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Abstract

This tutorial sets out to demonstrate the application of numerical simulations to the calculation of
the standard binding free energy of a protein:ligand complex. To a large extent, computation of stan-
dard binding free energies remains a daunting theoretical challenge on account of the considerable
variations in conformational, translational and orientational entropies that accompany the association
of the substrate to the host protein and is not easily captured by conventional molecular-dynamics
simulations. Sampling these entropic contributions is addressed here, following two distinct routes,
an alchemical one and a geometrical one, wherein restraining potentials have been introduced to act
on the collective variables that define the conformation of the ligand and its relative position and ori-
entation with respect to the protein. The methodology is illustrated by the well-documented example
of a small, proline-rich peptide, referred to as p41, associating to the Src homology 3 domain of a
tyrosine kinase with a standard binding free energy of −7.94 kcal/mol. Considering the difficulties
that current additive force fields face to describe organic ligands, e.g., drugs, the choice of an all-
peptide-based molecular assembly is particularly fitting, allowing the reader to focus primarily on
the methodology and the sampling.

c© 2018, Centre National de la Recherche Scientifique, University of Illinois, Urbana–Champaign
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1. Introduction

The primary objective of this tutorial is to compute the standard binding free energy of a ligand to a

protein, using two distinct strategies, relying upon alchemical transformations, on the one hand, and geo-

metrical transformations, on the other hand [1,2]. From a theoretical perspective, accurate determination

of absolute free energies remains a daunting challenge, owing to the considerable variation of not only

translational and rotational, but also conformational entropies underlying the binding process and which

cannot be fully captured in routine, finite-length statistical simulations [3]. To address this challenge,

a series of geometrical restraints is introduced to act on relevant collective variables [4, 1, 5, 6], thereby

alleviating the inherent sampling limitations of molecular dynamics. In this tutorial, the proposed strat-

egy is applied to the case of the src–homology 3, or SH3, domain of tyrosine kinase Abl binding a short,

proline-rich peptide referred to as p41 and of amino-acid sequence APSYSPPPPP [7,8], employing both

geometrical, i.e., potential-of-mean-force, and alchemical free-energy calculations.

The reader of this tutorial is assumed to be familiarized with the use of NAMD [9] to perform stan-

dard and advanced computations, including energy minimization, molecular-dynamics simulations and

free-energy calculations, both perturbative, i.e., free-energy perturbation [10, 11], and geometrical, i.e.,

adaptive biasing force [12, 13].

This tutorial contains advanced material. Do not attempt to tackle the problems therein if you

have no preliminary experience with free-energy calculations. The neophyte reader eager to

get acquainted with the computation of protein:ligand standard binding affinities is advised to

complete first the introductory tutorials on alchemical, free-energy perturbation calculations

and adaptive-biasing-force calculations.

The ABF algorithm is implemented as part of the “collective variable caculations” (colvars) module

of NAMD. The colvars module [14,15] is extensively documented in the NAMD user’s guide. Other

information about the ABF method can be found in the reference article 26. A basic working knowledge

of VMD is highly recommended.

Completion of this tutorial requires

– the various files contained in the archive tutorial-protein-ligand.tar.gz located at

http://www.ks.uiuc.edu/Training/Tutorials/namd/PLB;

– NAMD 2.12 or later (http://ks.uiuc.edu/Research/namd);

– VMD 1.9 or later (http://ks.uiuc.edu/Research/vmd).
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1.1. Theoretical underpinnings

The equilibrium binding constant that characterizes the reversible association of the ligand with the

protein, i.e., protein + ligand 
 protein:ligand,

Keq =
[protein:ligand]
[protein][ligand]

(1)

can be restated as,

Keq =
1

[ligand]
p1

p0
(2)

where p0 is the fraction of free protein and p1, the fraction of protein binding the ligand. Assuming low

protein concentration, one can imagine an isolated protein in a solution of N indistinguishable ligands.

Under these premises, the logarithm of the ratio p1/p0 can be related to the reversible work required to

extract one ligand from its bulk environment and bring it to the binding site of the protein,

Keq =
1

[ligand]

N

∫
site

d1 . . .
∫

bulk
dN

∫
dx e−βU∫

bulk
d1 . . .

∫
bulk

dN
∫

dx e−βU

=
1

[ligand]

N

∫
site

d1
∫

dx e−βU∫
bulk

d1
∫

dx e−βU
(3)

Here, the subscript “site” and “bulk” refer to the bound and the unbound states of the ligand, and the

relevant regions of configurational space over which the integrals are evaluated. As a convention, ligand

“1” occupies the binding site of the protein. Since the bulk environment is isotropic and homogenous, it

follows that,

Keq =
1

[ligand]

N

∫
site

d1
∫

dx e−βU

Vbulk

∫
bulk

d1 δ(x1 − x∗1)
∫

dx e−βU
(4)

Vbulk is the volume of the bulk medium. x1 is the position of the center of mass of the ligand and x∗1,

an arbitrary location in the bulk medium, sufficiently far from the binding site of the protein. Since the

concentration of the ligands is equal to N/Vbulk, the equilibrium binding constant can be simplified to,

Keq =

∫
site

d1
∫

dx e−βU∫
bulk

d1 δ(x1 − x∗1)
∫

dx e−βU
(5)

In the above expression of the equilibrium constant, the numerator reflects the final state of the binding



Protein:ligand standard binding free energies 6

process and the denominator, its initial state. Per se, this expression is of limited use in the context of

molecular dynamics, evaluation of the individual configurational integrals being euphemistically imprac-

tical. A viable strategy towards the computation of Keq consists in decomposing the reversible associa-

tion phenomenon into several stages, the corresponding contribution of which is determined in separate

simulations. Two possible routes, a geometrical route and an alchemical route, can be followed to reach

this objective. These two routes have a common denominator — assuming that over the timescales

amenable to molecular dynamics the configurational space available to the ligand cannot be sampled ad-

equately, a series of biasing potentials is introduced to restrain the substrate in the native conformation,

position and orientation of the bound state. Introduction of properly chosen restraints [4, 1] constitutes

the preamble to the separation of the ligand from the protein, either geometrically, i.e., translation, or

alchemically, i.e., decoupling.

1.2. Geometrical transformations

From a geometrical standpoint, computation of the equilibrium constant, Keq, could be conceived re-

sorting to a simple one-dimensional potential-of-mean-force calculation, w(r), wherein the ligand is

separated reversibly from the protein [16],

Keq = 4π
∫ R

0
dr r2 e−βw(r) (6)

Here, R stands for the limit of association.

This vision of the problem at hand is not only naı̈ve, but also extremely deceitful. It assumes

that over the timescale of the simulation, the ligand can sample the available configurational

space. Nothing could be further from the truth, in particular for large, flexible ligands.

