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We want to apply now our derivation to the case of a Brownian particle in a force field F (r). The
corresponding Langevin equation is

mr̈ = − γ ṙ + F (r) + σ ξ(t) (4.1)

for scalar friction constant γ and amplitude σ of the fluctuating force. We will assume in this
section the limit of strong friction. In this limit the magnitude of the frictional force γṙ is much
larger than the magnitude of the force of inertia mr̈, i.e.,

|γ ṙ| � |m r̈| (4.2)

and, therefore, (4.1) becomes

γ ṙ = F (r) + σ ξ(t) (4.3)

To (4.1) corresponds the Fokker-Planck equation (cf. Eqs. (2.138) and (2.148)

∂t p(r, t|r0, t0) =
(

∇2 σ2

2γ2
− ∇ · F (r)

γ

)
p(r, t|r0, t0) (4.4)

In case that the force field can be related to a scalar potential, i.e., in case F (r) = −∇U(r), one
expects that the Boltzmann distribution exp[−U(r)/kBT ] is a stationary, i.e., time-independent,
solution and that, in fact, the system asymptotically approaches this solution. This expectation
should be confined to force fields of the stated kind, i.e., to force fields for which holds ∇×F = 0.
Fokker-Planck equations with more general force fields will be considered further below.
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64 Smoluchoswki Diffusion Equations

4.1 Derivation of the Smoluchoswki Diffusion Equation for Poten-

tial Fields

It turns out that the expectation that the Boltzmann distribution is a stationary solution of the
Smoluchowski equation has to be introduced as a postulate rather than a consequence of (4.4).
Defining the parameters D = σ2/2γ2 [cf. (3.12)] and β = 1/kBT the postulate of the stationary
behaviour of the Boltzmann equation is(

∇ · ∇D(r) − ∇ · F (r)
γ(r)

)
e−β U(r) = 0 . (4.5)

We have included here the possibility that the coefficients σ and γ defining the fluctuating and dis-
sipative forces are spatially dependent. In the following we will not explicitly state the dependence
on the spatial coordinates r anymore.
Actually, the postulate (4.5) of the stationarity of the Boltzmann distribution is not sufficient to
obtain an equation with the appropriate behaviour at thermal equilibrium. Actually, one needs to
require the more stringent postulate that at equilibrium there does not exist a net flux of particles
(or of probability) in the system. This should hold true when the system asymptotically comes
to rest as long as there are no particles generated or destroyed, e.g., through chemical reactions.
We need to establish the expression for the flux before we can investigate the ramifications of the
indicated postulate.
An expression for the flux can be obtained in a vein similar to that adopted in the case of free
diffusion [cf. (3.17–3.21)]. We note that (4.4) can be written

∂t p(r, t|r0, t0) = ∇ ·
(

∇D − F (r)
γ

)
p(r, t|r0, t0) . (4.6)

Integrating this equation over some arbitrary volume Ω, with the definition of the particle number
in this volume

NΩ(t|r0, t0) =
∫

Ω
dr p(r, t|r0, t0) (4.7)

and using (4.6), yields

∂t NΩ(t|r0, t0) =
∫

Ω
dr ∇ ·

(
∇ D − F (r)

γ

)
p(r, t|r0, t0) (4.8)

and, after applying Gauss’ theorem (3.19),

∂t NΩ(t|r0, t0) =
∫

∂Ω
da ·

(
∇D − F (r)

γ

)
p(r, t|r0, t0) . (4.9)

