University of Illinois at Urbana-Champaign Beckman Institute for Advanced Science and Technology Theoretical and Computational Biophysics Group Computational Biophysics Workshop

# Residue-Based Coarse Graining using MARTINI Force Field in NAMD



Ramya Gamini Danielle Chandler

A current version of this tutorial is available at http://www.ks.uiuc.edu/Training/Tutorials/

# Contents

| 1        | Coa | arse-graining an atomic structure           | 8  |
|----------|-----|---------------------------------------------|----|
|          | 1.1 | Structural model of lipoprotein.            | 8  |
|          | 1.2 | Coarse-graining of a lipoprotein structure. | 9  |
|          | 1.3 | Solvation and Ionization                    | 12 |
| <b>2</b> | Rui | nning a coarse-grained simulation           | 17 |
|          | 2.1 | Preparing a configuration file.             | 17 |
|          | 2.2 | Simulation outputs.                         | 18 |
| 3        | Oth | ner examples                                | 20 |
|          | 3.1 | Ubiquitin                                   | 20 |
|          | 3.2 | Lipid Bilayer                               | 22 |
|          | 3.3 | Membrane Protein                            |    |

# Introduction

In this session, we will learn about coarse-grained (CG) molecular dynamics (MD) simulations. Atomistic simulations are useful computational tools for investigating biological systems such as proteins, lipids and nucleic acids over timescales of nanoseconds. However, many interesting phenomena, including vesicle fusion, membrane deformation, protein-protein assembly etc., occur at longer time scales that fall outside the capabilities of atomic scale simulations. In order to reach the relevant timescales, simplification of the model is required. The term "coarse graining" (CG) can be used to refer to any simulation technique that simplifies the system by grouping several atoms of it into one component, thus to consist of fewer, larger components. CG thereby represents an attractive alternative to atomistic scale simulations since the reduction in interaction particles and number of degrees of freedom allow for simulations to be run over relatively long periods of time and length scales at a reduced level of detail.

This tutorial presents one CG method, termed residue-based coarse-grained (RBCG). In a residue-based coarse-grained (RBCG) model for biological systems comprising proteins and or lipids, several atoms are grouped together in a "virtual" bead that interacts through an effective potential. For example, each amino acid residue and 4 water molecules are represented by 2-5 beads and 1 bead respectively (Figure 1). The reduction of the number of degrees of freedom and the use of shorter-range potential functions makes the model computationally very efficient, allowing a increase in the base time-step and thus a reduction of the simulation time by 2 - 3 orders of magnitude compared to the traditional atomistic models. RBCG MD simulations were performed in NAMDusing the MARTINI CG force field developed and parametrized by the group of Siewert Marrink for use with GROMACS. For the implemented CG force field in NAMD to be functional, in order to reproduce the results of GROMACS, we adapted the GROMACS switching function for LJ potential and a shifting function for Colomb potential only for use of CG simulations.

The tutorial introduces tools for RBCG modeling that are provided in VMD as plugins (http://www.ks.uiuc.edu/Research/vmd/plugins/cgtools/).

For exercises, we will model protein-lipid assemblies called high-density lipoproteins (HDL) (Shih et al., J. Str. Biol., 157:579, 2007). HDL are known to function as cholesterol transporters, facilitating the removal of excess cholesterol from the body. Due to the heterogenity of native HDL particles, the details of how these protein-lipid particles form and the structure they assume in their lipid associated states are not well characterized. Coarse-grained (CG) molecular dynamics allows for long-time scale simulations needed to reveal the stable conformations and also self-assembly of discoidal HDL particles from disordered protein-lipid complexes. In this tutorial we focus on modeling a RBCG structure of discoidal HDL starting from all-atom for performing simulations to reveal the stablity of the widely accepted double-belt model.



Figure 1: Mapping all-atom to coarse-grained structure . Left, amino acid residues and lipid shown in all-atom representation. Right, a coarse-grained representation of the same.

To perform simulations using the RBCG representation, one uses VMD and NAMD without any changes in comparison with the all-atom case, and work with the same file types as for all-atom modeling, such as PSF and PDB for structures, and topology, parameter, and configuration files for running simulations (see VMD and NAMD tutorials, http://www.ks.uiuc.edu/Training/Tutorials/). However, the RBCG PSF, PDB files first need to be created according to the all-atom model that one desires to coarse-grain. In this tutorial, we will learn how to use the RBCG plugins of VMD to build such files for simulations.

# **Required Programs**

The following programs are required for this tutorial:

- VMD: The tutorial assumes that you already have a working knowledge of VMD, which is available at http://www.ks.uiuc.edu/Research/vmd/ (for all platforms). The VMD tutorial is available at http://www.ks.uiuc.edu/Training/Tutorials/vmd/tutorial-html/
- NAMD "Nightly build May 31, 2012 or later (Linux only)" or NAMD version 2.10 (for all platforms when available): In order to perform simulations with the CG model in this tutorial, NAMD should be correctly installed on your computer. For installation instructions, please refer to the NAMD Users' Guide. The NAMD tutorial is available in both Unix/MacOSX and Windows versions: http://www.ks.uiuc.edu/Training/Tutorials/namd/namd-tutorial-unix-html/

http://www.ks.uuc.edu/Training/Tutorials/namd/namd-tutorial-unix-html/

Most of the exercises in the tutorial are performed using Residue-Based Coarse-Graining (RBCG) Tools in VMD. The Tools are implemented as a set of plugins available with their Graphical User Interfaces (GUIs) through VMD menu:

Extensions  $\rightarrow$  Modeling  $\rightarrow$  CG Builder



Figure 2: Main Graphical User Interface for the CG Builder Tools in VMD. Available are several tools for two CG models, one of which is the RBCG model addressed in this tutorial.

# **Getting Started**

If you downloaded the tutorial from the web you will also need to download the appropriate files, unzip them, and place them in a directory of your choosing. You should then navigate to that directory as described below. The files for this tutorial are available at

http://www.ks.uiuc.edu/Training/Tutorials/

• Unix/Mac OS X Users: In a Terminal window type:

cd <path to the directory rbcg-martini-tutorial/files/>

You can list the content of this directory by using the command ls.

• Windows Users: Navigate to the rbcg-martini-tutorial → files directory using Windows Explorer.

You can find the files for this tutorial in the rbcg-martini-tutorial/files. Below you can see in Fig. 3, the organization of files and directories of rbcg-martini-tutorial/files/



Figure 3: Directory Structure for tutorial exercises. Sample output for each exercise is provided in an "example-output" subdirectory within each folder.

To start VMD type vmd in a Unix terminal window. Double-click on the VMD application icon likely located in the Applications folder in Mac OS X, or click on the Start  $\rightarrow$  Programs  $\rightarrow$  VMD menu item in Windows.

# 1 Coarse-graining an atomic structure

In this unit you will build the PDB and PSF required for simulation of the lipoprotein assembly, learning how to take a raw all-atom structure and build a RBCG system out of it.

#### 1.1 Structural model of lipoprotein.

High-density lipoproteins (HDL) are protein-lipid particles, which circulate in the blood collecting cholesterol. Apolipoprotein A-I (apo A-I), the primary protein component of HDL, is a 243 residue amphipathic protein containing an N-terminal globular domain and a C-terminal lipid binding domain. The lipid binding domain comprises 200 residues, however, the first 11 to 22 residues of the domain are known not to be involved in binding of lipids in the discoidal shaped HDL particles. Due to heterogenity of HDL particles, high resolution structures have been difficult to obtain. Nanodiscs are nanometer-sized discoidal HDL that are being developed as a platform for studying membrane proteins. The scaffold protein that were used to surround nanodiscs (MSP1) were engineered to contain the lipid binding domain of 200 residues. In this tutorial, we model a truncated discoidal HDL comprising a truncated lipid binding domain of apo A-I (MSP1  $\Delta$ (1-11) consisting of 189 residues by deleting the first 11 residues surrounding a lipid core consisting of 160 DPPC lipids. We employ RBCG VMD plugin to model this lipoprotein system.



Figure 4: The discoidal HDL nanodisc shown in side (left) and top (right) view. The two monomers of the apo A-I lipid binding domain are shown in violet and cyan. DPPC lipids are shown tan with lipid head groups in yellow.

Provided for you is the all-atom PDB/PSF nanodisc structure with truncated apo A-I (MSP1  $\Delta$ (1-11)) (see Shih et al., *J. Str. Biol.*, **157**:579, 2007). To begin, you will build an all-atom PDB/PSF pair for the PDB structure of interest. This can be done using a PSFgen script or employing AutoPSF plugin in VMD. We assume that the reader is familiar with constructing a PSF from PDB. Such PDB and PSF are already created: see **01-AA-lipoprotien**, **01-AA-lipoprotein.psf** in the directory **01-build-cg-model**/. Navigate to the directory 01-build-cg-model/. You can examine the segments of the truncated lipid binding domain of the apo A-I (MSP1  $\Delta$ (1-11) in VMD (files 01-AA-lipoprotein.pdb and 01-AA-lipoprotein.psf in 1-build-cg-model/). One monomer is designated as segname P1, and the other as segname P2. The DPPC lipid patch is designated as resname DPPC.

## 1.2 Coarse-graining of a lipoprotein structure.

Let us now coarse-grain the all-atom lipoprotein structure .

1. Start VMD and load the all-atom lipoprotein structure (load 01-AA-lipoprotein.psf and 01-AA-lipoprotein.pdb into the same molecule).

**2.** Open the CG Builder in VMD (Extensions  $\rightarrow$  Modeling  $\rightarrow$  CG Builder), and choose the option "Create RBCG Model" and hit the button Next->. This will bring you to the RBCG Builder GUI (Fig. 5).

| CG Builder - Re                                  | sidue-Based CG                  |                  |              |
|--------------------------------------------------|---------------------------------|------------------|--------------|
|                                                  |                                 |                  | <u>H</u> elp |
| Coarse Grain Builder                             |                                 |                  |              |
| Convert an all-atom representation to coarse-gra | ined                            |                  |              |
| using residue-based coarse graining.             |                                 |                  |              |
| Molecule:                                        | 0: 01-AA-lipoprotein.psf        |                  |              |
| CG Database                                      |                                 |                  |              |
| Proteins (/Projects/vmd/pub/linux/lib/vmd19      | 91 a8/plugins/noarch/tcl/cgtoc  | ols1.0/protein.o | cgc) Add     |
| Water (/Projects/vmd/pub/linux/lib/vmd19         | 91 a8/plugins/noarch/tcl/cgtoc  | ols1.0/water.co  | gc) Add      |
| User Defined /Projects/rbgamini/rbcg-martini-tut | orial/files/04-cgc-top-par-file | Browse           | Add          |
| Bead Definitions Currently Loaded                | ł:                              |                  | 115          |
| Output PDB:                                      | 01-CG-lipoprotein.pdb           |                  |              |
| Rev CG File:                                     | 01-CG-lipoprotein.rcg           |                  |              |
| Back To Previous Screen                          |                                 | Build Coarse     | Grain Model  |

Figure 5: RBCG Builder GUI.

3. The first step in creating a coarse-grained model is to split the system into appropriate atom clusters and assign the correct bead types to them. The definitions of the atom clusters are provided in the .cgc files in the folder 04-cgc-top-par-files/martini-cgc/. To model our lipoprotein system, choose the User Defined option to browse and add martini-lipids.cgc and martini-protein.cgc. Note: The options Proteins and Water are set to use old RBCG parameters.



4. The main result of running the algorithm is the production of output files that are written on the hard drive, namely the RBCG PDB and RCG files. If you want to have specific names for those files, they can be changed in the RBCG Builder GUI before hitting "Build Coarse Grain Model" button. Here, the default filename for PDB/RCG cg-01-AA-lipoprotein is changed to 01-CG-lipoprotein.

