Molecular Dynamics in the Era of Exascale Computing

Rafael C. Bernardi

Department of Physics at Auburn University NIH Center for Macromolecular Modeling and Visualization

- compbiophysics.auburn.edu
- S rcbernardi@auburn.edu
- 🎐 @rafaelcbernardi

Petascale revolution

Computing systems capable of calculating at least 10¹⁵ floating point operations per second

(1 petaFLOPS)

National Petascale Computing Facility Blue Waters Supercomputer x86 with GPU-acceleration Champaign, IL

Perilla et al., Current Opinion in Structural Biology, 31 (64-74), 2015

Exascale computing

Computing systems capable of calculating at least 10¹⁸ floating point operations per second (1 exaFLOPS)

Japan's Fugaku Supercomputer – First exaScale Computer ARM architecture-based.

- What the new generation of Computers look like?
- What can we do with this new generation of Computers?
- What are the challenges in the software development?
- What we are doing at the NIH Center for Macromolecular Modeling and Visualization.

Petascale Computing cost-drop

You can have your own Petascale Computer in 1 node

5 petaFLOPS of AI performance

NVIDIA DGX A-100 U\$ 199,000 MSRP

Having a Petascale Computing Lab

Computational Biophysics Group at Auburn University

960 GB of GPU memory8x (200 Gbps) Infiniband NICs per node15 PetaFLOPS of AI performance

Peak performance for NAMD of 1 node is equivalent to 400 Blue Waters Supercomputer Nodes

Mechanobiology

In Silico Single-Molecule Force Spectroscopy

Single-Molecule Force Spectroscopy (SMFS)

- Atomic Force Microscopy
- Centrifugal Force Microcopy
- Magnetic Tweezers
- Optical Tweezers

EL Florin, et. al.; Science, 1994 GU Lee, et. al.; Langmuir, 1994

Steered Molecular Dynamics

- Molecular Dynamics Simulations
- Pulling with a spring (Hooke's Law): $F = -k \cdot \Delta x$

Klaus Schulten Univ. of Illinois

H Grubmüller, et. al.; Science, 1996 S Izrailev, et. al.; Biophysical Jounal, 1997

In Silico Single Molecule Force Spectroscopy

- Pulling and anchoring points that are similar to experiments.
- Thousands of simulation replicas.
- Dozens to hundreds of microseconds of all-atom SMD.
- Dozes of Terabytes of trajectory data.
- Dynamical Network Analysis.
- Dimensionally reduction tools.
- AI tools for predicting mutations.

So...

Computational Biophysics Group

Mechanobiology: force matters in biology

• Mechanosensing activates signal transduction in neurons;

PhD Work <u>RC Bernardi</u>, et. al.; Molecular Physics, 2009 <u>RC Bernardi</u> & PG Pascutti; JCTC, 2012

• Mechanical stress alters Filamin affinity to molecules in the cytoplasm;

Mutations in Filamins are associated with genetic diseases

INTELEVISY SUBJECT ON SUBJECT SUBJECT ON SUBJECT ON SUBJECT ON SUBJECT ON SUBJECT OF SUB

Collaboration with Ulla Pentikäinen University of Jyväskylä, Finland J Seppälä & <u>RC Bernardi</u>, et. al.; Scientific Reports, 2017 TJK Haataja & <u>RC Bernardi</u>, et. al.; Structure, 2019

• Bacteria adhesion is mostly regulated by mechanoactive proteins.