The l.h.s. of this equation describes the rate of change of the particle number, the r.h.s. contains a
surface integral summing up scalar products between the vector quantity

j(r, t|r0, t0) =
(

∇D − F (r)
γ

)
p(r, t|r0, t0) (4.10)

and the surface elements da of ∂Ω. Since particles are neither generated nor destroyed inside the
volume Ω, we must interpret j(r, t|r0, t0) as a particle flux at the boundary ∂Ω. Since the volume
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4.1: Derivation for Potential Fields 65

and its boundary are arbitrary, the interpretation of j(r, t|r0, t0) as given by (4.10) as a flux should
hold everywhere in Ω.
We can now consider the ramifications of the postulate that at equilibrium the flux vanishes.
Applying (4.10) to the Boltzmann distribution po(r) = N exp[−β U(r)], for some appropriate
normalization factor N , yields the equilibrium flux

jo(r) =
(

∇D − F (r)
γ

)
N e−β U(r) . (4.11)

With this definition the postulate discussed above is(
∇D − F (r)

γ

)
N e−β U(r) ≡ 0 . (4.12)

The derivative ∇D exp[−β U(r)] = exp[−β U(r)]
(∇D + β F (r)

)
allows us to write this

e−β U(r)

(
D β F (r) + ∇D − F (r)

γ

)
≡ 0 . (4.13)

From this follows

∇D = F (r)
(
γ−1 − D β

)
. (4.14)

an identity which is known as the so-called fluctuation - dissipation theorem.
The fluctuation - dissipation theorem is better known for the case of spatially independent D in
which case follows D β γ = 1, i.e., with the definitions above

σ2 = 2 kB T γ . (4.15)

This equation implies a relationship between the amplitude σ of the fluctuating forces and the
amplitude γ of the dissipative (frictional) forces in the Langevin equation (4.1), hence, the name
fluctuation - dissipation theorem. The theorem states that the amplitudes of fluctuating and
dissipative forces need to obey a temperature-dependent relationship in order for a system to
attain thermodynamic equilibrium. There exist more general formulations of this theorem which
we will discuss further below in connection with response and correlation functions.
In its form (4.14) the fluctuation - dissipation theorem allows us to reformulate the Fokker-Planck
equation above. For any function f(r) holds with (4.14)

∇·∇ D f = ∇ · D ∇ f + ∇ · f ∇ D = ∇ · D ∇ f + ∇ · F
(

1
γ
− D β

)
f (4.16)

From this follows finally for the Fokker-Planck equation (4.4)

∂t p(r, t|r0, t0) = ∇ · D (∇ − βF (r)
)

p(r, t|r0, t0) . (4.17)

One refers to Eq. (4.17) as the Smoluchowski equation.
The Smoluchowski equation (4.17), in the case F (r) = −∇U(r), can be written in the convenient
form

∂t p(r, t|r0, t0) = ∇ · D e−β U(r) ∇ eβ U(r) p(r, t|r0, t0) . (4.18)

This form shows immediately that p ∝ exp[−β U(r)] is a stationary solution. The form also provides
a new expression for the flux j, namely,

j(r, t|r0, t0) = D e−β U(r) ∇ eβ U(r) p(r, t|r0, t0) . (4.19)
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66 Einstein / Smoluchoswki Diffusion Equations

Boundary Conditions for Smoluchowski Equation

The system described by the Smoluchoswki (4.17) or Einstein (3.13) diffusion equation may either
be closed at the surface of the diffusion space Ω or open, i.e., ∂Ω either may be impenetrable for
particles or may allow passage of particles. In the latter case, ∂Ω describes a reactive surface. These
properties of Ω are specified through the boundary conditions for the Smoluchoswki or Einstein
equation at ∂Ω. In order to formulate these boundary conditions we consider the flux of particles
through consideration of NΩ(t|r0, t0) as defined in (4.7). Since there are no terms in (4.17) which
affect the number of particles the particle number is conserved and any change of NΩ(t|r0, t0) must
be due to particle flux at the surface of Ω, i.e.,

∂t NΩ(t|r0, t0) =
∫

∂Ω
da · j(r, t|r0, t0) (4.20)

where j(r, t|r0, t0) denotes the particle flux defined in (4.10). The fluctuation - dissipation theorem,
as stated in (4.14), yields