One possible route to access with appreciable accuracy the equilibrium constant, Keq, consists in a

series of geometrical transformations, wherein the substrate is progressively restrained in the native con-

formation, position and orientation of the bound state [1, 2]. In other words, granted that finite-length

simulations cannot capture the conformational variability of the ligand in the course of the binding pro-

cess, nor sample the available 8π2 of solid angle, it is preferable to tether the molecule of interest with a

suitable set of restraints and subsequently evaluate the free-energy cost due to these restraints.

Introduction of geometrical restraints in the simulations can be viewed as a loss of confor-

mational, positional and orientational entropies, the contribution to the free energy of which

must be determined independently [3].

Under the assumption that the protein does not undergo perceptible conformational change in the course
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of ligand association, which is a valid premise in the instance of the SH3 domain of Abl binding p41, the

series of geometrical transformations involves the following steps:

(1) Determine the free-energy change for deforming the ligand in the protein:ligand complex (“site”),

using as a collective variable the root mean-square deviation with respect to the conformation of the

ligand in the bound state.

(2) Determine the free-energy change for reorienting the ligand in the protein:ligand complex (“site”)

about the first Euler angle, Θ, using as a collective variable a valence angle, restraining the confor-

mation to that of the bound state (uc).

(3) Determine the free-energy change for reorienting the ligand in the protein:ligand complex (“site”)

about the second Euler angle, Φ, using as a collective variable a dihedral angle, restraining the

conformation and the orientation with respect to Θ (uΘ) to that of the bound state.

(4) Determine the free-energy change for reorienting the ligand in the protein:ligand complex (“site”)

about the third Euler angle, Ψ, using as a collective variable a dihedral angle, restraining the confor-

mation and the orientation with respect to Θ and Φ (uΦ) to that of the bound state.

(5) Determine the free-energy change for changing the position of the ligand in the protein:ligand com-

plex (“site”) about the first polar angle, θ, using as a collective variable a valence angle, restraining

the conformation and the orientation with respect to Θ, Φ and Ψ (uΨ) to that of the bound state.

(6) Determine the free-energy change for changing the position of the ligand in the protein:ligand com-

plex (“site”) about the second polar angle, φ, using as a collective variable a dihedral angle, restrain-

ing the conformation, the orientation with respect to Θ, Φ and Ψ, and the position with respect to θ

(uθ) to that of the bound state.

(7) Determine the free-energy change for changing the position of the ligand in the protein:ligand com-

plex (“site”) along the vector connecting their respective center of mass, r, using as a collective

variable a Euclidian distance, restraining the conformation, the orientation with respect to Θ, Φ and

Ψ, and the position with respect to θ and φ (uφ) to that of the bound state.

(8) Determine the free-energy change for deforming the ligand in the free, unbound state (“bulk”), using

as a collective variable a root mean-square deviation with respect to the conformation of the ligand

in the bound state.

Once the eight, individual potentials of mean force are generated, the “geometrical” equilibrium constant

is determined according to,
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Kgeom
eq =

∫
site

d1
∫

dx e−βU∫
site

d1
∫

dx e−β(U+uc)

×

∫
site

d1
∫

dx e−β(U+uc)∫
site

d1
∫

dx e−β(U+uc+uo)

×

∫
site

d1
∫

dx e−β(U+uc+uo)∫
site

d1
∫

dx e−β(U+uc+uo+ua)

×

∫
site

d1
∫

dx e−β(U+uc+uo+ua)∫
bulk

d1 δ(x1 − x∗1)
∫

dx e−β(U+uc+uo)

×

∫
bulk

d1 δ(x1 − x∗1)
∫

dx e−β(U+uc+uo)∫
bulk

d1 δ(x1 − x∗1)
∫

dx e−β(U+uc)

×

∫
bulk

d1 δ(x1 − x∗1)
∫

dx e−β(U+uc)∫
bulk

d1 δ(x1 − x∗1)
∫

dx e−βU
(7)

where uo = uΘ+uΦ+uΨ denotes the orientational potential and ua = uθ+uφ, the polar-angle potential.

The three first contributions correspond, respectively, to the conformational, orientational and positional

restraints acting on the ligand and represent six independent potentials of mean force. The fourth contri-

bution corresponds to the reversible separation of the ligand from the binding site of the protein towards

the bulk environment. It should be clearly understood that this potential-of-mean-force is performed,

keeping all the other relevant conformational, positional and orientational degrees of freedom at their

equilibrium value by means of geometrical restraints. The fifth contribution highlighted in cyan corre-

sponds to the reorientation of a rigid body, i.e., the ligand restrained in its native conformation when

bound to the protein, and can, thus, be evaluated analytically. The sixth and last contribution corre-

sponds to free-energy cost to restrain in the bulk environment the conformation of the ligand to that in

the native bound state. It constitutes the eighth and last potential-of-mean-force calculation towards the

determination of Keq.

1.3. Alchemical transformations

The second route for the computation of the protein : ligand equilibrium constant consists of a series

of alchemical transformations [17]. This route follows the thermodynamic cycle depicted in Figure 1,

where the ligand, either in the free, unbound state, or in the bound state, is not decoupled reversibly

from the environment as is, i.e., ligand0, but rather restrained in its native conformation, position and

orientation, i.e., ligand∗, characteristic of the bound state. The rationale for the introduction of a suitable

set of geometric restraints in the alchemical route is rooted in the so-called wandering-ligand problem

[18, 19, 20], whereby, upon decoupling of the substrate from its environment, the former becomes free

to drift away from the binding site. It follows that in the backward, coupling transformation, the ligand

is unlikely to form in the binding site the relevant, native network of intermolecular interactions, hence,

violating the underlying principle of thermodynamic micro-reversibility.
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protein + ligand* protein:ligand*

protein + nothing* protein:nothing*

ΔG*

protein + ligand0 protein:ligand0
ΔG0

ΔGasitebulkΔGa

ΔGcsitebulkΔGc
ΔGositebulkΔGo
ΔGpsitebulkΔGp Figure 1: Complete thermodynamic cycle delineat-

ing the reversible association of a ligand to a protein
and the necessary steps to determine the correspond-
ing standard binding free energy, ∆G0. “ligand0” de-
notes an unrestrained ligand, whereas “ligand∗” refers
to a ligand restrained in its native conformation, posi-
tion and orientation in the protein:ligand complex.

Under the same assumption made previously that the protein does not undergo an appreciable confor-

mational modification as the ligand binds to it, the series of alchemical transformations involves the

following steps:

(1) To circumvent the wandering-ligand problem arising when the substrate is decoupled from the pro-

tein, restrain the former in the conformation, orientation and position representative of the pro-

tein:ligand complex.

(2) Determine in the bound state (“site”) the alchemical free-energy change for decoupling reversibly

from the protein the ligand restrained in its native conformation, orientation and position, i.e.,

protein : ligand∗.

