
Centre d’Enseignement et de Recherche en Mathématiques et Calcul Scientifique
École des Ponts ParisTech
Centre National de la Recherche Scientifique
Laboratoire International Associé CNRS-UIUC
Université de Lorraine
University of Illinois at Urbana-Champaign
Beckman Institute for Advanced Science and Technology
Theoretical and Computational Biophysics Group

Adaptive Multilevel Splitting Method:
Isomerization of the alanine dipeptide

φ ψ

-100
-150

-50
 0

 150
 100
 50

-150 0 50 100 150-100-50

 0
 -1
 -2

 1
 2
 3
 4
 5
 6

'

 '

Laura J. S. Lopes
Christopher G. Mayne

Christophe Chipot
Tony Lelièvre
January 18, 2018

Please visit www.ks.uiuc.edu/Training/Tutorials/ to get the latest version of this tutorial, to
obtain more tutorials like this one, or to join the tutorial-l@ks.uiuc.edu mailing list for
additional help.

1

Abstract

In this tutorial, we show how to apply the Adaptive Multilevel Splitting (AMS) method to
the isomerization of the alanine dipeptide in vacuum. Section 1. gives a description of the
AMS algorithm and the proper way to set up AMS simulations, in the context of the NAMD
program, for any system using the scripts provided with this document. An application of
the method to the case example is showcased in section 2.. More precisely, we show how
to obtain the transition probability starting from one fixed point (Section 2.2.), and the
transition time (Section 2.3.). Using the results obtained in these sections, a description
of how to calculate the flux of reactive trajectories is given in Section 2.4.. Results of the
simulations for sections 2.2. and 2.3. are provided, so that the reader can straightforwardly
go to Section 2.4. if desired.

© 2025, Centre National de la Recherche Scientifique, École des Ponts ParisTech

2

The Adaptive Multilevel Splitting Method 3

Contents

1. The Adaptive Multilevel Splitting method 4

1.1. The AMS algorithm . 4

1.2. Setting up AMS simulations . 6

1.2.1. The user files to provide . 7

1.2.2. Preparing an input file . 8

2. Applying AMS to the alanine dipeptide isomerization in vacuum 9

2.1. Definitions of 𝐴, 𝐵 and 𝜉 . 9

2.2. Calculating the probability with AMS . 11

2.3. Obtaining the transition time using AMS results 13

2.4. Calculating the flux of reactive trajectories sampled with AMS 16

Completion of this tutorial requires:

• Files from AMS_tutorial.zip provided with this document

• NAMD version 2.10 or later

• Optional: Gnuplot

The Adaptive Multilevel Splitting Method 4

1. The Adaptive Multilevel Splitting method

The Adaptive Multilevel Splitting (AMS) method is a splitting method to sample reactive tra-
jectories [1, 2, 3]. The goal here is to accelerate the transition between metastable states, which
are regions of the phase space where the system tends to stay trapped. This method is par-
ticularly interesting because the positions of the intermediate interfaces, used to split reactive
trajectories, are adapted on the fly, so they are not parameters of the algorithm. The AMS
method was already efficiently applied to a large scale system to calculate unbinding time. [4]

Section 1.1. presents the AMS algorithm as implemented in the Tcl script ams.tcl, provided
with this document. In section 1.2. we show how to set up AMS simulations for any system.

1.1. The AMS algorithm

Let us call 𝐴 and 𝐵 the source and target regions of interest, and assume that 𝐴 is a metastable
state. This means that starting from a point in the neighborhood of 𝐴, the trajectory is most
likely to enter 𝐴 before visiting 𝐵. The goal is to sample reaction trajectories that link 𝐴 and
𝐵. In practice, these regions are defined using a set of internal variables of the system.

To compute the progress from 𝐴 to 𝐵 one needs to introduce a reaction coordinate 𝜉. Again,
in practice 𝜉 is a real-valued function of internal variables of the system. This function only
needs to satisfy one condition: it is necessary that there exists a value of 𝜉 that the system
has to exceed to enter 𝐵 when starting from 𝐴. This value of 𝜉 is called 𝑧max. Note that the
definitions of the zones 𝐴 and 𝐵 are independent of the reaction coordinate. Since 𝜉 does not
need to be continuous, the former condition can be enforced by making 𝜉 equal to infinity on
𝐵. The condition is then satisfied with 𝑧max equal to the maximum value of 𝜉 outside 𝐵. In
practice, the easiest way is to make 𝜉 equal to 𝑧max + 1 inside 𝐵.