Force Resilience in Biology: Filamins and mechanosensing

Rafael C. Bernardi rcbernardi@auburn.edu TJSEppala, <u>RC Bernardi</u>, et. al.; Skeletal Dysplasia Mutations Effect on Human Filamins' Structure and Mechanosensing. Scientific Reports, 2017 TJK Haataja, RC Bernardi, et. al.; Non-syndromic Mitral Valve Dysplasia Mutation Changes the Force Resilience and Interaction of Human Filamin A. Structure, 2019

Force Resilience in Biology: Pulling Geometry Matters

- Strongest binding affinity of any receptor:ligand complex;
- Extensivily used in biotechnology;
- Streptavidin has **femtomolar** affinity to biotin (aka vitamin B7);
- First protein system to be studied with AFM-based SMFS;
- Strongest complex under force known until 2014;

Tetravalent streptavidin tetramer bound to biotin molecules

Force Resilience in Biology: The danger of unspecific tethering

Rafael C. Bernardi rcbernardi@auburn.edu SM Sedlak*, LC Schendel*, HE Gaub, RC Bernardi; Streptavidin/Biotin: Tethering Geometry Defines Unbinding Mechanics. Science Advances, 2020

BIOLOGY

CHEMISTRY

C Schoeler*, KH Malinowska*, RC Bernardi, et. al.; Ultrastable cellulosome-adhesion complex tightens under load. Nature Communications, 2014

C Schoeler*, KH Malinowska*, RC Bernardi, et. al.; Ultrastable cellulosome-adhesion complex tightens under load. Nature Communications, 2014

RC Bernardi, et al.; Mechanisms of Nanonewton Mechanostability in a Protein Complex Revealed by Molecular Dynamics Simulations and Single-Molecule Force Spectroscopy. JACS, 2019

Z Liu, H Liu, AM Vera, <u>RC Bernardi</u>, et. al.; High Force Catch Bond Mechanism of Bacterial Adhesion in the Human Gut. Nature Communications, 2020

Mechanoactive bonds: Cellulosomes

Cellulosomes are a large consortium of enzymes arranged as highly efficient nanomachines.

C Schoeler*, KH Malinowska*, RC Bernardi, et. al.; Ultrastable cellulosome-adhesion complex tightens under load. Nature Communications, 2014

C Schoeler*, RC Bernardi*, et. al.; Mapping mechanical force propagation through biomolecular complexes. Nano Letters, 2015

I Cann, RC Bernardi, RI Mackie; Cellulose degradation in the human gut: Ruminococcus champanellensis expands the cellulosome paradigm. Environmental Microbiology, 2016

T Verdorfer, RC Bernardi, et. al.; Combining in Vitro and in Silico Single-Molecule Force Spectroscopy to Characterize and Tune Cellulosomal Scaffoldin Mechanics. JACS, 2017

RC Bernardi, et al.; Mechanisms of Nanonewton Mechanostability in a Protein Complex Revealed by Molecular Dynamics Simulations and Single-Molecule Force Spectroscopy. JACS, 2019

I Cann, ..., RC Bernardi, et. al.; Thermophilic degradation of hemicellulose, a critical feedstock in the production of bioenergy and other value-added products. Applied Environmental Microbiology, 2020

Z Liu, H Liu, AM Vera, RC Bernardi, et. al.; High Force Catch Bond Mechanism of Bacterial Adhesion in the Human Gut. Nature Communications, 2020

Ed Bayer

(Weizmann)

Mechanoactive bonds: Cellulosomes

C Schoeler*, KH Malinowska*, <u>RC Bernardi</u>, et. al.; Ultrastable cellulosome-adhesion complex tightens under load. Nature Communications, 2014

21

In silico Single-Molecule Force Spectroscopy: Simulations Predicting the Experiments

predict stronger complexes

Simulations were used to predict function of the X-module, a domain with previously unknown function

Simulations were used to

Cellulosomes: the bond puzzle

Molecular Finger Trap Puzzle

K_D = 20 nM

Rupture Under Force = 500-1100 pN

Antibody-antigen rupture at only ~60 pN

About half the rupture force of a covalent gold-thiol bond

C Schoeler*, KH Malinowska*, RC Bernardi, et. al.; Ultrastable cellulosome-adhesion complex tightens under load. Nature Communications, 2014