5. Hit the "Build Coarse Grain Model" button. Completion of the RBCG algorithm will take a few moments.

6. The output PDB file containing the newly constructed RBCG model is automatically loaded in VMD as a new molecule, overlapped with the original all-atom model. In case something fails, we have provided the output files generated in this step 01-CG-lipoprotein.pdb and 01-CG-lipoprotein.rcg in the 01-build-cg-model/example-output/ folder.

7. The RBCG output PDB file determines the structure of the coarse-grained lipoprotein model. To obtain the complete structure for display in VMD, or for subsequent simulations, we need to make a PSF file for the PDB. This can be done the same way as commonly achieved for all-atom files, namely, using a PSFgen script or by employing the AutoPSF VMD plugin. Start VMD and load the cg-lipoprotein structure (load 01-CG-lipoprotein.pdb). To employ the AutoPSF plugin (Extensions  $\rightarrow$  Modeling  $\rightarrow$  Automatic PSF Builder), remember to delete the default topology file from the list of topologies in the plugin, and add the CG topology files (martini-protein.top and martini-lipids.top) located in the 04-cgc-top-par-files/martini-top/ directory. One caveat to keep in mind is to ensure you do not generate angles and dihedrals which are not defined in MARTINI. If you are using AutoPSF plugin, uncheck "Regenerate angles/dihedrals" under Options. Click

"Guess and split chains using current selections". Note that in the Segments Identified the NTER, CTER patches listed are not defined for RBCG in AutoPSF VMD plugin, therefore, we select each chain and hit "Edit Chain" to change the N terminal patch and C terminal patch to "NONE". Once the patches are changed, hit "Create chains". This will create a preliminary PSF file 01-CG-lipoprotein\_autopsf.psf and the corresponding PDB file 01-CG-lipoprotein\_autopsf.psf for your coarse-grained system.



8. Correction for protein segments. The next step is to correct the coarsegrained PSF file so that the bead types reflect the secondary structure of the protein. A PSFgen script is provided: fix\_martini\_psf.tcl in the folder 05-scripts for this purpose. Open the script to see how this is done. The script also allows you to choose for charged/uncharged N and C terminal. Copy the script to current working directory 01-build-cg-model. Also copy martini-protein.top. Start VMD and load the "all-atom-lipoprotein structure" (01-AA-lipoprotein.psf 01-AA-lipoprotein.pdb). Make sure this is the top molecule. And run the following command in the VMD Tk Console:

#### source fix\_martini\_psf.tcl

fix\_martini\_psf 0 martini-protein.top 01-CG-lipoprotein\_autopsf.psf

#### 01-CG-lipoprotein\_autopsf.pdb CG-fix\_martini\_psf 1 ../05-scripts 1 -1

Note that the script uses the all-atom PSF PDB and RBCG PSF PDB files you have just created. The first argument here "0" refers to molid of the top molecule 01-AA-lipoprotein.psf and 01-AA-lipoprotein.psf. The second argument is the topology file martini-protein.top placed in the current directory; if you did not place these files in the directory where fix\_martini\_psf.tcl is located, you will need to specify the correct paths for all the input files while calling the proc fix\_martini\_psf. The fifth argument "CG-fix\_martini\_psf" refers to name of the corrected "output PSF/PDB" files. In the sixth argument we provide the "path" for DSSP secondary structure assignment plugin "../O5-script"-the default is STRIDE. The last two arguments is for having a positive N terminus and negative C terminus.

Now open the original 01-CG-lipoprotein\_autopsf.psf and the corrected CG-fix\_martini\_psf.psf PSF files with a text editor. Note that in the original PSF file, the bacbone beads (BAS) have generic types (such as P4, P5), whereas in the corrected PSF file, they have been give bead types corresponding to the secondary structure assignment for each residue.



**MARTINI** mapping for protein secondary structure . MARTINI is sensitive to the secondary structure of the protein it is being used to represent. Beads representing protein backbone are classified not only by their non-bonded interactions, but on their secondary structure and the secondary structures of their immediate neighbors. Backbone beads may be classified as Helix (H), Coil (C), Extended (E), Turn (T), Bend (B) or Free (F), and the secondary structure assignment determines the bonded interactions with neighboring backbone beads.

**RBCG Builder output files.** Sample RBCG Builder output files are provided in the folder 1-build-cg-model/example-output, including also the output files from running the AutoPSF and PSFgen script fix\_martini\_psf.tcl. Note that all these output files are generally going to be somewhat different from those you create, due to the probabilistic nature of the RBCG algorithm.

We are almost there! We only have to solvate and ionize the system, then we can start using the NAMD to actually perform a simulation of the RBCG lipoprotein system.

# 1.3 Solvation and Ionization.

We will now solvate and ionize the system. We will use the VMD's Solvate Plugin, just as in the all-atom case, except that you will use the non-standard solvent option and place the system in a MARTINI water box in place of the default.



Figure 6: High-density lipoprotein (HDL) nanodisc structure. The two monomers of the apo A-I lipid binding domain are shown in orange and red and the DPPC lipids are shown in blue with lipid head groups in green. The all-atom structure is shown on the left, and an example of a RBCG structure is shown on the right. Both all-atom and RBCG structures are shown from the sideview.

1. First, load the files 01-CG-fix\_martini\_psf.psf and 01-CG-fix\_martini\_psf.pdb into VMD.



**MARTINI water.** Water molecules in MARTINI are represented by a single bead (of mass 72 amu). To protect against the possibility of the water box "freezing" on very large timescales, a second type of water molecule is defined with a slighly larger VdW radius. These are referred to as "antifreeze particles", and it is recommended that 10% of the waterbox be antifreeze particles.

2. To use the Solvate plugin, select Extensions  $\rightarrow$  Modeling  $\rightarrow$  Add Solvation Box in the main window.

**3.** Set "Boundary", the minimum distance between water and solute to 5 instead of the default 2.4.

4. Set "Box Padding" to 15 angstrom padding in x, y and z directions.

5. Check the "nonstandard solvent" to use the equilibrated CG waterbox. The PDB/PSF files are provided in the folder 02-solvate-ionize/cg-waterbox/ and the TOP file is located in the folder /04-cgc-top-par-files/martini-top.

**6.** Set "Solvent box side length" to 100. This corresponds to the box side length of the provided equilibrated CG waterbox.

**7.** Set "Solvent box key selection" to "name W WAF". This corresponds to the water and anti-freeze CG beads.

|                         | S       | olva   | ate          |       |        |          |            |
|-------------------------|---------|--------|--------------|-------|--------|----------|------------|
| Input:                  | ⊟ Wat   | erbo   | ix Only      |       |        |          |            |
| PSF:                    | 01-CG-  | -fix_t | martini_psf. | psf   |        |          | Browse     |
| PDB:                    | 01-CG-  | -fi×_t | martini_psf. | pdb   |        |          | Browse     |
| 🗆 Rotate to minimize    | volume  |        | Rotation Ir  | ncren | nent   | (deg):   | 10         |
| Selection for Rotation: | all     |        |              |       |        |          |            |
| Output:                 | 02-solv | /ate   |              |       |        |          | Browse     |
| Segment ID Prefix: W    |         |        |              |       |        |          |            |
| Boundary: 5             |         |        |              |       |        |          |            |
| Box Size:               |         | 🗸 Us   | e Molecule   | Dim   | iensi  | ons      |            |
| Min: X:                 | y:      |        |              |       | z:     |          |            |
| Max: x:                 | y:      |        |              |       | z:     |          |            |
| Box Padding:            |         |        |              |       |        |          |            |
| Min: x: 15              | y:      | : 15   | i            |       | Z:     | 15       |            |
| Max: x: 15              | y:      | : 15   | i            |       | Z:     | 15       |            |
| 🔽 Use nonstandard s     | olvent  |        |              |       |        |          |            |
| Solvent box PDB:        |         | •      | waterbox-9   | 10W-1 | 10W    | AF-100   | )A-QQQ.pdk |
| Solvent box PSF:        |         | ŀ      | waterbox-9   | 10W-1 | 10W    | AF-100   | )A-QQQ.psf |
| Solvent box topology:   |         | ĺ      | 04_topolog   | ly/ma | artini | -water.t | ор         |
| Solvent box side lengt  | h:      | [      | 100          |       |        |          |            |
| Solvent box key selec   | tion:   | [      | name W W     | AF    |        |          |            |
|                         |         | S      | olvate       |       |        |          |            |

Figure 7: Solvate plugin in VMD.

8. Then click Solvate and wait for a minute or two. The Solvate should generate the 02-solvate PSF PDB files.

9. To ionize and neutralize the system, we will use the modified version of autoionize PSFgen script cg-ionize.tcl provided in the folder 05-scripts. Make sure the the output files of Solvate (02-solvate.psf and 02-solvate.pdb) are currently loaded into VMD.



**MARTINI ions.** Ions are also represented as single (charged) particles of mass 72 amu.

10. Type in the Tk Console window: source cg-ionize.tcl autoionize -psf 02-solvate.psf -pdb 02-solvate.pdb -sc 0.1 -o 02-ionize The -sc 0.1 option tells autoionize to neutralize and set salt concentration to 0.1 (mol/L). The default cation is CL and default anion is NA. The option -cation -anion can be used to specify the cation and anion other than default ions.

11. Load the output files of autoionize (02-ionize.psf and 02-ionize.pdb) into VMD and check the ions are really there and the system is neutral.

```
Type in the Tk Console window:
set all [atomselect top all]
measure sumweights $all weight charge
You should get:
0.0
```

Finally, after all this work, we are ready for minimization and equilibration with NAMD. This is described in the next unit.



Figure 8: Final simulation system including the truncated apo A-I protein, DPPC, water, and ions.

# 2 Running a coarse-grained simulation

We are now almost ready to simulate the system of RBCG lipoprotien assembly. In this section we will discuss first how to write a NAMD configuration file for an RBCG system. We will then perform the simulation, and discuss the file outputs and simulation result.

To perform exercises, navigate to the folder 03-simulation/.

# 2.1 Preparing a configuration file.

Since RBCG was designed to be compatible with NAMD, an RBCG configuration file looks similar to a normal, all-atom, NAMD configuration file that you might have used before.

1. A sample configuration file system-npt-01.conf has been prepared for you in the directory example-output/. Copy it to the folder where you want to run the simulation, and open it with a text editor. Remember to create in the same folder subfolder output and input, and add your CG files to the folder input analogously to how it is done in example-output/. Note that you will need here RBCG parameter files for CG lipids and proteins, which we have not used before. The paramter files are located in 04-cgc-top-par-files/martini-par/ folder.

2. The configuration file contains many options (entries in the first column), followed by their parameters (entries in the second column) specifically chosen for the simulated system. Assuming readers already have experience with NAMD simulations, here we will only go through those options that require special adjustments for an RBCG system. New NAMD users are encouraged to consult the NAMD Tutorial and NAMD User's Guide.

**3.** We introduce a new parameter **cosAngles**. This is required to allow for the cosine-based angle potential energy term conventionally used in GROMACS, as opposed to the harmonic angle term used in NAMD. **cosAngles** is turned **on**.

4. In the text editor displaying the content of system-npt-01.conf, scroll down to the section # Force-Field Parameters. Note all lines beginning with # are comments ignored by NAMD.

Under **#** Force-Field Parameters, you will find simulation options that might need different parameters than those of an all-atom simulation. These options define how you want the interactions between beads to be computed. exclude parameter is set 1-2, martiniSwitching, a new key parameter, is turned on,PME is turned off and dielectric is set 15.0.

It should be noted that for the use of MARTINI force field in NAMD, a GRO-MACS switching function is adapted for LJ potential with switchdist 9.0 and cutoff 12.0, and a shifting function for Colomb potential with switchdist

0.0 hardcoded in the NAMD source code  ${\rm and}\ {\rm cutoff}\ 12.0$  .