(3) Determine in the free, unbound state (“bulk”) the alchemical free-energy change for decoupling

reversibly from the bulk water the ligand restrained in its native conformation, i.e., ligand∗.

(4) Determine in the bound state (“site”) the free-energy contribution for maintaining the ligand in its

native conformation, orientation and position by means of restraining potentials (uc, uΘ, uΦ, uΨ, uθ,

uφ and ur). Towards this end, the set of collective variables utilized are a root mean-square deviation

with respect to the conformation of the ligand in the bound state, the three Euler angles, Θ, Φ and

Ψ, the two polar angles, θ and φ, and the Euclidian distance, r, separating the substrate from the

protein.

(5) Determine in the free, unbound state (“bulk”) the free-energy contribution for maintaining the ligand

in its native conformation by means of a restraining potential (uc). Towards this end, the chosen

collective variable is the root mean-square deviation with respect to the conformation of the substrate

when bound to the protein.

Once the two alchemical free-energy changes, i.e., the reversible decoupling in the bound and in the

unbound states, alongside the eight free-energy contributions due to the geometrical restraints, i.e., seven

terms when the ligand is in the bound state and a single one when it is in the unbound state, are computed,

the “alchemical” equilibrium constant is determined according to,
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Kalch
eq =

∫
site

d1
∫

dx e−βU1∫
site

d1
∫

dx e−β(U1+uc)

×

∫
site

d1
∫

dx e−β(U1+uc)∫
site

d1
∫

dx e−β(U1+uc+uo)

×

∫
site

d1
∫

dx e−β(U1+uc+uo)∫
site

d1
∫

dx e−β(U1+uc+uo+ua)

×

∫
site

d1
∫

dx e−β(U1+uc+uo+ua)∫
site

d1
∫

dx e−β(U1+uc+uo+ua+ur)

×

∫
site

d1
∫

dx e−β(U1+uc+uo+ua+ur)∫
site

d1
∫

dx e−β(U0+uc+uo+ua+ur)

×

∫
bulk

d1
∫

dx e−β(U0+uc+uo+ua+ur)∫
bulk

d1 δ(x1 − x∗1)
∫

dx e−β(U0+uc+uo)

×

∫
bulk

d1 δ(x1 − x∗1)
∫

dx e−β(U0+uc+uo)∫
bulk

d1 δ(x1 − x∗1)
∫

dx e−β(U0+uc)

×

∫
bulk

d1 δ(x1 − x∗1)
∫

dx e−β(U0+uc)∫
bulk

d1 δ(x1 − x∗1)
∫

dx e−β(U1+uc)

×

∫
bulk

d1 δ(x1 − x∗1)
∫

dx e−β(U1+uc)∫
bulk

d1 δ(x1 − x∗1)
∫

dx e−βU1

(8)

where U0 characterizes the non-interacting (“ghost”) state of the substrate, and U1 the state in which it

is coupled to the environment. The above equation follows precisely the different steps described in the

thermodynamic cycle of Figure 1. Its first two contributions arise, respectively, from the conformational

and the orientational restraints acting on the ligand. Its third contribution corresponds to the polar-

angle term, i.e., ua = uθ + uφ, of the positional restraints. Its fourth contribution corresponds to the

translational term, i.e., ur, of the positional restraints. The fifth and the eighth contributions highlighted

in magenta correspond to the alchemical transformations, whereby the substrate is decoupled reversibly

from its environment, respectively in the bound and in the unbound states. The sixth and the seventh

contributions highlighted in cyan are analytical ones and account for the reorientation and translation of

a rigid body in an homogenous bulk liquid. The ninth and last contribution represents the deformation of

the ligand in the free, unbound state.

One of the main goals of the present tutorial is to demonstrate that the geometrical and the

alchemical routes are overall equivalent, and that the standard binding affinity of p41 towards

the SH3 domain of Abl obeys Keq = Kgeom
eq = Kalch

eq .
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2. Setting up the simulations

The starting point of the setups for the free-energy calculations is PDB entry 1bbz. Generation of

the structure, PSF files and the initial configurations will be performed using the psfgen module of

VMD [21]. Because the two routes for calculatingKeq, from whence the standard free energy of binding

of Abl to the SH3 domain of Abl is inferred, are inherently of different nature, distinct setups will be

considered for the geometrical and the alchemical transformations.

2.1. Construction of the molecular assemblies

In the geometrical route, as has been outlined above, eight different potentials of mean force ought to be

determined. To optimize the computational effort, three distinct simulation cells will be devised, namely,

(1) the protein:ligand assembly solvated in a cubic box of TIP3P water with adequate padding to avoid

periodicity-induced artifacts. Given the size of the dimer and the charged termini of the substrate,

solvation by about 3,400 water molecules, which corresponds to a dimension of about 48× 48× 48
Å3, has proven appropriate. This setup will be utilized for the computation of potentials of mean

force, wherein the ligand remains associated to the protein, i.e., the conformational, the Euler-angle,

orientational and the polar-angle, positional terms of Equation 7.

(2) the protein:ligand assembly solvated in a rectangular box of TIP3P water with adequate padding to

avoid periodicity-induced artifacts. This setup will be utilized for the computation of the separation

potential of mean force. Considering the extent of the separation of the substrate from the binding

site, a cell of dimension of about 48× 48× 68 Å3 is perfectly adapted. Choice of a rectangular cell

supposes that relevant geometrical restraints are enforced to prevent the complex from tumbling as

the ligand moves away from the protein, i.e., collective variables orientation and distance

with respect to a dummy particle. Alternatively, the user can resort to a cubic box of adequate di-

mension to allow the dimer to tumble in the course of the separation. A simulation cell of dimension

roughly equal to 60 × 60 × 60 Å3, i.e., about 6,300 water, has proven adapted to the determination

of the separation potential of mean force.

(3) the free ligand solvated in a cubic box of TIP3P water with adequate padding to avoid periodicity-

induced artifacts. For simplicity, the same simulation cell will be utilized for the solvation by about

3,400 water molecules has proven appropriate and corresponds to a dimension of about 48×48×48
Å3. This setup will be utilized to determine the potential of mean force for deforming the ligand in

the unbound state.

Conversely, in the alchemical route, only two different setups need to be devised, corresponding to the

bound and unbound states of the substrate, or the lefthand– and righthand sides of the thermodynamic
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cycle of Figure1, namely,

(1) the protein:ligand assembly solvated in a cubic box of TIP3P water with adequate padding to avoid

periodicity-induced artifacts. Given the size of the dimer, solvation by about 3,400 water molecules

has proven appropriate and corresponds to a dimension of about 48 × 48 × 48 Å3. This setup will

be utilized for the computation of the alchemical free-energy changes, wherein the restrained ligand

is decoupled reversibly from the protein, together with the free-energy contributions arising from

conformational, orientational and positional restraints.

