
University of Illinois at Urbana-Champaign
Beckman Institute for Advanced Science and Technology
Theoretical and Computational Biophysics Group
Computational Biophysics Workshop

Bionanotechnology Tutorial

Alek Aksimentiev

Jeffrey Comer

April 2011

A current version of this tutorial is available at
http://www.ks.uiuc.edu/Training/Tutorials/

Join the tutorial-l@ks.uiuc.edu mailing list for additional help.

http://www.ks.uiuc.edu/Training/Tutorials/

CONTENTS 2

Contents

1 Simulation setup and protocols 7
1.1 Building a crystal . 7
1.2 Constructing synthetic nanopores 13
1.3 Generating the structure file 24
1.4 Calibrating the force field . 25
1.5 Solvating the nanopore . 32
1.6 Measuring ionic current . 36

2 Simulations of DNA permeation through nanopores 45
2.1 Manipulating DNA . 45
2.2 Combining DNA and the synthetic nanopore 48
2.3 Measuring ionic current with DNA 50
2.4 Simulating DNA translocation 51

3 Appendix 54

CONTENTS 3

Introduction

This tutorial is designed to guide users of VMD and NAMD in all the
steps required to set up a molecular dynamics (MD) simulation of a bionan-
otechnology device. The tutorial assumes that you already have a working
knowledge of VMD and NAMD. For the accompanying VMD and NAMD
tutorials go to:
http://www.ks.uiuc.edu/Training/Tutorials/

This tutorial has been designed specifically for VMD 1.8.5, and should take
about 4 hours to complete in its entirety.

Structure building for biomolecules is likely familiar to most VMD and
NAMD users and the interested reader is referred to the in-depth treat-
ment given in the other VMD and NAMD tutorials. Constructing models of
solid-state inorganic systems, however, requires a slightly different approach.
Therefore, we begin in the first unit by learning how to build models of syn-
thetic devices, starting with only a crystal unit cell. We’ll then add solution
and end by simulating ionic current through a nanoscale pore in a crystalline
membrane. The second unit will guide you through combining a biomolecule
(DNA) with a crystalline membrane and simulating the resulting system.
Many of the steps in this tutorial depend on the results of previous steps.
If some steps are not completed and you would like to move on, exemplary
output is available in bionano-tutorial-files/example-output/.

Throughout the text, some material will be presented in separate “boxes”.
These boxes include information complementary to the tutorial, such as de-
tails of the systems used in bionanotechnology research, tips or technical
details, and suggestions for more in-depth simulations.

If you have any questions or comments on this tutorial, please email the TCB
Tutorial mailing list at tutorial-l@ks.uiuc.edu. The mailing list is archived
at http://www.ks.uiuc.edu/Training/Tutorials/mailing list/tutorial-l/.

http://www.ks.uiuc.edu/Training/Tutorials/mailing_list/tutorial-l/

CONTENTS 4

High-throughput DNA sequencing. This tutorial will focus
on the interaction of DNA and a Si3N4 nanopore about 2 nm
in diameter, which is the key element in proposed technology for
high-throughput DNA sequencing. Currently, two months and
approximately ten million dollars are required to determine a hu-
man genome to the desired 99.99% accuracy—obviously too slow
and too costly for use in personal medicine. A nanopore device,
along with an integrated semiconductor detector, has promise to
reduce the time and expense of genome sequencing by orders of
magnitude (For example, see Heng et al., Bell Labs Technical
Journal 10, 5–22 (2005)).

CONTENTS 5

Required programs

The following programs are required for this tutorial:

• VMD: Available at http://www.ks.uiuc.edu/Research/vmd/ (for all
platforms)

• NAMD: Available at http://www.ks.uiuc.edu/Research/namd/ (for
all platforms)

Getting Started

You can find the files for this tutorial in the bionano-tutorial-files di-
rectory. Below you can see in Fig. 1 the directory structure for this tutorial.

To start VMD type vmd in a Unix terminal window, double-click on the
VMD application icon likely located in the Applications folder in Mac OS
X, or click on the Start → Programs → VMD menu item in Windows.

Acknowledgments

Development of this tutorial was supported by the National Institutes of
Health (P41-RR005969 - Resource for Macromolecular Modeling and Bioin-
formatics).

http://www.ks.uiuc.edu/Research/vmd/
http://www.ks.uiuc.edu/Research/namd/

CONTENTS 6

bionano-tutorial-files

example-output

1_build

2_calibrate

3_solvate

4_current

5_manipulate_dna

6_current_dna

7_translocate

cutHexagon.tcl
drillBranchedPore1.tcl
drillBranchedPore.tcl
drillPore.tcl
replicateCrystal.tcl
siliconNitridePsf.tcl
unit_cell_alpha.pdb

constrainSilicon.tcl
dipoleMomentZDiff.tcl
eq1.namd
eq2.namd
field.namd
null.namd
par_silicon_ions_NEW0.1.inp

addIons.tcl
addWater.tcl
cutWaterHex.tcl
top_all27_prot_lipid_pot.inp

constrainSilicon.tcl
cornell.prm
current.vmd
electricCurrentZ.tcl
eq0.namd
eq1.namd
eq2.namd

combine.tcl
convertDnaToCharmm.tcl
dsDnaAmber.pdb
dsDnaAmber.psf
removeResidues.tcl
sculptor.tcl
ssDnaLong.pdb

addIons.tcl
addWater.tcl
cornell.prm
cutWaterHex.tcl
electricCurrentZ.tcl
par_silicon_ions_NEW5.inp
run0.namd

constrainSilicon.tcl
cornell.prm
electricCurrentZFrame.tcl
eq0.namd
eq1.namd
eq2.namd
par_silicon_ions_NEW5.inp

sample.xscpar_silicon_ions_NEW5.inp
run0.namd
sample1.0.pdb
sample.coor
sample.pdb
sample.psf
sample.vel

ssDnaLong.psf

sample1.0.pdb
sample.coor
sample.pdb
sample.psf
sample.vel
sample.xsc
top_all27_prot_lipid_pot.inp

pore+dna.pdb
pore+dna.psf
run0.namd
top_all27_prot_lipid_pot.inp
trackPositionZ.tcl
translocate.dcd
translocate.pdb

translocate.psf
translocate.xsc
ubiquitin.pdb
ubiquitin.psf

...

Figure 1: Directory structure of bionano-tutorial-files.

1 SIMULATION SETUP AND PROTOCOLS 7

1 Simulation setup and protocols

In this unit you will learn to construct synthetic systems and simulate the
passage of ions through a nanopore device.

1.1 Building a crystal

In this section, we’ll learn how to build a crystalline membrane from its unit
cell.

1 Let’s take a look at the unit cell in VMD. If you have not already
opened VMD, do so now. Open the Tk Console by selecting Extensions
→ Tk Console. Open the directory with the files for this section and
load the unit cell by entering the following:

cd ‘‘your working directory’’

cd bionano-tutorial-files

cd 1 build

mol new unit cell alpha.pdb

Next, select Graphics → Representations. . . . In the Graphical Represen-
tations window, set the Drawing Method to CPK. Now we can clearly
see the configuration of atoms in the unit cell. This configuration of
eight nitrogen atoms and six silicon atoms will form the basis for our
extended Si3N4 crystal.

To generate a crystal membrane from the unit cell, we will execute a script
included with this tutorial. The main steps in the script are as follows. First,
we open an output PDB and write REMARK lines specifying the geometry of
the crystal. Next, we read the unit cell PDB, extracting the records for each
atom. We then generate the crystal by repeatedly writing the atom records
from the unit cell PDB to the output PDB, albeit with new positions that are
displaced by periodic lattice vectors. In the following part of the tutorial,
the script, replicateCrystal.tcl, we will use to generate the crystal is
presented. Each portion of the script is preceded by text describing how
it works. If you’d like to move on with the tutorial without examining the
details of the script, simply skip ahead to page 13.

As will be common to most of the scripts presented in this tutorial, the
first section of the script defines variables that act as the arguments of the

1 SIMULATION SETUP AND PROTOCOLS 8

Figure 2: Process of modeling a silicon nitride device. First the unit cell is
replicated to form a crystal membrane. This membrane is then cut to a more
convenient geometry. Finally, a pore is produced in the membrane by the
removal of atoms.

script. The names of input and output files will often appear here, as in
the case below, where the name of the PDB file containing the crystal’s
unit cell is stored in unitCellPdb and that of the resultant PDB is stored
in outPdb. The variables n1, n2, and n3 determine the number of times
that the unit cell will be replicated along the respective crystal axis. The
remaining variables describe the geometry of the unit cell. The unit cell is a
parallelepiped with sides of lengths l1, l2, and l3 along directions given by
the unit vectors basisVector1, basisVector2, and basisVector3. Thus,
the set of vectors {a1, a2, a3}, where ai = li basisVectori, generates the
translational symmetry of the lattice.

replicateCrystal.tcl

Read the unit cell of a pdb and replicate n1 by n2 by n3 times.

Input:

set unitCellPdb unit_cell_alpha.pdb

Output:

set outPdb membrane.pdb

Parameters:

Choose n1 and n2 even if you wish to use cutHexagon.tcl.

set n1 6

set n2 6

set n3 6

set l1 7.595

set l2 7.595

set l3 2.902

1 SIMULATION SETUP AND PROTOCOLS 9

set basisVector1 [list 1.0 0.0 0.0]

set basisVector2 [list 0.5 [expr sqrt(3.)/2.] 0.0]

set basisVector3 [list 0.0 0.0 1.0]

The two following Tcl procedures extract data from the PDB. The first
returns a list of 3D vectors corresponding to the {x y z} coordinates of each
atom in the unit cell. The second simply extracts each line atom record from
the PDB and returns it as a list.

Return a list with atom positions.

proc extractPdbCoords {pdbFile} {

set r {}

Get the coordinates from the pdb file.

set in [open $pdbFile r]

foreach line [split [read $in] \n] {

if {[string equal [string range $line 0 3] "ATOM"]} {

set x [string trim [string range $line 30 37]]

set y [string trim [string range $line 38 45]]

set z [string trim [string range $line 46 53]]

lappend r [list $x $y $z]

}

}

close $in

return $r

}

Extract all atom records from a pdb file.

proc extractPdbRecords {pdbFile} {

set in [open $pdbFile r]

set pdbLine {}

foreach line [split [read $in] \n] {

if {[string equal [string range $line 0 3] "ATOM"]} {

lappend pdbLine $line

}

}

1 SIMULATION SETUP AND PROTOCOLS 10

close $in

return $pdbLine

}

Given the coordinates of all atoms in the unit cell, the displaceCell

procedure shifts them by a lattice vector. In other words, this procedure is
where the crystal is actually replicated—the basis on which the rest of the
script rests.

Shift a list of vectors by a lattice vector.

proc displaceCell {rUnitName i1 i2 i3 a1 a2 a3} {

upvar $rUnitName rUnit

Compute the new lattice vector.

set rShift [vecadd [vecscale $i1 $a1] [vecscale $i2 $a2]]

set rShift [vecadd $rShift [vecscale $i3 $a3]]

set rRep {}

foreach r $rUnit {

lappend rRep [vecadd $r $rShift]

}

return $rRep

}

The procedure makePdbLine is essential to the correct formation of the
output PDB. The lines of the unit cell PDB obtained by extractPdbRecords

are altered to reflect the new coordinates of the translated unit cells.

