
University of Illinois at Urbana-Champaign
Luthey-Schulten Group
NIH Resource for Macromolecular Modeling and Bioinformatics

Dynamical Network Analysis

VMD Developer: John Stone
Network Tool Developers Tutorial Authors

John Eargle John Eargle
Anurag Sethi Li Li

Zan Luthey-Schulten

July 6, 2012

A current version of this tutorial is available at
http://www.scs.illinois.edu/schulten/tutorials/network/

http://www.scs.illinois.edu/schulten/tutorials/network/

CONTENTS 2

Contents
1 Introduction 3

1.1 Dynamical Networks for Protein and Nucleic Acids 3
1.2 Aminoacyl-tRNA Synthetases: Role in translation 4
1.3 Assembling the Tools for Network Analysis 4

1.3.1 Requirements . 4
1.3.2 PATH Setup for Carma and CatDCD 6
1.3.3 Move gncommunities and subopt into the common Directory 7

1.4 Network File Preparation . 7

2 Dynamical Network Representations 10
2.1 Load a network into NetworkView 10
2.2 Deactivate and activate subnetworks 11
2.3 Color the network . 11
2.4 Weight the network using correlation data 12

3 Communities 13
3.1 Run gncommunities to generate network communities 13
3.2 Load community data files . 13
3.3 Activate and color by community 13
3.4 Examine critical nodes and edges between communities 15

4 Optimal and Suboptimal Paths 15
4.1 Run subopt to obtain suboptimal paths 15
4.2 Load suboptimal path files . 16
4.3 Activate and color the suboptimal paths 17
4.4 Load suboptimal path count into value 17

5 Application Programming Interface (API) 17
5.1 Beyond the Graphical User Interface (GUI) 17
5.2 getInterfaceEdges . 18
5.3 getEdgeInfo . 18
5.4 getEdgesByMetric . 19

6 Acknowledgements 19

1 INTRODUCTION 3

1 Introduction
1.1 Dynamical Networks for Protein and Nucleic Acids
Network models of various phenomena have become increasingly common in
recent years. From transportation routes and the world wide web to systems
biology and ecosystem modeling, network theory combined with increasing com-
putational resources has provided useful strategies for thinking about and an-
alyzing large data sets. The simplest networks consist of sets of nodes and
edges that connect pairs of nodes. For example, in protein·protein interaction
networks, nodes represent individual proteins, and if two proteins interact with
one another, an edge is drawn between their nodes. In this tutorial we use
concepts from network theory to describe and investigate residue·residue inter-
actions within biomolecular systems.

The biological system we will be analyzing is the complex formed by glutamyl-
tRNA synthetase (GluRS), tRNAGlu, and glutamyl adenylate. This complex is
responsible for recognizing and charging the tRNA with its cognate amino acid
glutamic acid and was previously studied with the network methods presented
in this tutorial [1, 2]. Interactions between the enzyme GluRS, tRNA, and
substrate have been used to identify signaling pathways for recognition and
to suggest a plausible reaction mechanism for the charging of tRNA. Different
types of network analyses have been applied to protein structures in the past
several years. For example, contact path length (CPL) is the mean shortest
distance between all pairs of nodes in a network, and it is used as a measure
of the size (sometimes called diameter) of a network. Conserved residues that
greatly affect the CPL upon removal have been hypothesized to be important
for allosteric signal transmission [3]. Snapshots from a short simulation of a
modeled MetRS·tRNA complex indicated that the shortest path between pro-
tein residues interacting with the anticodon and the adenylate binding site was
sensitive to conformational changes in the protein [4], but the tRNA and con-
tacts with other identity elements on the tRNA were neglected in their study
of the signal transmission. While the shortest path analysis identifies several
nodes, the contribution of these nodes to communication in protein networks
has not been examined, with few exceptions [5].

