Quantum Mechanics in Biology

Todd J. Martinez

Quantum Biology

- Is quantum mechanics necessary for biology?
 - Yes, but mostly for "light" particles...
- Electrons
 - Force Fields
 - Bond-Rearrangement
 - Electron Transfer
- Nuclei
 - Tunneling Proton Transfer
 - Multiple electronic states Photobiology

Cytochrome *c* Oxidase – ET/PT/Bond Rearrangement

Proton Transfer

light puttolo; con

turvel Mongh

н_о...н_о

4

pruce

4}

И

Bacteriorhodopsin – Light-Induced Proton Pump

Force Fields – The Building Block of Biomolecular Simulations

But where does this come from? In reality,

 $\hat{H}_{electronic}(\vec{R})\psi_{i,electronic}(\vec{r}_{electronic};\vec{R}) = E_{i,electronic}(\vec{R})\psi_{i,electronic}(\vec{r}_{electronic};\vec{R})$

Electronic Schrodinger Equation

Electronic Hamiltonian

Kinetic Energy of electrons

Electron-nucleus

attraction

Nuclear-nuclear repulsion

Electron-electron repulsion

Ab Initio Quantum Chemistry

• The Good...

- Well-defined hierarchy in principle always know route to improve results
- Prescriptions for thermochemistry with kcal/mol accuracy exist (but may not always be practical)
 Excited electronic states without special treatment

• The Bad...

- Periodic boundary conditions are difficult
- Can be computationally costly; even "showcase" calculations on > 200 atoms are rare

Quantum Chemical "Canon"

- •Two-pronged Hierarchy
 - Minimal Basis Set Full CI

Electron Correlation

Minimal Basis Set/Hartree-Fock

Complete Basis Set/Hartree-Fock

Basis set

The Never-Ending Contraction

Basis Sets (One-Particle)

- Centered on atoms this means we need fewer functions because geometry of molecule is embedded in basis set
- Ideally, exponentially-decaying. This is the form of H atom solutions and is also the correct decay behavior for the density of a molecule. But then integrals are intractable...
- This is the reason for the fixed contractions of Gaussians – try to mimic exponential decay and cusp with I.c. of Gaussians

Adding Basis Functions:

Reeves and Harrison, JCP **39** 11 (1963) Bardo and Ruedenberg, JCP **59** 5956 (1973) Schmidt and Ruedenberg, JCP **71** 3951 (1979)

Gaussians vs. Plane Waves

Atom-centered

- Places basis functions in the important regions
- Gradient of energy with respect to atom coordinates will be complicated (need derivatives of basis functions)
- Linear dependence could be a problem
- Localized Good for reducing scaling...

Plane Waves

- Force periodic description (could be good)
- Gradients are trivial
- Need many more basis functions...
- Required integrals are easier

Basis Set Classification

Minimal Basis Set (MBS) One CBF per occupied orbital on an atom E.g., H has one *s* function, C has 2*s* and 1*p n*-zeta *n* CBF per occupied orbital on an atom Valence *n*-zeta MBS for core (1s of C), *n*-zeta for valence **Polarized** Add higher angular momentum functions than MBS – e.g., d functions on C **Diffuse or augmented** Add much wider functions to describe weakly bound electrons and/or Rydberg states

Physical Interpretation

 Could just say more functions = more complete, but this gives no insight...

Physical Interpretation II

Example for H atom; generally polarization functions allow orbitals to "bend"

Alphabet Soup of Basis Sets

- After > 30 years, only a handful of basis sets still used:
- •STO-3G The last MBS standing...
- "Pople-style" m-n₁...n_xG X-zeta m = # prim in core n_i = # prim in ith valence AO 3-21G – Pathologically good geometries for closedshell molecules w/HF (cancellation of errors) 6-31G, 6-31G*, 6-31G**, 6-31G+, 6-31G++ * = polarization on non-H ** = polarization on all + = diffuse on non-H ++ = diffuse on all
 cc-pvXz, aug-cc-pvXz – X-zeta - "correlation-consistent" best, but tend to be larger than Pople sets

Hartree-Fock

Γ

 Truncating the many-particle basis set at one term gives Hartree-Fock

$$\Psi_{HF} = \mathcal{A} \left[\prod_{i} \left\{ \sum_{k=1}^{N_{CBF}} c_{ki}^{MO}(R) \chi_{k}^{AO,CBF}(r,R) \right\} \right]$$

 Can be shown that this implies a nonlinear effective one-particle problem

$$\hat{F}(c^{MO}) = \sum_{i} \hat{h}(i) + \left(\sum_{j \in occ} 2\hat{J}_{j}(c^{MO}) - \hat{K}_{j}(c^{MO})\right)$$

 $\hat{H}(\vec{R})\psi(\vec{R}) = E\psi(\vec{R}) \rightarrow \hat{F}(\{\varphi(r)\})\varphi_i(r) = \varepsilon_i\varphi_i(r)$

