Introduction to structural biology techniques

James C. Gumbart

Georgia Institute of Technology

NIH Hands On Workshop | Atlanta | November 7th, 2014

Structural biology continuum

Four radiation types

	Advantages	Disadvantages
Visible light	Low sample damage Easily focused Visible by eye	Long wavelengths
X-rays	Small wavelength (Angstroms) Good penetration	Hard to focus Damage sample
Electrons	Small wavelength (pm!) Can be focused	Poor penetration Damage sample
Neutrons	Low sample damage Small wavelength (pm)	How to produce? How to focus?

h

p

de Broglie, defends thesis in 1924, wins Nobel Prize in 1929

de Broglie wavelength: $\lambda =$

10 keV electron \rightarrow 0.01 nm wavelength

X-ray crystallography

Fourier transforms

properties defining a sine wave:

amplitude, wavelength (or frequency), phase shift, and direction

Waves can be represented in frequency ("reciprocal") space

diffraction patterns

diffracted X-rays (or electrons) produce a Fourier transform of the original object

intensity of diffracted photons (but not phases!)

High "frequency" components contribute the details, and appear furthest from the origin

diffraction patterns

resolution determined by presence of data far from origin

Before inverting reciprocal space back into an image, the diffraction pattern (i.e. Fourier transform) is focused at the back focal plane:

Structural biology continuum

Rough guide to "cryo-EM":

2D electron crystallography

Electron cryo-tomography

Three flavors:

Single particle analysis

2-D electron crystallography

useful because phases aren't irretrievably lost works better with smaller crystals than X-rays, but must be thin

А

Example structures

Henderson et al., 1990

First ever electron crystallography structure, to 3.5 Å.

Aquaporin 0 (I.9Å)

Gonen et al., Nature (2005) 438:633

electron lenses

Lenses "focus" divergent (diffracted) rays, allow production of image (including magnification)

http://www.first-tonomura-pj.net/e/commentary/mechanism/index.html

For electrons, the "lens" is actually a magnetic field

spiraling effect required to focus beam, but introduces unavoidable artifacts

Single particle analysis (cryo-EM)

100 000's of ("identical") 2-D particles

Ludtke et al., JMB 314:253 (2001)

sorting the data

http://people.csail.mit.edu/gdp/cryoem.html

2D images are aligned and sorted computationally into classes representing homogeneous particles and perspectives

Class averages

http://people.csail.mit.edu/gdp/cryoem.html

classes are then averaged and back-projected to produce 3D density map

iterative refinement

cryo-EM map of the proteosome (iteration 1)

final map

back projection is iterative - need the model for **projection matching** with class averages

maps can have resolutions ranging from nearatomic (<5 Å) to 2-3 nm

map resolution

map resolution

FSC between two halves of the data set

Electron cryo-tomography

~100 2D images

3D tomogram

Reconstruct

Baumeister et al., Trends in Cell Biology 9:81

Subtomogram averaging

100's of ("identical") 3-D particles

Identifying cellular features

