psfgen User’s Guide

Version 1.0

Justin Gullingsrud and Jim Phillips

April 10, 2002

Theoretical Biophysics Group
University of Illinois and Beckman Institute
405 N. Mathews
Urbana, IL 61801

1

Creating PSF Structure Files

The psfgen structure building tool consists of a portable library of structure and file manipulation routines
with a Tcl interface. Current capabilities include

reading CHARMM topology files

reading psf files in X-PLOR/NAMD format

extracting sequence data from single segment PDB files
generating a full molecular structure from sequence data
applying patches to modify or link different segments
writing NAMD and VMD compatible PSF structure files
extracting coordinate data from PDB files

constructing (guessing) missing atomic coordinates
deleting selected atoms from the structure

writing NAMD and VMD compatible PDB coordinate files

We are currently refining the interface of psfgen and adding features to create a complete molecular
building solution. We welcome your feedback on this new tool.

2

Ordinary Usage

psfgen is currently distributed in two forms. One form is as a standalone program implemented as a Tcl
interpreter which reads commands from standard output. You may use loops, variables, etc. as you would
in a VMD or NAMD script. You may use psfgen interactively, but we expect it to be run most often with
a script file redirected to standard input. The second form is as a Tcl package which can be imported into
any Tcl application, including VMD. All the commands available to the standalone version of psfgen are
available to the Tcl package; using psfgen within VMD lets you harness VMD’s powerful atom selection
capability, as well as instantly view the result of your structure building scripts. Examples of using psfgen
both with and without VMD are provided in this document.
Generating PSF and PDB files for use with NAMD will typically consist of the following steps:

1.

® N>

Preparing separate PDB files containing individual segments of protein, solvent, etc. before running
psfgen.

Reading in the appropriate topology definition files and aliasing residue and atom names found in the
PDB file to those found in the topology files. This will generally include selecting a default protonation
state for histidine residues.

Generating the default structure using segment and pdb commands.
Applying additional patches to the structure.

Reading coordinates from the PDB files.

Deleting unwanted atoms, such as overlapping water molecules.
Guessing missing coordinates of hydrogens and other atoms.

Writing PSF and PDB files for use in NAMD.

3 List of Commands

e topology <file name>
Purpose: Read in molecular topology definitions from file.
Arguments: <file name>: CHARMM format topology file.
Context: Beginning of script, before segment. May call multiple times.

e alias residue <alternate name> <real name>
Purpose: Provide translations from residues found in PDB files to proper residue names read in from
topology definition files. Proper names from topology files will be used in generated PSF and PDB
files.
Arguments: <alternate name>: Residue name found in PDB file.
<real name>: Residue name found in topology file.
Context: Before reading sequence with pdb. May call multiple times.

e segment <segment ID> { <commands> }
Purpose: Build a segment of the molecule. A segment is typically a single chain of protein or DNA,
with default patches applied to the termini. Segments may also contain pure solvent or lipid.
Arguments: <segment ID>: Unique name for segment, 1-4 characters.
<commands>: Sequence of commands in Tcl syntax to build the primary structure of the segment,
including auto, first, last, residue, pdb, etc.
Context: After topology definitions and residue aliases. May call multiple times. Structure informa-
tion is generated at the end of every segment command.

e auto [angles| [dihedrals]| [none]
Purpose: Override default settings from topology file for automatic generation of angles and dihedrals
for the current segment.
Arguments: angles: Enable generation of angles from bonds.
dihedrals: Enable generation of dihedrals from angles.
none: Disable generation of angles and dihedrals.
Context: Anywhere within segment, does not affect later segments.

e first <patch name>
Purpose: Override default patch applied to first residue in segment. Default is read from topology
file and may be residue-specific.
Arguments: <patch name>: Single-target patch residue name or none.
Context: Anywhere within segment, does not affect later segments.

e last <patch name>
Purpose: Override default patch applied to last residue in segment. Default is read from topology
file and may be residue-specific.
Arguments: <patch name>: Single-target patch residue name or none.
Context: Anywhere within segment, does not affect later segments.

e residue <resid> <resname>
Purpose: Add a single residue to the end of the current segment.
Arguments: <resid>: Unique name for residue, 1-5 characters, usually numeric. <resname>:
Residue type name from topology file.
Context: Anywhere within segment.