If there are multiple communication paths nearly equal in length, then not all
residues along these paths need be considered as important for allostery. Instead,
only residues or interactions that occur in the highest number of suboptimal
pathways need to be conserved to guarantee an effective pathway for allosteric
communication in the complex. In this work, we analyze entire protein·tRNA
networks “weighted” by correlation data from long (20 ns) molecular dynamics
(MD) simulations of the aaRS·tRNA complex in two functional states: be-
fore and after tRNA aminoacylation. The correlation, Cij , in motion between
nodes i and j defines information transfer between the nodes because motion of
monomer (residue or nucleotide) i can be used to predict the direction of motion
of monomer j. For both states, we determine the shortest path for communica-
tion along with the ensemble of suboptimal paths from all identity elements on

1 INTRODUCTION 4

the tRNA to the active site of the synthetase.
The time averaged connectivity of the nodes is used to identify the substruc-

ture or communities in the network. The optimal community distribution is cal-
culated using the Girvan-Newman algorithm [6], which has no free parameters,
in contrast to other approaches [5, 7]. The community description allows us to
compare the topology and modularity of networks for protein·RNA complexes.
The conserved monomers involved in communication between communities are
the critical nodes for communication within the network and are shown to occur
in a majority of the suboptimal paths between the identity elements and the
site of amino acid transfer at the 3′ end of the tRNA.

1.2 Aminoacyl-tRNA Synthetases: Role in translation
Before beginning the actual tutorial, a small amount of background informa-
tion on the cellular translation system may be helpful. The aminoacyl-tRNA
synthetases (aaRSs) are key proteins involved in setting the genetic code in all
living organisms and are found in all three domains of life Bacteria (B), Archaea
(A), and Eukarya (E). The essential process of protein synthesis requires twenty
sets of synthetases and their corresponding tRNAs for the correct transmission
of the genetic information. The aaRSs are responsible for loading the twenty
different amino acids (aa) onto their cognate tRNA (tRNA containing the ap-
propriate anticodon). The formation of aminoacyl-tRNA (aa-tRNA) occurs via
direct acylation or an indirect mechanism in which the amino acid or amino acid
precursor in the misacylated tRNA is modified in a second step. These indirect
pathways suggest interesting evolutionary links between amino acid biosynthe-
sis and protein synthesis [8, 9].

Each aaRS is a multidomain protein consisting of (at least) a catalytic domain
and an anticodon binding domain. In all known cases, the synthetases can be
divided into two types based on homology of their catalytic domains: class I or
class II. Class I aaRSs possess the basic Rossmann fold, while class II aaRSs
exhibit a fold that is unique to them and biotin synthetase holoenzyme. Addi-
tionally, some of the aaRSs, for example the bacterial leucyl-tRNA synthetase,
have an “insert domain” within their catalytic domain (see Figure 1). The tRNA
is charged in the catalytic domain and recognition of it takes place through in-
teractions with the anticodon loop, acceptor stem, and D-arm of the tRNA (see
Figure 1). We will examine the evolution of the structure and sequences of the
aaRSs.

1.3 Assembling the Tools for Network Analysis
1.3.1 Requirements

In order to carry out all of the network analyses and visualizations presented
in this tutorial, several different applications need to be installed on your local

1 INTRODUCTION 5

Figure 1: aaRS:tRNA complex A. A snapshot of GluRS:tRNA:Glu-AMP com-
plex (from T. thermophilus; PDB code 1n78) in the active form. The tRNA
(shown in yellow) is docked to GluRS (shown as cartoon), and the analog of
Glu-AMP substrate is shown in space-filling representation. The GluRS can be
divided into four parts: the anticodon-binding domain (green), the four helix-
junction domain (orange), the CP1 insertion (purple), and the catalytic domain
(blue). The catalytic active site is highlighted within the catalytic domain (pink
oval); The three anticodon bases are also highlighted (blue oval). Note that spe-
cific contacts between the tRNA and GluRS allow for strategic positioning of the
tRNA relative to the enzyme. B. The secondary structure of T. thermophilus
tRNAGlu. The bases that are essential for tRNA recognition by GluRS are
shown in red.

computer and configured. Here are the necessary programs and their corre-
sponding download locations:

• VMD 1.9.1 or later: http://www.ks.uiuc.edu/Research/vmd/

• Carma 0.8 or later: http://utopia.duth.gr/∼glykos/Carma.html

• CatDCD 4.0 pre-compiled binary (not the plugin included with VMD):
http://www.ks.uiuc.edu/Development/MDTools/catdcd/

• gncommunities and subopt are provided with the tutorial files, but you can
also download them here: http://www.scs.illinois.edu/schulten/software/networkTools/

Install the above programs except for gncommunities and subopt which are
provided with the tutorial files and discussed below. Each will have installation
instructions provided by the developers.