∇ D f = D ∇ f + f F (r)
(
γ−1 − D β

)
(4.21)

and with (4.10) and (3.12) follows

j(r, t|r0, t0) = D
(∇ − β F (r)

)
p(r, t|r0, t0) (4.22)

We will refer to

J (r) = D
(∇ − β F (r)

)
(4.23)

as the flux operator. This operator, when acting on a solution of the Smoluchowski equation, yields
the local flux of particles (probability) in the system.
The flux operator J (r) governs the spatial boundary conditions since it allows to measure particle
(probability) exchange at the surface of the diffusion space Ω. There are three types of boundary
conditions possible. These types can be enforced simultaneously in disconnected areas of the
surface ∂Ω. Let us denote by ∂Ω1, ∂Ω2 two disconnected parts of ∂Ω such that ∂Ω = ∂Ω1 ∪ ∂Ω2.
An example is a volume Ω lying between a sphere of radius R1 (∂Ω1) and of radius R2 (∂Ω2). The
separation of the surfaces ∂Ωi with different boundary conditions is necessary in order to assure
that a continuous solution of the Smoluchowski equation exists. Such solution cannot exist if it has
to satisfy in an infinitesimal neighborhood entailing ∂Ω two different boundary conditions.
The first type of boundary condition is specified by

â(r) · J (r) p(r, t|r0, t0) = 0 , r ∈ ∂Ωi (4.24)

which, obviously, implies that particles do not cross the boundary, i.e., that particles are reflected
there. Here â(r) denotes a unit vector normal to the surface ∂Ωi at r. We will refer to (4.24) as
the reflection boundary condition.
The second type of boundary condition is

p(r, t|r0, t0) = 0 , r ∈ ∂Ωi . (4.25)

This condition implies that all particles arriving at the surface ∂Ωi are taken away such that the
probability on ∂Ωi vanishes. This boundary condition describes a reactive surface with the highest
degree of reactivity possible, i.e., that every particle on ∂Ωi reacts. We will refer to (4.25) as the
reaction boundary condition.
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4.2. ONE-DIMENSIONAL DIFFUSON IN A LINEAR POTENTIAL 67

The third type of boundary condition,

â(r) · J (r) p(r, t|r0, t0) = w p(r, t|r0, t0) , r on ∂Ωi , (4.26)

describes the case of intermediate reactivity at the boundary. The reactivity is measured by the
parameter w. For w = 0 in (4.26) ∂Ωi corresponds to a non-reactive, i.e., reflective boundary. For
w → ∞ the condition (4.26) can only be satisfied for p(r, t|r0, t0) = 0, i.e., every particle impinging
onto ∂Ωi is consumed in this case. We will refer to (4.26) as the radiation boundary condition.

4.2 One-Dimensional Diffuson in a Linear Potential

We consider now diffusion in a linear potential

U(x) = c x (4.27)

with a position-independent diffusion coefficient D. This system is described by the Smoluchowski
equation

∂t p(x, t|x0, t0) =
(
D ∂2

x + D β c∂x

)
p(x, t|x0, t0) . (4.28)

This will be the first instance of a system in which diffusing particles are acted on by a non-vanishing
force. The techniques to solve the Smoluchowski equation in the present case will be particular for
the simple force field, i.e., the solution techniques adopted cannot be generalized to other potentials.