The algorithm, as presented below, estimates the probability to observe a reaction trajectory,
that is, coming from a set of initial conditions in a neighborhood of 𝐴, the probability to enter
𝐵 before returning to 𝐴. We will denoted this estimator by 𝑝AMS. This probability can be used
to compute transition times and we will see how in Section 2.3..

The three numerical parameters of the algorithm are: (1) the reaction coordinate 𝜉, (2) the
total number of replicas 𝑁 , and (3) the minimum number 𝑘 of replicas killed at each iteration.
The algorithm starts at iteration 𝑞 = 0 and follows the flowchart below (see also Figure 1 for a
schematic representation).

The Adaptive Multilevel Splitting Method 5

starting iteration 𝑞 = 0

Generate the first set of 𝑁 replicas
from the set of initial condi-
tions, run MD until 𝐴 or 𝐵

Computation of the killing level 𝑧kill
∙ calculate the level of each replica
(maximum reached value of 𝜉)
∙ order the levels
∙ 𝑧kill is equal to the 𝑘tℎ ordered value
∙ if all the replicas have level ≤ 𝑧kill set
𝑧kill := +∞ (extinction case)

Is 𝑧kill > 𝑧max ?

Replication step

∙ kill the 𝑘𝑞+1 replicas with level ≤ 𝑧kill
∙ choose at random 𝑘𝑞+1 among the 𝑁 − 𝑘𝑞+1 replicas
to be replicated
∙ replicate each of them by copying it up to the first
point with level > 𝑧kill and run MD until 𝐴 or 𝐵

𝑄𝑖𝑡𝑒𝑟 := 𝑞

𝑞 := 𝑞 + 1

no

yes

Notice that at the end of iteration 𝑞, the estimation of the probability of reaching level 𝑧𝑞
kill,

conditioned to the fact that level 𝑧𝑞−1
kill has been reached, (where by convention 𝑧−1

kill = −∞) is:

𝑝𝑞 = 𝑁 − 𝑘𝑞+1

𝑁
. (1)

Therefore, denoting 𝑟 the number of replicas that reached 𝐵 at the last iteration of the algorithm,

The Adaptive Multilevel Splitting Method 6

the estimator of the probability of transition is:

𝑝AMS = 𝑟

𝑁

𝑄𝑖𝑡𝑒𝑟∏︁
𝑞=1

𝑝𝑞−1 = 𝑟

𝑁

𝑄𝑖𝑡𝑒𝑟∏︁
𝑞=1

(︂
𝑁 − 𝑘𝑞

𝑁

)︂
, (2)

where by convention
0∏︀

𝑞=1
= 1. For example, if all the replicas in the initial set reached 𝐵, 𝑟 = 𝑁

and, thus, 𝑝AMS = 1. In case of extinction 𝑟 = 0, because no replica reached 𝐵, and thus
𝑝AMS = 0.

Figure 1: First AMS iteration with 𝑁 = 5 and 𝑘 = 2. Both lower level replicas (in gray) are
killed. Two of the remaining replicas are randomly selected to be duplicated until level 𝑧0

kill (red
line) and then continued until they reach 𝐴 (typically more likely) or 𝐵.

As the algorithm runs, all the points that can possibly be used in future replication steps must
be recorded. In order to decrease the computational cost and the memory use, this is only
done every 𝐾AMS = Δ𝑡AMS/Δ𝑡 timesteps. It is indeed useless to consider the positions of the
trajectory at each simulation time step, as no significant change occurs over a 1 or 2 fs timescale.

1.2. Setting up AMS simulations

The AMS method is implemented in NAMD through a Tcl script sourced by the user in the
configuration file, where the AMS functions are directly called. To run the algorithm the user
must provide a set of files (see Section 1.2.1.), and should have run the first set of replicas. A
set of Tcl and bash scripts and simple C programs are provided to automate the process. As
will be seen in the Section 1.2.2., the user will only need to provide one input file.

All the scripts and programs needed to run an AMS simulation can be found in the
smart directory. The algorithm implementation is located in file ams.tcl. A script called
smart_parallel.sh automates all the AMS runs, and it is the only script that the user will call
directly. To utilize this script it is necessary to set a few variables.