Construct a pdb line from a template line, index, resId, and coordinates.

proc makePdbLine {template index resId r} {

foreach {x y z} $r {break}

set record "ATOM "

set si [string range [format " %5i " $index] end-5 end]

set temp0 [string range $template 12 21]

set resId [string range " $resId" end-3 end]

set temp1 [string range $template 26 29]

set sx [string range [format " %8.3f" $x] end-7 end]

set sy [string range [format " %8.3f" $y] end-7 end]

1 SIMULATION SETUP AND PROTOCOLS 11

set sz [string range [format " %8.3f" $z] end-7 end]

set tempEnd [string range $template 54 end]

Construct the pdb line.

return "${record}${si}${temp0}${resId}${temp1}${sx}${sy}${sz}${tempEnd}"

}

The final procedure drives the script. The series of puts commands near
the top of the procedure store the geometry of the crystal in REMARK lines in
the output PDB. These lines will be needed later when we modify the shape
of the crystal. The lattice vectors are defined by

R(i, j, k) = ia1 + ja2 + ka3,

where i, j, and k are integers. The main loop iterates through all unique
(i,j,k) for 0 ≤ i < n1, 0 ≤ j < n2, and 0 ≤ k < n3, producing a crystal.

Build the crystal.

proc main {} {

global unitCellPdb outPdb

global n1 n2 n3 l1 l2 l3 basisVector1 basisVector2 basisVector3

set out [open $outPdb w]

puts $out "REMARK Unit cell dimensions:"

puts $out "REMARK a1 $a1"

puts $out "REMARK a2 $a2"

puts $out "REMARK a3 $a3"

puts $out "REMARK Basis vectors:"

puts $out "REMARK basisVector1 $basisVector1"

puts $out "REMARK basisVector2 $basisVector2"

puts $out "REMARK basisVector3 $basisVector3"

puts $out "REMARK replicationCount $n1 $n2 $n3"

set a1 [vecscale $l1 $basisVector1]

set a2 [vecscale $l2 $basisVector2]

set a3 [vecscale $l3 $basisVector3]

set rUnit [extractPdbCoords $unitCellPdb]

set pdbLine [extractPdbRecords $unitCellPdb]

1 SIMULATION SETUP AND PROTOCOLS 12

puts "\nReplicating unit $unitCellPdb cell $n1 by $n2 by $n3..."

Replicate the unit cell.

set atom 1

set resId 1

for {set k 0} {$k < $n3} {incr k} {

for {set j 0} {$j < $n2} {incr j} {

for {set i 0} {$i < $n1} {incr i} {

set rRep [displaceCell rUnit $i $j $k $a1 $a2 $a3]

Write each atom.

foreach r $rRep l $pdbLine {

puts $out [makePdbLine $l $atom $resId $r]

incr atom

}

incr resId

if {$resId > 9999} {

puts "Warning! Residue overflow."

set resId 1

}

}

}

}

puts $out "END"

close $out

puts "The file $outPdb was written successfully."

}

main

1 SIMULATION SETUP AND PROTOCOLS 13

2 To execute the script, enter source replicateCrystal.tcl in the
VMD Tk Console.

3 We will now edit the script replicateCrystal.tcl in order to make a
thicker Si3N4 block. Open the file replicateCrystal.tcl in your text
editor of choice, e.g., by typing nedit replicateCrystal.tcl & in the
terminal window. First, change the line 8 to set outPdb block.pdb.
Next change the value of n3 by altering line 13 to read set n3 16.
Save the file and exit the text editor.

4 To generate this thicker block of Si3N4, execute the modified script by
entering source replicateCrystal.tcl as before.

5 We’ve now created two Si3N4 crystals. To view the first, type the
following in the Tk Console window:

mol delete all

mol new membrane.pdb
This is the membrane that we will use for ionic current measurement
and DNA translocation. Notice that the cross section of the system in
xy-plane is parallelogram.

6 Similarly, open the thicker block, which we’ll use in Task 1. Enter the
following:

mol delete all

mol new block.pdb

1.2 Constructing synthetic nanopores

Now we’ll construct a nanopore in our Si3N4 membranes.

Our subsequent MD simulations will use periodic boundary conditions,
so the shape of our system must be such that the Si3N4 lattice matches at
the system’s boundaries. A hexagonal prism shape can match this lattice
and is more convenient than the parallelpiped we just created for housing a
nanopore with a roughly circular cross section. In the script for this purpose,
we first obtain the crystal geometry from the REMARK lines in the PDB and
write a file describing the hexagonal periodic boundary conditions. Next, for
convenience, we shift the crystal so that its centroid coincides with the origin

1 SIMULATION SETUP AND PROTOCOLS 14

of the coordinate system. We finally copy the atom records from the input
PDB to the output PDB, skipping those that do not lie within the hexagonal
prism. If you’d like to skip the details of this script, move on to page 18.

The first section again contains what serves as arguments to the script. To
save time when the script is altered to act on different files, a file name prefix
is defined which gives the output files systematic names based on the name
of the input file. In addition to cutting the system to a hexagonal prism,
the script cutHexagon.tcl also produces a boundary file (with a .bound

extension) that contains the periodic simulation cell vectors needed to form
bonds between atoms at the boundaries and run simulations in NAMD.

cutHexagon.tcl

Remove atoms from a pdb outside of a hexagonal prism

along the z-axis with a vertex along the x-axis.

Also write a file with NAMD cellBasisVectors.

set fileNamePrefix membrane

Input:

set pdbIn ${fileNamePrefix}.pdb

Output:

set pdbOut ${fileNamePrefix}_hex.pdb

set boundaryFile ${fileNamePrefix}_hex.bound

set pdbTemp tmp.pdb

This procedure executes VMD’s measure center method to center the
system at the origin, which is done for convenience.

Write a pdb with the system centered.

proc centerPdb {pdbIn pdbOut} {

mol new $pdbIn

set all [atomselect top all]

set cen [measure center $all]

$all moveby [vecinvert $cen]

$all writepdb $pdbOut

$all delete

mol delete top

}

1 SIMULATION SETUP AND PROTOCOLS 15

The procedure readGeometry extracts the crystal geometry from the
REMARK lines we added to the PDB in last script and writes the boundary file
mentioned above.

Read the geometry of the system and write the boundary file.

Return the radius of the hexagon.

proc readGeometry {pdbFile boundaryFile} {

Extract the remark lines from the pdb.

mol new $pdbFile

set remarkLines [lindex [molinfo top get remarks] 0]

foreach line [split $remarkLines \n] {

if {![string equal [string range $line 0 5] "REMARK"]} {continue}

set tok [concat [string range $line 7 end]]

set attr [lindex $tok 0]

set val [lrange $tok 1 end]

set remark($attr) $val

puts "$attr = $val"

}

mol delete top

Deterimine the lattice vectors.

set vector1 [vecscale $remark(basisVector1) $remark(a1)]

set vector2 [vecscale $remark(basisVector2) $remark(a2)]

set vector3 [vecscale $remark(basisVector3) $remark(a3)]

foreach {n1 n2 n3} $remark(replicationCount) {break}

set pbcVector1 [vecadd [vecscale $vector1 [expr $n1/2]] \

[vecscale $vector2 [expr $n2/2]]]

set pbcVector2 [vecadd [vecscale $vector1 [expr -$n1/2]] \

[vecscale $vector2 [expr $n2]]]

set pbcVector3 [vecscale $vector3 $n3]

puts ""

puts "PERIODIC VECTORS FOR NAMD:"

puts "cellBasisVector1 $pbcVector1"

puts "cellBasisVector2 $pbcVector2"

puts "cellBasisVector3 $pbcVector3"

1 SIMULATION SETUP AND PROTOCOLS 16

puts ""

set radius [expr 2.*[lindex $pbcVector1 0]/3.]

puts "The radius of the hexagon: $radius"

Write the boundary condition file.

set out [open $boundaryFile w]

puts $out "radius $radius"

puts $out "cellBasisVector1 $pbcVector1"

puts $out "cellBasisVector2 $pbcVector2"

puts $out "cellBasisVector3 $pbcVector3"

close $out

return $radius

}

Here, in the procedure cutHexagon, we read each atom record from the
input PDB and extract the serial number and coordinates. The record is
then written to the output PDB if and only if the position of the atom is
within a hexagon of radius R in the xy-plane, centered at the origin, which
has a vertex along the x-axis. All three of the following geometric criteria
must hold:

−
√

3
2

R < y <
√

3
2

R,√
3(x−R) < y <

√
3(x + R),√

3(−x−R) < y <
√

3(−x + R).

proc cutHexagon {r pdbIn pdbOut} {

set sqrt3 [expr sqrt(3.0)]

Open the pdb to extract the atom records.

set out [open $pdbOut w]

set in [open $pdbIn r]

set atom 1

foreach line [split [read $in] \n] {

set string0 [string range $line 0 3]

Just write any line that isn’t an atom record.

if {![string match $string0 "ATOM"]} {

1 SIMULATION SETUP AND PROTOCOLS 17

puts $out $line

continue

}

Extract the relevant pdb fields.

set serial [string range $line 6 10]

set x [string range $line 30 37]

set y [string range $line 38 45]

set z [string range $line 46 53]

Check the hexagon bounds.

set inHor [expr abs($y) < 0.5*$sqrt3*$r]

set inPos [expr $y < $sqrt3*($x+$r) && $y > $sqrt3*($x-$r)]

set inNeg [expr $y < $sqrt3*($r-$x) && $y > $sqrt3*(-$x-$r)]

If atom is within the hexagon, write it to the output pdb

if {$inHor && $inPos && $inNeg} {

Make the atom serial number accurate if necessary.

if {[string is integer [string trim $serial]]} {

puts -nonewline $out "ATOM "

puts -nonewline $out \

[string range [format " %5i " $atom] end-5 end]

puts $out [string range $line 12 end]

} else {

puts $out $line

}

incr atom

}

}

close $in

close $out

}

In the main part of the script, we extract the radius of the hexagon and
write the boundary file, center the crystal, and finally cut the crystal into a
hexagonal prism.

1 SIMULATION SETUP AND PROTOCOLS 18

set radius [readGeometry $pdbIn $boundaryFile]

centerPdb $pdbIn $pdbTemp

cutHexagon $radius $pdbTemp $pdbOut

1 Enter source cutHexagon.tcl in the Tk Console. The script acts on
membrane.pdb, producing the file membrane hex.pdb. We also need to
cut block.pdb to a hexagonal prism.

2 Open cutHexagon.tcl in your text editor. Change line 7 to read set

fileNamePrefix block and save the file. Execute the script by reen-
tering
source cutHexagon.tcl in the Tk Console.

3 Let’s look at our system in VMD to make sure it has been cut into a
hexagonal prism correctly. Type:

mol delete all

mol load pdb membrane hex.pdb

4 Also, look at the second system. Enter mol delete all and mol load

pdb block hex.pdb in the Tk Console.

Now we’ll shape our crystals into nanopore devices. The script drillPore.tcl
has been designed for this purpose. We’ll produce a pore with the shape of
two intersecting cones, which has hourglass-like cross sections in the xz- or
yz- planes. First, we read the length of the pore along the z-axis from the
boundary file. Subsequently, we remove atoms from the PDB file that are
within the pore. You can skip the details of this script by turning to page 22.