(2) the free, unbound ligand solvated in a cubic box of TIP3P water with adequate padding to avoid

periodicity-induced artifacts. For simplicity and given the size of the ligand and its charged termini,

solvation by about 3,400 water molecules has proven appropriate and corresponds to a dimension of

about 48 × 48 × 48 Å3. This setup will be utilized to determine the alchemical free-energy change

arising from the reversible decoupling of the unbound substrate from its aqueous environment, and

the free-energy contribution incurred in its deformation with respect to the reference conformation

in the protein:ligand complex.

2.2. Definition of the collective variables

A fundamental aspect of the approach detailed in this tutorial, following either a geometrical route, or an

alchemical one, is the introduction of a suitable set of harmonic restraints to preserve the conformation,

the orientation and the position of the ligand as it is dissociated reversibly from the protein.

Since molecular dynamics, in general, cannot capture the deformation, reorientation and

repositioning of the ligand as it binds to the protein, it is preferable to restrain the former and

evaluate the free-energy contribution due to the loss of configurational entropy.

Incorporation of restraints in the free-energy calculations presupposes that the position and the orienta-

tion of the substrate with respect to the protein can be described without ambiguity. Toward this end, a

frame of reference is designed, from which the position of the ligand can be defined [2]. This frame of

reference is formed by three groups of atoms of the protein, { P1, P2, P3 }. Likewise, a frame of reference

formed by three groups of atoms of the ligand, { L1, L2, L3 }, is introduced to define the orientation of

the latter, as depicted in Figure 2.

A-posteriori verification utilizing alternate frames of reference for both the protein and its substrate,

demonstrates that the equilibrium binding constant does not depend on the choice of the triplets { P1,

P2, P3 } and { L1, L2, L3 }, provided unambivalent definition of the restrained degrees of freedom,

notably angles θ and Θ — i.e., in other words, avoiding aligned groups of atoms is crucial to guarantee

geometrical invariance of Keq.
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Figure 2: Binding of proline-rich ligand p41 to the SH3 domain of tyrosine
kinase Abl. The position of p41 with respect to the protein is expressed
by means of a Euclidian distance, r, and two polar angles, θ and φ, which
altogether form a set of spherical coordinates. The relative orientation of the
ligand is determined by the three Euler angles, Θ, Φ and Ψ. Position and
orientation of the substrate rely on the definition of nonambiguous groups of
atoms, referred here to as { P1, P2, P3 } and { L1, L2, L3 } for the protein
and for the ligand, respectively. As a rule of thumb, should the substrate be
separated from the protein, for instance, in the z direction of Cartesian space,
it would be a good idea to align P1 and L1 along that direction.

In the particular example of p41 binding to the SH3 domain of tyrosine kinase Abl, a suitable choice

for { L1, L2, L3 } could be the backbone atoms of residue Ser5, of residue Ser3 and of residue Ala1,

respectively. For { P1, P2, P3 }, the backbone atoms of residue Leu25, of residue Glu38 and of residue

Gly46 represent a reasonable choice, albeit, once again, not a unique one. The reader of this tutorial is

strongly encouraged to investigate other possible selections of atoms and show that Keq is independent

of these selections.

2.3. The geometrical-route simulations

Once the position and the orientation of the ligand with respect to the protein are fully defined, the

geometrical restraints outlined in section 1.2. can be safely introduced, one after the other, just like ma-

tryoshka, or Russian nested dolls [1,2]. One-dimensional potentials of mean force are then determined to

assess the contribution to the binding free energy of these geometrical restraints. To attain this objective,

the adaptive biasing force, or ABF algorithm will be utilized. ABF is not the only option available here —

the reader of this tutorial is suggested to try alternate approaches like umbrella-sampling-like stratifica-

tion strategies [22, 17], wherein the reaction pathway is broken down into multiple, overlapping, narrow

windows. In the latter numerical scheme, harmonic potentials confine sampling to the region of interest

of the collective variable. The unnormalized probability distribution and, hence, the free-energy land-

scape are recovered self-consistently by means of such algorithms as the weighting histogram analysis

method, or WHAM [23] — or, alternatively, by piecewise matching of the individual potential-of-mean-

force segments. Umbrella sampling and its replica-exchange variant [24, 25] are available in NAMD.

In the latter instance, given the size of the molecular assembly, a significant number of computer cores

ought to be reserved to see the real benefit of a replica-based approach.

Should the reader decide to resort solely to the adaptive biasing force algorithm, a number of caveats,
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possibly shortcomings of the methodology, ought to be considered, namely,

Historically, ABF calculations involving geometric restraints were burdened by a stringent

limitation in the colvars implementation of the algorithm to discriminate between thermo-

dynamic forces arising from the potential energy function and forces arising from external

harmonic potential. In recent versions of NAMD, thermodynamic forces are measured by

including contributions of both the potential energy function and the enforced geometrical

restraints.

The aforementioned limitation of the colvars implementation of the ABF algorithm in

earlier versions of NAMD can be circumvented by turning to an extended, generalized co-

ordinate, wherein the collective variable is coupled by means of a stiff spring to a fictitious

particle upon which the biasing force acts. This approach is referred to as extended adaptive

biasing force, or eABF method [26], and will be utilized here as an alternative to plain ABF.

It is invoked by issuing the following command in the definition of the collective variable:

extendedLagrangian on

The true free-energy change and its gradient are recovered through a deconvolution of

the harmonic-spring contribution from that of the force field, performed on the fly within

colvars [27, 28].

Furthermore, particular care ought to be taken when defining the collective variables, specifically,

The collective variable should be fully decoupled from degrees of freedom handled by the

rattle algorithm [13,14]. The latter engender constraint forces, which contaminate the measure

of the instantaneous thermodynamic force acting along the model reaction coordinate.

Since turning off rattle and, hence, decreasing the integration time step, does not consti-

tute a reasonable option, collective variables featuring heavy atoms pertaining to constrained

chemical bonds should also include the hydrogen atoms thereof, e.g., atoms CA and HA.