5. Scroll down to the section # Integrator Parameters.

The parameter timestep has a value of 20.0, implying that the integration timestep of the simulation is 20 fs/step. A typical all-atom simulation uses 1 or 2 fs/step, hence the RBCG gives a speedup of 20 from the choice of integration timestep alone. The choice of the timestep depends on how fast beads are moving in the simulation, and, thus, the maximal timestep possible (so that the simulation does not crash) is determined by the strength of interactions, e.g., stiffness of bonds, as mentioned above. If your simulation crashes with a timestep of 20 fs/step, starting the simulation with a shorter timestep might fix the problem. Then timestep can be increased when the system becomes stable later in the simulation. For minimization, one can do a larger value for timestep of 40 fs/step.

6. Constant temperature is maintained in this RBCG simulation using Langevin dynamics, as usually done in all-atom simulations. You can take a look at these parameters under # Constant Temperature Control. The Langevin dynamics introduces viscous drag and random forces acting on each CG bead, which can be used to mimic the viscosity of the solvent and the Brownian motion due to random hits from the molecules of the solvent. A single parameter, langevinDamping, is used to account for these effects. Here, langevinDamping is set to  $1 \text{ ps}^{-1}$ .

7. We will first perform minimization before running the simulation in NPT. You can see that the simulation is designed to be minimized by 5000 steps (see system-min.conf) to eliminate the possible steric clashes, and subsequently run for 50,000,000 steps. This corresponds to 50,000,000 steps  $\times$  20 fs/step = 100 ns simulation time.

8. Close the text editor displaying configuration file. Run the minimization by typing namd2 system-min.conf > system-min.log in a terminal window. This is a short run of minimization for 5000 steps that takes about 5 minutes to complete. Once this step is complete, run a short simulation for 10,000,000 steps in NPT by typing namd2 system-npt-01.conf > system-npt-01.log

#### 2.2 Simulation outputs.

On a one-processor machine, a 100 ns simulation will take about two days to complete, but actually we do not need to run the full simulation. The general trend is obvious already after about the first 10 ns, which can be achieved within an hour or two. If you do not wish to run the simulation yourself, you can use the files provided in example-output/ for the following discussion on file outputs and results.

1. Open the logfile of the simulation, system-npt-01.log, with a text editor. If you did not run the simulation, use example-output/system-npt-01.log.

The logfile of a simulation contains useful information. When your simulation crashes, checking the logfile for the error message is the first step of fixing the problem. The logfile can also give you an estimate on how long a simulation will run. Find the words "Benchmark time" in system-npt-01.log, here you can find the speed of the simulation. Now let's examine the system via VMD.

2. Close the text editor. Open VMD, and load the psf file of the system, 02-ionize.psf. If you did not run the simulation, make sure you use the provided example-output/input/02-ionize.psf.

**3.** Load the output dcd files, system-npt-01.dcd. If you did not run the simulation, use the one provided example-output/output/system-npt-01.dcd. In this case, you will have 1000 frames loaded in VMD, one frame for 20 picosecond of the simulation.



Figure 9: Simulation result of the lipoprotein system. Left: beginning of the simulation. Right: system after 100 ns.

Use VMD to take a look at the simulation result. Throughout the trajectory, the initial discoidal shape of the MSP1 (1-11) nanodisc is maintained well. After 100 ns of simulation time, the overall "double-belt" like configuration of the two apo A-I strands remained intact and stable such that the protein helices remained perpendicular to the lipid tail groups. A full trajectory of 100 ns is also provided for you example-output/output/system-full5000.dcd. The protein strands in this configuration had neither a gap nor an overlap with the protein ends just touching each other. This observation correlates well with previous all-atom MD simulations and experimental results suggesting that the first 11 N-terminal residues are not needed for the formation of nanodiscs of this size and composition. A simple RBCG simulation used here demonstrates very well stability of the double-belt configuration suggesting this an equilibrium structure of the nanodisc model of HDL. For more information on assembly of the lipoprotein system, please see Shih et al., J. Str. Biol., 157:579, 2007.

To familarize yourself with the process, you may want to work through several other examples. Below, we provide three examples which follows the same procedure as explained for the lipoprotein case. However, you can simply use the ready-to-use tcl scripts instead of the GUIs.

# **3** Other examples

# 3.1 Ubiquitin



Directory: 06-OtherExamples/Ubiquitin

In this section, you will coarse-grain and set up simulation files for ubiquitin in a water box. Provided for you is 1UBQ.pdb, downloaded from www.rcsb.org, and several build scripts.

#### Building the system (step 0)

The first step is to build an all-atom PDB/PSF pair for 1UBQ.pdb. Do this by typing

vmd -dispdev text -e 00-make-AA-psf.tcl > 00-make-AA-psf.log

on the command line. This will create AA-ubiquitin.pdb and AA-ubiquitin.psf

#### Coarse-grain your system (step 1)

The next step is to coarse-grain the protein. This is done by O1-coarse-grain.tcl.

To run this script, type

```
vmd -dispdev text -e 01-coarse-grain.tcl > 01-coarse-grain.log.
```

Open the script file with your text editor of choice and inspect its contents. This and all other scripts provided are commented so that you can understand what each part of the script does.

#### Create a PSF file (step 2)

Now you will create a preliminary psf file for your coarse-grained system. Do this with vmd -dispdev text -e 02a-make-initial-CG-psf.tcl > 02a-make-initial-CG-psf.log

You should now have the files cg-ubiquitin.pdb, cg-ubiquitin.rcg, cg-ubiquitin-init.pdb, and cg-ubiquitin-init.psf.

The next step is to correct the coarse-grained psf file so that the bead types reflect the secondary structure of the protein. To do this, run

```
vmd -dispdev text -e 02b-correct-CG-psf.tcl > 02b-correct-CG-psf.log
```

#### Solvate (step 3)

Now that we have constructed the PDB/PSF pair for the protein, we can construct a water box around it. To do this, we will use the solvate procedure, using the MARTINI cg-waterbox. Open 03-solvate.tcl with a text editor for an example of how to do this. Run solvate with

vmd -dispdev text -e 03a-solvate.tcl > 03a-solvate.log.

Next we will run a script to remove any waters too close to the protein that solvate might have missed, just as we would do for an all-atom system.

```
vmd -dispdev text -e 03b-remove-waters.tcl > 03b-remove-waters.log.
```

#### Ionize (step 4)

Last, we will neutralize the system using a modified version of the autoionize procedure (provided in cgionize.tcl). Copy the martini-ions.top file to the current directory. Run

vmd -dispdev text -e 04-ionize.tcl > 04-ionize.log.

You should now have the files ionized.pdb and ionized.psf in your directory.

#### Set up the simulation files (step 5)

Some configuration files have been provided for you: ubiquitin-min.conf, ubiquitin-01.conf, and ubiquitin-02.conf. A short minimization is done in ubiquitin-min.conf. Equilibration is started in ubiquitin-01.conf, and

continued in ubiquitin-02.conf. It will often be necessary to run with a shorter timestep in the first stages of a simulation until the system stabilizes. This is why the timestep is set to 10 fs in ubiquitin-01.conf and then increased to 40 fs in ubiquitin-02.conf. As a general point of advice, if you find that your simulation crashes frequently with the "atoms moving too fast" error, temporarily decreasing the timestep may solve the problem.

#### Run the simulation (step 6)

This system is small enough to run on your desktop/laptop, so try running the simulations and open the trajectory in VMD.

# 3.2 Lipid Bilayer



Directory: 06-OtherExamples/POPC

In this section, you will coarse-grain and set up simulation files for a system containing a membrane patch.

You are provided with a small all-atom POPC membrane patch, and several build scripts.

#### Coarse-grain your system (step 1)

The first step is to coarse-grain the lipid patch and build a coarse-grained PDB/PSF pair. Do this by running

vmd -dispdev text -e 01-coarse-grain.tcl > 01-coarse-grain.log,

and open the script in a text file to see how this is being done.

## Create a PSF file (step 2)

Create a coarse-grained PDB/PDF pair for your system using

vmd -dispdev text -e 02-make-CG-psf.tcl > 02-make-CG-psf.log,

Unlike in the ubiquitin example, the psf file requires no further correction because this system contains no protein segments.

#### Solvate (step 3)

Now we will add a water box, again using solvate with the provided MARTINI files. Do this by running

vmd -dispdev text -e 03a-solvate.tcl > 03a-solvate.log.

Next we will run a script to remove any waters that may have ended up in the hydrophobic region on the outside of the membrane patch, again just as we would do for an all-atom system.

vmd -dispdev text -e 03b-remove-waters.tcl > 03b-remove-waters.log.

#### Ionize (step 4)

Finally, we will neutralize the system, again using the modified version of autoionize. Make sure, you copy the martini-ions.top to the current directory. And, run

vmd -dispdev text -e 04-ionize.tcl > 04-ionize.log.

#### Set up the simulation files (step 5)

Again, several configuration files (popcpatch-min.conf, popcpatch-01.conf, popcpatch-02.conf) have been provided for you. Note that since this is a membrane simulation useFlexibleCell should be turned on.

#### Run the simulation (step 6)

Again, the system should be small enough to run on one processor!

# 3.3 Membrane Protein



#### Directory: 06-OtherExamples/M2-channel

In this section, you will coarse-grain and set up simulation files for a membrane protein system, containing both protein and lipid segments. The protein used in this section is the M2 proton channel (2RLF.pdb), which is composed of several non-covalently-bound homo-oliomers. Therefore, this example will demonstrate not only how to combine lipids and protein, but how to handle modular proteins in MARTINI. Please note that M2 was chosen as a proof-ofconcept example merely because it is small and well known; whether it can be adequately modeled in RBCG representation is another matter. In all-atom simulations, the oligomers are held together in part by hydrogen-bonding interactions, which are lost in the coarse-graining process. To compensate, you must use the extraBonds feature of NAMD to add extra constraints to keep the oligomers together.

#### Create all-atom PDB and PSF files (step 0)

As in the ubiquitin case, we must first construct an all-atom PDB/PSF file pair for the protein using a PDB file downloaded from www.rcsb.org databse. The first script (00-make-AA-psf.tcl) replicates the protein from 2RLF, assembles the oligomer, and aligns it along the z-axis. To do this, simply run

#### vmd -dispdev text -e 00a-make-AA-psf.tcl > 00a-make-AA-psf.log.

Open the script file if you are interested in seeing how this is done.

Now, since this is a membrane simulation, the next thing to do is to combine it with the membrane. First run

vmd -dispdev text -e 00b-combine-with-lipids.tcl > 00b-combine-with-lipids.log.

#### Coarse-grain your system (step 1)

Now we coarse-grain the system:

vmd -dispdev text -e 01-coarse-grain.tcl > 01-coarse-grain.log,

#### Create a PSF file (step 2)

Create a preliminary PSF file with: vmd -dispdev text -e 02a-make-initial-CG-psf.tcl > 02a-make-initial-CG-psf.log

Since this system contains both lipid and protein segments, we will need to correct the psf file to account for secondary structure:

vmd -dispdev text -e 02b-correct-CG-psf.tcl > 02b-correct-CG-psf.log

#### Solvate and Ionize (steps 3 and 4)

Now we solvate, remove unwanted waters, and ionize the system, just as before

(Note: Copy the martini-ions.top file to the current directory):

```
vmd -dispdev text -e 03a-solvate.tcl > 03a-solvate.log
vmd -dispdev text -e 03b-remove-waters.tcl > 03b-remove-waters.log
vmd -dispdev text -e 04-ionize.tcl > 04-ionize.log.
```

#### Set up the simulation files (step 5)

Usually for a membrane protein (protein embedded in membrane), one begins the simulation with the protein held in place, to let the lipids relax around the protein. For more information, refer to the Membrane Protein tutorial. We do this with NAMD's constraints option, and create the necessary constraint file here:

```
vmd -dispdev text -e 05a-make-constraints.tcl > 05a-make-constraints.log.
```

Last, since our protein contains several non-covalently-bonded segments, we must use NAMD's extrabonds feature to keep the protein from falling apart. This script shows an example of how to construct such a file:

```
vmd -dispdev text -e 05b-make-extrabonds.tcl > 05b-make-extrabonds.log.
```

If you are aware of particular interactions between monomers, it makes sense to represent those as extraBonds. Beyond that, the choice of extraBonds is a matter of trial-and-error. You must use your own judgement as to whether or not the extraBonded structure adequately represents your oligomeric protein.