This tutorial also requires a set of data files that serve as input to the network
analysis and visualization software. These files as well as the pdf of this tutorial
are available here: http://www.scs.illinois.edu/schulten/tutorials/network/

http://www.ks.uiuc.edu/Research/vmd/
http://utopia.duth.gr/~glykos/Carma.html
http://www.ks.uiuc.edu/Development/MDTools/catdcd/
http://www.scs.illinois.edu/schulten/software/networkTools/
http://www.scs.illinois.edu/schulten/tutorials/network/

1 INTRODUCTION 6

1.3.2 PATH Setup for Carma and CatDCD

Carma calculates covariance and correlation between pairs of atoms across an
MD trajectory. It is used to generate the weights for the dynamical networks.
After downloading Carma, it needs to be placed in your computer’s PATH
environment variable so that the program is found when it is called. CatDCD is
used to create stripped-down MD trajectories for the Carma calculations. Since
it is also called from within VMD, it needs to be placed in the PATH as well.

The process of adding programs to a computer’s PATH is different on differ-
ent operating systems. Follow the directions below for your specific operating
system.

Linux or Mac OS X: First, you need to locate the directories containing the
Carma and CatDCD binaries. In a terminal window, navigate to the program’s
location and type pwd to retrieve the full path. These two paths will be added
to the end of the PATH variable.

Check which shell you are using by opening a terminal and typing:

echo $SHELL

If you are using bash, you can add a directory to your path by adding the
following command to the .bashrc (Linux) or .protexttt (Mac OS X) file in
your home directory:

export PATH=$PATH:/path_to_your_directory

For example, if the Carma binary is sitting in /home/username/carma/bin/linux,
you should type:

export PATH=$PATH:/home/username/carma/bin/linux

Do this for both Carma and CatDCD.

If you are using csh, you can add a directory to your path by adding the
following command to the .bashrc (Linux) or .profile (Mac OS X) file in
your home directory:

set PATH = ($PATH /path_to_your_directory)

For example, if the Carma binary is sitting in /home/username/carma/bin/linux,
you should type:

set PATH = ($PATH /home/username/carma/bin/linux)

Do this for both Carma and CatDCD.

1 INTRODUCTION 7

Microsoft Windows 7:
On Windows, you must find and access a specific settings dialog to add a

directory to your Path.

1. From the Start Menu select the Control Pad.

2. Select “System and Security”.

3. Select “System”.

4. To the left of the window under “Control Panel Home” select “Advanced
System Settings”, and a dialog box titled “System Properties” should pop
up with the “Advanced” tab open.

5. Click the “Environment Variables...” button at the bottom of this screen,
and another dialog should pop up.

6. Under “System variables”, find and select the “Path” variable.

7. Click the Edit... button below the selector, and an “Edit System Variable”
dialog will pop up with settings for the “Path” variable.

8. The Path “Variable value” is a set of directories separated by semicolons.
Add the directories where you installed Carma and CatDCD.

Now your Path should be set up, and both Carma and CatDCD should be
callable from the command line.

1.3.3 Move gncommunities and subopt into the common Directory

Underneath TUTORIAL_DIR/bin/ there are directories containing binary ex-
ecutables for gncommunities and subopt (gncommunities.exe and subopt.exe on
MS Windows). Copy the binaries for your operating system into the TUTO-
RIAL_DIR/common directory. For example, on Linux you could navigate to
TUTORIAL_DIR/bin/Linux-x86-64 and run:

cp gncommunities subopt ../../common

or simply move the files by using your system’s file browser. The remainder
of the tutorial assumes that you have working executables in the common di-
rectory.

1.4 Network File Preparation
To create a network model for our protein·RNA system, we first need to specify
how the nodes and edges will be created. Typically, a node represents some
set of atoms, e.g. an amino acid within a protein. You could have a node for
every single atom in the system, but here we are looking for a coarse grained
representation that makes the structures easier to think about. We will assign

1 INTRODUCTION 8

one node to each amino acid in GluRS and two nodes to each nucleotide in
the tRNA (one for the base and one for the sugar and phosphate). Amino
acid nodes will be centered Cα atoms and the two nucleotide nodes will be
located at nitrogens (N1 or N9) participating in the N-glycosidic bond and
at the phosphorous atom. Since the adenylate in the active site is composed of
AMP and glutamate moieties, we will use three nodes to represent the molecule.

The next step is to define edges between pairs of nodes. One way is to connect
nodes that are within a certain distance of one another. Here we incorporate
dynamics into our definition and draw edges between nodes whose residues are
within a cutoff distance (4.5 Å) for at least 75% of an MD trajectory. Crystal
contacts that disappear are ignored while contacts that form but are not present
in the original structure are included.