M Scheurer, P Rodenkirch, M Siggel, <u>RC Bernardi</u>, et. al.; **PyContact: Rapid, customizable, and visual analysis of noncovalent interactions in MD simulations.** Biophysical Journal, 2018 <u>RC Bernardi</u>, et al.; **Mechanisms of Nanonewton Mechanostability in a Protein Complex Revealed by Molecular Dynamics Simulations and Single-Molecule Force Spectroscopy.** JACS, 2019

23

C Schoeler*, KH Malinowska*, RC Bernardi, et. al.; Ultrastable cellulosome-adhesion complex tightens under load. Nature Communications, 2014

RC Bernardi, et al.; Mechanisms of Nanonewton Mechanostability in a Protein Complex Revealed by Molecular Dynamics Simulations and Single-Molecule Force Spectroscopy. JACS, 2019

Z Liu, H Liu, AM Vera, <u>RC Bernardi</u>, et. al.; High Force Catch Bond Mechanism of Bacterial Adhesion in the Human Gut. Nature Communications, 2020

C Schoeler*, KH Malinowska*, RC Bernardi, et. al.; Ultrastable cellulosome-adhesion complex tightens under load. Nature Communications, 2014

LF Milles, K Schulten, HE Gaub, RC Bernardi; Molecular mechanism of extreme mechanostability in a pathogen adhesin. Science, 2018

RC Bernardi, et al.; Mechanisms of Nanonewton Mechanostability in a Protein Complex Revealed by Molecular Dynamics Simulations and Single-Molecule Force Spectroscopy. JACS, 2019

Z Liu, H Liu, AM Vera, <u>RC Bernardi</u>, et. al.; High Force Catch Bond Mechanism of Bacterial Adhesion in the Human Gut. Nature Communications, 2020

C Schoeler*, KH Malinowska*, RC Bernardi, et. al.; Ultrastable cellulosome-adhesion complex tightens under load. Nature Communications, 2014

C Schoeler*, RC Bernardi*, et. al.; Mapping mechanical force propagation through biomolecular complexes. Nano Letters, 2015

J Seppälä, RC Bernardi, et. al.; Skeletal Dysplasia Mutations Effect on Human Filamins' Structure and Mechanosensing. Scientific Reports, 2017

T Verdorfer, RC Bernardi, et. al.; Combining in Vitro and in Silico Single-Molecule Force Spectroscopy to Characterize and Tune Cellulosomal Scaffoldin Mechanics. JACS, 2017

LF Milles, K Schulten, HE Gaub, RC Bernardi; Molecular mechanism of extreme mechanostability in a pathogen adhesin. Science, 2018

TJK Haataja, RC Bernardi, et. al.; Non-syndromic Mitral Valve Dysplasia Mutation Changes the Force Resilience and Interaction of Human Filamin A. Structure, 2019

SM Sedlak*, LC Schendel*, MCR Melo, DA Pippig, Z Luthey-Schulten, HE Gaub, RC Bernardi; Direction Matters – Monovalent Streptavidin/Biotin Complex under Load. Nano Letters, 2019

RC Bernardi, et al.; Mechanisms of Nanonewton Mechanostability in a Protein Complex Revealed by Molecular Dynamics Simulations and Single-Molecule Force Spectroscopy. JACS, 2019

SM Sedlak*, LC Schendel*, HE Gaub, RC Bernardi; Streptavidin/Biotin: Tethering Geometry Defines Unbinding Mechanics. Science Advances, 2020

Z Liu, H Liu, AM Vera, RC Bernardi, et. al.; High Force Catch Bond Mechanism of Bacterial Adhesion in the Human Gut. Nature Communications, 2020

MS Bauer, ..., RC Bernardi, et. al.; A Tethered Ligand Assay to Probe SARS-CoV-2:ACE2 Interactions. PNAS, 2022