The Adaptive Multilevel Splitting Method 7

1. Open script smart/toall_path.sh to edit it.

2. Set the variable smart_path as the path to all the smart files (i.e. to directory smart)

3. Set the variable amsscript with the ams.tcl script location.

4. (*) Provide the NAMD excutable file location through variable namd.

5. Close file toall_path.sh.

6. Open the terminal and type:
export toall_smart="/path/to/tutorial/files/smart/toall_smart.sh"

The export command not only defines a variable but makes its value visible for all the
scripts that will be run in this same terminal session. To make it visible for all the sessions,
just include this line into /home/user/.bashrc file.

7. Open file common/namd.conf to edit.

8. Set the variable path to the path to directory common.

(*) This should be a binary for a multicore build of namd (NOT build with CUDA).

1.2.1. The user files to provide

In addition to the basic NAMD files to run MD, it is necessary to provide a group of additional
files to set up the AMS simulations. Some of these are Tcl scripts that should contains the
definitions of a few procedures that will be called by the AMS Tcl script. If the reader is not
familiar with Tcl language, procedure is the equivalent of function in Tcl. Nevertheless, it is not
necessary to program in Tcl for this tutorial, as all these files are given in the common directory.
The additional files in the common directory are:

• dihedral_20.colv: a Colvars [5] configuration file with the definition of the collective
variables that will be used to calculate the regions 𝐴 and 𝐵 and the reaction coordinate 𝜉;

• inzone.tcl: a Tcl script with a procedure called zone that should return -1 if in region
𝐴, 1 if in 𝐵 and 0 otherwise, using a set of the collective variables defined in the previous
file;

• coord.tcl: a Tcl script with a procedure called ams_measure that has to return the value
of the reaction coordinate 𝜉 (also using the collective variables);

The Adaptive Multilevel Splitting Method 8

• variables.tcl: a Tcl script with a procedure called variables that returns a list of
internal coordinates values used to visualize the reactive trajectories after the AMS run.
In the case of alanine dipeptide this script only prints the collective variables defined
in dihedral_20.colv. This scripts introduces flexibility to the analysis of the reactive
trajectories, that can be made using different internal coordinates as the ones used to
define 𝐴, 𝐵 and 𝜉.

• namd.conf: a typical NAMD configuration file without any run step that will be the base
to build all the NAMD configuration files for the AMS simulations.

9. Open file common/inzone.tcl and set the correct path to the executable file zones_CRI.

10. Do the same with file common/coord.tcl for the path to coord_CRI.

1.2.2. Preparing an input file

The smart_parallel.sh is the only script that the user will call. This script only needs one
simple bash file as an entry, that should define the following variables:

• initfile: name of NAMD basic configuration file (namd.conf in this tutorial)

• numinst: number of AMS instances, i.e. the number of requested AMS runs.

• outdir: root directory to save all the AMS instances directories. If this directory exists,
the script will look for results from previous run and will perform the missing AMS runs
to complete numinst simulations.

• parallel: number of AMS instances that can be run in parallel.

• numrep: number of replicas for each AMS run (parameter 𝑁)

• amstype: single (all the replicas are initiated from the same point), mult (replicas are
initiated from a set of numrep points) or var (the initial conditions will vary)

• zmin: minimum value for the reaction coordinate (only used if amstype == var)

• zmax: maximum value of 𝜉 (𝑧max)

• timelimit: simulation time limit in hours. This time limit prevents AMS runs from being
abruptly killed if its duration exceeds a time limit from a queue system, and facilitates
subsequent restart of the simulations afterwards.

The Adaptive Multilevel Splitting Method 9

• icprefix: prefix for coor, vel and xsc files from initial condition. If amstype == mult

the files have to be named prefix.𝑛 (were 𝑛 = 0, ..., numrep − 1).

• zone: name of Tcl script that contains the procedure zone (see inzone.tcl from the
previous list).

• measure: name of Tcl script with the definition of the procedure ams_measure (see
coord.tcl).

• variables: name of Tcl script with procedure variables (see variables.tcl).

• amssteptime: number of time steps between two computations of the reaction coordinate
(this is the parameter 𝐾AMS mentioned above).

• tokill: minimal number of replicas to kill at each iteration (parameter 𝑘)

• getpaths: on or off. If this variable is set to on, all the sampled trajectories will be given
in text format files, built using the variables proc.