e pdb <file name>
Purpose: Extract sequence information from PDB file when building segment. Residue IDs will be
preserved, residue names must match entries in the topology file or should be aliased before pdb is
called.
Arguments: <file name>: PDB file containing known or aliased residues.
Context: Anywhere within segment.

e mutate <resid> <resname>
Purpose: Change the type of a single residue in the current segment.
Arguments: <resid>: Unique name for residue, 1-5 characters, usually numeric. <resname>: New
residue type name from topology file.
Context: Within segment, after target residue has been created.

e patch <patch residue name> <segid:resid> |[...]
Purpose: Apply a patch to one or more residues. Patches make small modifications to the structure
of residues such as converting one to a terminus, changing the protonation state, or creating disulphide
bonds between a pair of residues.
Arguments: <patch residue name>: Name of patch residue from topology definition file.
<segid:resid>: List of segment and residue pairs to which patch should be applied.
Context: After one or more segments have been built.

e multiply <factor> <segid|:resid|:atomname]]> |...]
Purpose: Create multiple images of a set of atoms for use in locally enhanced sampling. The beta
column of the output pdb file is set to 1...<factor> for each image. Multiple copies of bonds, angles,
etc. are created. Atom, residue or segment names are not altered; images are distinguished only by
beta value. This is not a normal molecular structure and may confuse other tools.
Arguments: <factor>:
<segid:resid:atomname>: segment, residue, or atom to be multiplied. If :resid is omitted the entire
segment is multiplied; if :atomname is omitted the entire residue is multiplied. May be repeated as
many times as necessary to include all atoms.
Context: After one or more segments have been built, all patches applied, and coordinates guessed.
The effects of this command may confuse other commands.

e delatom <segid> [resid] [atom name]
Purpose: Delete one or more atoms. If only segid is specified, all atoms from that segment will be
removed from the structure. If both segid and resid are specified, all atoms from just that residue
will be removed. If segid, resid, and atom name are all specified, just a single atom will be removed.
Arguments: <segid>: Name of segment.
<resid>: Name of residue (optional).
<atom name>: Name of atom (optional).
Context: After all segments have been built and patched.

e resetpsf
Purpose: Delete all segments in from the structure. The topology definitions and aliases are left
intact.
Arguments:
Context: After one or more segments have been built.

e psfcontext [context] [new| [delete]
Purpose: Switches between complete contexts, including structure, topology definitions, and aliases.
If no arguments are provided, the current context is returned. If <contert> or new is specified, a
new context is entered and the old context is returned. If delete is also specified, the old context is
destroyed and “deleted <old context>" is returned. An error is returned if the specified context does
not exist or if delete was specified and the specified context is the same as the current context.
Arguments: <context>: Context ID returned by psfcontext.
Context: At any time.

e writepsf [charmm| [x-plor| <file name>
Purpose: Write out structure information as PSF file.
Arguments: charmm: Use CHARMM format (numbers for atom types).
x-plor: Use X-PLOR format (names for atom types), the default format required by NAMD.
<file name>: PSF file to be generated.
Context: After all segments have been built and patched.

4

readpsf <file name>

Purpose: Read in structure information from PSF file and adds it to the structure. It is an error if
any segments in the PSF file already exist.

Arguments: <file name>: PSF file in X-PLOR format (names for atom types).

Context: Anywhere but within segment.

alias atom <residue name> <alternate name> <real name>

Purpose: Provide translations from atom names found in PDB files to proper atom names read in
from topology definition files. Proper names from topology files will be used in generated PSF and
PDB files.

Arguments: <residue name>: Proper or aliased residue name.

<alternate name>: Atom name found in PDB file.

<real name>: Atom name found in topology file.

Context: Before reading coordinates with coordpdb. May call multiple times.

coord <segid> <resid> <atomname> <{ z y z }>
Purpose: Set coordinates for a single atom.
Arguments: <segid>: Segment ID of target atom.
<resid>: Residue ID of target atom.
<atomname>: Name of target atom.

<{ z y z }>: Coordinates to be assigned.
Context: After structure has been generated.

coordpdb <file name> [segid|

Purpose: Read coordinates from PDB file, matching segment, residue and atom names.
Arguments: <file name>: PDB file containing known or aliased residues and atoms.
<segid>: If specified override segment IDs in PDB file.