#### Run the simulation (step 6)

This system is slightly larger than the first two, but should still be manageable on your desktop/laptop. So try running the simulation and open the trajectory in VMD.

This ends the RBCG tutorial. You are now ready to use RBCG!

# Acknowledgement:

Development of this tutorial was supported by the National Institutes of Health (P41-RR005969 - Resource for Macromolecular Modeling and Bioinformatics).

# Appendix

This appendix is essentially a visual representation of the information encoded in the coarse-grain .cgc files, showing how each of the amino acids as well as a POPC lipid is divided into coarsegrained beads. Excerpts from the standard CHARMM topology file are shown with the Martini bead assignments overlaid.

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RESI ARG       1.00         GROUP       1.00         ATOM N       NH1         ATOM HN       H         ATOM HN       H         ATOM HN       H         ATOM HN       H         ATOM HA       HB         BATOM HA       HB         ATOM HA       HB         ATOM HA       HB         ATOM HA       HB         ATOM HB1       HA         ATOM HB1       HA         ATOM HB1       HA         ATOM HB1       HA         ATOM HC1       HA         ATOM HC2       HA         ATOM HC3       HA         ATOM C6       CTZ         ATOM HC1       HA         ATOM HC2       HA         ATOM HC3       HA         ATOM HC4       HA         ATOM HC5       HA         ATOM HC4       HA         ATOM HC5       HA         ATOM HC4       HA         ATOM HC5       HA         ATOM HC5       HA         ATOM HC4       HA         ATOM HC5       HA         ATOM HC4       HA         ATOM HC5 |
| RESI ASN       0.00         GROUP       ATOM N         ATOM N       N H1         ATOM HN       H         ATOM HN       H         ATOM HA       HB         ATOM HB       CA-         ATOM HB       HA         ATOM HB2       HA         ATOM HB2       HA         ATOM OD1       -0.55         GROUP       HB2         ATOM ND2       HP         ATOM HD21 H       0.32         ATOM HD22 H       0.33         GROUP       ATOM OD         ATOM OD       -0.51         BOND CA HA       CG BND2 CG         BOND CA HA       CG BND2 CG         BOND CA HA       CG HB2         DOUBLE C       C GOD1                                                                                                                              |

| RESI GLN<br>GROUP   |      | 0.00     | BAS   | = P!           | 5    |     |      |              |                |
|---------------------|------|----------|-------|----------------|------|-----|------|--------------|----------------|
| ATOM N              | NH1  | -0.47    | 1/    | $\overline{1}$ |      |     |      |              |                |
| ATOM HN             | Н    | 0.31     | ! HN- | N              |      |     |      |              |                |
| ATOM CA             | CT1  | 0.07     | 1     | ï              | HB1  | HG1 | 0E1  | HE21         | (cis to OE1)   |
| ATOM HA             | HB   | 0.09     | 1     | 1              | 1    | 1   | 11   | /            |                |
| GROUP               |      |          | ! HA- | CA-            | CB   | CG  | -CDN | E2           |                |
| ATOM CB             | CT2  | -0.18    | 1     | 1              |      | 1   |      | $\mathbf{i}$ |                |
| ATOM HB1            | HA   | 0.09     | 1     | 1              | HB2  | HG2 |      | HE22         | (trans to OE1) |
| ATOM HB2            | HA   | 0.09     | ! 0=  | C              | 1000 |     |      |              |                |
| GROUP               |      |          | 11    | Чį             |      |     | 51   | $D = P_{4}$  | 4q             |
| ATOM CG             | CT2  | -0.18    | ×     | '              |      |     |      |              |                |
| ATOM HG1            | HA   | 0.09     |       |                |      |     |      |              |                |
| ATOM HG2            | HA   | 0.09     |       |                |      |     |      |              |                |
| GROUP<br>ATOM CD    | CC   | 0.55     |       |                |      |     |      |              |                |
| ATOM CD<br>ATOM OF1 | 0    | -0.55    |       |                |      |     |      |              |                |
| GROUP               | 0    | -0.55    |       |                |      |     |      |              |                |
| ATOM NF2            | NH2  | -0.62    |       |                |      |     |      |              |                |
| ATOM HE21           |      | 0.32     |       |                |      |     |      |              |                |
| ATOM HE22           |      | 0.30     |       |                |      |     |      |              |                |
| GROUP               |      | 0.50     |       |                |      |     |      |              |                |
| ATOM C              | С    | 0.51     |       |                |      |     |      |              |                |
| ATOM 0              | õ    | -0.51    |       |                |      |     |      |              |                |
| BOND CB C           | A CG | CB CD    | CG    | NE2            | CD   |     |      |              |                |
| BOND N H            |      | CA C     | CA    |                |      |     |      |              |                |
| BOND C +            |      | HA CB    | HB1   | CB             | HB2  | CG  | HG1  |              |                |
| BOND CG H           |      | HE21 NE2 | HE22  |                |      |     |      |              |                |
| DOUBLE 0            | C C  | D 0E1    |       |                |      |     |      |              |                |

| BOND N HN<br>BOND CA HA                                                                                                                                       | 0.51<br>-0.51<br>CG CB 0D2 C<br>N CA C<br>CB HB1 CB H<br>C CG 0D1                                                        | CA C +N                                                                       |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----|
| ATOM CA CC<br>ATOM HA HI<br>GROUP<br>ATOM CB CC<br>ATOM HB1 HJ<br>ATOM HB2 HJ<br>ATOM HG2 G S<br>ATOM HG1 HI<br>GROUP<br>ATOM CC CA<br>ATOM 0 O<br>BOND CB CA | 0.31<br>T1 0.07<br>8 0.09<br>T2 -0.11<br>A 0.09<br>A 0.09<br>-0.23<br>5 0.16<br>0.51<br>-0.51<br>SG CB N H<br>C +N CA HA | ! HN-N S<br>!   HA-CA-CE<br>!   HA-CA-CE<br>!   HA-CA-CE<br>!   HA-CA-CE<br>! | 8SG |

| RESI A  | ASP   |     |      | -1  | .00 |     |            |     |     |        |    |
|---------|-------|-----|------|-----|-----|-----|------------|-----|-----|--------|----|
| GROUP   |       |     |      |     |     |     | /***       | · \ |     |        |    |
| ATOM N  | 4     | NH1 | L    | -0  | .47 | 11  |            | 1   | SIC | ) = Qa | b  |
| ATOM H  | ΗN    | Н   |      | 0   | .31 | 1   | HN-        | N   |     |        |    |
| ATOM (  | CA.   | CT1 | L    | 0   | .07 | 1   |            | 1   | HB1 | 0D1    | 1  |
| ATOM H  | -IA   | HB  |      | 0   | .09 | 1   |            | 1   | 1   | 11     |    |
| GROUP   |       |     |      |     |     |     | HA-        | CA- | -CB | CG     |    |
| ATOM (  | CB    | CT2 | 2    | -0  | .28 | 1   |            | T I | 1   | \      |    |
| ATOM H  | HB1   | HA  |      | 0   | .09 | 1   |            | 1   | HB2 | 0D2(   | -) |
| ATOM H  | HB2   | HA  |      | 0   | .09 | 1   | 0=         | -C  | See |        | *  |
| ATOM (  | CG    | CC  |      | 0   | .62 | 1   |            | 1.7 |     |        |    |
| ATOM (  | )D1   | 0C  |      | -0  | .76 | _   | <u>`</u> - |     | _   |        |    |
| ATOM 0  | DD2   | 0C  |      | -0  | .76 | B   | ٩S         | = P | 5   |        |    |
| GROUP   |       |     |      |     |     |     |            |     |     |        |    |
| ATOM (  | 2     | С   |      | 0   | .51 |     |            |     |     |        |    |
| ATOM (  | )     | 0   |      | -0  | .51 |     |            |     |     |        |    |
| BOND (  | CB C/ | A ( | CG ( | CB  | 0D2 | CG  |            |     |     |        |    |
| BOND N  | N HI  | N N | 1 (  | CA. | С   | CA  | C          | +N  |     |        |    |
| BOND (  | CA HA | A ( |      | HB1 | CB  | HB2 |            |     |     |        |    |
| DOUBL F | - 0   | (   | -    | CG  | 0D1 |     |            |     |     |        |    |
|         |       |     | -    |     |     | -   |            |     |     |        |    |

 $\mathbf{2}$ 

| RESI HSD<br>GROUP    |        | 0.00         | ! neutral HIS, proton on ND1<br>SI3=SP1h |
|----------------------|--------|--------------|------------------------------------------|
| ATOM N               | NH1    | -0.47        |                                          |
| ATOM HN              | Н      | 0.31         | HN-N                                     |
| ATOM CA              | CT1    | 0.07         | ! I HB1 ND1CE1                           |
| ATOM HA              | HB     | 0.07<br>0.09 | SI1 4 SC4h                               |
| GROUP                |        |              | ! HA-CA-+CBCG                            |
| ATOM CB              | CT2    | -0.09        | 1 1 1 1 1                                |
| ATOM HB1             |        | 0.09         | ! I HB2 CD2NE2                           |
| ATOM HB2             | HA     | 0.09         | ! 0=C                                    |
| ATOM ND1             |        |              |                                          |
| ATOM HD1             |        |              | SI2 SD1b                                 |
| ATOM CG              | CPH1   | -0.05        | BAS = FS SIL SI M                        |
| GROUP                | CDU2   | 0.25         |                                          |
| ATOM CE1             |        | 0.25         |                                          |
| ATOM HE1<br>ATOM NE2 |        | 0.13         |                                          |
| ATOM NEZ             |        | 0.22         |                                          |
| ATOM CD2<br>ATOM HD2 |        | 0.10         |                                          |
| GROUP                | TIKJ   | 0.10         |                                          |
|                      | С      | 0.51         |                                          |
|                      | õ      | -0.51        |                                          |
| BOND CB              | -      |              | ND1 CG CE1 ND1                           |
| BOND NE2             |        |              | N CA                                     |
| BOND C               | CA C   | +N           | CA HA CB HB1                             |
| BOND CB              | HB2 ND | 1 HD1        | CD2 HD2 CE1 HE1                          |
| DOUBLE O             | C CG   | CD2          | CE1 NE2                                  |

| RESI<br>GROUE |      |     | 0.00      |              |    |
|---------------|------|-----|-----------|--------------|----|
| ATOM          | Ν    | NH1 | -0.47     | 1/ 1         | Ň  |
| ATOM          | HN   | Н   | 0.31      | ! N-H        | 1  |
| ATOM          | CA   | CT2 | -0.02     | 1            | 1  |
| ATOM          | HA1  | HB  | 0.09      | 1            | 1  |
| ATOM          | HA2  | HB  | 0.09      | ! HA1-CA-HA2 | 1  |
| GROUF         | >    |     |           | 1            | 1  |
| ATOM          | C    | С   | 0.51      | 1            | į, |
| ATOM          | 0    | 0   | -0.51     | ! C=0        | 1  |
|               |      |     |           | - <u> \</u>  | /  |
| BOND          | N HN | Ν   | CA C CA   | BAS = P5     |    |
| BOND          | C +N | CA  | HA1 CA HA | 2            |    |
| DOUBL         | Ε Ο  | С   |           |              |    |
|               |      |     |           |              |    |