• charmrunp: number of processors to employ for the MD (if 0 the command will be namd2)

• removefiles: yes or no. If this variable is set to yes, all the AMS files will be removed
after the run. If getpaths == on, all the trajectories will be obtained and will not be
erased. Attention, if getpaths == off, and removefiles == yes it will be impossible to
obtain the trajectories after the run.

2. Applying AMS to the alanine dipeptide isomerization in vacuum

We chose the alanine dipeptide isomerization in vacuum (Ceq → Cax transition) to illustrate
how to utilize the AMS method. The reader will find the precise definitions of regions 𝐴 and
𝐵 and of the reaction coordinate 𝜉 in Section 2.1.. The hands-on part of the tutorial starts in
Section 2.2., where we show how to obtain the transition probability, starting all the replicas
from the same point. In Section 2.3. the theoretical underpinnings of the equation used to
calculate the transition time using AMS results is given, as well as the guidelines as how to set
up these simulations. Finally, armed with the results obtained in Sections 2.2. and 2.3. we will
calculate the flux of reactive trajectories in Section 2.4..

2.1. Definitions of 𝐴, 𝐵 and 𝜉

All the definitions will be based on the two dihedral angles 𝜙 and 𝜓 (see Figure 2). The regions
𝐴 and 𝐵 are defined as two ellipses that cover the most significant wells on the free energy

The Adaptive Multilevel Splitting Method 10

φ ψ

Figure 2: The dihedral angles 𝜙 and 𝜓 used to distinguish between the Ceq and Cax conforma-
tions.

landscape. The reaction coordinate is a measure of the distances from the two ellipses:

𝜉(𝜙,𝜓) = min(𝑑𝐴, 6.4) − min(𝑑𝐵, 3.8). (3)

In equation (3), 𝑑𝐴 (resp. 𝑑𝐵) is the sum of the Euclidean distances to the foci of the el-
lipse 𝐴 (resp. 𝐵). The contour plot of the function 𝜉 is given on Figure 4. We will employ
𝑧max = 4.9 in our simulations.

Figure 3: The free energy landscape [6]
with the definition of zones 𝐴 (yellow) and
𝐵 (black).

Figure 4: Contour plot of 𝜉, with regions 𝐴
and 𝐵 and the surface Σ𝑧max (𝑧max = 4.9).

The Adaptive Multilevel Splitting Method 11

2.2. Calculating the probability with AMS

In this section, we will see how to compute the probability to enter 𝐵 before 𝐴, starting from
a single fixed point. All the necessary files are located inside the directory 1-point. For these
simulations, the first set of replicas are trajectories that starts in a fixed point and finishes
at 𝐴 or 𝐵. This is indicated to the script smart_parallel.sh through the variable amstype,
that should be set to single. We will start the replicas from the extended system and binary
coordinate and velocity files with the prefix point.

1. Open the unfinished input file 1-point/point.par to edit.

2. Set the auxiliary variable path with the path to all the tutorial files.

3. Set amstype to single. This means a simulation where all the replicas start from one
single point.

4. Use the variable icprefix to give the prefix of the files from the starting point (point in
this tutorial).

The results of this section will be used to calculate the flux in section 2.4.. To obtain a net
flux it is necessary to have approximately 9000 trajectories, and thus we need that numinst ×
numrep > 9000. This is because in the case of extinction, no reactive trajectory will be sampled,
so we overestimate the number of trajectories. In this tutorial, numinst = 100 and numrep =
100. We also have to tell our script to get the final trajectories, invited to so we can calculate
the flux via the getpaths variable. If the reader is not interested in completing this tutorial
and only want the calculation of the probability, set this variable to off.

5. Set numinst = 100.

6. Set numrep = 100.

7. Set the variable getpaths to on.

There is no special interest in obtaining the dcd trajectories for the alanine dipeptide case. Thus,
to decrease disk space usage, all the files will be deleted at the end of the run.

8. Set the variable removefiles to yes.

The Adaptive Multilevel Splitting Method 12

The alanine dipeptide in vacuum is a really small system, so it is not necessary to run MD in
parallel. However, we recommend running the AMS simulations in parallel and this should be
adapted to the computer architecture at hand. Please, keep in mind that each one of the AMS
simulations of this section takes about five minutes to complete (using 100 replicas). So a good
estimation of the total time in minutes needed to complete all the 100 runs is:

total time = 5 × numinst
parallel

.