The parameters radiusMin and radiusMax define the minimum and max-
imum radius of the double-cone pore.

drillPore.tcl

Cut a double-cone pore in a membrane.

Parameters:

set radiusMin 8

set radiusMax 15

Input:

1 SIMULATION SETUP AND PROTOCOLS 19

set pdbIn membrane_hex.pdb

set boundaryFile membrane_hex.bound

Output:

set pdbOut pore.pdb

set boundaryOut pore.bound

This procedure extracts the length of the pore along the z-axis, which is
necessary for defining the geometry of the double cone pore.

Get cellBasisVector3_z from the boundary file.

proc readLz {boundaryFile} {

set in [open $boundaryFile r]

foreach line [split [read $in] \n] {

if {[string match "cellBasisVector3 *" $line]} {

set lz [lindex $line 3]

break

}

}

close $in

return $lz

}

In a membrane of thickness lz, the cylindrical coordinate s that corre-
sponds to the radius of the pore at height z for a double cone with a center
radius of smin and a maximum radius of smax is given by

s(z) = smin + 2
smax − smin

lz
|z| .

Whether the point (x, y, z) is within the pore is determined by

x2 + y2 < s(z)2.

Later, in Task 1, you will modify a similar procedure to produce a topolog-
ically more complicated pore.

Determine whether the position {x y z} is inside the pore and

should be deleted.

proc insidePore {x y z sMin sMax} {

Get the radius for the double cone at this z-value.

1 SIMULATION SETUP AND PROTOCOLS 20

set s [expr $sMin + 2.0*($sMax-$sMin)/$lz*abs($z)]

return [expr $x*$x + $y*$y < $s*$s]

}

The final procedure is nearly identical to the cutHexagon procedure in
cutHexagon.tcl. It writes only lines satisfying geometrical constraints, this
time given by the result of the procedure insidePore.

proc drillPore {sMin sMax lz pdbIn pdbOut} {

set sqrt3 [expr sqrt(3.0)]

Open the pdb to extract the atom records.

set out [open $pdbOut w]

set in [open $pdbIn r]

set atom 1

foreach line [split [read $in] \n] {

set string0 [string range $line 0 3]

Just write any line that isn’t an atom record.

if {![string match $string0 "ATOM"]} {

puts $out $line

continue

}

Extract the relevant pdb fields.

set serial [string range $line 6 10]

set x [string range $line 30 37]

set y [string range $line 38 45]

set z [string range $line 46 53]

If atom is outside the pore, write it to the output pdb.

Otherwise, exclude it from the resultant pdb.

if {![insidePore $x $y $z $sMin $sMax]} {

Make the atom serial number accurate if necessary.

if {[string is integer [string trim $serial]]} {

puts -nonewline $out "ATOM "

puts -nonewline $out \

1 SIMULATION SETUP AND PROTOCOLS 21

[string range [format " %5i " $atom] end-5 end]

puts $out [string range $line 12 end]

} else {

puts $out $line

}

incr atom

}

}

close $in

close $out

}

set lz [readLz $boundaryFile]

drillPore $radiusMin $radiusMax $lz $pdbIn $pdbOut

1 SIMULATION SETUP AND PROTOCOLS 22

5 In the Tk Console, enter source drillPore.tcl.

6 Let’s examine the pore we just created in VMD. Enter mol delete all

and mol load pdb pore.pdb in the Tk Console. Setting the Drawing
Method to VDW and the Selected Atoms edit box to abs(y) < 5 should
make the double pore cross section apparent.

7 The file produced, pore.pdb, needs an accompanying boundary file. In
the Tk Console, enter cp membrane hex.bound pore.bound.

Double-cone pore. The membrane is drilled using geometrical
criteria which result in a pore shaped like two intersecting cones.
This pore resembles those sculptured in silicon nitride by high-
energy electron beam (See Heng et al., Biophysical Journal 87,
2905–2911 (2004)).

1 SIMULATION SETUP AND PROTOCOLS 23

Task 1: Branching pore. Now let’s produce a device with a
more complex topology. The following criteria define the interior
of a Y-shaped branched pore, which one could possibly encounter
in a nanofluidic application:

if z < 0, x2 + y2 < r2
0

if z > 0, y2 + 1
5(z − 2x)2 < r2

1 OR y2 + 1
5(z + 2x)2 < r2

1 (1)

For z < 0, the pore is defined by a single cylindrical region,
which runs parallel to the z-axis. At the xy-plane, the pore
branches; moreover, for z > 0, the pore is defined by two
cylindrical regions oblique to the z-axis.

Open drillBranchedPore.tcl in your text editor. To
drill the pore described above, we need to complete the Tcl
procedure insidePore that begins on line 12. The procedure
accepts the atomic coordinates {x y z} and returns 1 if the
atom is inside the pore and needs to be removed and returns 0
otherwise. The first portion of the conditional is done for you
and defines the shape of the pore for z < 0. Using this as your
guide, your assignment is to alter the expr commands in lines
21 and 22 to correspond to the two criteria (1) that define the
two branches for z > 0. Note that line 23 returns the logical OR
of the two criteria; therefore, you do not need to include this in
your modification.

Execute your modified script by entering source
drillBranchedPore.tcl. In VMD, delete any molecules
you have open and open the branched pore (branch.pdb). In
the Graphical Representations window, set the Drawing Method
to MSMS. Setting the Selected Atoms edit box to abs(y) < 5
reveals the pore’s cross section. Does it look how you expected?
Compare your pore to the figure below. Did you apply the
geometric criteria correctly?

1 SIMULATION SETUP AND PROTOCOLS 24

1.3 Generating the structure file

We’ve constructed two crystalline membranes and, from them, two nanopores;
however, we have only generated atom coordinates. We have not defined
bonds of any sort between the atoms. In this section, we’ll construct a
PSF file that describes the bonds (connections between two atoms) and
angles (connections between three atoms) in our systems as well as other
items needed for subsequent MD simulations. To do this we’ll use the script
siliconNitridePsf.tcl. This script is somewhat longer than those we have
seen thus far, so its description has been left to the appendix.

A quick synopsis of the script’s operation is as follows. The first step is
to find bonds simply by searching for atoms that are within some threshold
distance of one another. However, this step misses bonds that exist across the
periodic boundaries. To find these, we displace the system by the periodic
cell vectors and find bonds between the original system and its periodic
image (Fig. 3). Next we determine the angles and then finally write all of
the information to a PSF file.

You may be used to calling upon psfgen to produce the structure files for
proteins and other biomolecules. This would be possible for Si3N4 as well.
However, due to the nature of the material, it is somewhat more straightfor-
ward to generate the PSF directly as we do with this script.

1 We’ll now build the PSF structure file for our membrane. Type source
siliconNitridePsf.tcl in the Tk Console. The structure information
for our pore is now contained in pore.psf.

2 Let’s also build the structure for the pristine membrane. Change line
5 of siliconNitridePsf.tcl to set fileNamePrefix membrane hex.
Since we will use the pristine membrane to calibrate the dielectric con-
stant of the silicon nitride, we do not want any surfaces. Change line
16 to read set zPeriodic 1. Save the script and then execute it.

3 Take a look at the system in VMD by entering mol delete all and
mol load psf pore.psf pdb pore.pdb in the Tk Console. Select
Graphics → Representations. . . . Notice that there appear to be bonds
crisscrossing the pore. This occurs because VMD can’t correctly dis-
play bonds across the periodic boundaries. Set the drawing method
Drawing Method to VDW, which does not illustrate bonds. The pore
should now be clearly visible.

1 SIMULATION SETUP AND PROTOCOLS 25

Periodic cell vector

Periodic image

Bonding to
periodic image

Periodic image

“internal” bond

Figure 3: Bonding to periodic images. The periodic image is produced by
translating the system by a periodic cell vector. To find bonds across the
periodic boundary, a distance search is performed between the original coor-
dinates of the atoms and those in each periodic image.

Charge neutrality. The script drillPore.tcl operates by re-
moving atoms defined by geometric constraints. In doing this,
it is likely that the ratio of the number of Si atoms to that of
N atoms is no longer exactly 3:4. To perform MD simulations
with PME electrostatics, the total charge of the simulated system
needs to be adjusted to zero. To accomplish this, the charges on
all of the nitrogen atoms are tuned by the equation qN = −NSi qSi

NN

where Ni and qi are the number and charge of each species, re-
spectively. For this pore, the adjustment to qN is less than 2%
times its absolute value, which is negligible for most purposes.

1.4 Calibrating the force field

Bionanotechnology enters uncharted territory by placing together biomolecules
and synthetic materials that have rarely been studied in contact. In addition,
simulations of inorganic solids such as Si3N4 usually employ vastly different

1 SIMULATION SETUP AND PROTOCOLS 26

methods than those used in computational molecular biology. Thus, sim-
ulating systems with both synthetic and biomolecular constituents is chal-
lenging and, in general, an unsolved problem. Because much research in
bionanotechnology involves electrostatic interactions between biomolecules
and silicon-based materials, we’ll focus on getting our Si3N4 model to repro-
duce experimental data for just one property: the dielectric constant. With
this model we can expect to have a realistic electric field within the pore.

To determine the dielectric constant, we will apply an electric field to a
block of Si3N4 with no free surfaces and measure the electric dipole moment.
Hence, we will use the structure membrane hex.psf that we generated in the
last section, for which we generated bonds along all three lattice directions.

1 Type cd ../2 calibrate/ in the Tk Console.

2 Open the parameter file par silicon ions NEW0.1.inp in your text
editor. Notice that the file has three sections. The first two give energy
function parameters for harmonic bonds and harmonic angle bending
between two bonds, respectively. The last gives the parameters for the
non-bonded interactions. You may close the file now.

We take the non-bonded parameters, as well as the values for the partial
charges on the Si and N atoms in siliconNitridePsf.tcl, from quantum
mechanical calculations using the biased Hessian method (John A. Wendell
and William A. Goddard III, Journal of Chemical Physics 97, 5048–5062
(1992)). However, the bonded interactions from the same source lead to
a dielectric constant that is practically the same as a vacuum (1.0). To
overcome this, we set the bonded interaction constants to be much lower
than those given in the reference. In this section, we’ll set them to 0.1
kcal/(mol Å). To match the experimental dielectric constant we include in
our force field harmonic restraints, which can easily be applied in NAMD,
that pull each atom of Si3N4 towards its equilibrium position in the Si3N4

crystal. It is the spring constant associated with these constraint forces
that we will calibrate to reproduce the experimentally-determined dielectric
constant of Si3N4.

1 SIMULATION SETUP AND PROTOCOLS 27

Silicon nitride parameters. To change the bonded and van
der Waals interaction parameters, you need only to modify the
parameter file par silicon ions NEW0.1.inp. However, note
that the atomic charges of the Si3N4 are defined in the PSF
file. If you’d like to alter these, you must change the variable
chargeSi in the PSF generating script (See Appendix).