The edge distances dij are derived from pairwise correlations (Cij) which de-
fine the probability of information transfer across a given edge: dij = −log(|Cij |)
where Cij = ⟨∆⃗ri(t)·∆⃗rj(t)⟩

(⟨∆⃗ri(t)2⟩⟨ ∆⃗rj(t)2⟩)1/2 , ∆⃗ri(t) = r⃗i(t) − ⟨r⃗i(t)⟩, and r⃗i(t) is the posi-
tion of the atom corresponding to the ith node. Correlations will be calculated
from an MD trajectory by the program Carma [10]. Principal component analy-
sis can be carried out on this correlation matrix, but here we use the correlation
data to weight edges in the dynamical network. A residue·residue correlation
map for GluRS·tRNAGlu is shown in Figure 2.

0

50

50

100

150

200

250

300

350

400

450

tRNA

CD1

CP1

CD2

4HJ

ACB

Residue/Nucleotide number

Re
si

du
e/

N
uc

le
ot

id
e

nu
m

be
r

0 50 50 100 150 200 250 300 350 400 450
tRNA Catalytic

Domain
Catalytic
Domain

CP1 Region Four helix
juntion

Anticodon
binding domain

Figure 2: Cross correlation map for GluRS·Glu-tRNAGlu based on the last 16
ns of a 20-ns simulation. From [11].

The configuration file (in TUTORIAL_DIR/1.network_preparation/network.config)
for the dynamical network looks like this:

>Psf
../1.network_preparation/gluRStRNA.psf

1 INTRODUCTION 9

>Dcds
../1.network_preparation/gluRStRNA.dcd

>SystemSelection
(chain P N X) and (not hydrogen)

>NodeSelection
(name CA P) or (resname CYT URA and name N1) or (resname ADE GUA GOM
and name N9)

>Clusters
N9 ADE name N9 C8 N7 C5 C6 N6 N1 C2 N3 C4
P ADE name P O1P O2P O5’ C5’ C4’ O4’ C1’ C3’ C2’ O2’ O3’
N1 CYT name N1 C2 O2 N3 C4 N4 C5 C6
P CYT name P O1P O2P O5’ C5’ C4’ O4’ C1’ C3’ C2’ O2’ O3’
N9 GUA name N9 C8 N7 C5 C6 O6 N1 C2 N2 N3 C4
P GUA name P O1P O2P O5’ C5’ C4’ O4’ C1’ C3’ C2’ O2’ O3’
N1 URA name N1 C6 C5 C4 O4 N3 C2 O2
P URA name P O1P O2P O5’ C5’ C4’ O4’ C1’ C3’ C2’ O2’ O3’
P GOM name P O1P O2P O3P O5’ C5’ C4’ O4’ C1’ C3’ C2’ O2’ O3’
CA GOM name N CA CB CG CD OE1 OE2 C O

>Restrictions
notSameResidue
notNeighboringCAlpha
notNeighboringPhosphate

The Psf, Dcd, SystemSelection, and NodeSelection fields are absolutely
necessary. Psf and Dcd define the psf and dcd files used to create the network.
SystemSelection and NodeSelection are VMD atomselection strings speci-
fying two different sets of atoms. SystemSelection is used to determine the
contact map. If atoms corresponding to a node (n1) are within the contact
distance of atoms from another node (n2) for 75% of the trajectory, then the
pairwise (n1,n2) correlation is kept, and an edge will be created between n1
and n2 in the network. NodeSelection is used to select only those atoms that
will represent nodes in the network. A dcd file with these atoms is created and
given to Carma so the resulting correlation values (and ultimately the network
distances) come from the NodeSelection atoms. In NetworkView, the nodes will
be placed at these atoms in the loaded structure.

The Clusters block is used to associate a set of atoms with a node. If no
clusters are defined, a node corresponds to the atoms within a given residue.
The form of cluster entries is “atomname resname selectionstring” where selec-
tionstring identifies the atoms represented by the node.

Restrictions is a set of constraints that specify other edges that should
be removed from the final network. “notSameResidue” disallows edges between

2 DYNAMICAL NETWORK REPRESENTATIONS 10

nodes in the same residue, “notNeighboringCAlpha” disallows edges between C-
alpha atoms that have adjacent residue numbers, “notNeighboringPhosphate”
disallows edges between P atoms that have adjacent residue numbers, and “not-
NeighboringResidue” disallows edges between nodes from adjacent residues.