| RESI GLU<br>GROUP | -1.00      | BAS = P5                          |
|-------------------|------------|-----------------------------------|
| ATOM N NH         | -0.47      | -1/(-1)                           |
| ATOM HN H         |            |                                   |
| ATOM CA CT        | T1 0.07    |                                   |
| ATOM HA HE        | 3 0.09     |                                   |
| GROUP             | 0.05       | ! HA-CACBCGCD                     |
|                   | r2 0, 19   |                                   |
| ATOM HB1 H/       | 0.10       | !         \<br>!   HB2 HG2 OE2(-) |
| ATOM HB1 HA       | A 0.00     |                                   |
| GROUP             | 4 0.05     | SID = Qae                         |
| ATOM CG CT        | r2 0.29    |                                   |
|                   |            |                                   |
| ATOM HG1 HA       |            |                                   |
| ATOM HG2 HA       |            |                                   |
| ATOM CD CC        |            |                                   |
| ATOM OE1 OC       | -0.76      |                                   |
| ATOM OE2 OC       | -0.76      |                                   |
| GROUP             |            |                                   |
| ATOM C C          | 0.51       |                                   |
| ATOM 0 0          |            |                                   |
| BOND CB CA        |            | G DE2 CD                          |
| BOND N HN         |            |                                   |
|                   |            | HB1 CB HB2 CG HG1                 |
| BOND CG HG2       | CA HA CD I | IDT CD TIDZ CG TIGT               |
|                   | CD OF1     |                                   |
| DOUBLE 0 C        | CD UEI     |                                   |