4.2.1 Diffusion in an infinite space Ω∞ = ] −∞,∞[

We consider first the situation that the particles diffusing under the influence of the potential (4.27)
have available the infinite space

Ω∞ = ] −∞,∞[ . (4.29)

In this case hold the boundary conditions

lim
x→±∞ p(x, t|x0, t0) = 0 . (4.30)

The initial condition is as usual

p(x, t0|x0, t0) = δ(x − x0) . (4.31)

In order to solve (4.28, 4.30, 4.31) we introduce

τ = D t , b = β c . (4.32)

The Smoluchowski equation (4.28) can be written

∂τ p(x, τ |x0, τ0) =
(
∂2

x + b ∂x

)
p(x, τ |x0, τ0) . (4.33)

We introduce the time-dependent spatial coordinates

y = x + b τ , y0 = x0 + b τ0 (4.34)
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68 Smoluchowski Diffusion Equation

and express the solution

p(x, τ |x0, τ0) = q(y, τ |y0, τ0) . (4.35)

Introducing this into (4.33) yields

∂τ q(y, τ |y0, τ0) + b ∂y q(y, τ |y0, τ0) =
(
∂2

y + b ∂y

)
q(y, τ |y0, τ0) (4.36)

or

∂τ q(y, τ |y0, τ0) = ∂2
y q(y, τ |y0, τ0) . (4.37)

This equation has the same form as the Einstein equation for freely diffusing particles for which
the solution in case of the diffusion space Ω∞ is

q(y, τ |y0, τ0) =
1√

4π (τ − τ0)
exp
[
− (y − y0)2

4 (τ − τ0)

]
. (4.38)

Expressing the solution in terms of the original coordinates and constants yields

p(x, t|x0, t0) =
1√

4π D (t − t0)
exp

[
−
(
x − x0 + D β c (t − t0)

)2
4D (t − t0)

]
. (4.39)

This solution is identical to the distribution of freely diffusing particles, except that the center of
the distribution drifts down the potential gradient with a velocity −D β c.

Exercise 4.1:
Apply this to the case (i) of an ion moving between two electrodes at a distance of 1cm in water
with a potential of 1 Volt. Estimate how long the ion needs to drift from one electrode to the other.
(ii) an ion moving through a channel in a biological membrane of 40Å at which is applied a typical
potential of 0.1eV. Assume the ion experiences a diffusion coefficient of D = 10−5cm2/s. Estimate
how long the ion needs to cross the membrane.
Answer i) Let’s assume that at the moment t0 = 0 the ion is at x0 = 0 with

p(x0, t0) = δ(x0) . (4.40)

Then, according to (4.39) we have

p(x, t) = p(x, t|0, 0) =
1√

4π D t
exp

[
−
(
x + D β c t

)2
4D t

]
. (4.41)

Calculate now the mean value of x:〈
x(t)

〉
=

∫ ∞

−∞
dx x p(x, t) =

1√
4π D t

∫ ∞

−∞
dx x exp

[−(x + β cD t)2/4D t
]

. (4.42)

In order to solve this integral add and substract a β cD t term to x and make the change of variable
z = x + β D c t. This yields 〈

x(t)
〉

= −D β c t = vd t (4.43)
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4.2: Linear Potential 69

where vd = −D β c is the drift velocity of the ion. Taking into consideration that the electrical
force that acts on the ion is c = q E, E = U/d, β = 1/kbT and 〈x(τ)〉 = d we obtain for the time τ
needed by the ion to drift from one electrod to another

τ =
kb T d2

D q U
. (4.44)

For d = 1cm, kB = 1.31 × 10−23 J/K, T = 300K, D = 1.545 × 10−5 cm2/sec, q = 1.6 × 10−19 C,
U = 1V we obtain τ = 1674 sec.
ii) Applying the same reasoning to the ion moving through a membrane one gets τ = 4.14×10−9 sec.

Diffusion and exponential growth

The above result (4.39) can be used for a stochastic processes with exponential growth by performing
a simple substitution.
Comparing the Fokker-Planck equation (2.148) with the Smoluchowski equation (4.28) of the pre-
vious example one can easily derive within Ito calculus the corresponding stochastic differential
equation

∂t x(t) = −D β c +
√

D ξ(t) , (4.45)

or equivalently

dx = −D β c dt +
√

D dω . (4.46)

Equation (4.46) displays the mechanism that generates the stochastic trajectories within a linear
potential (4.27) . The increment dx of a trajectory x(t) is given by the drift term −D β c dt, which
is determined by the force c of the lineare potential and the friction γ = D β. Furthermore the
increment dx is subject to Gaussian noise dω scaled by

√
D.