For example, using notebook with Intel core i7 processor, one can utilize parallel = 8, so the
total time will be about one hour.

9. Set charmrunp to 0.

10. Set the parallel variable to the number of cores at hand.

Now, the final input file should look like this:

path="/path/to/tutorial/files"
outdir=$path"/1-point/ams"
tokill="1"
amstype="single"
numinst="100"
numrep="100"
zmax="4.90"
timelimit="240"
icprefix=$path"/1-point/point"
zone=$path"/common/inzone.tcl"
measure=$path"/common/coord.tcl"
variables=$path"/common/variables.tcl"
initfile=$path"/common/namd.conf"
amssteptime="20"
parallel="8"
getpaths="on"
charmrunp="0"
removefiles="yes"

Notice here that we are using amssteptime = 20. If the reader is guiding himself through this
tutorial to run simulations with another system, be careful when choosing this parameter. First,
using amssteptime = 1 is always an option, but this will make the simulations slow. Second, if
amssteptime > 1, it is necessary to satisfy one important condition: it should be small enough,
so that if the system passes through 𝐴, at least one point inside 𝐴 will be computed. Thus, we
recommend to run a small preliminary simulation to evaluate the mean time the system stays
inside 𝐴.

The Adaptive Multilevel Splitting Method 13

11. Run the script:
../smart/smart_parallel.sh point.par

Running the script will block the screen showing what instance has already been launched. At
the end of the run the probability estimation is given, as well as the total wall clock time spent,
and other four files with the same name as the outdir variable, followed by:

• cputime: list of the CPU time of each AMS run

• runtime: same but with the wall-clock times

• proba: list of estimated probabilities

• T3: list of MD steps of the sampled reaction trajectories. This will be used in section 2.3..

The smart directory contains an executable file named media. The argument for this program
is a file with numbers in one column, and their average value and standard deviation will be
computed.

12. To see the final estimated value for the probability, type:
../smart/media ams.proba

Compare the obtained result to the reference DNS value: (2.076 +− 0.357) × 10−4.

Performing the simulation in this section using smaller values for numrep and/or numinst leads
to a larger confidence interval. If the reader wish to make it smaller, it is possible to run the
script again with a larger value of numinst. The script will not overwrite the previous results;
instead it will run the remaining instances to complete the numinst AMS runs.

2.3. Obtaining the transition time using AMS results

As already mentioned, it is possible to calculate the transition time using the probability obtained
with AMS by using a specific set of initial conditions, which we will now see how to obtain.

The transition time is the average time of the trajectories, coming from 𝐵, from its first entrance
in 𝐴, until the first subsequent entrance in 𝐵 [7, 8]. As 𝐴 is metastable, the dynamics tends to
make loops between 𝐴 and its neighborhood before visiting 𝐵. To correctly define those loops,

The Adaptive Multilevel Splitting Method 14

let us fix an intermediate value 𝑧min of the reaction coordinate, defining a surface Σ𝑧min that
corresponds to the region in which 𝜉 is equal to 𝑧min.

If 𝐴 is metastable and Σ𝑧min is close to 𝐴, the number of loops made between 𝐴 and Σ𝑧min

before visiting 𝐵 will then large. After going through some of them, the system reaches an
equilibrium. When this equilibrium is reached, the first hits of Σ𝑧min follow a so-called quasi-
stationary distribution 𝜇QSD. Here, we call the first hitting points of Σ𝑧min the first points that,
coming from 𝐴, have a 𝜉-value larger than 𝑧min. Using as an initial condition points distributed
according to 𝜇QSD, it is possible to evaluate the probability 𝑝 to reach 𝐵 before 𝐴, starting
from Σ𝑧min at equilibrium with AMS. As 𝐴 is metastable, the number of loops needed to reach
the equilibrium will be small compared to the total number of loops followed before going to 𝐵.
Thus, the time spent to reach the equilibrium can be neglected.