| GROUP           ATOM N         NH1           ATOM HN         H           ATOM HN         H           ATOM HA         HB           GROUP         ATOM HA           ATOM CB         CT2           ATOM HB1         HA           ATOM HB2         HA           ATOM HB1         HA           ATOM CG         CPH1           ATOM CG         CPH1           ATOM CG         CPH1           ATOM CG         CPH1           ATOM HE1         HR1           GROUP         ATOM HE2           ATOM HE2         H           ATOM ND1         NR1           ATOM HE2         H           ATOM HE2         H           ATOM HE2         HR3           GROUP         ATOM HE3 | 0.00 ! neutral His, proton on NE2<br>SI3 = SP1h<br>0.47 ! HN-N<br>0.07 ! HH1<br>0.09 ! H<br>HA-CA1 CBSHGE SC4H<br>0.09 ! H<br>HA-CA-CBSHGE SC4H<br>0.09 ! H<br>HB2 CD2NE2<br>0.09   CC2NE2<br>0.25<br>BAS = P5 SI2 = SP1h<br>0.32<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ATOM C C<br>ATOM O O<br>BOND CB CA CG<br>BOND NE2 CD2 N<br>BOND C CA C<br>BOND CB HB2 NE2<br>DOUBLE O C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +N NEZ CE1 CA HA CB HB1<br>HE2 CD2 HD2 CE1 HE1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ATOM NE2 NR3<br>ATOM HE2 H<br>ATOM ND1 NR3<br>ATOM HD1 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.00 ! Protonated His $SI3 = SP1h$<br>-0.47 ! HN-N<br>0.31 ! HN-N<br>0.07 ! HA-N<br>0.09 ! HA-CA-CBLtG SC4h   <br>-0.65 ! I I<br>HA-CA-CBLtG SC4h   <br>-0.65 ! I HBZ<br>0.99 ! I<br>HBZ<br>0.99 ! I<br>HBZ<br>0.99 ! I<br>HBZ<br>0.99 ! I<br>HBZ<br>0.99 ! I<br>HBZ<br>0.99 ! I<br>HBZ<br>0.99 ! I<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HBZ<br>1<br>HZ<br>HZ<br>HZ<br>HZ<br>HZ<br>HZ<br>HZ<br>HZ<br>HZ<br>HZ<br>HZ<br>HZ<br>HZ<br>HZ<br>HZ<br>HZ<br>HZ<br>HZ<br>H |
| GROUP<br>ATOM C C<br>ATOM O O<br>BOND CB CA CG<br>BOND NE2 CD2 N<br>BOND C CA C<br>BOND CB HB2 ND1<br>DOUBLE O C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.32<br>0.18<br>0.51<br>-0.51<br>CB NDI CG CE1 ND1<br>HN N CA<br>+N CA HA CB HB1<br>HD1 NE2 HE2 CD2 HD2 CE1 HE1<br>D2 CG NE2 CE1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| RESI ILE           GROUP           ATOM N           ATOM HN           ATOM CA           CTI           ATOM HA           ATOM CA           CTI           ATOM HA           GROUP           ATOM CB           ATOM CB           ATOM CC           ATOM CC           ATOM CC           ATOM CG2           ATOM HG22 HA           ATOM HG23 HA           GROUP           ATOM HG23 HA           GROUP                                                                                                                                                                                                                                                                 | 0.00 BAS = P5<br>-0.47 !       HG21 HG22<br>0.31 ! HN-N   / CG2HG23<br>0.09 !     HA-CA-CB-HB HD1<br>-0.09 !   CG1-CDHD2<br>0.09 !   CG1-CDHD2<br>0.09   HJ1 HG12 HD3<br>0.09<br>0.09<br>-0.18<br>0.09<br>0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ATOM         HD1         HA           ATOM         HD2         HA           ATOM         HD3         HA           GROUP         ATOM         C           ATOM         C         C           ATOM         O         O           BOND         CB         CA         CG1           BOND         N         N         N           BOND CA         HA         CB                                                                                                                                                                                                                                                                                                        | -0.27<br>0.09<br>0.09<br>0.51<br>-0.51<br>CB CG2 CB CD CG1<br>CB CG2 CB CD CG1<br>HB CG1 HG12 CG2 HG21<br>HG23 CD HD1 CD HD2 CD HD3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| RESI LEU<br>GROUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                               | 5. K                                 |                                                                  |                                                      |                                |               |           |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------|------------------------------------------------------|--------------------------------|---------------|-----------|--|
| ATOM N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NH1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.47                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                               | W.                                   |                                                                  | HD11                                                 |                                | 1             |           |  |
| ATOM HN<br>ATOM CA<br>ATOM HA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H<br>CT1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.31                                                                                                                              | 7 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                               | <u>''</u> UC                         | 1                                                                | /                                                    | -HD13                          |               |           |  |
| ATOM HA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                               | 11                                   | · ± ,                                                            | CDT-                                                 | -UDT2                          | 1.1           |           |  |
| GROUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.03                                                                                                                              | í i i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -IA-C                                                                                         | 4CE                                  | ,<br>C                                                           | G-HG                                                 |                                |               |           |  |
| ATOM CB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CT2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.18                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ĩ,                                                                                            | A-HCE<br>HE                          | 1                                                                | \ · · ·                                              | -HD23                          |               |           |  |
| ATOM HB1<br>ATOM HB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.09                                                                                                                              | ) !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                             | HB                                   | 32                                                               | CD2-                                                 | -HD23                          |               |           |  |
| ATOM HB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.09                                                                                                                              | ) !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0=C                                                                                           | 18                                   |                                                                  | $  \rangle$                                          |                                | 1.0           |           |  |
| GROUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                               | -1.5                                 |                                                                  |                                                      | HD22                           | 1.00          |           |  |
| ATOM CG<br>ATOM HG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CT1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.09                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S =                                                                                           | P5                                   | SI                                                               | D = /                                                | AC1I                           |               |           |  |
| GROUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.09                                                                                                                              | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                               |                                      |                                                                  |                                                      |                                |               |           |  |
| ATOM CD1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CT3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.27                                                                                                                             | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                               |                                      |                                                                  |                                                      |                                |               |           |  |
| ATOM HD1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 HA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.09                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                               |                                      |                                                                  |                                                      |                                |               |           |  |
| ATOM HD12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 HA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.09                                                                                                                              | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                               |                                      |                                                                  |                                                      |                                |               |           |  |
| ATOM HD13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3 HA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.09                                                                                                                              | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                               |                                      |                                                                  |                                                      |                                |               |           |  |
| GROUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                               |                                      |                                                                  |                                                      |                                |               |           |  |
| ATOM CD2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.27                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                               |                                      |                                                                  |                                                      |                                |               |           |  |
| ATOM HD2:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.09                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                               |                                      |                                                                  |                                                      |                                |               |           |  |
| ATOM HD22<br>ATOM HD23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.09                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                               |                                      |                                                                  |                                                      |                                |               |           |  |
| CROUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                               |                                      |                                                                  |                                                      |                                |               |           |  |
| ATOM C<br>ATOM O<br>BOND CB<br>BOND N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.51                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                               |                                      |                                                                  |                                                      |                                |               |           |  |
| ATOM 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.51                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                               |                                      |                                                                  |                                                      |                                |               |           |  |
| BOND CB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CA CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | G CB                                                                                                                              | CD1 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CG                                                                                            | CD2                                  | CG                                                               |                                                      |                                |               |           |  |
| BOND N<br>BOND CA<br>BOND CD1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HN N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CA                                                                                                                                | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CA                                                                                            | C +                                  | -N                                                               | CD 1                                                 | UD44                           |               |           |  |
| BOND CD1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HA CE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3 HB1                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                               | CG<br>CD2                            | HG                                                               | CD1                                                  | HD11                           |               |           |  |
| DOUBLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1012 (I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AT UNTS                                                                                                                           | UZ I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IUZI                                                                                          | CDZ                                  | nuzz                                                             | CDZ                                                  | 11023                          |               |           |  |
| DOODLL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                               |                                      |                                                                  |                                                      |                                |               |           |  |
| DECT IVC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 00                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                               |                                      |                                                                  |                                                      |                                |               |           |  |
| GROUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.00                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                               | 2                                    |                                                                  |                                                      |                                |               |           |  |
| GROUP<br>ATOM N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NH1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.47                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                               | ) s                                  | il1 =                                                            | ⊧ C3k                                                |                                |               |           |  |
| GROUP<br>ATOM N<br>ATOM HN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NH1<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.47<br>0.31                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -IN-N                                                                                         | 1.1                                  | 1 <b>1</b> =                                                     | - C3k                                                | 1 .451                         |               | 171       |  |
| GROUP<br>ATOM N<br>ATOM HN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NH1<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.47<br>0.31<br>0.07                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -IN-N                                                                                         | 1.1                                  | 11 =                                                             | = <mark>C3k</mark><br>51 HD:                         | 1 HE1                          |               | łZ1       |  |
| GROUP<br>ATOM N<br>ATOM HN<br>ATOM CA<br>ATOM HA<br>GROUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NH1<br>H<br>CT1<br>HB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.47<br>0.31                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ΗΝ-Ν<br>Ι<br>Ι<br>ΗΔ-Ο                                                                        | HE<br>I                              | 81 HO<br> <br>                                                   | G1 HD:<br> <br>GCD:                                  | 1 HE1<br> <br>CF               | -N7           | H72       |  |
| GROUP<br>ATOM N<br>ATOM HN<br>ATOM CA<br>ATOM HA<br>GROUP<br>ATOM CB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NH1<br>H<br>CT1<br>HB<br>CT2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.47<br>0.31<br>0.07<br>0.09                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ΗΝ-Ν<br>Ι<br>Ι<br>ΗΔ-Ο                                                                        | HE<br>I                              | 81 HO<br> <br>                                                   | G1 HD:<br> <br>GCD:                                  | 1 HE1<br> <br>CF               | -N7           | H72       |  |
| GROUP<br>ATOM N<br>ATOM HN<br>ATOM CA<br>ATOM HA<br>GROUP<br>ATOM CB<br>ATOM HB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NH1<br>H<br>CT1<br>HB<br>CT2<br>HA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.47<br>0.31<br>0.07<br>0.09<br>-0.18<br>0.09                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HN-N<br>I<br>HA-C/<br>I                                                                       | HE<br> <br> <br> <br> <br> <br> <br> | 81 H(<br> <br> | G1 HD:<br>I<br>GCD-<br>I<br>G2 HD:                   | 1 HE1<br> <br>CE<br> <br>2 HE2 | -N7           | H72       |  |
| GROUP<br>ATOM N<br>ATOM HN<br>ATOM CA<br>ATOM HA<br>GROUP<br>ATOM CB<br>ATOM HB1<br>ATOM HB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NH1<br>H<br>CT1<br>HB<br>CT2<br>HA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.47<br>0.31<br>0.07<br>0.09                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HN-N<br> <br>                     | HE<br>I<br>An-CE<br>I<br>HE          | 81 H(<br> <br> | G1 HD:<br> <br>GCD:                                  | 1 HE1<br> <br>CE<br> <br>2 HE2 | -NZ<br>\<br>F | HZ2<br>Z3 |  |
| GROUP<br>ATOM N<br>ATOM HN<br>ATOM CA<br>ATOM HA<br>GROUP<br>ATOM CB<br>ATOM HB1<br>ATOM HB2<br>GROUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NH1<br>H<br>CT1<br>HB<br>CT2<br>HA<br>HA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.47<br>0.31<br>0.07<br>0.09<br>-0.18<br>0.09                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HN-N<br> <br>                                    | HE<br>I<br>ACE<br>I<br>HE            | 81 H(<br> <br> | G1 HD:<br>I<br>GCD-<br>I<br>G2 HD:                   | 1 HE1<br> <br>CE<br> <br>2 HE2 | -NZ<br>\<br>F | HZ2<br>Z3 |  |
| GROUP<br>ATOM N<br>ATOM HN<br>ATOM CA<br>ATOM HA<br>GROUP<br>ATOM HB1<br>ATOM HB2<br>GROUP<br>ATOM CG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NH1<br>H<br>CT1<br>HB<br>CT2<br>HA<br>HA<br>CT2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.47<br>0.31<br>0.07<br>0.09<br>-0.18<br>0.09<br>0.09                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HN-N<br> <br>                                    | HE<br>I<br>ACE<br>I<br>HE            | 81 H(<br> <br> | G1 HD:<br>I<br>GCD-<br>I<br>G2 HD:                   | 1 HE1<br> <br>CE<br> <br>2 HE2 | -NZ<br>\<br>F | HZ2<br>Z3 |  |
| GROUP<br>ATOM N<br>ATOM HN<br>ATOM CA<br>ATOM HA<br>GROUP<br>ATOM CB<br>ATOM HB1<br>ATOM HB2<br>GROUP<br>ATOM CG<br>ATOM HG1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NH1<br>H<br>CT1<br>HB<br>CT2<br>HA<br>HA<br>CT2<br>HA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.47<br>0.31<br>0.07<br>0.09<br>-0.18<br>0.09<br>0.09                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HN-N<br> <br>                                    | HE<br>I<br>ACE<br>I<br>HE            | 81 H(<br> <br> | G1 HD:<br>I<br>GCD-<br>I<br>G2 HD:                   | 1 HE1<br> <br>CE<br> <br>2 HE2 | -NZ<br>\<br>F | HZ2<br>Z3 |  |
| GROUP<br>ATOM N<br>ATOM HN<br>ATOM CA<br>ATOM HA<br>GROUP<br>ATOM CB<br>ATOM HB1<br>ATOM HB2<br>GROUP<br>ATOM CG<br>ATOM HG1<br>ATOM HG2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NH1<br>H<br>CT1<br>HB<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.47<br>0.31<br>0.07<br>0.09<br>-0.18<br>0.09<br>0.09<br>-0.18<br>0.09<br>0.09                                                   | 8 BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HN-N<br> <br>                                    | HE<br>I<br>ACE<br>I<br>HE            | 81 H(<br> <br> | G1 HD:<br>I<br>GCD-<br>I<br>G2 HD:                   | 1 HE1<br> <br>CE<br> <br>2 HE2 | -NZ<br>\<br>F | HZ2<br>Z3 |  |
| GROUP<br>ATOM N<br>ATOM HN<br>ATOM CA<br>ATOM HA<br>GROUP<br>ATOM HB1<br>ATOM HB2<br>GROUP<br>ATOM CG<br>ATOM HG1<br>ATOM HG2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NH1<br>H<br>CT1<br>HB<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.47<br>0.31<br>0.07<br>0.09<br>-0.18<br>0.09<br>0.09<br>-0.18<br>0.09<br>0.09<br>-0.18                                          | BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HN-N<br> <br>                                    | HE<br>I<br>ACE<br>I<br>HE            | 81 H(<br> <br> | G1 HD:<br>I<br>GCD-<br>I<br>G2 HD:                   | 1 HE1<br> <br>CE<br> <br>2 HE2 | -NZ<br>\<br>F | HZ2<br>Z3 |  |
| GROUP<br>ATOM N<br>ATOM NA<br>ATOM CA<br>ATOM HA<br>GROUP<br>ATOM HB1<br>ATOM HB2<br>GROUP<br>ATOM HG2<br>GROUP<br>ATOM HG2<br>GROUP<br>ATOM CD<br>ATOM HD1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NH1<br>H<br>CT1<br>HB<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.47<br>0.31<br>0.07<br>0.09<br>-0.18<br>0.09<br>0.09<br>-0.18<br>0.09<br>0.09<br>-0.18<br>0.09                                  | BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HN-N<br> <br>                                    | HE<br>I<br>ACE<br>I<br>HE            | 81 H(<br> <br> | G1 HD:<br>I<br>GCD-<br>I<br>G2 HD:                   | 1 HE1<br> <br>CE<br> <br>2 HE2 | -NZ<br>\<br>F | HZ2<br>Z3 |  |
| GROUP           ATOM N           ATOM HN           ATOM CA           ATOM CA           ATOM HN           ATOM CA           ATOM HA           GROUP           ATOM HB1           ATOM HB2           GROUP           ATOM HB1           ATOM HB1           ATOM HG2           GROUP           ATOM HG2           GROUP           ATOM HG1           ATOM HG2           GROUP           ATOM HG1           ATOM HG2           ATOM HG2           ATOM HG1           ATOM HG2           ATOM HG2           ATOM HG2           ATOM HD2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NH1<br>H<br>CT1<br>HB<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.47<br>0.31<br>0.07<br>0.09<br>-0.18<br>0.09<br>0.09<br>-0.18<br>0.09<br>0.09<br>-0.18                                          | BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HN-N<br> <br>                                    | HE<br>I<br>ACE<br>I<br>HE            | 81 H(<br> <br> | G1 HD:<br>I<br>GCD-<br>I<br>G2 HD:                   | 1 HE1<br> <br>CE<br> <br>2 HE2 | -NZ<br>\<br>F | HZ2<br>Z3 |  |
| GROUP<br>ATOM N<br>ATOM HA<br>ATOM CA<br>ATOM CA<br>ATOM CA<br>ATOM CA<br>ATOM HB1<br>ATOM HB1<br>ATOM HB1<br>ATOM HB1<br>ATOM HG1<br>ATOM HG1<br>ATOM CD<br>ATOM CD<br>ATOM HD1<br>ATOM HD2<br>GROUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NH1<br>H<br>CT1<br>HB<br>CT2<br>HA<br>HA<br>HA<br>CT2<br>HA<br>HA<br>HA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.47<br>0.31<br>0.07<br>0.09<br>-0.18<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09                                            | BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HN-N<br> <br>                                    | HE<br>I<br>ACE<br>I<br>HE            | 81 H(<br> <br> | G1 HD:<br>I<br>GCD-<br>I<br>G2 HD:                   | 1 HE1<br> <br>CE<br> <br>2 HE2 | -NZ<br>\<br>F | HZ2<br>Z3 |  |
| GROUP<br>ATOM N<br>ATOM HA<br>ATOM CA<br>ATOM CA<br>ATOM CA<br>ATOM CA<br>ATOM HB1<br>ATOM HB1<br>ATOM HB1<br>ATOM HB1<br>ATOM HG1<br>ATOM HG1<br>ATOM CD<br>ATOM CD<br>ATOM HD1<br>ATOM HD2<br>GROUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NH1<br>H<br>CT1<br>HB<br>CT2<br>HA<br>HA<br>HA<br>CT2<br>HA<br>HA<br>HA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.47<br>0.31<br>0.09<br>-0.18<br>0.09<br>0.09<br>-0.18<br>0.09<br>0.09<br>-0.18<br>0.09<br>0.09<br>-0.18<br>0.09<br>0.09         | BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HN-N<br> <br>                                    | HE<br>I<br>ACE<br>I<br>HE            | 81 H(<br> <br> | G1 HD:<br>I<br>GCD-<br>I<br>G2 HD:                   | 1 HE1<br> <br>CE<br> <br>2 HE2 | -NZ<br>\<br>F | HZ2<br>Z3 |  |
| GROUP<br>ATOM N<br>ATOM N<br>ATOM CA<br>ATOM CA<br>ATOM CA<br>ATOM CA<br>ATOM HB<br>ATOM HB1<br>ATOM HB1<br>ATOM HB1<br>ATOM HG1<br>ATOM HG1<br>ATOM HG1<br>ATOM CD<br>ATOM HD1<br>ATOM HD2<br>GROUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NH1<br>H<br>CT1<br>HB<br>CT2<br>HA<br>HA<br>HA<br>CT2<br>HA<br>HA<br>HA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.47<br>0.31<br>0.07<br>0.09<br>-0.18<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09                                            | BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HN-N<br> <br>                                    | HE<br>I<br>ACE<br>I<br>HE            | 81 H(<br> <br> | G1 HD:<br>I<br>GCD-<br>I<br>G2 HD:                   | 1 HE1<br> <br>CE<br> <br>2 HE2 | -NZ<br>\<br>F | HZ2<br>Z3 |  |
| GROUP<br>ATOM NA<br>ATOM HN<br>ATOM HA<br>ATOM HA<br>GROUP<br>ATOM CB<br>ATOM HB2<br>GROUP<br>ATOM HG1<br>ATOM HG1<br>ATOM HG2<br>GROUP<br>ATOM CD<br>ATOM HG2<br>GROUP<br>ATOM CD<br>ATOM HD1<br>ATOM HD1<br>ATOM HD1<br>ATOM HE1<br>ATOM HE2<br>ATOM HE2<br>ATOM HE2<br>ATOM NE2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NH1<br>H<br>CT1<br>HB<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>HA<br>NH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.47<br>0.31<br>0.09<br>-0.18<br>0.09<br>0.09<br>-0.18<br>0.09<br>0.09<br>-0.18<br>0.09<br>0.09<br>0.09<br>-0.18<br>0.09<br>0.09 | BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HN-N<br> <br>                                    | HE<br>I<br>ACE<br>I<br>HE            | 81 H(<br> <br> | G1 HD:<br>I<br>GCD-<br>I<br>G2 HD:                   | 1 HE1<br> <br>CE<br> <br>2 HE2 | -NZ<br>\<br>F | HZ2<br>Z3 |  |
| GROUP<br>ATOM NA<br>ATOM HN<br>ATOM CA<br>ATOM HA<br>GROUP<br>ATOM CB<br>ATOM HB1<br>ATOM HB1<br>ATOM HB1<br>ATOM HG2<br>GROUP<br>ATOM HG2<br>GROUP<br>ATOM HD1<br>ATOM HD2<br>GROUP<br>ATOM CD<br>ATOM HD1<br>ATOM HD2<br>ATOM CE<br>ATOM HD2<br>ATOM CE<br>ATOM HE2<br>ATOM HE2<br>ATOM HE2<br>ATOM KZ<br>ATOM KZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NH1<br>H<br>CT1<br>HB<br>CT2<br>HA<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>HA<br>NH3<br>HC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.47<br>0.37<br>0.09<br>-0.18<br>0.09<br>0.09<br>-0.18<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.0            | BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HN-N<br> <br>                                    | HE<br>I<br>ACE<br>I<br>HE            | 81 H(<br> <br> | G1 HD:<br>I<br>GCD-<br>I<br>G2 HD:                   | 1 HE1<br> <br>CE<br> <br>2 HE2 | -NZ<br>\<br>F | HZ2<br>Z3 |  |
| GROUP<br>ATOM NA<br>ATOM HN<br>ATOM CA<br>ATOM HA<br>GROUP<br>ATOM CB<br>ATOM HB1<br>ATOM HB1<br>ATOM HB1<br>ATOM HG2<br>GROUP<br>ATOM HG2<br>GROUP<br>ATOM HD1<br>ATOM HD2<br>GROUP<br>ATOM CD<br>ATOM HD1<br>ATOM HD2<br>ATOM CE<br>ATOM HD2<br>ATOM CE<br>ATOM HE2<br>ATOM HE2<br>ATOM HE2<br>ATOM KZ<br>ATOM KZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NH1<br>H<br>CT1<br>HB<br>CT2<br>HA<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>HA<br>NH3<br>HC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.47<br>0.31<br>0.07<br>0.09<br>-0.18<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.0                             | BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HN-N<br> <br>                                    | HE<br>I<br>ACE<br>I<br>HE            | 81 H(<br> <br> | G1 HD:<br>I<br>GCD-<br>I<br>G2 HD:                   | 1 HE1<br> <br>CE<br> <br>2 HE2 | -NZ<br>\<br>F | HZ2<br>Z3 |  |
| GROUP<br>ATOM N<br>ATOM HN<br>ATOM HA<br>ATOM HA<br>ATOM HA<br>ATOM HA<br>ATOM HB1<br>ATOM HB1<br>ATOM HB1<br>ATOM HB1<br>ATOM HB2<br>GROUP<br>ATOM G<br>ATOM HD2<br>GROUP<br>ATOM HD2<br>GROUP<br>ATOM HD2<br>GROUP<br>ATOM HD2<br>ATOM HD2<br>ATOM HD2<br>ATOM H2<br>ATOM HZ1<br>ATOM HZ1<br>ATOM HZ1<br>ATOM HZ2<br>ATOM HZ2<br>ATOM HZ2<br>ATOM HZ2<br>ATOM HZ2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NH1<br>H<br>CT1<br>HB<br>CT2<br>HA<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>HA<br>NH3<br>HC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.47<br>0.37<br>0.09<br>-0.18<br>0.09<br>0.09<br>-0.18<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.0            | BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HN-N<br> <br>                                    | HE<br>I<br>ACE<br>I<br>HE            | 81 H(<br> <br> | G1 HD:<br>I<br>GCD-<br>I<br>G2 HD:                   | 1 HE1<br> <br>CE<br> <br>2 HE2 | -NZ<br>\<br>F | HZ2<br>Z3 |  |
| GROUP<br>ATOM NA<br>ATOM HN<br>ATOM HA<br>ATOM CA<br>ATOM HA<br>ATOM CA<br>ATOM HB1<br>ATOM HB1<br>ATOM HB1<br>ATOM HB2<br>GROUP<br>ATOM HG1<br>ATOM HG1<br>ATOM HD2<br>GROUP<br>ATOM HD1<br>ATOM HD1<br>ATOM HD1<br>ATOM HD2<br>ATOM HD1<br>ATOM HD2<br>ATOM HE2<br>ATOM HE2<br>ATOM HZ<br>ATOM HZ3<br>ATOM HZ3<br>ATOM HZ3<br>ATOM HZ3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NH1<br>H<br>CT1<br>HB<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>HA<br>CT2<br>HA<br>HA<br>HA<br>CT2<br>HA<br>HA<br>HA<br>CT2<br>HA<br>HA<br>HA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.47<br>0.31<br>0.07<br>0.09<br>-0.18<br>0.09<br>0.09<br>-0.18<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.0    | 2 1/1<br>2 1/1<br>2 1/1<br>3 | HN-N<br> <br>                                    | HE<br>I<br>ACE<br>I<br>HE            | 81 H(<br> <br> | G1 HD:<br>I<br>GCD-<br>I<br>G2 HD:                   | 1 HE1<br> <br>CE<br> <br>2 HE2 | -NZ<br>\<br>F | HZ2<br>Z3 |  |
| GROUP<br>ATOM NA<br>ATOM HN<br>ATOM HA<br>ATOM CA<br>ATOM HA<br>ATOM CA<br>ATOM HB1<br>ATOM HB1<br>ATOM HB1<br>ATOM HB2<br>GROUP<br>ATOM HG1<br>ATOM HG1<br>ATOM HD2<br>GROUP<br>ATOM HD1<br>ATOM HD1<br>ATOM HD1<br>ATOM HD2<br>ATOM HD1<br>ATOM HD2<br>ATOM HE2<br>ATOM HE2<br>ATOM HZ<br>ATOM HZ3<br>ATOM HZ3<br>ATOM HZ3<br>ATOM HZ3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NH1<br>H<br>CT1<br>HB<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>HA<br>CT2<br>HA<br>HA<br>HA<br>CT2<br>HA<br>HA<br>HA<br>CT2<br>HA<br>HA<br>HA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.47<br>0.31<br>0.07<br>0.09<br>-0.18<br>0.09<br>0.09<br>-0.18<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.0    | 2 1/1<br>2 1/1<br>2 1/1<br>3 | HN-N<br> <br>                                    | HE<br>I<br>ACE<br>I<br>HE            | 81 H(<br> <br> | G1 HD:<br>I<br>GCD-<br>I<br>G2 HD:                   | 1 HE1<br> <br>CE<br> <br>2 HE2 | -NZ<br>\<br>F | HZ2<br>Z3 |  |
| GROUP<br>ATOM N<br>ATOM HN<br>ATOM HA<br>ATOM HA<br>ATOM HA<br>ATOM HA<br>ATOM HB1<br>ATOM HB1<br>ATOM HB1<br>ATOM HB2<br>GROUP<br>ATOM GG<br>ATOM HG1<br>ATOM HD1<br>ATOM HD1<br>ATOM HD1<br>ATOM HD2<br>ATOM HD2<br>ATOM HD1<br>ATOM HD2<br>ATOM HD2<br>ATOM H2<br>ATOM H2<br>ATOM HZ3<br>GROUP<br>ATOM HZ3<br>ATOM HZ3<br>ATOM HZ3<br>ATOM HZ3<br>ATOM C<br>ATOM C<br>ATOM C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NH1<br>H<br>CT1<br>HB<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>HA<br>CT2<br>HA<br>HA<br>HA<br>CT2<br>HA<br>HA<br>HA<br>CT2<br>HA<br>HA<br>HA<br>CT2<br>HA<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>HA<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>CT2<br>CT2<br>CT2<br>CT2<br>CT2<br>CT2<br>CT2<br>CT2 | -0.47<br>0.31<br>0.07<br>0.09<br>-0.18<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.0                             | 9 1 (<br>9 1 1<br>9 | HN-N<br> <br> | P5                                   | 31 H(<br> <br>                                                   | 61 HD:<br> <br> CD<br> <br>52 HD:<br>                | 1 HE1<br> <br>CE<br> <br>2 HE2 | -NZ<br>\<br>F | HZ2<br>Z3 |  |
| GROUP<br>ATOM N<br>ATOM HN<br>ATOM HA<br>ATOM HA<br>ATOM HA<br>ATOM HA<br>GROUP<br>ATOM CG<br>ATOM HB1<br>ATOM HB2<br>GROUP<br>ATOM CG<br>ATOM HG2<br>GROUP<br>ATOM HG2<br>GROUP<br>ATOM HG2<br>GROUP<br>ATOM HC1<br>ATOM HC1<br>ATOM HC1<br>ATOM HC1<br>ATOM HC2<br>ATOM HC1<br>ATOM HC2<br>ATOM HC1<br>ATOM HC2<br>ATOM HC1<br>ATOM HC2<br>ATOM HC1<br>ATOM HC2<br>ATOM HC3<br>ATOM HC3<br>ATOM HC3<br>ATOM HC3<br>ATOM HC3<br>ATOM CA<br>ATOM | NH1<br>H<br>CT1<br>HB<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>HA<br>CT2<br>HA<br>HA<br>HA<br>CT2<br>HA<br>HA<br>HA<br>CT2<br>HA<br>HA<br>HA<br>CT2<br>HA<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>HA<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>CT2<br>CT2<br>CT2<br>CT2<br>CT2<br>CT2<br>CT2<br>CT2 | -0.47<br>0.31<br>0.07<br>0.09<br>-0.18<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.0                             | 9 1 (<br>9 1 1<br>9 | HN-N<br> <br> | P5                                   | 31 H(<br> <br>                                                   | 61 HD:<br> <br> CD<br> <br>52 HD:<br>                | 1 HE1<br> <br>CE<br> <br>2 HE2 | -NZ<br>\<br>F | HZ2<br>Z3 |  |
| GROUP<br>ATOM N<br>ATOM HN<br>ATOM HA<br>ATOM HA<br>ATOM HA<br>ATOM HA<br>GROUP<br>ATOM CG<br>ATOM HB1<br>ATOM HB2<br>GROUP<br>ATOM CG<br>ATOM HG2<br>GROUP<br>ATOM HG2<br>GROUP<br>ATOM HG2<br>GROUP<br>ATOM HC1<br>ATOM HC1<br>ATOM HC1<br>ATOM HC1<br>ATOM HC2<br>ATOM HC1<br>ATOM HC2<br>ATOM HC1<br>ATOM HC2<br>ATOM HC1<br>ATOM HC2<br>ATOM HC1<br>ATOM HC2<br>ATOM HC3<br>ATOM HC3<br>ATOM HC3<br>ATOM HC3<br>ATOM HC3<br>ATOM CA<br>ATOM | NH1<br>H<br>CT1<br>HB<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>HA<br>CT2<br>HA<br>HA<br>HA<br>CT2<br>HA<br>HA<br>HA<br>CT2<br>HA<br>HA<br>HA<br>CT2<br>HA<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>HA<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>CT2<br>CT2<br>CT2<br>CT2<br>CT2<br>CT2<br>CT2<br>CT2 | -0.47<br>0.31<br>0.07<br>0.09<br>-0.18<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.0                             | 9 1 (<br>9 1 1<br>9 | HN-N<br> <br> | P5                                   | 31 H(<br> <br>                                                   | 61 HD:<br> <br> CD<br> <br>52 HD:<br>                | 1 HE1<br> <br>CE<br> <br>2 HE2 | -NZ<br>\<br>F | HZ2<br>Z3 |  |
| ATOM (HN<br>ATOM (AA<br>ATOM (AA<br>ATOM (AA<br>ATOM (AB<br>ATOM) (AB<br>ATOM) (AB<br>ATOM (BC<br>ATOM (BC<br>ATOM (AC<br>ATOM (AC<br>A                                                                                  | NH1<br>H<br>CT1<br>HB<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>HA<br>CT2<br>HA<br>HA<br>HA<br>CT2<br>HA<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>HA<br>CT2<br>HA<br>HA<br>HA<br>CT2<br>HA<br>HA<br>HA<br>CT2<br>HA<br>HA<br>HA<br>CT2<br>HA<br>HA<br>HA<br>CT2<br>HA<br>HA<br>HA<br>CT2<br>HA<br>HA<br>HA<br>CT2<br>HA<br>HA<br>HA<br>HA<br>CT2<br>HA<br>HA<br>HA<br>HA<br>HA<br>CT2<br>HA<br>HA<br>HA<br>HA<br>CT2<br>HA<br>HA<br>HA<br>HA<br>HA<br>HA<br>HA<br>HA<br>HA<br>HA<br>HA<br>HA<br>HA                                                                                                                                                                | -0.47<br>0.31<br>0.07<br>0.08<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09                                             | , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HN-N<br> <br> | P5                                   | 81 H(<br> <br>                                                   | G1 HD:<br>J<br>G2CD<br>G2 HD:<br>G2 HD:<br>CE<br>HG1 | 1 HE1<br> <br>CE<br> <br>2 HE2 | -NZ<br>\<br>F | HZ2<br>Z3 |  |
| GROUP<br>ATOM NA<br>ATOM HN<br>ATOM HA<br>ATOM HA<br>ATOM CA<br>ATOM HB1<br>ATOM HB1<br>ATOM HB1<br>ATOM HB1<br>ATOM HB2<br>GROUP<br>ATOM HG1<br>ATOM HG1<br>ATOM HG1<br>ATOM HD1<br>ATOM HD1<br>ATOM HD1<br>ATOM HD1<br>ATOM HD1<br>ATOM HD2<br>GROUP<br>ATOM HD1<br>ATOM HD1<br>ATOM HD1<br>ATOM HD2<br>ATOM HD2<br>ATOM HD1<br>ATOM HD2<br>ATOM HD3<br>ATOM HD3                                                                               | NH1<br>H<br>CT1<br>HB<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>HA<br>CT2<br>HA<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>HA<br>HA<br>CT2<br>CT2<br>CT2<br>CT2<br>CT2<br>CT2<br>CT2<br>CT2<br>CT2<br>CT2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.47<br>0.31<br>0.07<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09                                                     | , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HN-N<br> <br> | P5                                   | 81 H(<br> <br>                                                   | G1 HD:<br>J<br>G2CD<br>G2 HD:<br>G2 HD:<br>CE<br>HG1 | 1 HE1<br> <br>CE<br> <br>2 HE2 | -NZ<br>\<br>F | HZ2<br>Z3 |  |