Context: After segment has been generated and atom aliases defined.

guesscoord

Purpose: Guesses coordinates of atoms for which they were not explicitly set. Calculation is based on
internal coordinate hints contained in toplogy definition files. When these are insufficient, wild guesses
are attempted based on bond lengths of 1 A and angles of 109°.

Arguments: None.

Context: After stucture has been generated and known coordinates read in.

writepdb <file name>

Purpose: Writes PDB file containing coordinates. Atoms order is identical to PSF file generated by
writepsf (unless structure has been changed). The O field is set to 1 for atoms with known coordinates,
0 for atoms with guessed coordinates, and -1 for atoms with no coordinate data available (coordinates
are set to 0 for these atoms).

Arguments: <file name>: PDB file to be written.

Context: After structure and coordinates are complete.

BPTI Example

To actually run this demo requires

e the program psfgen from any NAMD distribution,

e the CHARMM topology and parameter files top_all22_prot.inp and par_all22_prot.inp from

https://rxsecure.umaryland.edu/research/amackere/research.html, and

e the BPTI PDB file 6PTI.pdb available from the Protein Data Bank at http://www.pdb.org/ by

searching for 6PTI and downloading the complete structure file in PDB format.

In this demo, we create the files bpti.psf and bpti.pdb in the output directory which can then be used
for a simple NAMD simulation.
Create the working directory. Nothing outside of the directory output is modified.

mkdir output

Splitting input PDB file into segments. 6PTIL.pdb is the original file from the Protein Data Bank. It
contains a single chain of protein and some PO4 and H20 HETATM records. Since each segment must have
a separate input file, we remove all non-protein atom records using grep. If there were multiple chains we
would have to split the file by hand.

grep -v ’"HETATM’ 6PTI.pdb > output/6PTI_protein.pdb
Create a second file containing only waters.
grep ’HOH’ 6PTI.pdb > output/6PTI_water.pdb

Run the psfgen program, taking everything until ”’ENDMOL” as input. You may run psfgen interactively
as well. Since psfgen is built on a Tcl interpreter, you may use loops, variables, etc., but you must use $$
for variables when inside a shell script. If you want, run psfgen and enter the following commands manually.

psfgen << ENDMOL

Reading topology file. Read in the topology definitions for the residues we will create. This must match
the parameter file used for the simulation as well. Multiple topology files may be read in since psfgen and
NAMD use atom type names rather than numbers in psf files.

topology toppar/top_all22_prot.inp

Building segment BPTI. Actually build a segment, calling it BPTI and reading the sequence of residues
from the stripped pdb file created above. In addition to the pdb command, we could specify residues
explicitly. Both angles and dihedrals are generated automatically unless ”auto none” is added (which is
required to build residues of water). The commands "first” and ”last” may be used to change the default
patches for the ends of the chain. The structure is built when the closing } is encountered, and some errors
regarding the first and last residue are normal.

segment BPTI {
pdb output/6PTI_protein.pdb
}

Adding patches. Some patch residues (those not used to begin or end a chain) are applied after the
segment is built. These contain all angle and dihedral terms explicitly since they were already generated. In
this case we apply the patch for a disulfide link three separate times.

patch DISU BPTI:5 BPTI:55
patch DISU BPTI:14 BPTI:38
patch DISU BPTI:30 BPTI:51

Reading coordinates from pdb file. The same file used to generate the sequence is now read to extract
coordinates. In the residue ILE, the atom CD is called CD1 in the pdb file, so we use ”alias atom” to define
the correct name. Segment names in the pdb file are ignored so we specify that the coordinates should be
applied to the segment BPTT.

alias atom ILE CD1 CD
coordpdb output/6PTI_protein.pdb BPTI

Adding a segment of water. Build a segment for the crystal waters. The residue type for water depends
on the model, so here we alias HOH to TIP3. Because CHARMM uses an additional H-H bond we must
disable generation of angles and dihedrals for segments containing water. Then read the pdb file.

alias residue HOH TIP3
segment SOLV {

auto none

pdb output/6PTI_water.pdb
}

Reading water coordinates. Alias the atom type for water oxygen as well and read coordinates from
the file to the segment SOLV. Hydrogen doesn’t show up in crystal structures so it is missing from this pdb
file.