3 The Tcl script constrainSilicon.tcl produces PDB files where the
spring constant is placed in the B (known in VMD as beta) column
of the PDB. Open the script in your text editor. A constraint PDB
will be produced for each spring constant (kcal/(mol Å2)) in the list
defined in line 7. We’ll determine the dielectric constant for values 1.0
and 10.0. Hence, change line 7 of the script to set betaList {1.0
10.0}. Execute constrainSilicon.tcl, whose contents follow.

constrainSilicon.tcl

Add harmonic constraints to silicon nitride.

Parameters:

Spring constant in kcal/(mol A^2)

set betaList {1.0}

set selText "resname SIN"

set surfText "(name \"SI.*\" and numbonds<=3) \

or (name \"N.*\" and numbonds<=2)"

Input:

set psf ../1_build/membrane_hex.psf

set pdb ../1_build/membrane_hex.pdb

Output:

set restFilePrefix siliconRest

mol load psf $psf pdb $pdb

set selAll [atomselect top all]

Set the spring constants to zero for all atoms.

$selAll set occupancy 0.0

$selAll set beta 0.0

Select the silicon nitride.

1 SIMULATION SETUP AND PROTOCOLS 28

set selSiN [atomselect top $selText]

Select the surface.

set selSurf [atomselect top "(${selText}) and (${surfText})"]

foreach beta $betaList {

Set the spring constant for SiN to this beta value.

$selSiN set beta $beta

Constrain the surface 10 times more than the bulk.

$selSurf set beta [expr 10.0*$beta]

Write the constraint file.

$selAll writepdb ${restFilePrefix}_${beta}.pdb

}

$selSiN delete

$selSurf delete

$selAll delete

mol delete top

4 Since the silicon atoms are already in their equilibrium positions, we’ll
forgo the energy minimization step in the usual simulation sequence.
Instead, we’ll start by raising the temperature gradually to 295 K.
During this time, we’ll use constraints of 1.0 kcal/(mol Å2).

Before we start, however, we need to put the system dimensions in the
NAMD configuration file eq1.namd. Open it and 1 build/membrane hex.bound

(if you did not use InorganicBuilder), which we generated in Sec-
tion 1.2, in your text editor. If you used InorganicBuilder, refer instead
to the vectors you recorded. Copy the values of cellBasisVector1,
cellBasisVector2, and cellBasisVector3 into lines 8, 9, and 10,
respectively, of the configuration file. Also, examine the constraint pa-
rameters at the bottom of the file. Save the configuration file and exit
the text editor.

5 Enter namd2 eq1.namd > eq1.log to raise the system’s temperature.
This may take a couple of minutes.

6 To equilibrate the system at constant temperature, enter namd2 eq2.namd

> eq2.log.

1 SIMULATION SETUP AND PROTOCOLS 29

7 Next we compute the dielectric constant for each constraint value. To
do this, we calculate the difference between the dipole moments of
identical systems with and without an applied electric field. Open the
files field.namd and null.namd in your text editor. Modify line 2
to read set constraint 1.0. First simulate the system without the
applied electric field by entering namd2 null.namd >! null1.0.log

and then with a field of 16 kcal/(mol Å e) by entering namd2 field.namd

>! field1.0.log. Do the same for the other constraint value, i.e.,
alter the variable constraint in field.namd and null.namd and run
NAMD.

8 We’ll now compute the electric dipole moment for each run and from
these calculate the dielectric constant for the material. Open the script
dipoleMomentZDiff.tcl in your text editor. The script operates by
loading DCD trajectory files for the system with and without an applied
field. We then compute the dipole moment for each frame and write
the time (ns) in the first column and the difference in the dipoles (e Å)
in the second column of a text file.

The values of dcdFreq and timestep, taken from the NAMD configu-
ration file, allow us to determine the time between the frames of the DCD
trajectory file. We’ll set the variable startFrame to 4 to give the system 500
fs to equilbrate before computing the dipole moment. The electric dipole
moment is computed by VMD’s measure dipole command which employs
the following formula. For a set of N atoms with partial charges qi and
positions ri the electric dipole moment is

p =
N∑

i=1

(qi − q0)ri,

where q0 = 1
N

∑N
i=1 qi. Subtraction of q0, the monopole component, makes the

result independent of the choice of the origin. Finally, the script computes the
average of the difference in the dipole moments and the associated standard
error.

dipoleMomentZDiff.tcl

Calculate dipole moment of the selection

for a trajectory.

1 SIMULATION SETUP AND PROTOCOLS 30

set constraint 10.0

set dcdFreq 100

set selText "all"

set startFrame 0

set timestep 1.0

Input:

set psf ../1_build/membrane_hex.psf

set dcd field${constraint}.dcd

set dcd0 null${constraint}.dcd

Output:

set outFile dipole${constraint}.dat

Get the time change between frames in femtoseconds.

set dt [expr $timestep*$dcdFreq]

Load the system.

set traj [mol load psf $psf dcd $dcd]

set sel [atomselect $traj $selText]

set traj0 [mol load psf $psf dcd $dcd0]

set sel0 [atomselect $traj0 $selText]

Choose nFrames to be the smaller of the two.

set nFrames [molinfo $traj get numframes]

set nFrames0 [molinfo $traj0 get numframes]

if {$nFrames0 < $nFrames} {set nFrames $nFrames}

puts [format "Reading %i frames." $nFrames]

Open the output file.

set out [open $outFile w]

Start at "startFrame" and move forward, computing

the dipole moment at each step.

set sum 0.

set sumSq 0.

set n 1

puts "t (ns)\tp_z (e A)\tp0_z (e A)\tp_z-p0_z (e A)"

for {set f $startFrame} {$f < $nFrames && $n > 0} {incr f} {

1 SIMULATION SETUP AND PROTOCOLS 31

$sel frame $f

$sel0 frame $f

Obtain the dipole moment along z.

set p [measure dipole $sel]

set p0 [measure dipole $sel0]

set z [expr [lindex $p 2] - [lindex $p0 2]]

Get the time in nanoseconds for this frame.

set t [expr ($f+0.5)*$dt*1.e-6]

puts $out "$t $z"

puts -nonewline [format "FRAME %i: " $f]

puts "$t\t[lindex $p 2]\t[lindex $p0 2]\t$z"

set sum [expr $sum + $z]

set sumSq [expr $sumSq + $z*$z]

}

close $out

Compute the mean and standard error.

set mean [expr $sum/$nFrames]

set meanSq [expr $sumSq/$nFrames]

set se [expr sqrt(($meanSq - $mean*$mean)/$nFrames)]

puts ""

puts "********Results: "

puts "mean dipole: $mean"

puts "standard error: $se"

mol delete top

mol delete top

9 Execute the script dipoleMomentZDiff.tcl twice, setting constraint

(in line 6 of the script) to each of the values in our simulations. Be sure
to write down the mean dipole and standard error for each.

10 Plot the time versus dipole moment data stored the resulting files
dipole10.0.dat and dipole1.0.dat. You should see that the dipole

1 SIMULATION SETUP AND PROTOCOLS 32

moments are changing little with time by the end of the simulation and
that the values are significantly different for the two different constraint
parameters.

11 To calculate the dielectric constant we apply the formula

κ = 1 +
∆p

ε0EV
,

where ∆p is the magnitude of the difference in the dipole moment be-
tween identical systems with and without an electric field, E is the
magnitude of the applied electric field, and V is the volume of the
system dielectric material (See Dong Xu, et al., The Journal of Phys-
ical Chemistry 100, 12108–12121 (1996) for further discussion). The
permittivity of free space is given in NAMD units by ε0 = 2.398 ×
10−4 (mol e2)/(kcal Å). We can calculate the volume of our hexagonal
prism by

V =
3
√

3

2
R2lz,

where R is the radius of the hexagon and lz is the height of the prism.
Obtaining R and lz from membrane hex.bound, we find V = 23485 Å3.
Given that E = 16.0 kcal/(mol Å e) calculate the dielectric constants
for the two constraint values using the mean dipole values. Note that
you can use the form Tk Console as a calculator by typing expr com-
mands. Is the difference in the dielectric constant between the two
significant?

This section is only meant to be a demonstration of how the calibration
is performed. Sampling the entire parameter space takes a good deal of
time, but you should now have a good understanding of how to calibrate the
constraints to reproduce the experimental dielectric constant. In subsequent
sections, we will use a parameter file with the bond constants set to 5.0
kcal/(mol Å2) and a constraint file with constants of 1.0 kcal/(mol Å2), which
have been found to be optimal by the procedure above.

1.5 Solvating the nanopore

Now that we’ve demonstrated how to calibrate the force field of our Si3N4

model, we’re ready to prepare our nanopore for simulations.

1 SIMULATION SETUP AND PROTOCOLS 33

1 In the Tk Console, type cd ../3 solvate/.

All biological systems rely on water to function. If our synthetic device
is to interact with them, it must be immersed in water.

2 Open the system we wish to solvate by entering mol load psf ../1 build/pore.psf

pdb ../1 build/pore.pdb in the Tk Console.

3 To open the Solvate plugin, select Extensions → Modeling → Add Sol-
vation Box from the VMD menu.

4 You should already see ../1 build/pore.psf and ../1 build/pore.pdb

in the edit boxes labeled PSF and PDB, respectively. Set Output to
pore solv. Since we wish to have water above and below the mem-
brane, set the minimum and maximum Box Padding in the direction z
to 20.

5 Press Solvate.

6 Notice that the Solvate plugin adds the water in a right rectangular
prism, which does not conform to our hexagonal prism periodic bound-
ary conditions. Type mol delete all in the Tk Console.

We’ll now remove water from outside of the hexagonal boundaries with
the script cutWaterHex.tcl. It uses VMD’s atom selection interface to ob-
tain the set {segname, resid, name}, which uniquely specifies each atom,
for all atoms violating the geometric constraints that we used in Section 1.2
to cut a hexagon from our crystal. Then by applying the psfgen command
delatom, violating atoms are deleted. We estimate the radius of the hexagon
with the measure minmax command provided by VMD.

cutWaterHex.tcl

This script will remove water from psf and pdf outside of a

hexagonal prism along the z-axis.

package require psfgen 1.3

Input:

set psf pore_solv.psf

set pdb pore_solv.pdb

1 SIMULATION SETUP AND PROTOCOLS 34

Output:

set psfFinal pore_hex.psf

set pdbFinal pore_hex.pdb

Parameters:

The radius of the water hexagon is reduced by "radiusMargin"

from the pore hexagon. The distance is in angstroms.

set radiusMargin 0.5

This is the stuff that is removed.

set waterText "water or ions"

This selection forms the basis for the hexagon.

set selText "resname SIN"

Load the molecule.

mol load psf $psf pdb $pdb

Find the system dimensions.

set sel [atomselect top $selText]

set minmax [measure minmax $sel]

$sel delete

set size [vecsub [lindex $minmax 1] [lindex $minmax 0]]

foreach {size_x size_y size_z} $size {break}

This is the hexagon’s radius.

if {[expr $size_x > $size_y]} {

set rad [expr 0.5*$size_x]

} else {

set rad [expr 0.5*$size_y]

}

set r [expr $rad - $radiusMargin]

Find water outside of the hexagon.

set sqrt3 [expr sqrt(3.0)]

Check the middle rectangle.

set check "($waterText) and ((abs(x) < 0.5*$r and abs(y) > 0.5*$sqrt3*$r) or"

Check the lines forming the nonhorizontal sides.

set check [concat $check "(y > $sqrt3*(x+$r) or y < $sqrt3*(x-$r) or"]

set check [concat $check "y > $sqrt3*($r-x) or y < $sqrt3*(-x-$r)))"]

set w [atomselect top $check]

1 SIMULATION SETUP AND PROTOCOLS 35

set violators [lsort -unique [$w get {segname resid}]]

$w delete

Remove the offending water molecules.

puts "Deleting the offending water molecules..."

resetpsf

readpsf $psf

coordpdb $pdb

foreach waterMol $violators {

delatom [lindex $waterMol 0] [lindex $waterMol 1]

}

writepsf $psfFinal

writepdb $pdbFinal

mol delete top

7 Enter source cutWaterHex.tcl to remove water outside of the hexag-
onal boundaries.

8 Open the new structure by entering mol load psf pore hex.psf pdb

pore hex.pdb. Does the system now conform to a hexagonal prism?