1. Open VMD, and using the console, enter TUTORIAL_DIR/1.network_preparation.

2. Copy the network configuration file to your working directory: cp network.config
../common and then move to the working directory.

3. To create a dynamic network from the MD trajectory, type the following
command at the VMD console: networkSetup network.config. This
calculation will take a few minutes. During this process catdcd and Carma
are called to process the trajectory and output pairwise correlations for
node atoms.

The final output will be several ASCII files containing an atomselection
string and matrices. The atomselection string is used by NetworkView to map
network nodes onto the node atoms specified by NodeSelection in the network-
Setup configuration file. Now you are ready to view the network in VMD.

2 Dynamical Network Representations
2.1 Load a network into NetworkView
Note that files needed for this tutorial are included in TUTORIAL_DIR un-
der directories numbered by section. If you have trouble generating any output
files or just want to skip certain steps, the final files are provided in these
directories. Just copy the relevant files into your working directory (TUTO-
RIAL_DIR/common).

1. If NetworkView is not running, start it from within VMD by choosing
the Extensions menu and then selecting Analysis → NetworkView. The
NetworkView program window will appear on your screen.

2. Choose the File menu and select Load Network.... The Load Network
window will appear.

3. Select the file from your local tutorial directory at TUTORIAL_DIR/common/contact.dat.
Click the Open button to have NetworkView load the network into the cur-
rently active structure.

At this point, the network should appear on top of the structures in VMD. If
you change the molecule representation from “Lines” to “Tube”, then the view
should be similar to Figure 3.

2 DYNAMICAL NETWORK REPRESENTATIONS 11

Figure 3: Unweighted network for GluRS·tRNAGlu.

2.2 Deactivate and activate subnetworks
Turn tRNA off and then back on.

1. Make sure the Atom Selection radio button is chosen under the section
titled “Node Selection”.

2. Type “nucleic” in the text box to the right of Atom Selection so that only
nodes within the tRNA are considered.

3. Choose Deactivate under the “Action” section.

4. Click the Apply button followed by the Draw button.

The subnetwork corresponding to tRNAGlu should have disappeared leaving
only the network for GluRS.

2.3 Color the network
1. Activate the entire network so all edges and nodes are shown.

2. Choose the Color ID radio button under “Action”, and then picking “red”
from the menu to the right.

3. Make sure Atom Selection with text “all” is chosen under “Node Selection”
before hitting the Apply button at the bottom.

2 DYNAMICAL NETWORK REPRESENTATIONS 12

4. Finally, hit the Draw button to update the network depiction in the
OpenGL window.

Some changes to the network representation take some time. The Apply and
Draw buttons are separate so that the OpenGL window is not updated every
time a small change is made. Go ahead and color the protein blue and the
tRNA green by repeating the same procedure with “protein” and “nucleic” as
the respective atomselection strings. You should notice that the edges bridging
the interface between the GluRS and tRNAGlu remain red.

2.4 Weight the network using correlation data

Figure 4: Network for GluRS·tRNAGlu shown with edge widths corresponding
to their weights (−log(|Cij |)).

1. First set color of the entire network back to “blue”.

2. Under the “Display Parameters” section choose the weight option for the
Edge Size.

3. Click Draw to update the display.

With the weight information displayed, the network should appear similar
to the one shown in Figure 4.

3 COMMUNITIES 13

3 Communities
3.1 Run gncommunities to generate network communities
The dynamical network can be used as a basis for further analysis. First we
will look at the community substructure of the network which we obtain by
applying the Girvan-Newman algorithm [6]. Communities are subnetworks that
partition the original network. Nodes in a community have more and stronger
connections within that community than to nodes in other communities. With
our correlation-based weights, communities correspond to sets of residues that
move in concert with each other. Each node is necessarily part of a commu-
nity even if it just a community of one, but there are edges that lie between
communities connecting the nodes of one community to those of another.

1. To calculate the community partitioning of our system, go to the terminal
and enter the directory TUTORIAL_DIR/common.

2. The gncommunities program should be in TUTORIAL_DIR/common.
Run gncommunities on the dynamical network: ./gncommunities contact.dat
communities.out

3. You can see a description of the gncommunities input parameters by run-
ning the program with no parameters: ./gncommunities

Four files are generated: betweenness.dat, communities.out, Community.tcl,
and output.log. communities.out is needed by NetworkView to manipulate
and display communities within VMD.