The reader will find in the present distribution a generic colvars file, in which all relevant collective

variables are defined [15]. The adaptive biasing force (abf) method is applied to the Euclidian distance,

r, separating the substrate from the protein, i.e.,
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colvar {
name R

width 1.0

lowerboundary 0.0
upperboundary 40.0

distance {
forceNoPBC yes
group1 {

atomnumbers { 367 368 369 370 384 385 }
}
group2 {

atomnumbers { 949 950 951 952 958 959 }
}

}
}

whilst the other angular variables, Θ, Φ, Ψ, θ and φ, are set to their equilibrium value (harmonic), e.g.,

colvar {
name Psi

width 1.0

lowerboundary -180.0
upperboundary 180.0

dihedral {
group1 {

atomnumbers { 575 576 577 578 588 589 }
}
group2 {

atomnumbers { 367 368 369 370 384 385 }
}
group3 {

atomnumbers { 949 950 951 952 958 959 }
}
group4 {

atomnumbers { 917 918 919 920 926 927 }
}

}
}

harmonic {
colvars Psi
forceConstant 0.1
centers 23.0

}

The conformational variable (rmsd) is set to zero, which corresponds to restraining the ligand in its

native form, when it is bound to the protein.
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2.4. The alchemical-route simulations

As has been discussed in 1.3., the alchemical route relies upon the introduction of geometrical restraints,

the substrate being decoupled reversibly from the protein in its native conformation, position and orien-

tation, i.e., ligand∗ in the thermodynamic cycle of Figure 1. For consistency reasons, use will be made

here of the same groups of atoms, { P1, P2, P3 } and { L1, L2, L3 }, introduced previously to define the

position and the orientation of the ligand with respect to the protein. Just like in the geometrical route,

the relevant angular variables, Θ, Φ, Ψ, θ and φ, are set to their equilibrium value, employing harmonic

potentials (harmonic). However, in sharp contrast with the geometrical route, wherein the ligand is

separated reversibly from the protein by means of a Euclidian distance, r, the latter will be also set here

to its equilibrium value, inferred, like the other collective variables, from an adequately long thermaliza-

tion simulation of the protein:ligand complex. The substrate will be restrained to its native conformation

by imposing that the root mean-square deviation (rmsd) with respect to the structure representative of

the bound state be equal to zero.

Though the final result is independent from the force constants in the conformational, posi-

tional and orientational restraints [5], their choice necessarily impacts the alchemical free-

energy change. Looser restraints, allowing the ligand to rearrange spatially with respect to

the protein, affect thermodynamic micro-reversibility. Conversely, setting exaggeratedly large

force constants results in possible instabilities in the trajectory.

Setting force constants of 10 kcal/mol·Å2 for the distance and rmsd collective variables,

and of 0.1 kcal/mol·degrees2 for the angle and dihedral collective variables constitutes

a reasonable choice [2]. The reader is reminded that force constants in NAMD are expressed

in units of the bin widths. Hint: to confirm that the force constant used in the simulation

is the intended one, search the beginning of the simulation log file for a line similar to the

following:

colvars: The force constant for colvar "R" will be rescaled to 250

according to the specified width..

As a good practice, the reader is advised to perform a bidirectional transformation, wherein the substrate

is decoupled from the protein, i.e., forward transformation, prior to being coupled again to the binding

site, i.e., backward transformation. Convergence of alchemical free-energy calculations, in general, and

free-energy perturbation, or FEP calculations, in particular, can be markedly slow [17, 29], in particular

when the vanishing, or appearing compound is sizable, thus, corresponding to a significant perturbation

of the molecular assembly. In the case of p41, a fine stratification strategy is recommended, consisting

of a minimum of 50 windows, in each of which at least 200,000 molecular-dynamics steps, e.g., 50,000

thermalization steps (alchEquilSteps) followed by 150,000 data-collection steps, are generated,
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source fep.tcl

alch on
alchType FEP
alchFile bound.fep
alchCol B

alchOutFile forward.fepout
alchOutFreq 10

alchVdwLambdaEnd 1.0
alchElecLambdaStart 0.5

alchEquilSteps 50000
set numSteps 200000
set numMinSteps 1000

runFEPmin 0.0 1.0 0.02 $numSteps $numMinSteps $temperature

In the above free-energy perturbation section of the NAMD configuration file, use is made of fep.tcl,

a Tcl script for setting the range of the general-extent parameter λ over which free-energy differences

are computed.

The reader is suggested to use parseFEP to monitor the convergence of the alchemical transforma-

tions and ultimately combine the forward and backward simulations to obtain the maximum-likelihood

Bennett-acceptance-ratio, or BAR estimator of the free energy [30, 31].

Evaluating the contribution to the standard binding free energy of the geometrical restraints is appre-

ciably less demanding from a computational perspective. The contribution of each restraint acting on

a collective variable is determined alchemically, by decreasing in a stepwise fashion the force constant

from its nominal value to zero — and proceeding similarly in the opposite direction. Yet, in contrast with

the free-energy calculations wherein the substrate is decoupled reversibly from the protein, the present

simulations will be carried out in the framework of thermodynamic integration, within the colvars

module [15],

harmonic {
colvars R
centers 21.3
targetNumSteps 100000
targetEquilSteps 25000
lambdaSchedule 1 0.9999 0.999 0.99 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
forceConstant 0.0
targetForceConstant 10.0
targetForceExponent 4

In this example, a harmonic potential is imposed on the Euclidian distance, r, separating the ligand from

the protein, defined previously. The nominal value of the force constant, k, utilized in the course of the

alchemical free-energy perturbation calculation is 10 kcal/mol·Å2. Here, this represents the value of the
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force constant at λ = 1, i.e., k1, (targetForceConstant). At λ = 0, the force constant, k0, is equal

to 0 kcal/mol·Å2 (forceConstant). The instantaneous value of the force constant at λ is given by,

k = k0 + (k1 − k0) {λn(1− λ) + λ [1− (1− λ)n]} (9)

where n is referred to as targetForceExponent. For each value of lambdaSchedule and for

each collective variable, dG/dλ is computed. The free-energy contribution due to the restraint of interest

is obtained by integrating the gradient profile.

3. Running and analyzing the simulations

Before embarking on the present tutorial, the reader ought to be reminded that the free-energy calcula-

tions proposed herein correspond to the state-of-the-art approach to address protein:ligand binding, and

necessitate several hours of computer time on the parallel architecture of a commodity cluster.

Determination of Keq, following either the geometrical route, or the alchemical route, is

a computationally demanding endeavor and, hence, cannot be undertaken within the time

usually allotted to an hands-on tutorial. The calculations described herein require a significant

amount of computer time to attain fully converged free-energy estimates.

For the geometrical route, stratification of the reaction pathway is always recommended [22, 13, 14],

with a number of strata as small as two for the angular free-energy profiles to as large as ten. Typical

simulation times range from as low as 2 ns for the angular free-energy profiles to as much as 60 ns for

the separation potential of mean force. For the alchemical route, stratification is also strongly advised,

and typical simulation times can amount to as low as 6 ns to evaluate the free-energy contribution of

the geometrical restraints in the bound state to as much as 40 ns for the BAR estimator. The reader is

encouraged to examine alternate sampling strategies capable of offering the best precision:cost ratio.