| RESI MET $0.00$ GROUP       ATOM N         ATOM N       NH1         ATOM HA       H         ATOM HA       H         ATOM KA       CT1         ATOM HA       HB         ATOM HA       HB         ATOM KA       CT1         ATOM KA       CT1         ATOM KA       CT1         ATOM KA       CT1         ATOM KB       CT2         ATOM KB       CT2         ATOM HB1       HA         ATOM HB2       HA         O.09       I         I       HACA-HCBCGSDCCSDCE-HE3         ATOM KB       CT2         ATOM KG       CT2         GROUP       I         ATOM HG1       HA         ATOM HG2       HA         ATOM HG2       HA         ATOM HG2       HA         ATOM HE3       HA         ATOM HE2       HA         ATOM HE3       HA                                                                                                                                 |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| GROUP         0.51           ATOM C         0.51           ATOM O         -0.51           BOND CB CA         CG CB           SDND N HN         N CA           BOND CA HA         CB HB1           CB HB1         CB HB2           CG HG1         CG HG2           BOND CA HA         CB HB2           CE HE2         CE HE3           DOUBLE         O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| RESI PRO       0.00         ATOM N       N       -0.29       !       HD1 HD2         ATOM CD       CP3       0.00       !       N       -CD         ATOM ND       CP3       0.00       !       N       -CD       HG1         ATOM HD1 HA       0.09       !       I $\checkmark$ ATOM HD2       HA       0.09       !       I $\checkmark$ ATOM HD2 HA       0.09       !       I $\checkmark$ ATOM HD1 HA       0.09       !       I $\checkmark$ ATOM HD4 HA       0.09       !       I $\checkmark$ ATOM HD2       HA       0.09       !       I $\checkmark$ ATOM KB       CP2       -0.18       !       I $\checkmark$ N       HA       0.09       !       I       HA       HB       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I <td></td> |     |
| RESI PHE<br>GROUP       0.00         ATOM N       NH1       -0.47         ATOM K       CT1       0.07         ATOM K       CT1       0.09         ATOM K       CT1       0.09         ATOM K       CT1       0.09         ATOM K       CT1       0.09         ATOM K       HB       0.09         ATOM HA       HB       0.09         ATOM KA       HB       0.09         ATOM KB       CT2       -0.18         ATOM HB1 HA       0.09       0.00         GROUP       I       HB2         ATOM CG       A       0.09         ATOM CG       A       0.09         ATOM CG       A       0.09         ATOM CG       A       0.09         ATOM CG       A       0.015         GROUP       ATOM D1       A         ATOM CC1       A       -0.115         ATOM C2       CA       -0.115         ATOM C2                                              | :4f |
| BOND N CA C CA C +N CA HA<br>BOND CB HB1 CB HB2 CD1 HD1 CD2 HD2 CE1 HE1<br>DOUBLE O C CD1 CG CZ CE1 CE2 CD2<br>BOND CE2 HE2 CZ HZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |

| RESI SER       0.00       BAS       = P5         ATOM N       NH1       -0.47       !       HN-N         ATOM CA       CT1       0.07       !       HN-N         ATOM CA       CT1       0.07       !       HB1         ATOM HA       HB       0.09       !       HB1         ATOM CB       CT2       0.05       !       HB2         ATOM HB1       HA       0.09       !       HB2       HG1         ATOM HB2       HA       0.09       !       HB2       HG1         ATOM HG1       H       0.43       SID = P1s       SID = P1s         ATOM OG       O       -0.51       SID = C       SID = P1s         ATOM O       O       -0.51       SID = D1s       SID = D1s         BOND CB       CA       CA       CA       CB HB1       BOND CB       HB2       GR1         BOND CB       HB2       OG       HG1       DUBLE       OC       GR0H       GR0H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RESI TYR       0.00       SI1 = SC4y         GROUP       ATOM N       NH1       -0.47       I         ATOM N       NH1       -0.47       I       HN         ATOM CA       CT1       0.07       I       HN         ATOM HA       HB       0.09       I       HACA+(BCG)       CZOH         ATOM CB       CT2       -0.18       I       I       HB2       CD2CE2       HH         ATOM HB1       HA       0.09       I       I       HB2       CD2CE2       HH         ATOM HB1 HA       0.09       I       I       HB2       CD2CE2       HH         ATOM HCG       CA       0.09       I       I       HB2       HD2       HE2                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RESI THR       0.00       BAS = P5         ATOM N       NH1 $-0.47$ 1         ATOM N       NH1 $-0.47$ 1         ATOM N       NH1 $-0.47$ 1         ATOM KN       H       0.31       1         ATOM KA       CT1       0.07       1         ATOM HA       HB       0.09       1         ATOM C6       CT1       0.14       1         ATOM HB       HA       0.09       1         ATOM HG       HA       0.09       1         ATOM HG1       H       0.43       1         GROUP       HA-CA       CG2HG21         ATOM HG2       HA       0.09         ATOM C       C       0.51         BOND CB CA       GC C       CS         BOND CB CA       GC C       CA <td>ATOM 102       HA       0.00       <math>BAS = P5</math> <math>HD2 + H22</math>         ATOM CG       CA       0.00       <math>BAS = P5</math> <math>SI2 = SC4y</math>         ATOM CD1       CA       -0.115       <math>SI2 = SC4y</math>         ATOM HD1       HP       0.115       <math>SI2 = SC4y</math>         ATOM HD1       HP       0.115       <math>SI2 = SC4y</math>         ATOM HE1       HP       0.115       <math>SI2 = SC4y</math>         ATOM CZ       CA       -0.115       <math>ATOM CZ = CA</math>         ATOM HH       0.43       <math>GROUP</math> <math>ATOM HP</math>         ATOM HD2       HP       0.115       <math>GROUP</math>         ATOM CZ       CA       -0.51       <math>SI2 = SC4y</math>         ATOM CZ       CA       -0.115       <math>GROUP</math>         ATOM CZ       CA       -0.51       <math>SI2 = SC4y</math>         ATOM CZ       CE       O       -51         BOND CB       CA       C       CA       CH         BOND CZ       CE2</td> | ATOM 102       HA       0.00 $BAS = P5$ $HD2 + H22$ ATOM CG       CA       0.00 $BAS = P5$ $SI2 = SC4y$ ATOM CD1       CA       -0.115 $SI2 = SC4y$ ATOM HD1       HP       0.115 $SI2 = SC4y$ ATOM HD1       HP       0.115 $SI2 = SC4y$ ATOM HE1       HP       0.115 $SI2 = SC4y$ ATOM CZ       CA       -0.115 $ATOM CZ = CA$ ATOM HH       0.43 $GROUP$ $ATOM HP$ ATOM HD2       HP       0.115 $GROUP$ ATOM CZ       CA       -0.51 $SI2 = SC4y$ ATOM CZ       CA       -0.115 $GROUP$ ATOM CZ       CA       -0.51 $SI2 = SC4y$ ATOM CZ       CE       O       -51         BOND CB       CA       C       CA       CH         BOND CZ       CE2                                                                                                                                             |
| RESI TRP       0.00         GROUP       ATOM N       NH1       -0.47         ATOM HN       H       0.31       HN-N       SI1 = SC4w       HE3         ATOM CA       CT1       0.07       HA-N       HB1       SC4w       HE3         ATOM HA       HB       0.09       HA-CA-(CBCGHCOD-(C23-HZ3)       SI3 = SC4w         ATOM HA       HB       0.09       HA-CA-(CBCGHCOD-(C23-HZ3)       HA-CA-(CBCGHCOD-(C42-HL2)         ATOM HB1       HA       0.09       HA-CA-(CBCGHCOD-(C42-HL2)       CL2-HL2         ATOM HB2       HA       0.09       HA-CA-(CBCGHCOD-(C42-HL2)       CL2-HL2         ATOM HB2       HA       0.09       HA       HB2-CD1-(C42-(C42-HL2)       HA-CA-(CBCGHCOD-(C42-HL2)         ATOM HB2       HA       0.09       HB       HA       0.09       HB2-CD1-(C42-(C42-HL2)         ATOM HB2       HA       0.09       HB2-CD1-(C42-(C42-HL2)       HA-CA       HB2-CD1-(C42-(C42-HL2)         ATOM HB1       HP       0.115       HB2-CD1-(C42-(C42-HL2)       HB2-CD2-(C42-HL2)       HB2-CD2-(C42-HL2)         ATOM HC2       CC2       CPT       0.02       HB2-CD2-(C12-(C12-(C12-(C12-(C12-(C12-(C12-(C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DOUBLE       0       C       CD1 CG       CE1 CZ       CE2 CD2         RESI VAL<br>GROUP       0.00<br>GROUP       BAS = P5       Ho11 H012<br>I       Ho11 H012<br>I       Ho11 H012<br>I         ATOM NN       NH       0.31<br>I       HN-N<br>I       GG1-HG13<br>I       GG1-HG13<br>I       GG1-HG13<br>I         ATOM HA       HB       0.09<br>GROUP       HA-CA-(CB-HB<br>I       GG2-HG21<br>I       GG2-HG21<br>I       GG2-HG21<br>I         ATOM HB       HA       0.09<br>ATOM HG13 HA       0.09<br>ATOM HG22 HA       O.09<br>ATOM HG23 HA       O.09<br>GROUP       SID = AC3y         ATOM C C       0.51<br>ATOM O       -0.51<br>ATOM O       GG2 CB       N       HN<br>BOND CB       C C         BOND C B       AC CC CA       C C       C H       C HA2       C H621 HG12       C G1 HG13 CG2 HG21         DUBLE       0       -0.51<br>ATOM C       C G1 HG11 CG1 CG1 HG11       C HA2       C HA2       G1 HG12 CG1 HG13 CG2 HG21 |