Self-Consistent Field

♦ Guess solution (c^{MO})
 ♦ Build Fock Matrix
 ♦ Solve eigenvalue equation Fc=Ec
 ♦ If coefficients are stil changing

"Static" Correlation

Consider HF wavefunction at dissociation for H₂:

Restricted vs. Unrestricted

Can solve the previous problem by allowing orbitals to be singly occupied (unrestricted HF)

 $\psi_{UHF} = A \left(\phi_{\sigma} \phi_{\sigma}' \left(\alpha \beta - \beta \alpha \right) \right)$

Problem: This is not a spin eigenfunction

$$\hat{S}^2 \psi_{UHF} \neq S(S+1) \psi_{UHF}$$

Why didn't we write:

$$\tilde{\psi}_{UHF} = A \left(\phi_{\sigma}' \phi_{\sigma} \left(\alpha \beta - \beta \alpha \right) \right) \quad \mathbf{\tilde{q}}$$

In fact, pure spin state is l.c. of the two...

$$\psi_{\text{singlet}} \propto \psi_{UHF} + \tilde{\psi}_{UHF} - \psi_{\text{triplet}} \propto \psi_{UHF} - \tilde{\psi}_{UHF}$$

Describing Correlation

Easiest Way: Moller-Plesset Perturbation Theory (MPn)

$$\hat{H}_{0} = \hat{H} - \sum_{i=1}^{N_{el}} \hat{F}(i)$$

Series diverges for stretched bonds!?! Only first correction (MP2) is worthwhile

More stable: configuration interaction (CI) Solve for CI coefficients variationally creation/annihilation operators

$$\psi_{CI} = \left(c_0^{CI} + \sum_{i,a} a_a^{\dagger} a_i c_{ia}^{CI} + \sum_{ijab} a_a^{\dagger} a_b^{\dagger} a_i a_j c_{ijab}^{CI} + \cdots \right) \psi_{SCF}$$

truncated at some excitation may be HF or multi-determinant

Multi-Determinant HF (MCSCF)

HF solves only for c^{MO} – Add c^{CI} and solve for both

"Active Space" – the set of orbitals where electronic occupation varies

e.g. for H_2 :

 $\phi_{\sigma}\phi_{\sigma};\phi_{\sigma}\phi_{\sigma^*};\phi_{\sigma^*}\phi_{\sigma^*}$

CASSCF – "Complete" active space – all rearrangements of electrons allowed within active space

Size Consistency

E(A_N) for A infinitely separated should be NE(A)...
This simple requirement is not met by truncated CI.
E should be additive for noninteracting systems
ψ should be a product
Exponential maps products to sums...
Alternative (Coupled Cluster):

$$\psi_{CC} = e^{\left[\sum_{i,a} a_a^{\dagger} a_i c_{ia}^{CC} + \sum_{ijab} a_a^{\dagger} a_b^{\dagger} a_i a_j c_{ijab}^{CC} + \cdots\right]} \psi_0$$

When exponential ansatz is expanded, find contributions from excitations up to all orders...
1 kcal/mol accuracy possible, but can fail for bond-breaking because there are no good multi-reference versions...

Density Functional Theory

- Is there another way?
 DFT replaces the wavefunction with charge density
 - as the fundamental unknown

$$\rho(r_1) = \int dr_2 \cdots dr_n \psi^*(r_1 \cdots r_n) \psi(r_1 \cdots r_n)$$

Wavefunction – 3n coordinates

Charge Density – 3 coordinates

DFT can be better than HF. How can this be?

DFT – Functionals

DFT expression for the energy:

 $E[\rho] = T[\rho] + \int \rho V_{nuclei} + \int \frac{\rho(r)\rho(r')}{|r-r'|} dr dr' + K_{XC}[\rho]$

Kinetic energy e- e- repulsion

e-/nuclei attraction Exchange / Correlation

[] denotes functional – take function and return a number For example, a definite integral is a type of functional...

$$f[f] = \int f(r) dr$$

So How Can This Work?

- K_{xc} is UNKNOWN!! (And is unlikely to ever be known in a form which is simpler than solving the electronic Schrodinger equation)
- T is also unknown, but can be approximated if the density is associated with a wavefunction.
- Kohn-Sham procedure:

$$\psi_{KS} = \hat{A} \prod \phi_i$$
$$\rho = \sum_i (\phi_i)^2$$

$$T[\rho] \approx \left\langle \psi_{KS} \mid \hat{T} \mid \psi_{KS} \right\rangle$$

DFT and HF

- Need to define K_{XC}
- Exactly the same ansatz is used as HF the only difference is in the Fockian operator

$$\hat{F}_{HF}\left(c^{MO}\right) = \sum_{i} \hat{h}\left(i\right) + \left(\sum_{j \in occ} 2\hat{J}_{j}\left(c^{MO}\right) - \hat{K}_{j}\left(c^{MO}\right)\right)$$
$$\hat{F}_{KS}\left(c^{MO}\right) = \sum_{i} \hat{h}\left(i\right) + \left(\sum_{j \in occ} 2\hat{J}_{j}\left(c^{MO}\right) - a_{K}\hat{K}_{j}\left(c^{MO}\right)\right) + \hat{K}_{xc}\left[\rho, \nabla\rho\right]$$

Same SCF procedure as in HF since the equation is nonlinear...