3.1. The geometrical route

As has been discussed previously, completion of the geometrical route requires the determination of eight

independent potentials of mean force, i.e., seven for the bound state and one for the unbound state. To

explore the performance of an alternate algorithm to standard ABF, we have proposed that the extended

adaptive biasing force, or eABF algorithm be employed. Under these premises, a post-treatment of the

data generated in the course of the simulation is necessary.
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The grad and pmf files written by colvars in an eABF calculation reflect the average

force acting on the extended, generalized coordinate — not on the actual collective variable,

and should not be used as-is for analysis purposes.

Access to the true gradient imposes a deconvolution of the contribution due to the harmonic spring from

that of the potential energy function. This deconvolution is performed on the fly in colvars, employing

either the Zheng and Yang estimator [32], or the corrected z-averaged restraint estimator [28]. The first

estimator is based on an umbrella integration (UI) [33],

G′(ξ′) =
(

dG
dξ

)
ξ′

=

∑
Ξ′

N(ξ′,Ξ′)
[

(ξ′ − 〈ξΞ′〉)
βσ2

Ξ′
−Kξ(ξ′ − Ξ′)

]
∑
Ξ′

N(ξ′,Ξ′)
(10)

where ξ(x) is the collective variable, function of the positions of the real particles of the molecular

assembly and is restrained through potential 1/2 Kξ(ξ′ − ξΞ′)2 to a one-dimensional fictitious particle,

Ξ, moving dynamically. N(ξ′,Ξ′) is the number of samples ξ′ collected from the Ξ′-restrained ensemble,

which is assumed to be Gaussian.

The second estimator is the corrected z–averaged restraint (CZAR) estimator [28],

G′(z′) =
(

dG
dz

)
z′

= − 1
β

d ln ρ̃(z′)
dz′

+ k
(
〈λ〉z′ − z′

)
(11)

where z = ξ(q) is the collective variable, λ is the extended variable harmonically coupled to z by means

of a stiff spring of force constant k, and ρ̃(z) is the observed distribution of collected variable z, upon

which the time-dependent eABF bias is exerted.

The end-user may choose at the level of the colvars configuration file between the CZAR

(CZARestimator) and the Zheng and Yang (UIestimator) estimator. The former is

the default for eABF calculations. Depending upon the choice of the estimator, NAMD will

generate the usual potential-of-mean-force (for one-dimensional free-energy profiles only),

gradient and histogram files with a distinctive czar or UI suffix.

Once the different geometric free-energy calculations are completed, the different potentials of mean

force can be post-processed numerically, using, for instance, XMGrace to evaluate the ratios of con-

figurational integrals embodied in Equation 7, i.e., Data −→ Transformations −→ Evaluate

expression/ Integration.

To illustrate how individual contributions arising from the geometrical restraints ought to be determined,

two collective variables will be chosen, namely Euler angle Ψ and Euclidian distance r. The free-energy

change reflecting the reorientation about Ψ of the substrate in the binding site is depicted in Figure 3.
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Contribution of this Euler angle to the overall binding affinity amounts to,

e+β∆Gsite
Ψ =

∫
site

d1
∫

dx e−β(U+uc+uΘ+uΦ)∫
site

d1
∫

dx e−β(U+uc+uΘ+uΦ+uΨ)
(12)

In practical terms, the configurational and spatial integrals over the full potential energy function can be

reduced to one over the potential of mean force for a given reaction coordinate. Thus,

e+β∆Gsite
Ψ =

∫
dΨ e−β[wsite(Ψ)]∫

dΨ e−β[wsite(Ψ)+uΨ]
(13)

where wsite(Ψ) is the PMF for Ψ in the bound state and uΨ is the harmonic restraint potential, i.e.,

uΨ = 1
2kΨ(Ψ−Ψ0)2. Using a force constant of 0.1 kcal/mol·degrees2 for the three Euler angles and an

equilibrium value of Θ0 = +102◦, Φ0 = −7◦ and Ψ0 = +23◦, it follows that ∆Gsite
Ψ = 0.4 kcal/mol.
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Figure 3: Free-energy change accounting for
the reorientation of p41 with respect to the SH3
domain of Abl about Euler angle Ψ defined in
Figure 2 (a). This potential of mean force was
obtained, using two windows, approximately
40◦ wide. Its harmonic nature, highlighted in a
dashed, light curve, is noteworthy. The reader
is strongly advised to check the continuity of
the gradient in adjacent windows (b). Here, two
windows were utilized to cover the 80◦ range
spanned by the collective variable. The reader
is equally strongly advised to check sampling
uniformity across the reaction pathway (c).

Compared with the evaluation of the free-energy contributions associated to the conformational and to

the angular variables, determination of free-energy change arising from the separation of the ligand from

the protein, shown in Figure 4, requires additional care. Returning to the original definition of Kgeom
eq ,

this contribution corresponds to the fourth term of equation 7,∫
site

d1
∫

dx e−β(U+uc+uo+ua)∫
bulk

d1 δ(x1 − x∗1)
∫

dx e−β(U+uc+uo)
= S∗I∗ (14)

wherein

S∗ = r∗2
∫ π

0
dθ sin θ

∫ 2π

0
dφ e−βua and I∗ =

∫
site

dr e−β[w(r)−w(r∗)] (15)
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S∗ is a surface term and represents the fraction of the sphere of radius r∗, centered about the binding

site of the protein, accessible to the substrate. The choice of r∗ should not impact the final value of Keq,

provided that it is sufficiently far from the binding site [2]. In the particular example of Figure 4 and for

illustrative purposes, r∗ will be chosen equal to 35 Å. It follows that I∗ = 3.16× 1012 Å and S∗ = 17.15

Å2, based on the equilibrium values of polar angles θ and φ appearing in the expression of ua.
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Figure 4: Free-energy change accounting for
the separation of p41 from the SH3 domain
of Abl, restraining conformational, orientational
and positional degrees of freedom of the sub-
strate to their equilibrium value in the bound
state. It is the pièce de résistance of the geo-
metrical route. The apparent decay of the free-
energy profile at large separations reflects the
probabilistic definition of the potential of mean
force, wherein the geometric entropy term is not
removed from the gradient. This definition of
w(r) is consistent with the basic expression 6
of the standard binding affinity, subsuming com-
plete averaging of all other degrees of freedom.

To complete the calculation of the standard binding free energy of p41 to the SH3 domain of tyrosine

kinase Abl, the various contributions arising from the geometrical restraints, either in the bound state,

or in the unbound state, ought to be determined in the spirit of the computation of e+β∆Gsite
Ψ detailed

previously. The different pieces of the puzzle are then pasted together to recover the binding constant,

Keq = S∗I∗ e−β(∆Gbulk
c +∆Gbulk

o −∆Gsite
c −∆Gsite

o −∆Gsite
a ) (16)

where the second term of the exponent, ∆Gbulk
o , the free-energy contribution arising from the reorienta-

tion about the three Euler angles of a rigid body in a homogenous, bulk liquid, is calculated analytically,

e−β∆Gbulk
o =

1
8π2

∫ π

0
dΘ sin Θ

∫ 2π

0
dΦ
∫ 2π

0
dΨ e−βuo (17)

and uo is the sum of uΘ, uΦ and uΨ.