3.2 Load community data files
1. Make sure that VMD is open, and you have gluRStRNA.psf and gluRStRNA.pdb

loaded as well as the network data (contact.dat).

2. From the NetworkView window choose the File menu and select Load Com-
munity Data.... The Load Communities window will appear.

3. Select the file from your local tutorial directory at TUTORIAL_DIR/common/communities.out.
Click the Open button to have NetworkView load the community infor-
mation into the currently active structure.

3.3 Activate and color by community
Now information about the community structure of GluRS·tRNAGlu is available
for manipulation within NetworkView. Individual communities can be selected
for activation and coloring. Selections can also be made for groups of commu-
nities. Select a specific community and color it separately.

1. Select Community under “Node Selection” and highlight community num-
ber 8.

3 COMMUNITIES 14

Figure 5: Network for GluRS·tRNAGlu colored by community.

2. To color this community select Color ID, set the color to “lime”, click Apply
and then Draw.

3. To view only this community, deactivate the entire network then activate
community 8 by choosing Activate and hitting Apply and then Draw.

Coloring each community a different color can be time consuming, especially
when there are many communities present. To color all communities at once,
you can use the Color Communities option.

1. First activate all communities by hitting All to the right of the Community
option.

2. Activate this selection. Notice how the edges between communities were
not activated. When using community selections, actions are performed
for each community separately so edges between communities are ignored.

3. To color all communities select Color Communities, click Apply and then
Draw.

Your display should look similar to Figure 5 with each community having
a different color. However, the communities in the figure have been manually
colored so that similar colors are not too close to each other. Color contrast
can be important when making figures, but in everyday use Color Communities
is handy and usually sufficient.

4 OPTIMAL AND SUBOPTIMAL PATHS 15

3.4 Examine critical nodes and edges between communi-
ties

Critical nodes connect communities so they lie in the interface between pairs of
communities. Here we color the critical nodes and edges red.

1. Choose the Critical Node radio button under “Node Selection”.

2. Select Color ID “red” under “Action”.

3. Finally, hit Apply and then Draw.

These nodes and edges are defined based on a network metric called be-
tweenness. The betweenness of an edge is the number of pairwise optimal paths
that cross that edge. Betweenness is called a “centrality” measure as it shows
how important an edge is to the entire network.

4 Optimal and Suboptimal Paths
4.1 Run subopt to obtain suboptimal paths
Suboptimal paths are generated by the program subopt from the initial dynam-
ical network matrix. Two nodes are chosen: a source and a sink. Suboptimal
paths are defined as paths that are slightly longer than the optimal path so we
need to specify how much longer they can be. A given suboptimal path will not
visit any node more than once.

The subopt program takes the source and sink nodes as parameters so you
will need to obtain their ID numbers. This can be done through the TkConsole
in VMD using one of the command line procedures. Here, you will look at
the suboptimal paths between the base of U35, the middle nucleotide of the
anticodon, and the sugar of A76 which is charged by glutamate. It doesn’t
actually matter which node is the source and which is the sink because the
suboptimal path determination is symmetric with respect to the end nodes.

1. To find the base node for U35, go to the TkConsole and type:
::NetworkView::getNodesFromSelection "chain N and resid 535 and
name N1"
This returns the node ID for the base (should be 69). Above, in the net-
work configuration file, the N1 atom on uracil was chosen as the location
for the placement of the base node.

2. The sugar and phosphate of nucleotides were combined into a single node
located at the phosphorous atom. To retrieve the A76 sugar node, type:
::NetworkView::getNodesFromSelection "chain N and resid 576 and
name P"
This should return node ID 148.

4 OPTIMAL AND SUBOPTIMAL PATHS 16

3. To calculate some suboptimal paths for our system, go to the terminal
and make sure you are in the directory TUTORIAL_DIR/common.

4. The subopt program should be in TUTORIAL_DIR/common. Run sub-
opt on the dynamical network: ./subopt contact.dat u35-a76.out 20
69 148
This calculates suboptimal paths from a node in the anticodon to A76 in
the active site.

5. You can see a description of the subopt input parameters by running the
program with no parameters: ./subopt

Figure 6: Suboptimal paths are shown between the base of U35 and the sugar
of A76 on the tRNA. All paths are colored blue except for the optimal path
which is red.

4.2 Load suboptimal path files
Once the suboptimal paths have been calculated, you can load this new infor-
mation into NetworkView and check out the bundle of paths connecting the two
residues.