Let us now consider an equilibrium trajectory coming from 𝐵 that enters 𝐴 and returns to 𝐵.
The goal is to calculate the average time (E(𝑇𝐴𝐵)) of this trajectory. A good strategy is to split
this path in two: the loops between 𝐴 and Σ𝑧min , and the reaction trajectory, i.e. the path from
𝐴 to 𝐵 that does not come back to 𝐴 after reaching Σ𝑧min [8]. Neglecting the first time taken to
go out of 𝐴, one can define as 𝑇 𝑘

loop the time of the 𝑘tℎ loop between two subsequent hits of Σ𝑧min ,
conditioned to have visited 𝐴 between them, and as 𝑇reac the time of the reaction trajectory. If
the number of loops made before visiting 𝐵 is 𝑛, the time 𝑇𝐴𝐵 can be obtained as:

𝑇𝐴𝐵 =
𝑛∑︁

𝑘=1
𝑇 𝑘

loop + 𝑇reac. (4)

At each passage over Σ𝑧min there are two possible events: (i) first enter 𝐴, or (ii) first enter
𝐵. Using the probability 𝑝 from the previous paragraph, the average number of loops before
entering 𝐵 is 1/𝑝− 1. This leads us to the final equation for the expected value of 𝑇𝐴𝐵:

E(𝑇𝐴𝐵) =
(︂1
𝑝

− 1
)︂
E(𝑇loop) + E(𝑇reac). (5)

Attention !

The calculations of this section needs several hours of computer time. This
is due to the difficulty to correctly sample the initial conditions, as ex-
plained below. The reader following this tutorial in a NAMD hands-on
workshop is invited to skip to Section 2.4. and use the provided results for
this section.

It has been shown that a good way to sample 𝜇QSD is to change the set of initial conditions at
each run [9]. To do so, the user has to provide the value of 𝑧min. A small simulation before each
AMS run is performed and the first numrep trajectories between Σ𝑧min and 𝐴 are used as the

The Adaptive Multilevel Splitting Method 15

first set of replicas. This is done just by setting the variable amstype to var. All the simulations
will start from a point inside of 𝐴 (files with prefix A).

The sampling of 𝜇QSD is not easy, and thus it is necessary to use more replicas and run more
AMS simulations, compared with the simulations in Section 2.2.), in order to get the desirable
results. Go to the directory 2-time for this part of the tutorial.

1. Copy the input file of the previous section and rename it time.par. A few editions are
necessary.

2. Set the variable amstype to var.

3. Set the variable numrep to 500.

4. Set numinst = 1000.

First, it is necessary to provide the variable zmin. The choice of this parameter may be delicate.
The closer Σ𝑧min to 𝐴, the smaller the probability 𝑝 to estimate. On the other hand, if Σ𝑧min is
too far from 𝐴, it will be harder to sample the loops between 𝐴 and Σ𝑧min , and the underlying
assumption of quasi-equilibrium before transiting to 𝐵 will not be satisfied, which will imply a
bias on the estimate of the transition time by formula (5). Moreover, the time needed in the
initialization step will be larger. In this tutorial we will set zmin = -0.6, but we invite the
reader to change this parameter and compare the results.

5. Set zmin to -0.6.

6. Change the variable outdir, otherwise the script will not run any new simulation.

7. Run the script:
../smart/smart_parallel.sh time.par

When using amstype as var, the script will create two more output files: ams.T1 and ams.T2. To
obtain the transition time the user will run the provided program ams_time in directory smart.
The argument for this program is a file that contains, in this exact order: the probability and
the obtained values for 𝑇1, 𝑇2 (whose sum is equal to E(𝑇loop)) and 𝑇3 (equal to E(𝑇reac)). All of
these values have to be provided with the confidence interval and it is possible to obtain them
utilizing the executable file media, just like in the previous section.

8. Run this command line with files ams.proba, ams.T1, ams.T2 and ams.T3 (in this exact
order), and redirect the output in a file named for_time.
../smart/media ams.proba >> for_time

The Adaptive Multilevel Splitting Method 16

9. Run the following command line:
../smart/time_ams for_time

Compare the obtained result to the reference value of: (309.5 +− 23.8) ns.

2.4. Calculating the flux of reactive trajectories sampled with AMS

Using a set of reaction trajectories obtained with the AMS method, each trajectory 𝑖 can be
associated with a vector (𝜃𝑖

𝑡)𝑡∈[0,𝜏 𝑖
𝐵] with the two dihedral angles at each point. The (𝜙,𝜓) space

is split into 𝐿 cells (𝐶𝑙)1≤𝑙≤𝐿. The flux of reactive trajectories in each cell is then defined up to
a multiplicative constant by (compare with equation of Remark 1.13 in reference [7]):

𝐽(𝐶𝑙) =
𝑛∑︁

𝑖=1

𝜏 𝑖
𝐵−1∑︁
𝑡=0

(︃
𝜃𝑖

𝑡+1 − 𝜃𝑖
𝑡

Δ𝑡

)︃
1𝜃𝑖

𝑡∈𝐶𝑙
. (6)

The parameter 𝐿 should be given by the user. In this tutorial 𝐿 = 50 × 50.