When carrying out integrals over the potentials of mean force and restraints, pay careful

attention to the units! The analytical integrals in Equation 17 are in radians but the restraints,

including equilibrium values and force constants, are defined in degrees.

Following the geometrical route and assuming convergence of the different potentials of

mean force of Equation 7, the final standard binding free energy, ∆G0 = −1/β lnKeq,

amounts to −7.7 kcal/mol [7, 8].
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3.2. The alchemical route

The pièce de résistance of the alchemical route is without a doubt the alchemical transformation, wherein

the restrained ligand is decoupled reversibly from its environment [20]. Even in the homogenous bulk

aqueous medium, convergence of the free-energy perturbation calculation can be appreciably long, which

can be understood in terms of rearrangement of the environment in response to the perturbation. The

reader is strongly suggested to monitor convergence of the free energy in the different strata forming

the reaction pathway that separate the coupled state from the decoupled one. Furthermore, since the

transformation is run bidirectionally, the reader ought to ascertain that thermodynamic micro-reversibility

is satisfied, verifying, using for instance parseFEP [34], that the underlying probability distributions

for the various windows overlap appropriately [31].

As can be seen in Figure 5, which illustrates the reversible decoupling of p41 from the binding site

of the SH3 domain of Abl, it is crucial that the bidirectional transformation reflects thermodynamic

micro-reversibility, manifested here by a virtual absence of hysteresis. The shape of the two free-energy

profiles ought to be commented. It mirrors the schedule chosen to extinguish, or ignite intermolecular

interactions, i.e., alchVdwLambdaEnd set to 1.0 and alchElecLambdaStart set to 0.5. When the

substrate is removed from the protein, electrostatic interactions are turned off faster than van der Waals

interactions. For λ > 0.5, only the latter remain, which explains the point of inflection, midway on the

reaction path.
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Figure 5: Free-energy change accounting for
decoupling reversibly p41 from the SH3 do-
main of Abl, obtained using free-energy per-
turbation. The black profile corresponds to
the forward transformation, wherein the re-
strained substrate is removed from the pro-
tein by turning off intermolecular interactions.
A similar transformation is performed in the
bulk aqueous environment, hence the popu-
lar designation of double-annihilation simula-
tion [20]. The red profile characterizes the
backward transformation, wherein the ligand is
grown back in the binding site.

An example of the probability distributions obtained in the course of the bidirectional free-energy per-

turbation calculation is provided in Figure 6. Overlap of the histograms P0(∆U) and P1(∆U), for the

forward and the backward transformations, respectively, is generally good. The reader is reminded that

the relative inaccuracy of the forward simulation is related to the area under P1(∆U) where there is no

overlap with P0(∆U) [17].
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Visual examination of the underlying histograms of probability distributions P0(∆U) and

P1(∆U), using parseFEP may not be sufficient to probe convergence. The reader is

suggested to compare P0(∆U) with P1(∆U)e+β∆U and, symmetrically, P1(∆U) with

P0(∆U)e−β∆U , since e−β∆UP0(∆U) = e−β∆GP1(∆U) [31].

Figure 6: Histograms of the
probability dstributions P0(∆U)
and P1(∆U) for the forward, i.e.,
decoupling, and backward, i.e.,
coupling, transformations of p41
bound to the SH3 domain of ty-
rosine kinase Abl. The abscissa
is ∆U , the perturbation term, ex-
pressed in kcal/mol.

In a sense, post-treatment of the free-energy calculations of the alchemical route is simpler than that of the

geometrical route, requiring no tedious evaluation of ratios of configurational integrals. The contribution

from the geometrical restraints is extracted from the NAMD output files,

> grep "dA/dLambda" rest-01.log
colvars: Lambda= 1 dA/dLambda= 0.995394
colvars: Lambda= 0.9999 dA/dLambda= 0.827822
colvars: Lambda= 0.999 dA/dLambda= 0.760705
colvars: Lambda= 0.99 dA/dLambda= 0.800472
colvars: Lambda= 0.9 dA/dLambda= 0.783329
colvars: Lambda= 0.8 dA/dLambda= 0.620776
colvars: Lambda= 0.7 dA/dLambda= 1.12615
colvars: Lambda= 0.6 dA/dLambda= 0.47743
colvars: Lambda= 0.5 dA/dLambda= 0.305801
colvars: Lambda= 0.4 dA/dLambda= 0.16728
colvars: Lambda= 0.3 dA/dLambda= 0.0677748
colvars: Lambda= 0.2 dA/dLambda= 0.0269255
colvars: Lambda= 0.1 dA/dLambda= 0.00323781
colvars: Lambda= 0 dA/dLambda= 0

It suffices then to integrate the gradients, using for instance XMGrace to recover the associated free-

energy profile, from whence the different conformational, orientational and positional terms can be in-

ferred, as illustrated in Figure 7.

To complete the thermodynamic cycle of Figure 1, the analytical terms appearing in Equation 8 ought to

be added, namely, for the positional contribution,

Ft e−β∆Gbulk
a =

∫ ∞
0

dr r2 e−βur

∫ π

0
dθ sin θ

∫ 2π

0
dφ e−βua (18)

where ua = uθ + uφ and Ft is a translational factor with units of volume [1]. For the orientational
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Figure 7: Free-energy contribution due to the
restraining potential acting on the Euclidian
distance between p41 from the SH3 domain
of Abl, based on the equilibrium value in the
bound state. The black and red curves de-
lineate the forward and backward transforma-
tions, wherein, respectively, the force constant
of the geometrical restraint is decreased from
its nominal value to 0, and back. The hysteresis
between the two free-energy profiles provides a
rough estimate of the inaccuracy of the calcu-
lation.

contribution,

e−β∆Gbulk
o =

1
8π2

∫ π

0
dΘ sin Θ

∫ 2π

0
dΦ
∫ 2π

0
dΨ e−βuo (19)

where uo = uΘ + uΦ + uΨ. Pasting all the contributions together,

Keq = Ft e−β(∆Gbulk
c −∆Gbulk

couple+∆Gbulk
o +∆Gbulk

a −∆Gsite
decouple−∆Gsite

a −∆Gsite
r −∆Gsite

o −∆Gsite
c ). (20)

Following the alchemical route and assuming convergence of the individual free-energy

calculations embodied in Equation 8, the final standard binding free energy, ∆G0 =
−1/β lnKeq, amounts to −7.7 kcal/mol [7, 8].