Many biomolecules are sensitive to the ionic strength of the surrounding
solvent; therefore, salt is added to the solutions used in experiments to mimic
physiological conditions. In addition, ions facilitate measurements of small
currents in nanopore systems by substantially increasing the conductivity of
the solution.

9 To open the Autoionize plugin, select Extensions → Modeling → Add
Ions from the VMD menu.

10 You should already see pore hex.psf and pore hex.pdb in the edit
boxes labeled PSF and PDB, respectively. Set Output to pore all.
Since we wish to have a 2 mol/kg KCl concentration, set Concentration
to 4. Set both Min. distance from molecule and Min. distance between
ions to 2. Also, because we are using a KCl solution instead of NaCl,
select the checkbox labeled Switch to KCl instead of NaCl.

11 Execute the Autoionize plugin by pressing Autoionize.

1 SIMULATION SETUP AND PROTOCOLS 36

12 For convenience, copy the solvated structure into the directory for
the next section by typing cp pore all.psf ../4 current/ and cp

pore all.pdb ../4 current/.

1.6 Measuring ionic current

In experiment, ionic current is a macroscopic quantity that gives insight
into nanoscale processes. Ionic current measurements are used to charac-
terize single nanopores and their interactions with biological molecules. In
this subsection, we’ll learn to simulate our nanopore system with an applied
voltage and calculate the ionic current from the trajectory.

1 Enter cd ../4 current/ in the Tk Console to change to the directory
for this subsection. Be sure that you have copied the files pore all.psf

and pore all.pdb into this directory as instructed at the end of the
last subsection.

2 First we need to generate the constraint file using the parameters that
reproduce the experimental dielectric constant. In the Tk Console, en-
ter
source constrainSilicon.tcl.

3 Now we need to equilibrate our system. We’ll start by performing
energy minimization. Take a look at the NAMD configuration file
eq0.namd in your text editor. The values given for cellBasisVector1
and cellBasisVector2 match those given in ../1 build/membrane hex.bound.
If you used InorganicBuilder to generate the pore, you should replace
values with your own. The third basis vector is dependent on the size
of the water box we added. To determine it, in the Tk Console window
(Extensions → Tk Console) type the following commands:

mol delete all

mol load psf pore all.psf pdb pore all.pdb

set all [atomselect top all]

set minmax [measure minmax $all]

set lz [expr [lindex $minmax 1 2]-[lindex $minmax 0 2]]

$all delete

1 SIMULATION SETUP AND PROTOCOLS 37

The value of lz gives us the size (Å) of the system along the z-axis.
We don’t want to put this value directly into the NAMD configuration
file, however.

It is better for a few water molecules to be crowded at the ends at
this point than risk introducing a vacuum region at the ends. While
the minimization step can easily rearrange water molecules that have
been placed too close together due to wrapping at the periodic bound-
aries, small regions of vacuum can cause inaccuracies in simulations,
especially those performed at constant pressure, that can be difficult
to catch.

For this reason, we set cellBasisVector3 to lz minus about 5 Å.
Since we get about 55.9 Å for lz, line 13 of eq0.namd should read
cellBasisVector3 0.0 0.0 51.0.

4 While we have our system open in VMD, let’s take a look at it. Se-
lect Graphics → Representations. . . . In the Graphical Representations
window, set Selected Atoms to resname SIN to see only the Si3N4. Set
the drawing method Drawing Method to VDW. Now create a new rep-
resentation (by pressing Create Rep) with Selected Atoms set to ions.
The K+ and Cl− ions within the pore should be visible. When you
are finished examining the system, enter mol delete all in the Tk
Console.

5 To perform energy minimization, enter namd2 eq0.namd > eq0.log

in the terminal window. This may take a few minutes to execute.
During this time you may want to take a look at the next step in the
equilibration process eq1.namd. When the minimization completes,
check the end of log file eq0.log to be certain that the simulation
completed successfully.

NAMD script steps description
eq0.namd 201 energy minimization
eq1.namd 500 raise temperature from 0 to 295 K, constant V
eq2.namd 1000 equilibrate, constant p and Langevin thermostat
run0.namd 1000 apply 20 V, constant V

1 SIMULATION SETUP AND PROTOCOLS 38

The table above summarizes the NAMD runs we will perform in this
section. It consists of three equilibration stages and one run with an applied
field. Stages such as these are used in most production simulaions.

6 Enter namd2 eq1.namd > eq1.log to gradually raise the system’s tem-
perature from 0 K to 295 K at constant volume.

7 Examine the NAMD configuration file eq2.namd in your text editor.
Notice the block of commands below the comment # pressure control.
These set the parameters for the Langevin piston Nosé-Hoover method
implemented in NAMD to maintain atmospheric pressure. Close the
text editor and equilibrate the system by entering namd2 eq2.namd >

eq2.log.

8 Constant pressure simulations allow the volume of the system to change.
As a necessary condition for equilibrium, the volume should fluctuate
about a mean value. Select Extensions → Analysis → NAMD Plot from
VMD’s menu. In the NAMD Plot window, select File → Select NAMD
Log File, highlight eq2.log, and press Open. Select for VOLUME for
the y-axis data. Now, plot the system volume versus time step by
selecting File → Plot Selected Data. You should notice a significant
downward trend in the volume. At equilibrium, the volume fluctuates
about a mean value for an NpT system such as this. Hence, we have
not equilibrated long enough. Since our time in this tutorial is lim-
ited, a system that has been equilibrated for 0.5 ns is included in this
directory.

9 We are now ready to apply an electric field and simulate the flow of ionic
current. Because the total current is more simply related to voltage
than the electric field magnitude, we are going to apply a potential
difference of 20 V along the −z-axis of our system. The corresponding
uniform electric field is calculated by Ez = −U/lz, where U is the
potential difference and lz is the size of the system along the z-axis. The
NAMD unit for electric field is kcal/(mol Å e); thus, the appropriate
conversion factor for U in V and lz in Å is 23.0605492. That is,

eFieldz/

(
kcal

mol Å e

)
= −23.060549

U/V

lz/Å
.

1 SIMULATION SETUP AND PROTOCOLS 39

To obtain the value of lz, open the NAMD extended system config-
uration file sample.xsc in your text editor. Write down c z, the
tenth number in the row of system parameters. Using V = 20 V
and lz = −c z Å, calculate eFieldz. Note that since the potential
difference is applied the along −z-axis, eFieldz is positive.

10 Now open run0.namd. At the bottom of the file you will see the fol-
lowing lines:

eFieldOn on

eField 0.0 0.0 0.0

Change the third component of eField to the value of eFieldz that you
calculated. Before you close the run0.namd, note that the pressure con-
trol lines are absent. Applying an electric field to a pressure-controlled
system will distort it, leading to erroneous results. In addition, note
that the Langevin temperature control is only applied to the silicon
nitride. Applying Langevin forces to the ions, whose motion due to the
electric field we are trying to measure, could lead to a subtle bias in
the current.

11 Begin the simulation by entering namd2 run0.namd > run0.log in the
terminal window. The simulation may require a couple minutes. Feel
free to read ahead while it runs.

12 We are using a very high applied electric field due to the time con-
straints of this tutorial. If you analyze the temperature of the simula-
tion versus time step using the VMD plugin NAMD Plot (whose use
was described during the equilibration phase of this section), you’ll see
that the temperature rises above 450 K, because of the large ionic cur-
rent. Such temperatures would render a production simulation invalid.
In real simulations, we would be using a much smaller electric field.

13 Load the VMD save state by selecting File → Load State. . . and then
the file current.vmd. Step through your trajectory and you should
notice that the K+ ions (in red) move upward, while the Cl− (in blue)
ions move downward. Enter mol delete all in the Tk Console.

1 SIMULATION SETUP AND PROTOCOLS 40

Figure 4: Complete silicon nitride nanopore (grey) including water and potas-
sium (red) and chloride (blue) ions.

14 The parameter dcdFreq is set to 100 in the NAMD configuration file.
As you may already know, this means that NAMD writes the coordi-
nates of every atom to a DCD file every 100 simulation steps. To calcu-
late the ionic current, we will execute the Tcl script electricCurrentZ.tcl.
It computes the ionic current by

I(t + ∆t/2) =
1

∆t lz

N∑
i=1

qi(zi(t + ∆t)− zi(t)),

where zi and qi are respectively the z-coordinate and charge of ion i
and ∆t is the simulation time represented by dcdFreq. Execute the
script by entering source electricCurrentZ.tcl.

1 SIMULATION SETUP AND PROTOCOLS 41

electricCurrentZ.tcl

Calculate the current for a trajectory.

Results are in "time(ns) current(nA)"

set dcdFreq 100

set selText "ions"

set startFrame 0

set timestep 1.0

Input:

set pdb sample.pdb

set psf sample.psf

set dcd run0.dcd

set xsc run0.restart.xsc

Output:

set outFile curr_20V.dat

Get the time change between frames in femtoseconds.

set dt [expr $timestep*$dcdFreq]

Read the system size from the xsc file.

Note: This only works for lattice vectors along the axes!

set in [open $xsc r]

foreach line [split [read $in] "\n"] {

if {![string match "#*" $line]} {

set param [split $line]

puts $param

set lx [lindex $param 1]

set ly [lindex $param 5]

set lz [lindex $param 9]

break

}

}

puts "NOTE: The system size is $lx $ly $lz.\n"

close $in

Load the system.

mol load psf $psf pdb $pdb

1 SIMULATION SETUP AND PROTOCOLS 42

set sel [atomselect top $selText]

Load the trajectory.

animate delete all

mol addfile $dcd waitfor all

set nFrames [molinfo top get numframes]

puts [format "Reading %i frames." $nFrames]

Open the output file.

set out [open $outFile w]

#puts $out "sum of q*v for $psf with trajectory $dcd"

#puts $out "t(ns) I(A)"

for {set i 0} {$i < 1} {incr i} {

Get the charge of each atom.

set q [$sel get charge]

Get the position data for the first frame.

molinfo top set frame $startFrame

set z0 [$sel get z]

}

Start at "startFrame" and move forward, computing

current at each step.

set n 1

for {set f [expr $startFrame+1]} {$f < $nFrames && $n > 0} {incr f} {

molinfo top set frame $f

Get the position data for the current frame.

set z1 [$sel get z]

Find the displacements in the z-direction.

set dz {}

foreach r0 $z0 r1 $z1 {

Compensate for jumps across the periodic cell.

set z [expr $r1-$r0]

if {[expr $z > 0.5*$lz]} {set z [expr $z-$lz]}

if {[expr $z <-0.5*$lz]} {set z [expr $z+$lz]}

1 SIMULATION SETUP AND PROTOCOLS 43

lappend dz $z

}

Compute the average charge*velocity between the two frames.

set qvsum [expr [vecdot $dz $q] / $dt]

We first scale by the system size to obtain the z-current in e/fs.

set currentZ [expr $qvsum/$lz]

Now we convert to nanoamperes.

set currentZ [expr $currentZ*1.60217733e5]

Get the time in nanoseconds for this frame.

set t [expr ($f+0.5)*$dt*1.e-6]

Write the current.

puts $out "$t $currentZ"

puts -nonewline [format "FRAME %i: " $f]

puts "$t $currentZ"

Store the postion data for the next computation.

set z0 $z1

}

close $out

mol delete top

}

15 The script electricCurrentZ.tcl produces an output file curr 20V.dat,
which has two columns that record the time (ns) and the current (nA).
Open the file curr 20V.dat in a text editor. Is the current steady?
What is its mean value?