MCR Melo, DEB Gomes, <u>RC Bernardi</u>; Molecular Origins of Force-Dependent Protein Complex Stabilization during Bacterial Infections. JACS, 2023

PSFC Gomes, ..., RC Bernardi ; May the force be with you: the role of hyper-mechanostability of the bone sialoprotein binding protein during early stages of Staphylococci infections. Frontiers in Chemistry, 2023

RS Natividade, ..., RC Bernardi, et. al.; Deciphering molecular mechanisms stabilizing the reovirus-binding complex. PNAS, 2023

S Gruber, ..., RC Bernardi[‡], J Lipfert[‡]; Mechanical properties of SARS-CoV-2:ACE2 interaction and the role of the variants of concern. Nature Nanotechnology, 2024

This is where Biology starts to challenge Chemistry!

S Gruber, ..., RC Bernardi‡, J Lipfert‡; Mechanical properties of SARS-CoV-2:ACE2 interaction and the role of the variants of concern. Nature Nanotechnology,

Adhesion by Pathogenic Bacteria: Staphylococcus' Cell Surface Proteins

Microbial Surface Components Recognizing Adhesive Matrix Molecules (MSCRAMMs)

Human targets include Fibrinogen (Fg, all chains), Fibronectin (Fn), Keratin, Collagen, Elastin, Complement Factor H, ...

Adhesion by Pathogenic Bacteria: Staphylococcus' Cell Surface Proteins

Microbial Surface Components Recognizing Adhesive Matrix Molecules (MSCRAMMs)

Human targets include Fibrinogen (Fg, all chains), Fibronectin (Fn), Keratin, Collagen, Elastin, Complement Factor H, ...

How is the molecular complex formed by these proteins?

Staphylococci Adhesins

The Hyperstable SdrG:Fgb interaction

Dudko-Hummer-Szabo (DHS) Theory: Simulation and experiments agreement

Two Force regimes:

- 1. Experiments are in the diffusive regime for unfolding (primarily driven by diffusion over the barrier)
- 2. Simulations are likely in a transition point to a deterministic regime (driven by fast extension with no contribution from diffusion)

$$< F(r) >= \frac{\Delta G}{\nu \Delta x} \left\{ 1 - \left[\frac{k_B T}{\Delta G} ln \left(\frac{k_0 k_B T}{r \Delta x} exp \left(\frac{\Delta G}{k_B T} + \gamma \right) \right) \right]^{\nu} \right\}$$

Dudko, et. al.; Physical Review Letters, 2006

Bullerjahn, et. al.; Nature Communications, 2014

LF Milles, K Schulten, HE Gaub, RC Bernardi; Molecular mechanism of extreme mechanostability in a pathogen adhesin. Science, 2018

Dudko-Hummer-Szabo (DHS) Theory: Simulation and experiments agreement

Two Force regimes:

- 1. Experiments are in the diffusive regime for unfolding (primarily driven by diffusion over the barrier)
- 2. Simulations are likely in a transition point to a deterministic regime (driven by fast extension with no contribution from diffusion)

$$< F(r) >= \frac{\Delta G}{v \Delta x} \left\{ 1 - \left[\frac{k_B T}{\Delta G} ln \left(\frac{k_0 k_B T}{r \Delta x} exp \left(\frac{\Delta G}{k_B T} + \gamma \right) \right) \right]^{\vee} \right\}$$

Dudko, et. al.; Physical Review Letters, 2006 Bullerjahn, et. al.; Nature Communications, 2014 T Verdorfer, <u>RC Bernardi</u>, et. al.; **Combining in Vitro and in Silico Single-Molecule Force Spectroscopy to Characterize and Tune Cellulosomal Scaffoldin Mechanics.** JACS, 2017 LF Milles, K Schulten, HE Gaub, <u>RC Bernardi</u>; **Molecular mechanism of extreme mechanostability in a pathogen adhesin.** Science, 2018

Bridging the Gap between Experiments and Simulations

Diego EB Gomes

Why do we need so many simulation replicas?