4. Concluding remarks and extensions of the tutorial

It is not superfluous to reemphasize that this document contains advanced material, which, in glaring

contrast with introductory tutorials, requires that the reader has grasped the theoretical underpinnings

of the methodology to perform the proposed free-energy calculations with utmost efficiency. Such cal-

culations are computationally demanding and still cannot be run in a routine fashion. Aside from the

slowly-converging nature of the simulations [17,29], the size of the molecular assembly imposes adapted

computational resource, in the form of commodity clusters, chiefly making use of either central process-

ing units, or graphical processing units. Contrary to introductory tutorials, the archive does not include

all the files, input and output, but only the bare necessities to complete the study gracefully.

The methodology described herein raises, however, a number of questions and comments. Central to both

the alchemical and the geometrical routes is the choice of atoms, or groups thereof, utilized to define the
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position and the orientation of the ligand with respect to the protein. It should be clearly understood that

∆G0 is an invariant of this choice [1,2]. The reader is invited to explore alternate selections of atoms for

the triplets { P1, P2, P3 } and { L1, L2, L3 }, and show that the computed standard binding affinity is,

indeed, independent from these selections.

Closely related to the choice of atoms forming { P1, P2, P3 } and { L1, L2, L3 } is the choice

of the reference three-dimensional structure, central to the computation of the conformational

terms, and from whence the equilibrium values of the collective variables are inferred. What

is a good reference structure? A natural choice is the energy-minimized crystallographic

structure of the protein:ligand complex solvated in the aqueous environment. Another rele-

vant option consists in running an adequately long molecular-dynamics simulations past the

thermalization stage and compute an average structure, which ought to be energy-minimized

to remove spurious averaging artifacts, notably from freely rotating methyl groups.

A third comment that comes naturally to mind concerns the necessity to impose geometrical restraints on

the protein. In the particular example of p41 binding to the SH3 domain of Abl, comparison of the protein

conformation in the native complex and in the free state suggests that the spatial rearrangement that

accompanies the association process is extremely limited and, therefore, obviates the need for additional

harmonic potentials. If such were not the case, it would become necessary to restrain the conformation

of the protein to that of the bound state, incorporating in Equation 7, and its alchemical counterpart, the

relevant, supplementary contribution.

One of the virtues of this tutorial, and the study therein, is to reveal and illuminate the pros

and cons of free-energy methods, and how well suited the latter are for a given problem.

Whereas the pseudo-harmonic nature of the orientational contributions to Kgeom
eq suggests

that the extended adaptive biasing force algorithm is well adapted for such collective vari-

ables, the same cannot be said for the separation potential of mean force, plagued by slow

orthogonal degrees of freedom and hidden barriers. The beauty of free-energy methods

is their ability to be combined with other algorithms targeted at improving ergodic sam-

pling [24, 25, 35, 36, 37, 38]. The reader is invited to consider alternate options to eABF, or

standard stratified umbrella-sampling approaches, notably multiple-walker schemes, wherein

replicas of the reaction coordinate models are spawned and handled by the different cores of

a parallel computer architecture [37].

Another question eminently relevant to the problem at hand is the provision of a measure of the reliability

of the free-energy estimate. As a matter of principle, just like publishing experimental binding free

energies bereft of an error bar would be inconceivable, a theoretical estimate ought to be reported with

its reliability, i.e., the combination of the accuracy, or systematic error, and of the precision, or statistical

error [39]. While the parseFEP plugin [34] of VMD supplies an estimate of both the precision and
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the accuracy of the Bennett acceptance ratio free-energy difference, the reader is invited to refer to the

specialized literature [40,41,42,29] to adopt the best strategy towards the computation of these quantities

in the framework of the adaptive biasing force, or the stratified umbrella-sampling method.

The example detailed in this tutorial, p41, a proline-rich peptide binding to the SH3 domain of

tyrosine kinase Abl, however intricate, still represents one standard binding free energy, that

is one number. An interesting extension of the present work would consist in investigating

other, structurally related substrates, thereby demonstrating that the proposed methodology

is predictive. For instance, replacing the decapeptide APSYSPPPPP by APTYHPPLPP, i.e.,

three point mutations, results in an experimental absolute decrease of the standard binding

free energy from−7.94 to−5.30 kcal/mol, whilst a single point mutation like APSYSPPPPP

by APTYSPPPPP yields a more modest increase from −7.94 to −8.72 kcal/mol [43]. The

reader is invited to explore these mutants, using the methodology described herein, and verify

that the computed standard binding free energies are consistent with the results of relative

free-energy calculations.

Appendix: Archive

This tutorial is provided with all the files necessary towards the calculation of the standard binding

constants Kalch
eq and Kgeom

eq . The archive is organized in two directories, AlchemicalRoute and

GeometricalRoute. AlchemicalRoute contains four main subdirectories, which correspond to

the alchemical transformations in the bound and in the unbound states, as well as the evaluation of the

free-energy contribution due to the geometrical restraints in these two states. GeometricalRoute

contains eight main subdirectories, which correspond to the eight potential-of-mean-force calculations

required to determine the standard binding free energy.

Caveat emptor. Though the tutorial includes all the relevant files needed to perform the differ-

ent free-energy calculations described herein, the reader is strongly advised to not use these

files blindly, without checking first their contents.

As stated previously, the transformations carried out in this tutorial, either of geometrical or alchemical

nature, ought to be stratified for statistical efficiency. The various subdirectories of the archive only rep-

resent one stratum of the full reaction pathway, thus, requiring duplication of the NAMD and colvars

files.
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Caveat emptor. The reader may decide to choose triplets { P1, P2, P3 } and { L1, L2, L3} dis-

tinct from those proposed in the archive, in which case the colvars files should be adapted

accordingly. Different choices of atoms can result in different sampling and convergence

properties.

Amongst the many possible adaptations of the input files for the geometrical route, modification of

FullSamples, the threshold beyond which the time-dependent bias is applied on the collective vari-

able, may impact the overall efficiency of the adaptive biasing force simulations. In addition, the reader

might find necessary to alter the stiffness of the spring connecting the collective variable to the ficti-

tious particle, i.e., extendedFluctuation. The reader is also suggested to write information in

the colvars trajectory files, or traj files, at an appropriate frequency for the post-treatment of the

extended adaptive biasing force, or eABF simulations.

In the case of the alchemical route, similar adaptations ought to be considered. For the alchemical trans-

formations, the stratification strategy has proven crucial and can be tailored to increase both efficiency

and reliability. Stratification is also important when zeroing reversibly the force constant of the geomet-

rical restraints utilized to preserve the conformation, the orientation and the position of the ligand repre-

sentative of the bound state, i.e., lambdaSchedule. The number of steps, i.e., targetNumSteps,

including the thermalization stage, i.e., targetEquilSteps, is of paramount importance to insure

both convergence and thermodynamic micro-reversibility of the simulations.
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