Challenge: Ionic current in branched pore. Measure the ionic
current of the branched pore (or another pore of your design).
First, use siliconNitridePsf.tcl to generate the structure
branch.psf for branch.pdb. Next, follow the steps in Sec-
tion 1.3 to solvate the branched pore. Then equilibrate the sys-
tem and run it with an applied electric field as described in this
section. How does the current compare to double-cone pore?

1 SIMULATION SETUP AND PROTOCOLS 44

Detecting single molecules by the measurement of ionic
current. When DNA is driven into a pore, be it a natural protein
channel or synthetic nanopore, large changes in the ionic current
can be measured experimentally. While within the pore, the
molecule often causes a transient reduction in the ionic current.
The duration of this current reduction has been found to be
proportional to the length of the DNA molecule and sensitive to
single nucleotide substitution in DNA hairpins (See Kasianowicz
et al., Proceedings of the National Academy of Sciences 93,
13770–13773 (1996) and Bezrukov et al., Nature 370, 279–281
(1994)). Thus, measurement of ionic current through a nanopore
can be used to detect and study single molecules.

2 SIMULATIONS OF DNA PERMEATION THROUGH NANOPORES45

2 Simulations of DNA permeation through

nanopores

In the second unit, you will learn how to manipulate DNA molecules and
simulate their permeation through a synthetic nanopore.

2.1 Manipulating DNA

1 Enter cd ../5 manipulate dna/ to start this section.

2 In the Tk Console type

mol load psf dsDnaAmber.psf pdb dsDnaAmber.pdb In the Graph-
ical Representations window, set the Drawing Method to Licorice and
the Coloring Method to ResName.

3 You should now see an 8-basepair molecule of double-stranded DNA
(dsDNA), colored by the residue names ADE, CYT, GUA, and THY;
which correspond respectively to the bases adenine, cytosine, guanine,
and thymine. (See Fig. 5. Try setting Selected Atoms in the Graphical
Representations window to resname ADE, resname CYT, resname GUA,
and resname THY in turn. Which colors correspond to which bases?

4 To determine the base sequence for the first strand, type the following
in the Tk Console:

set a [atomselect top "segname ADNA and name C1’"]

puts [$a get {resid resname}]
$a delete

What is the sequence of the first strand (segment name ADNA)? What
is the sequence of its complementary strand (segment name BDNA)?

5 There are several sets of parameters available for molecular modeling
of DNA. We’ll use the AMBER topology given in cornell.rtf and
the interaction parameters given in cornell.prm. Another popular
model of DNA uses the Charmm topology and parameter set. The
script convertDnaToCharmm.tcl can produce a Charmm model from
our AMBER model. The script applies patches using psfgen to change

2 SIMULATIONS OF DNA PERMEATION THROUGH NANOPORES46

Figure 5: Double-stranded DNA colored by base type.

the topology from that of the AMBER model to that of the Charmm
model using the Charmm topology file top all27 prot na.inp. Exe-
cute this script by typing source convertDnaToCharmm.tcl in the Tk
Console.

6 In the Tk Console, enter
mol load psf dsDnaCharmm.psf pdb dsDnaCharmm.pdb. Set the Draw-
ing Method to Licorice, the Coloring Method to Molecule, and Selected
Atoms to all for both the AMBER DNA that we loaded earlier and
the Charmm DNA. No difference in structure between the AMBER
model and the Charmm model should be apparent. In the Tk Console,
enter mol delete all.

7 Now we would like to produce single-stranded DNA (ssDNA) from
dsDnaAmber.psf and dsDnaAmber.pdb. The script removeResidues.tcl
deletes the residues of all atoms in a given selection. Open the script in
your text editor. The first and second DNA strands have the segment
names ADNA and BDNA, respectively. Set the value of selText in
line 6 to segname BDNA so that the script will delete the second DNA
strand. Save your changes and execute the script.

2 SIMULATIONS OF DNA PERMEATION THROUGH NANOPORES47

8 Let’s check that we produced the ssDNA correctly. Enter mol load

psf ssDna.psf pdb ssDna.pdb in the Tk Console. After examining
your 8-mer ssDNA, type mol delete all.

ssDNA is much more flexible than dsDNA and easily bends into various
conformations. The details of these conformations can be important for
applications of bionanotechnology. For example, if ssDNA is to pass through
a nanopore device, such as is proposed for a means of fast sequencing, it must
be aligned somewhat along the axis of the pore. Molecules lying in the plane
of the membrane or contorted in certain ways can make translocation more
difficult or impossible. For this reason, we want the ability to easily generate
any desired DNA conformation in silico.

(b)(a) (c)

Figure 6: Shaping single-stranded DNA. (a) The DNA begins in a straight
conformation. (b), (c) Bending the DNA with Sculptor using two different
paths as described in the text.

9 Here we will use the VMD script sculptor.tcl to shape ssDNA to
our will. In the Tk Console, enter the following lines to load a 110-mer
ssDNA molecule and open Sculptor:

2 SIMULATIONS OF DNA PERMEATION THROUGH NANOPORES48

mol load psf ssDnaLong.psf pdb ssDnaLong.pdb

source sculptor.tcl

sculptorGui

The Sculptor window should open. The script will map any long
molecule aligned along the z-axis to a cubic spline whose form is given
by the points in Path. If we are careful, the cubic spline allows us to
bend the ssDNA smoothly, leading to conformations, that with some
equilibration, could occur in nature. However, using Sculptor on struc-
tures that are not relatively straight along the z-axis, applying a tor-
tuous path, or pressing the Sculpt button more than once without un-
doing the last operation will result in highly distorted and unphysical
conformations. If this happens, simply reload the molecule.

10 Let’s start by bending ssDNA into an L-shape. Delete the contents
of Path, and type {0 0 1} {0 0 0} {1 0 0}. Press Sculpt. Rotate
the molecule a bit and then press Undo. Your result should look like
Fig. 6(b).

11 Now we’ll bend the ssDNA in a U-shape. Delete the contents of Path
and type {0 1 2} {0 1 0} {0 -1 0} {0 -1 2}. Imagine the posi-
tions of these coordinates in space. You should see that they form
three sides of a rectangle. Production of a cubic spline from these con-
trol points will yield a U-shape as shown in Fig. 6(c). Press Sculpt.
Undo this and then produce a few conformations of your own. Close
Sculptor when you are finished. Then enter mol delete all.

2.2 Combining DNA and the synthetic nanopore

1 We now will combine our 8-mer ssDNA molecule with the Si3N4 nanopore.
Execute the script combine.tcl, which will create pore+dna.psf and
pore+dna.pdb. As shown below, the script combines the pore we cre-
ated in Section 1.2 with the ssDNA using psfgen. The script is rather
general, but can run into problems if segment names are duplicated
between the scripts.

combine.tcl

2 SIMULATIONS OF DNA PERMEATION THROUGH NANOPORES49

Input:

set psf0 ../1_build/pore.psf

set pdb0 ../1_build/pore.pdb

set psf1 ssDna.psf

set pdb1 ssDna.pdb

Output:

set finalPsf pore+dna.psf

set finalPdb pore+dna.pdb

Load the topology and coordinates.

package require psfgen

resetpsf

readpsf $psf0

coordpdb $pdb0

readpsf $psf1

coordpdb $pdb1

Write the combination.

writepdb $finalPdb

writepsf $finalPsf

2 We’ve added the ssDNA without regard for the position of the pore.
We now need to adjust the position of the molecule so that it is in a rea-
sonable position for our translocation simulation. What is the charge
of DNA? Which way will it move in an electric field pointing along
the z-axis? Enter mol load psf pore+dna.psf pdb pore+dna.pdb

in the Tk Console. Examine the system in the VDW representation.
Using selection text like segname ADNA and within 4.0 of resname

SIN allows us to see where the DNA has been placed too close to the
Si3N4.

Type the following commands into the Tk Console:

set sel [atomselect top "segname ADNA"]

$sel moveby {4 1 7}
set all [atomselect top all]

$all writepdb pore+dna.pdb

$sel delete

$all delete

2 SIMULATIONS OF DNA PERMEATION THROUGH NANOPORES50

VMD will not automatically update a selection defined by within com-
mands after the ssDNA has been moved. To see the changes, simply
change one letter in the Selected Atoms box, change it back, and press
Enter. When you are convinced that the ssDNA is not too close to the
Si3N4, enter mol delete all.

Task 2: A different conformation. Load your com-
bined system by entering mol load psf pore+dna.psf pdb
pore+dna.pdb. By applying Sculptor to just the DNA (by set-
ting Selection Text in the Sculptor window) and moving the DNA
with moveby commands, create situation where DNA is blocking
the pore, but with a substantially different conformation than
before. Save the result as pore+dna other.pdb.

2.3 Measuring ionic current with DNA

1 We’ve been running a lot scripts in our VMD session, some of which
may have large global variables. This might be a good time to exit
VMD and start a new VMD session to free any memory in these vari-
ables.

2 Enter cd ../6 current dna/ in the Tk Console. Execute the solva-
tion scripts addWater.tcl, cutWaterHex.tcl, and addIons.tcl in se-
quence.

3 To save the time it takes to equilibrate the system, we’ve included an
equilibrium system (sample*) with which you can continue.

4 Calculate the value of eField necessary to apply 20 V along the −z-
axis of the system with data from sample.xsc as you did in Section 1.6.
Place this value in the configuration file run0.namd and execute NAMD
with this file.

5 Execute the script electricCurrentZ.tcl to determine the ionic cur-
rent. How does it compare with what you measured with no DNA in
the system?

Task 3: Comparing ionic currents. Plot the ionic current as
function of time for the DNA-free system of Section 1.6 and the
system from this section. How does the presence of DNA affect
the current?

2 SIMULATIONS OF DNA PERMEATION THROUGH NANOPORES51

Challenge: Dependence of ionic current on the conforma-
tion. By changing the input files to the solvate scripts, sol-
vate the system you created in Task 2, defined in the files
pore+dna other.pdb and pore+dna.psf. Equilibrate the sys-
tem and calculate the ionic current as in the previous section.
Does the difference in conformation change the results?