alias atom HOH 0 OH2
coordpdb output/6PTI_water.pdb SOLV

Writing psf structure file. Now that all of the atoms and bonds have been created, we can write out
the psf structure file for the system.

writepsf output/bpti.psf

Guessing missing coordinates. The tolopogy file contains default internal coordinates which can be
used to guess the locations of many atoms, hydrogens in particular. In the output pdb file, the occupancy
field of guessed atoms will be set to 0, atoms which are known are set to 1, and atoms which could not be
guessed are set to -1. Some atoms are "poorly guessed” if needed bond lengths and angles were missing from
the topology file. Similarly, waters with missing hydrogen coordinates are given a default orientation.

guesscoord

Writing pdb coordinate file. This creates the matching coordinate pdb file. The psf and pdb files are
a matched set with identical atom ordering as needed by NAMD.

writepdb output/bpti.pdb

ENDMOL

Using generated files in NAMD. The files bpti.pdb and bpti.psf can now be used with NAMD, but
the initial coordinates require minimization first. The following is an example NAMD configuration file for
the BPTT example.

NAMD configuration file for BPTI

molecular system
structure output/bpti.psf

force field

paratypecharmm on

parameters toppar/par_all22_prot.inp
exclude scaledl-4

1-4scaling 1.0

approximations
switching on

switchdist 8
cutoff 12
pairlistdist 13.5
margin O
stepspercycle 20

#integrator
timestep 1.0

#output
outputenergies 10
outputtiming 100
binaryoutput no

molecular system
coordinates output/bpti.pdb

#output
outputname output/bpti
dcdfreq 1000

#protocol
temperature 0
reassignFreq 1000
reassignTemp 25
reassignlncr 25
reassignHold 300

#script
minimize 1000

run 20000

5 Building solvent around a protein

The following script illustrates how psfgen and VMD can be used together to add water around a protein
structure. It assumes you already have a psf and pdb file for your protein, as well as a box of water which is
large enough to contain the protein. For more information on how atomselections can be used within VMD
scripts, see the VMD User’s Guide.

proc addwater { psffile pdbfile watpsf watpdb } {

Create psf/pdb files that contain both our protein as well as

a box of equilibrated water. The water box should be large enough
to easily contain our protein.

resetpsf

readpsf $psffile

readpsf $watpsf

coordpdb $pdbfile

coordpdb $watpdb

Load the combined structure into VMD
writepsf combine.psf

writepdb combine.pdb
mol load psf combine.psf pdb combine.pdb

Assume that the segid of the water in watpsf is QQQ
We want to delete waters outside of a box ten Angstroms
bigger than the extent of the protein.
set protein [atomselect top "not segid QQQ"]
set minmax [measure minmax $protein]
foreach {min max} $minmax { break }
foreach {xmin ymin zmin} $min { break }
foreach {xmax ymax zmax} $max { break }
set xmin [expr $xmin - 10]
set ymin [expr $ymin - 10]
set zmin [expr $zmin - 10]
set xmax [expr $xmax + 10]
set ymax [expr $ymax + 10]
set zmax [expr $zmax + 10]

Center the water on the protein. Also update the coordinates held
by psfgen.

set wat [atomselect top "segid QQQ"]

$wat moveby [vecsub [measure center $protein] [measure center $wat]]
foreach atom [$wat get {segid resid name x y z}] {

foreach {segid resid name x y z} $atom { break }

coord $segid $resid $name [list $x $y $z]

}

Select waters that we don’t want in the final structure.
set outsidebox [atomselect top "segid QQQ and (x <= $xmin or y <= $ymin \
or z <= $zmin or x >= $xmax or y >= $ymax or z >= $xmax)"]
set overlap [atomselect top "segid QQQ and within 2.4 of (not segid QQQ)"]

Get a list of all the residues that are in the two selections, and delete
those residues from the structure.

set reslist [concat [$outsidebox get resid] [$overlap get resid]]

set reslist [lsort -unique -integer $reslist]

foreach resid $reslist {
delatom QQQ $resid
}

That should do it - write out the new psf and pdb file.
writepsf solvate.psf
writepdb solvate.pdb

Delete the combined water/protein molecule and load the system that
has excess water removed.

mol delete top

mol load psf solvate.psf pdb solvate.pdb

Return the size of the water box
return [list [list $xmin $ymin $zmin] [list $xmax $ymax $zmax]]

}

