 Als3
Als5

Als1

C. albicans

S. agalactiae
S. epidermidis

• Ancestral sequences to be modelled and refined by MD simulations

• SMD to investigate mechanostability

• Identify key mutations that confer this property
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Ancestral sequence reconstruction
Priscila SFC Gomes

PSFC Gomes, Data not published

MSSA mutation MRSA mutation

Strain R1 mutants
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Evolution of antimicrobial resistance

PSFC Gomes, Data not published

Historical strains 19th century:
S. aureus subspecies aureus Rosenbach 1884
• DNA extraction using E.Z.N.A. Bacterial DNA kit (OMEGA Bio-Tek)

Isolates with MSSA and MRSA phenotypes:
• Strain NCTC 8325 (early 60s)
• Strain N315 (1982)
• Strain Mu50 (1997)

Sequencing

Protein sequences:
• 3D model construction
• All-atom MD simulations
• Force Resilience distribution
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Take home Message
• Equilibrium binding affinity is frequently unrelated to mechanical strength;

• We can measure force resilience using Single Molecule Force Spectroscopy approaches, both in vitro and in silico;

• We can use MD trajectories to analyze how force propagation pathways “activate” catch-bonds; 

• Pathogenic bacteria uses catch-bonds to cling to our extracellular matrix;

• Dynamical Network Analysis can be used to investigate unbinding pathway;

• Network nodes are a good descriptor to predict force-resilience. 

• Bacteria are evolving to adhere even better to our cells.
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Take home Message

May the Force be with you!
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Thank you for your attention! 