Enhanced ionic current. In some situations, the presence
of DNA in the pore leads to an increase rather than a decrease
in ionic current. There appear to be two competing mecha-
nisms whose dominance depends on the bulk ion concentration.
First, the DNA mechanically blocks the pore, excluding ions in
the volume it occupies. However, because DNA is charged, the
concentration of ions in its vicinity is greater than in the bulk.
These ideas are discussed further in Chang et al., Nano Letters
4, 1551–1556 (2004) and Smeets et al., Nano Letters 6, 89–95
(2006).

2.4 Simulating DNA translocation

1 Enter cd ../7 translocate/. In production simulations, transloca-
tion would be performed in solution. However, due to time constraints,
we’ll perform the translocation simulation in vacuum and then analyze
the provided trajectory for a similar simulation in solution. We will
also be using only short-range electrostatics (with a 12 Å cutoff) in-
stead of PME electrostatics because the vacuum system has a nonzero
charge. Electrostatic cutoffs are not recommended for most production
simulations.

2 Execute constrainSilicon.tcl.

3 Run the NAMD configuration scripts shown in the table below se-
quentially. If you generated the pore with InorganicBuilder, you need
to change cellBasisVector1 and cellBasisVector2 in eq0.namd to
those you recorded. The final simulation may take several minutes to
run, so if you are short on time you may want to skip this step and the
one that follows.

2 SIMULATIONS OF DNA PERMEATION THROUGH NANOPORES52

NAMD script steps description
eq0.namd 201 minimization
eq1.namd 500 raise temperature from 0 to 295 K at constant V
eq2.namd 1000 constant p and Langevin thermostat
run0.namd 8000 electric field 150 kcal/(mol Å e) at constant V

4 View the resulting trajectory in VMD by entering mol delete all and
mol load psf pore+dna.psf dcd run0.dcd. Change the representa-
tion to VDW. Does the ssDNA translocate from one side of the pore to
another?

5 Since your simulation was performed in a vacuum, we cannot analyze
the ionic current. For this reason, the trajectory translocate.dcd

along with the structure translocate.psf and extended system translocate.xsc

has been provided. The data is from a 6 V translocation simula-
tion of dsDNA. Execute electricCurrentZFrame.tcl to calculate the
ionic current for this trajectory. Unlike the script of a similar name
we used previously, electricCurrentZFrame.tcl records the time in
DCD frames, instead of nanoseconds, to facilitate comparision with the
trajectory. The results are placed in the file curr 6V.dat.

6 The script trackPositionZ.tcl operates in much the same way as
electricCurrentZFrame.tcl except that it determines the center of
mass of the DNA relative to the center of the pore instead of the current.
Enter source trackPositionZ.tcl. The z-position of the center of
mass is stored as a function of frame number in pos 6V.dat.

7 Open the trajectory in VMD with the following commands:

mol delete all

mol load psf translocate.psf dcd translocate.dcd

In the Graphical Representations window, change Selected Atoms to
resname SIN and y > 0. Change the Drawing Method to Beads. Cre-
ate a new representation with the selection segname ADNA BDNA and
the drawing method VDW.

8 Now plot current versus frame (curr 6V.dat) and center-of-mass po-
sition versus frame (pos 6V.dat) and compare it with the events that
take place in the trajectory. How does the passage of the DNA change
the current?

2 SIMULATIONS OF DNA PERMEATION THROUGH NANOPORES53

Challenge: Protein translocation. Perform the translocation
simulation with the protein ubiquitin instead of DNA using the
files ubiquitin.psf and ubiquitin.pdb.

3 APPENDIX 54

3 Appendix

Here we describe in detail the operation of the script siliconNitridePsf.tcl,
which is used to generate the structure file for our synthetic subsystems in
section 1.3.

Looking below, you’ll see that the script siliconNitridePsf.tcl has a
number of parameters. Besides having the usual input and output files, we
have three flags which determine whether the script should search for angles
(findAngles), whether bonds should be formed across hexagonal periodic
boundaries in the xy-plane (hexPeriodic), and whether bonds should be
formed between the hexagonal faces at the top and bottom (zPeriodic).
We want to determine the angles and bond across the periodic boundaries;
however, we wish to have water above and below the membrane, so we do
not bond the top of the membrane to its bottom.

The next important parameter to note is bondDistance. It is the thresh-
old distance between atoms below which bonds are created. The remaining
parameters define the properties of the silicon and nitrogen atoms—such as
their masses and charges. NAMD matches the atom type to values in the
parameter files that give the bond and non-bonded force constants between
atoms. We take a look at one of these parameter files in section 1.4.

siliconNitridePsf.tcl

Make a psf file for Si3N4.

set fileNamePrefix membrane

Input:

set pdbFile ${fileNamePrefix}.pdb

set boundaryFile ${fileNamePrefix}.bound

Output:

set psfFile ${fileNamePrefix}.psf

set surfPdb surf.pdb

Parameters:

Should angles be calculated in addition to bonds?

set findAngles 1

set hexPeriodic 1

set zPeriodic 0

"bondDistance" is used to determine whether a bond exists between atoms.

3 APPENDIX 55

set bondDistance 2.0

Si parameters

set nameSi "SI.*"

set massSi 28.085500

set chargeSi 0.7710

set typePrefixSi SI_

set numBondsSi 4

N parameters

set nameN "N.*"

set massN 14.00700

chargeN is determined by neutrality.

set chargeN 0.

set typePrefixN N_

set numBondsN 3

The main procedure is the driver for the script. Note that it determines
the nitrogen charge to enforce charge neutrality in the system. See the box
“Charge neutrality” in section 1.3 for more information.

proc main {} {

global pdbFile boundaryFile psfFile surfPdb

global findAngles hexPeriodic zPeriodic

global bondDistance

global nameSi massSi chargeSi typePrefixSi numBondsSi

global nameN massN chargeN typePrefixN numBondsN

set selTextSi "name \"${nameSi}\""

set selTextN "name \"${nameN}\""

Load the pdb.

mol load pdb $pdbFile

set nAtoms [molinfo top get numatoms]

Get the number of nitrogen and silicon atoms.

set silicon [atomselect top $selTextSi]

set numSilicon [$silicon num]

$silicon delete

set nitrogen [atomselect top $selTextN]

3 APPENDIX 56

set numNitrogen [$nitrogen num]

$nitrogen delete

Determine the nitrogen charge.

set chargeN [expr -$chargeSi*$numSilicon/$numNitrogen]

puts "Charge on nitrogen atoms: $chargeN"

The procedure first calls bondAtoms to find bonds between internal atoms
and then finds bonds across the periodic boundaries by bonding to periodic
images with bondPeriodic (Fig. 3). The location of the periodic images are
obtained by extracting information from the boundary file with readRadius

and readLz. To save time, we do not attempt to bond all atoms to the
periodic images, only those that did not receive a complete set of bonds
(defined by numBondSi and numBondsN) during the first bonding step. To
accomplish this, a temporary PDB file, surf.pdb, is created in which all the
atoms that are incompletely bonded are marked 0.0 in the B column of the
PDB. The procedure bondPeriodic is used to search for the bonds. If both
hexPeriodic and zPeriodic are not true, then some atoms will never have
a complete set of bonds. These are the true surface atoms—those that will
be in contact with water molecules in the simulations. Next we put the bond
lists in a more convenient form. We then call findAngles and finally write
the PSF file with manifestPsf.

Find the internal bonds.

puts "Bonding internal atoms..."

set bond [bondAtoms all $bondDistance]

puts "Internal bonds: [expr [llength $bond]/4]"

Bond to periodic images.

if {$hexPeriodic || $zPeriodic} {

Create the surface atom pdb.

set all [atomselect top all]

$all set beta 1.0

puts "Searching for surface atoms..."

set nSurfSi [markSurface $bond $selTextSi $numBondsSi]

set nSurfN [markSurface $bond $selTextN $numBondsN]

puts "Number of surface silicons: $nSurfSi"

puts "Number of surface nitrogens: $nSurfN"

3 APPENDIX 57

$all writepdb $surfPdb

$all delete

Load it up.

mol delete top

mol load pdb $surfPdb

if {$hexPeriodic} {

puts "The system has hexagonal periodic boundary conditions."

set radius [readRadius $boundaryFile]

puts "Hexagon radius: $radius"

Determine the centers of the image hexagons.

set pi [expr 4.0*atan(1.0)]

set hexCen {}

set d [expr sqrt(3.)*$radius]

for {set i 0} {$i < 6} {incr i} {

set theta [expr $pi/6.*(2*$i-1)]

lappend hexCen [list [expr $d*cos($theta)] \

[expr $d*sin($theta)] 0.]

}

puts "Periodic image displacements: $hexCen"

Find the bonds on the periodic boundaries.

puts "Bonding to the periodic image..."

foreach r $hexCen {

set bond [concat $bond \

[bondPeriodic all $bondDistance $r]]

}

}

if {$zPeriodic} {

puts "The system is periodic along the z-axis."

set lz [readLz $boundaryFile]

puts "Period in z: $lz"

set zCen [list [list 0 0 -${lz}] [list 0 0 $lz]]

Find the bonds on the periodic boundaries.

3 APPENDIX 58

puts "Bonding to the periodic image..."

foreach r $zCen {

set bond [concat $bond \

[bondPeriodic all $bondDistance $r]]

}

}

}

mol delete top

puts "Counting bonds on each atom..."

countBonds count $bond $nAtoms

puts "Reorganizing bond lists..."

set bond [reorganizeBonds $bond]

puts "Removing redundancy..."

set bond [removeRedundantBonds $bond]

set totalBonds [llength $bond]

puts "Number of bonds: $totalBonds"

set angle {}

if {$findAngles} {

puts "Determining the angles..."

set angle [findAngles $bond]

set totalAngles [llength $angle]

puts "Number of angles: $totalAngles"

}

puts "Writing psf file..."

manifestPsf $psfFile $pdbFile $nAtoms bond angle count

puts "The file $psfFile was written successfully."

}

The procedure bondAtoms uses VMD’s atom selection interface to find
other atoms within bondDistance of each atom. Because the procedure
searches for neighbors of each atom, the resulting list contains each bond
twice, since a bond between atom 1 and atom 2 is the same as a bond between
atom 2 and atom 1. Note that the algorithm has a quadratic growth rate in
the number of atoms. For the small systems in this tutorial, the method used

3 APPENDIX 59

here should be fast enough. However, by effecting a spatial decomposition
of the system, we could reduce the growth rate to linear in the number of
atoms.

Find bonds between internal atoms and return them.

proc bondAtoms {selText bondDistance} {

set sel [atomselect top $selText]

set pos [$sel get {x y z}]

set index [$sel get index]

$sel delete

set bondDistance2 [expr $bondDistance*$bondDistance]

set bond {}

foreach r $pos ind $index {

Select neighboring atoms.

foreach {x y z} $r { break }

set nearText "($x-x)^2+($y-y)^2+($z-z)^2 < $bondDistance2"

set near [atomselect top \

"$selText and $nearText and not index $ind"]

set nearNum [$near num]

set nearIndex [$near get index]

$near delete

Add them to the bond list.

foreach i $nearIndex {lappend bond $ind $i}

}

return $bond

}

The following two procedures extract information about the system’s ge-
ometry from the boundary file for use in bonding across periodic boundaries.