The mechanism of the hyperstable SdrG:Fg β interaction

A bond with a twist!

The corkscrew shape makes the complex hyperstable

Side-chain Independence: Sequence Independence

Side-chain Independence: Sequence Independence

A sequence of GS-repeats is ClfB from S. aureus, same Dock, Lock & Latch sufficient to withstand 2nN mechanism, binds C-Terminal peptides: Keratin K10 -> YGGGSSGGGSSGGGH 1e–3 **K10 GS** -> -GGGSSGGGSSGGG-1e-3 ClfB 2 density Probability in silico 0 **<10** 2000 3000 1000 in vitro 0 1000 2000 3000 Force [pN]

But is this really a catch-bond?

Catch Bonds

Molecular Finger Trap Puzzle

Common Affinity High Mechanostability

Mechanics of Staphylococci Adhesins

magnetic tweezer based SMFS Experimental data: Huang et. al. JACS, 2022 atomic force microscopy based SMFS V constant

flow SdrG adhesin fibrinogen

Experimental data: Milles et. al. Science, 2018

Mechanical vs Thermal Unbinding

Mechanical vs Thermal Unbinding

MCR Melo, ..., <u>RC Bernardi</u>; Molecular origins of force-dependent protein complex stabilization during bacterial infections. JACS, 2023

The interface between the Latch and the protein gets more rigid

Connecting

to bacterium

51

Marcelo CR Melo

Connecting to humar

extracellular matrix

MCR Melo, ..., RC Bernardi; Molecular origins of force-dependent protein complex stabilization during bacterial infections. JACS, 2023

Catch-Bonds: Free Energy Landscape View of the Mechanoactive Bond

How adhesins became so force-resilient?

Ancestral sequence reconstruction

Rafael C. Bernardi

rcbernardi@auburn.edu

Ancestral sequence reconstruction

Priscila SFC Gomes

Strain R1 mutants

Evolution of antimicrobial resistance

Historical strains 19th century:

S. aureus subspecies aureus Rosenbach 1884

• DNA extraction using E.Z.N.A. Bacterial DNA kit (OMEGA Bio-Tek)

Sequencing

Isolates with MSSA and MRSA phenotypes:

- Strain NCTC 8325 (early 60s)
- Strain N315 (1982)
- Strain Mu50 (1997)

Protein sequences:

- 3D model construction
- All-atom MD simulations
- Force Resilience distribution

Take home Message

• Equilibrium binding affinity is frequently unrelated to mechanical strength;

- We can measure force resilience using Single Molecule Force Spectroscopy approaches, both in vitro and in silico;
- We can use MD trajectories to analyze how force propagation pathways "activate" catch-bonds;
- Pathogenic bacteria uses catch-bonds to cling to our extracellular matrix;
- Dynamical Network Analysis can be used to investigate unbinding pathway;
- Network nodes are a good descriptor to predict force-resilience.
- Bacteria are evolving to adhere even better to our cells.

Take home Message

Acknowledgments

Computational Biophysics Group @Auburn University

Collaborators

University of Illinois at Urbana-Champaign Prof. Emad Tajkhorshid Prof. Klaus Schulten Prof. Zan Luthey-Schulten

Ludwig Maximilians University of Munich, Germany Prof. Hermann Gaub

University of Basel & ETH Zurich, Switzerland Prof. Michael Nash

Ultrech University, The Netherlands Prof. Jan Lipfert

Weizmann Institute, Israel Prof. Ed Bayer

Catholic University of Louvain, Belgium Prof. David Alsteens Prof. Yves Dufrene

MCB-2143787 CAREER: In Silico Single-Molecule Force Spectroscopy

National Institutes of Health

R24 GM-145965 Resource for Macromolecular Modeling and Visualization

College of Sciences and Mathematics

Thank you for your attention!