1. Choose the File menu and select Load Suboptimal Path Data....

2. Select the file from your local tutorial directory at TUTORIAL_DIR/common/u35-a76.out.
Click the Open button to have NetworkView load the suboptimal path in-
formation into the currently active network.

5 APPLICATION PROGRAMMING INTERFACE (API) 17

You will now see information in the “Node Selection” section corresponding
to the loaded suboptimal paths. Multiple sets of suboptimal paths can be
calculated and then loaded into NetworkView simultaneously. The menu next
to the Suboptimal Path radio button sets the current suboptimal path set with
a given source and sink. The pick list underneath contains all suboptimal paths
in that set. The first path listed is actually the optimal path.

4.3 Activate and color the suboptimal paths
1. Set the entire network’s color back to blue.

2. Deactivate the whole network.

3. To activate the suboptimal paths, choose Suboptimal Path under “Node
Selection”. Only one option will be available in the Suboptimal Path menu.

4. Click on the associated All button to the right to highlight all of the
suboptimal paths.

5. Make sure that Activate is chosen under the “Action” settings.

6. Hit Apply and then Draw. These steps may take a few seconds to complete.

7. To highlight the optimal path, select “Suboptimal Path” 0, and change its
color to red.

4.4 Load suboptimal path count into value
1. Select “Load into value” under the “Action” settings, make sure the asso-

ciated menu selection is “suboptPathCount”, and hit Apply.

2. To visualize this new data, set “Edge Size” to “value” and hit Draw to
redraw the network.

3. The nodes might obscure the current view of the edges. Deactivate the
nodes to get them out of the way.

Now the suboptimal path view shows each edge weighted by the number
of suboptimal paths that cross that edge. The optimal path should contain
relatively thick edges compared to the rest of the edges shown in the suboptimal
paths.

5 Application Programming Interface (API)
5.1 Beyond the Graphical User Interface (GUI)
So far we have explored how to interact with networks primarily through the
NetworkView window, which is accessible from the VMD Extensions menu. As
seen in the previous section, there are other, more complex procedures only

5 APPLICATION PROGRAMMING INTERFACE (API) 18

available through the command line. These procedures are particularly useful
for obtaining detailed information about loaded networks. Once this informa-
tion has been extracted, it can be further analyzes using the Tcl programming
language.

We will now look at three NetworkView procedures: getInterfaceEdges, get-
EdgeInfo, and getEdgesByMetric. This work will be done through the VMD
TkConsole.

5.2 getInterfaceEdges
The first procedure provides a way to retrieve edges that connect one subnet-
work to another. This allows you to focus on regions of the network such as
contacts between members of a macromolecular complex or interactions between
an active site and a bound ligand. Each of the two subnetworks is defined by
its set of nodes. In this case, the relevant node indices are most easily retrieved
through calls to getNodesFromSelection, an API command we used in the pre-
vious section.

1. Type commands into the TkConsole to retrieve the node indices for the
GluRS:
set glursNodes [::NetworkView::getNodesFromSelection "chain P"]
and then for the tRNA:
set trnaNodes [::NetworkView::getNodesFromSelection "chain N"]

2. To get the set of edges at the aaRS:tRNA interface, enter the following in
the TkConsole:
set interfaceEdges [::NetworkView::getInterfaceEdges $glursNodes
$trnaNodes]
getInterfaceEdges returns a set of nodeId pairs that define the edges and
stores them in the interfaceEdges variable.

3. Now that you have the edges stored in the interfaceEdges variable, you
can change their color by passing them to the edge coloring procedure:
::NetworkView::colorEdges $interfaceEdges red

4. To update the display, either click the “Draw” button or use the “Draw”
API command:
::NetworkView::drawNetwork

5.3 getEdgeInfo
Each edge has an associated set of information that can be queried from the
command line. Two fields that we have seen already are “weight” and “value”.
These numeric data can be retrieved for any given set of edges.

1. Get the weights for edges at the aaRS:tRNA binding interface:
set edgeWeights [::NetworkView::getEdgeInfo weight $interfaceEdges]

6 ACKNOWLEDGEMENTS 19

2. We can now find the mean edge weight across the binding interface.
vecmean $edgeWeights

3. Combining information from the weight list with the edge list, we can
determine which interface edge has the smallest weight. First sort the list
of weights to find the value of the minimum weight.
lsort $edgeWeights
lsearch -regexp $edgeWeights {0\.24}
lindex $interfaceEdges 81

4. Color this edge green so that you can see where it is in the context of the
system.
::NetworkView::colorEdges [list 69,593] green
::NetworkView::drawNetwork

5.4 getEdgesByMetric
It can be useful to filter the network information by weight or value. The
strongest edges can be selected using the procedure getEdgesByMetric.