A program that calculates the reactive trajectories flux using the expression above is provided
in the smart directory. The user only needs to provide a file containing the list of files with the
trajectories sampled by AMS. Such a file is actually given by the smart_parallel.sh script,
and the user should find it inside the outdir directory under the name paths_list. Please
note that the provided program only calculates the flux in two dimensions.

1. In the terminal, cd directory 3-flux

2. Calculate the flux with the results from Section 2.2.
../smart/flux ../1-point/ams/paths_list point.flux 50 20

The last value corresponds to the amssteptime.

3. The same for Section 2.3.
../smart/flux ../2-time/ams/paths_list time.flux 50 20

If the reader is performing only this Section of the tutorial, use the provided results located in
directory example_results. In this case the reader will need to modify the full paths listed in
3-flux/example_results/2-time/path_list.

The flux file contains five columns, that corresponds to the vector position,

the vector direction (unit vector) and size. The files point.flux and

time.flux can then be plotted using the program the user prefers. If the

The Adaptive Multilevel Splitting Method 17

Figure 5: Example of results for the flux of reactive paths.

reader has access to Gnuplot program, we provided a script file, named

make_plot, used to make Figure 5.

4. In side directory 3-flux, type:

gnuplot make_plot.

5. Change the variable cutoff and repeat the previous step until a desirable

result is achieved.

The flux of reactive trajectories can give an idea of the preferable paths

from 𝐴 to 𝐵. They strongly depend on the initial conditions. Notice that

time.flux was calculated using variable initial conditions created by sampling

loops between 𝐴 and Σ𝑧min, as explained in Section 2.3.. Thus, if corresponds

to the flux of reactive trajectories at equilibrium.

The Adaptive Multilevel Splitting Method 18

References

[1] F. Cérou and A. Guyader. Adaptive multilevel splitting for rare event

analysis. Stoch. Anal. Appl., 25(2):417–443, 2007.

[2] Frédéric Cérou, Arnaud Guyader, Tony Lelièvre, and David Pommier. A

multiple replica approach to simulate reactive trajectories. J. Chem.

Phys., 134(5):054108, 2011.

[3] Aristoff, David and Lelièvre, Tony and Mayne, Christopher G and Teo, Ivan

Adaptive multilevel splitting in molecular dynamics simulations ESAIM:

Proceedings and Surveys, 48:215–225, 2015.

[4] I. Teo, C. G. Mayne, K. Schulten and T. Lelièvre. Adaptive Multilevel

Splitting Method for Molecular Dynamics Calculation of Benzamidine-Trypsin

Dissociation Time. J. Chem. Theory Comput., 12(6):2983–2989, 2016.

[5] G. Fiorin, M. L. Klein, and J. Hénin. Using collective variables to drive

molecular dynamics simulations. Mol. Phys., 111(22 - 23):3345 – 3362, 2013.

[6] J. Hénin, Giacomo F., C. Chipot, and M. L. Klein. Exploring

multidimensional free energy landscapes using time-dependent biases on

collective variables. J. Chem. Theory Comput., 6(1):35–47, 2010.

[7] J. Lu and J. Nolen. Reactive trajectories and the transition path process.

Probability Theory and Related Fields, 161(1-2):195–244, 2015.

[8] E. Vanden-Eijnden. Transition path theory. Lect. Notes Phys., 703:439–478,

2006.

[9] L. J. S. Lopes and T. Lelièvre. Analysis of the adaptive multilevel

splitting method with the alanine di-peptide’s isomerization.

arXiv:1707.00950 [physics.chem-ph], 2017.

	The Adaptive Multilevel Splitting method
	The AMS algorithm
	Setting up AMS simulations
	The user files to provide
	Preparing an input file

	Applying AMS to the alanine dipeptide isomerization in vacuum
	Definitions of A, B and xi
	Calculating the probability with AMS
	Obtaining the transition time using AMS results
	Calculating the flux of reactive trajectories sampled with AMS