Local Density Approximation (LDA)

- K_{XC} is known numerically for homogeneous gas of electrons
- Assume density is slowly varying:

$$K_{XC}[\rho] = \frac{\int K_{XC}^{\text{hom ogenous, exact}}[\rho]d}{\int dr}$$

Problem: Errors are large (up to 30kcal/mol)

Gradient Corrections

Piecewise-linear approximation to density Exact results not known; hence there are several "gradient-corrected" functionals

• $K_{xc} \rightarrow K_{xc} [\rho, \nabla \rho]$

Examples: BLYP, PW91

Much improved approximation, but errors can still be as large as 10 kcal/mol

Hybrid Functionals

- The Coulomb interaction we wrote counts the interaction of electrons with themselves
- In Hartree-Fock, this is exactly canceled by exchange integrals
- Try adding in some Hartree-Fock exchange
- B3LYP is most popular functional of this type
- Errors go down to 3-5 kcal/mol in most cases
- Cost still roughly same as HF

Behavior of HF and DFT

- By definition, HF has no electron correlation As we saw earlier, this implies more serious errors for stretched/distorted bonds, i.e. disfavors overcoordination
- Pure DFT overestimates correlation Preference for overcoordination
- Hence success of hybrid functionals which add exchange to DFT, e.g. B3LYP
- Hartree-Fock alone is *not* very useful barriers are usually overestimated by more than DFT underestimates

Problems with DFT

- Is DFT a panacea? No!
 - Even the best DFT often yield errors of 5 kcal/mol
 - No hierarchy for improvement
 - •Different functionals = Different answers
 - Poor for proton transfer and bond rearrangment
 - Tendency to overcoordinate...
 - Extreme example: LDA predicts no proton transfer barrier in malonaldehyde

• No satisfactory route to excited electronic states

Semiempirical Methods

Basic approximation:

$$\int \frac{\phi_{\mu 1}(r_{1})\phi_{\nu 2}(r_{1})\phi_{\eta 3}(r_{2})\phi_{\tau 4}(r_{2})}{|r_{1}-r_{2}|} = \delta_{\mu \nu}\delta_{\eta}$$

Atomic indices for basis functions

τ

- Hartree-Fock type of SCF using this (and related) integral approximations
- Problem: Need to parameterize remaining integrals to model correlation
- Many variants (MNDO, AM1, PM3)

Semiempirical Methods

Advantages

- Cheaper than DFT
- Only truly viable QM-like methods for entire proteins, but even small proteins are barely within reach
- Can be reparameterized for each system/process

Disadvantages

- H-bond strengths often wrong by several kcal/mol
- Still expensive

Summary of Methods

	Var?	Multi Ref?	Size Consistent?	Approx Error in 10 kcal/mo
				barrier height
DUE	V	NI	NI	F 1 F
	I V	IN NI		5-15 5-15
CASSCE	Y	Y	' Nearly	3-15
CI	Ý	Ŷ	Only Full-CI	1-5
CC	Ν	Ν	Ý	0.1-3
MP2	Ν	N	Y	4-10
DFT	N	N	Y/N	1-5

N.B. There are multi-reference perturbation and CC theories, esp. CASPT2 has been successful but sometimes has technical problems

PES Topography

Transition State

Conical Intersection

Global // Minimum

Local Minima

Important Points

 $\frac{\partial E(\vec{R})}{\partial \vec{R}} \bigg|_{\vec{R}_{stat}}$

Normally, only look for stationary points

= 0

- These geometries may be local minima, global minima, transition states or higher order saddle points
- How to check?
 - Build and diagonalize the "Hessian" matrix

Count negative eigenvalues
 0 → local minimum
 1 → saddle point
 >1 → useless

Hessian Matrix

Generally built in Cartesian coordinates

- Will have 6 zero eigenvalues corresponding to rotation and translation
- These must be identified and ignored in the analysis
- How to identify? Animate normal modes, e.g. with MolDen
- Disadvantage Expensive
 (10x Energy Calculation)

Special Warning!

- When a molecule has symmetry beware of optimizing to saddle points!
- If you enforce symmetry, obviously will maintain symmetry
- But, just starting from a high symmetry geometry is enough, because symmetry requires that gradient is nonzero *only* with respect to totally-symmetric modes
- Example: Try optimizing the geometry of water starting with perfectly linear molecule for initial guess...
- Conclusions:
 - Avoid high symmetry starting points
 - Always verify that stationary points are minima, at least by perturbing geometry (but Hessian is best)

Intrinsic Reaction Path (IRC)

Local minima