Get the radius from the boundary file.

proc readRadius {boundaryFile} {

set in [open $boundaryFile r]

foreach line [split [read $in] \n] {

if {[string match "radius *" $line]} {

set radius [lindex $line 1]

3 APPENDIX 60

break

}

}

close $in

return $radius

}

Get the cellBasisVector3_z from the boundary file.

proc readLz {boundaryFile} {

set in [open $boundaryFile r]

foreach line [split [read $in] \n] {

if {[string match "cellBasisVector3 *" $line]} {

set lz [lindex $line 3]

break

}

}

close $in

return $lz

}

The procedure bondPeriodic acts much like bondAtoms except that the
entire system is shifted to its periodic image using VMD’s moveby command
(Fig. 3).

Try to bond surface atoms to the periodic image.

proc bondPeriodic {selText bondDistance periodicDisp} {

set selText "$selText and beta == 0.0"

set sel [atomselect top $selText]

set pos [$sel get {x y z}]

set index [$sel get index]

Shift all of the atoms into this periodic image.

$sel moveby $periodicDisp

set bondDistance2 [expr $bondDistance*$bondDistance]

set bond {}

foreach r $pos ind $index {

Select neighboring atoms.

3 APPENDIX 61

foreach {x y z} $r { break }

set nearText "($x-x)^2+($y-y)^2+($z-z)^2 < $bondDistance2"

set near [atomselect top \

"$selText and $nearText and not index $ind"]

set nearNum [$near num]

set nearIndex [$near get index]

$near delete

Add them to the bond list.

foreach i $nearIndex {lappend bond $ind $i}

}

Return all atoms to their original position.

$sel set {x y z} $pos

$sel delete

return $bond

}

The following procedure sets the beta value to 0.0 for all atoms that
do not have a full set of bonds. This includes both atoms that will later
be bonded to the periodic image and those that are truly on the surface.
Marking these atoms allows most of the atoms to be skipped when bonding
to the periodic images.

Find the atoms that have fewer than "numBonds" bonds.

Mark surface atoms by beta = 0.0.

Warning! The bond list is assumed to be flat and redundant.

proc markSurface {bond selText numBonds} {

set sel [atomselect top $selText]

set index [$sel get index]

set nSurfAtoms 0

foreach i $index {

Find the number of bonds for each atom.

set n [llength [lsearch -all $bond $i]]

Assume each bond is in the list twice.

set n [expr $n/2]

3 APPENDIX 62

Set the beta value to 0.0 if the atom is on the surface.

if {$n < $numBonds} {

set s [atomselect top "index $i"]

$s set beta 0.0

incr nSurfAtoms

$s delete

}

}

$sel delete

return $nSurfAtoms

}

The procedure countBonds creates a Tcl array linking each atom to the
total number of bonds that it has. We need this number because the string
in the PSF type column is determined by the number of bonds. For exam-
ple, the type N 2 refers to a nitrogen atom with two bonds. Consequently,
we can define different bond constants in the parameter files depending on
the coordination of the atom. None of the parameter files we will use here
discriminate in this way, however.

Count the number of bonds on each atom and return an array (zero-based).

The result is placed in a variable name countVar.

Warning! The bond list is assumed to be flat and redundant.

proc countBonds {countVar bond nAtoms} {

upvar $countVar count

set num {}

for {set i 0} {$i < $nAtoms} {incr i} {

set n [llength [lsearch -all $bond $i]]

set n [expr $n/2]

lappend num $i $n

}

array set count $num

}

3 APPENDIX 63

The following two procedures reformat the bond lists. The first converts
the flat list of bonds into nested lists containing pairs of atom indices. It also
adds 1 to all of the indices since the first PSF index is 1, but VMD atom
indices are 0-based. The second of the two procedures removes bonds that
are permutations of one another, as mentioned earlier.

Put the bonds into sublists.

Reindex to a 1-based index.

proc reorganizeBonds {bond} {

set ret {}

foreach {b0 b1} $bond {

incr b0

incr b1

lappend ret [list $b0 $b1]

}

return $ret

}

We should now have all of the bonds twice.

Find the unique bonds.

proc removeRedundantBonds {bond} {

set ret {}

foreach b $bond {

set bPerm [list [lindex $b 1] [lindex $b 0]]

set match [lsearch $ret $bPerm]

Add the bond to "ret" only if it is unique.

if {$match == -1} {lappend ret $b}

}

return $ret

}

The findAngles procedure searches through all unique pairs of bonds
and finds triplets of atoms such that atom A is bonded to atom B and atom
B is bonded to atom C. Since each atom not on the surface has a fixed
number of bonds, the number of bonds is proportional to number of atoms.
Thus, the algorithm is in Θ(N2) where N is the number of atoms. We could
reduce the asymptotic complexity by writing the algorithm more cleverly;

3 APPENDIX 64

however, for our purposes here this method is fast enough. Because of the
quadratic complexity and the fact that it is written entirely in Tcl—it uses
no fast built-in VMD commands—this procedure can take a long to time run
for large systems.

Find the angles.

proc findAngles {bond} {

set totalBonds [llength $bond]

set totalBonds1 [expr $totalBonds - 1]

Find bonds that share atoms.

set angle {}

for {set i 0} {$i < $totalBonds1} {incr i} {

for {set j [expr $i+1]} {$j < $totalBonds} {incr j} {

foreach {a0 a1} [lindex $bond $i] {break}

foreach {b0 b1} [lindex $bond $j] {break}

if {$a0 == $b0} {

lappend angle [list $a1 $a0 $b1]

} elseif {$a0 == $b1} {

lappend angle [list $a1 $a0 $b0]

} elseif {$a1 == $b0} {

lappend angle [list $a0 $a1 $b1]

} elseif {$a1 == $b1} {

lappend angle [list $a0 $a1 $b0]

}

}

}

return $angle

}

The final procedure writes all of the information we have determined thus
far to a PSF file. There are three sections of the PSF format important for
our Si3N4 systems. The first is the atom record section which replicates much
of the identifying information contained in the PDB as well the atom’s type,
mass, and charge, which are essential for simulations. The next section of the
PSF contains the bonds. The bonds are stored in eight columns of indices,
with each pair of columns in a row representing a single bond between two

3 APPENDIX 65

atoms. Hence, each line of the bond section of the PSF describes four bonds
(except the last, which may not be full). The final section of import to us is
the angles section which contains nine columns of indices, which as groups
of three define three bonds in each row.

Write the psf file.

proc manifestPsf {psfFile pdbFile nAtoms bondVar angleVar countVar} {

global nameSi massSi chargeSi typePrefixSi numBondsSi

global nameN massN chargeN typePrefixN numBondsN

Import the big pass-by-reference stuff.

upvar $bondVar bond

upvar $angleVar angle

upvar $countVar count

set dummy " 0"

set totalBonds [llength $bond]

set totalAngles [llength $angle]

set out [open $psfFile w]

HEADER

puts $out "PSF"

puts $out ""

puts $out " 1 !NTITLE"

puts $out " REMARKS original generated structure x-plor psf file"

ATOMS

puts "Writing atom records..."

puts $out ""

puts $out "[format %8i $nAtoms] !NATOM"

Open the pdb to extract the atom records.

set inStream [open $pdbFile r]

set atom 1

foreach line [split [read $inStream] \n] {

set string0 [string range $line 0 3]

if {![string match $string0 "ATOM"]} {continue}

3 APPENDIX 66

Extract each pdb field.

set record [string range $line 0 5]

set serial [string range $line 6 10]

set name [string range $line 12 15]

set altLoc [string range $line 16 16]

set resName [string range $line 17 19]

set chainId [string range $line 21 21]

set resId [string range $line 22 25]

set iCode [string range $line 26 26]

set x [string range $line 30 37]

set y [string range $line 38 45]

set z [string range $line 46 53]

set occupancy [string range $line 54 59]

set beta [string range $line 60 65]

set segName [string range $line 72 75]

set element [string range $line 76 77]

set charge [string range $line 78 79]

Determine the type names.

set numBonds $count([expr $atom-1])

set typeSi ${typePrefixSi}${numBonds}

set typeN ${typePrefixN}${numBonds}

Write the atom record.

puts -nonewline $out [format "%8i " $atom]

puts -nonewline $out [format "%-4s " $segName]

puts -nonewline $out [format "%-4i " $resId]

puts -nonewline $out [format "%-3s " $resName]

puts -nonewline $out [format "%-4s " $name]

if {[regexp $nameSi $name]} {

puts -nonewline $out [format "%-4s " $typeSi]

puts -nonewline $out [format "% 5.6f " $chargeSi]

puts -nonewline $out [format "%6.4f " $massSi]

} else {

puts -nonewline $out [format "%-4s " $typeN]

puts -nonewline $out [format "% 5.6f " $chargeN]

puts -nonewline $out [format "%6.4f " $massN]

}

3 APPENDIX 67

puts $out $dummy

incr atom

}

close $inStream

puts $out ""

BONDS

Write the bonds.

set total [format %8i $totalBonds]

puts $out "$total !NBOND: bonds"

set num 0

foreach b $bond {

puts -nonewline $out [format "%8i%8i" [lindex $b 0] [lindex $b 1]]

incr num

if {$num == 4} {

puts $out ""

set num 0

}

}

puts $out ""

ANGLES

Write the angles.

puts $out "[format %8i $totalAngles] !NTHETA: angles"

set num 0

foreach a $angle {

puts -nonewline $out \

[format "%8i%8i%8i" [lindex $a 0] [lindex $a 1] [lindex $a 2]]

incr num

if {$num == 3} {

puts $out ""

set num 0

}

}

puts $out ""

3 APPENDIX 68

Write everything else.

DIHEDRALS

set nDihedrals 0

puts $out ""

puts $out "[format %8i $nDihedrals] !NPHI: dihedrals"

puts $out ""

IMPROPERS

set nImpropers 0

puts $out ""

puts $out "[format %8i $nImpropers] !NIMPHI: impropers"

puts $out ""

DONORS

set nDonors 0

puts $out ""

puts $out "[format %8i $nDonors] !NDON: donors"

puts $out ""

ACCEPTORS

set nAcceptors 0

puts $out ""

puts $out "[format %8i $nAcceptors] !NACC: acceptors"

puts $out ""

NON-BONDED

set nNB 0

puts $out ""

puts $out "[format %8i $nNB] !NNB"

puts $out ""

set tmp [expr int($nAtoms/8)]

set tmp2 [expr $nAtoms -$tmp*8]

for {set i 0} {$i <$tmp} {incr i} {

puts $out " 0 0 0 0 0 0 0 0"

}

set lastString ""

3 APPENDIX 69

for {set i 0} {$i <$tmp2} {incr i} {

set lastString "${lastString} 0"

}

puts $out $lastString

####### GROUPS

puts $out ""

puts $out " 1 0 !NGRP"

puts $out " 0 0 0"

puts $out ""

puts $out ""

close $out

}

main

	Simulation setup and protocols
	Building a crystal
	Constructing synthetic nanopores
	Generating the structure file
	Calibrating the force field
	Solvating the nanopore
	Measuring ionic current

	Simulations of DNA permeation through nanopores
	Manipulating DNA
	Combining DNA and the synthetic nanopore
	Measuring ionic current with DNA
	Simulating DNA translocation

	Appendix