1. To select just the strongest edges, those with the lowest weights:
::NetworkView::deactivateEdgeSelection "all"
::NetworkView::drawNetwork
set strongEdges [::NetworkView::getEdgesByMetric weight 0 0.2]
::NetworkView::activateEdges $strongEdges
::NetworkView::drawNetwork

How are the strong edges distributed throughout the network? To what
sorts of structures do they belong?

Aside from these three command-line functions, all of the other functionality,
such as network loading and drawing, is available through the API.

6 Acknowledgements
Development of this tutorial was supported by the National Institutes of Health
(P41-RR005969 - Resource for Macromolecular Modeling and Bioinformatics)
and the National Science Foundation (MCB-0844670).

REFERENCES 20

References
[1] A. Sethi, J. Eargle, A.A. Black, and Z. Luthey-Schulten. Dynamical

networks in tRNA: protein complexes. Proc. Natl. Acad. Sci. USA,
106(16):6620–6625, 2009.

[2] Alexis Black Pyrkosz, John Eargle, Anurag Sethi, and Zaida Luthey-
Schulten. Exit strategies for charged tRNA from GluRS. J. Mol. Biol.,
397:1350–1371, Apr 2010.

[3] A. del Sol, H. Fujihashi, D. Amoros, and R. Nussinov. Residues crucial
for maintaining short paths in network communication mediate signaling
in proteins. Mol Syst Biol, 2:1–12, Jan 2006.

[4] Amit Ghosh and Saraswathi Vishveshwara. A study of communication
pathways in methionyl- trna synthetase by molecular dynamics simulations
and structure network analysis. Proc. Natl. Acad. Sci. USA, 104(40):15711–
6, 2007.

[5] Chakra Chennubhotla and Ivet Bahar. Markov propagation of allosteric
effects in biomolecular systems: application to groel-groes. Mol. Syst. Biol.,
2:36, Jan 2006.

[6] M Girvan and M Newman. Community structure in social and biological
networks. Proc. Natl. Acad. Sci. USA, 99:7821–7826, 2002.

[7] G. Palla, I. Derényi, I. Farkas, and T. Vicsek. Uncovering the overlapping
community structure of complex networks in nature and society. Nature,
435(7043):814–8, Jun 2005.

[8] Patrick O’Donoghue, Anurag Sethi, Carl R Woese, and Zaida A Luthey-
Schulten. The evolutionary history of Cys-tRNACys formation. Proc. Natl.
Acad. Sci. USA, 102(52):19003–19008, Dec 2005.

[9] Anselm Sauerwald, Wenhong Zhu, Tiffany A Major, Herve Roy, Sotiria
Palioura, Dieter Jahn, William B Whitman, John R. Yates 3rd, Michael
Ibba, and Dieter Söll. RNA-dependent cysteine biosynthesis in archaea.
Science, 307:1969–1972, Mar 2005.

[10] Nicholas M Glykos. Software news and updates. CARMA: a molecular
dynamics analysis program. J. Comp. Chem., 27(14):1765–1768, Nov 2006.

[11] R.W. Alexander, J. Eargle, and Z. Luthey-Schulten. Experimental and
computational determination of tRNA dynamics. FEBS Lett., 584(2):376–
386, 2010.

	Introduction
	Dynamical Networks for Protein and Nucleic Acids
	Aminoacyl-tRNA Synthetases: Role in translation
	Assembling the Tools for Network Analysis
	Requirements
	PATH Setup for Carma and CatDCD
	Move gncommunities and subopt into the common Directory

	Network File Preparation

	Dynamical Network Representations
	Load a network into NetworkView
	Deactivate and activate subnetworks
	Color the network
	Weight the network using correlation data

	Communities
	Run gncommunities to generate network communities
	Load community data files
	Activate and color by community
	Examine critical nodes and edges between communities

	Optimal and Suboptimal Paths
	Run subopt to obtain suboptimal paths
	Load suboptimal path files
	Activate and color the suboptimal paths
	Load suboptimal path count into value

	Application Programming Interface (API)
	Beyond the Graphical User Interface (GUI)
	getInterfaceEdges
	getEdgeInfo
	getEdgesByMetric

	Acknowledgements