We now consider a transformation of the spatial variable x. Let x 7→ y = exp x. This substitution
and the resulting differential dy/y = dx render the stochastic differential equation

dy = −D β c y dt +
√

D y dω . (4.47)

Equation (4.47) describes a different stochastic process y(t). Just considering the first term on the
r.h.s. of (4.47), one sees that y(t) is subject to exponential growth or decay depending on the sign
of c. Neglecting the second term on the r.h.s of (??) one obtains the deterministic trajectory

y(t) = y(0) exp [−D β c t] . (4.48)

This dynamic is typical for growth or decay processes in physics, biology or economics. Furthermore,
y(t) is subject to Gaussian noise dω scaled by y

√
D. The random fluctuation are consequently

proportional to y, which is the case when the growth rate and not just the increment are subject
to stochastic fluctuations.
Since (4.46) and (4.47) are connected via the simple mapping y = exp x we can readily state the
solution of equation (4.47) by substituting log y for x in (4.39) .

Preliminary version November 12, 1999



70 Smoluchowski Diffusion Equation

p(y, t|y0, t0) = p(x(y), t|x(y0), t0)
dx

dy

=
1√

4π D (t − t0) y
exp

−(log
(

y
y0

)
+ D β c (t − t0)

)2
4D (t − t0)

 . (4.49)

4.2.2 Diffusion in a Half-Space Ω∞ = [0,∞[

We consider now diffusion in a half-space Ω∞ = [0,∞[ under the influence of a linear potential
with a reflective boundary at x = 0. To describe this system by a distribution function p(x, t|x0, t0)
we need to solve the Smoluchowski equation (4.28) subject to the boundary conditions

D (∂x + β c) p(x, t|x0, t0) = 0 , at x = 0 (4.50)
p(x, t|x0, t0) �

x→∞ 0 . (4.51)

The solution has been determined by Smoluchowski ([45], see also [21]) and can be stated in the
form

p(x, t|x0, 0) =
3∑

j=1

pj(x, t|x0, 0) (4.52)

p1(x, t|x0, 0) =
1√

4π D t
exp
[−(x − x0 + β cD t)2/4D t

]
(4.53)

p2(x, t|x0, 0) =
1√

4π D t
exp
[
β c x0 − (x + x0 + β cD t)2/4D t

]
(4.54)

p3(x, t|x0, 0) =
β c

2
exp[−β c x] erfc

[
(x + x0 − β cD t)/

√
4D t

]
. (4.55)

In this expression erfc(z) is the complementary error function

erfc(z) =
2√
π

∫ ∞

z
dx e−x2

(4.56)

for which holds

erfc(0) = 1 (4.57)

erfc(z) �
z→∞

1√
π z

e−z2
(4.58)

∂z erfc(z) = − 2√
π

e−z2
. (4.59)

Plots of the distributions p1, p2 and p3 as functions of x for different t’s are shown in Figure 4.1.
In Figure 4.2 the total distribution function p(x, t) = p1(x, t)+p2(x, t)+p3(x, t) is ploted as a func-
tion of x for three consecutive instants of time, namely for t = 0.0, 0.025, 0.05, 0.1, 0.2, 0.4, 0.8,∞.
The contribution (4.53) to the solution is identical to the solution derived above for diffusion in
]−∞,∞[, i.e., in the absence of a boundary at a finite distance. The contribution (4.54) is analogous
to the second term of the distribution (3.31) describing free diffusion in a half-space with reflective
boundary; the term describes particles which have impinged on the boundary and have been carried
away from the boundary back into the half-space Ω. However, some particles which impinged on
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4.2: Linear Potential 71

Figure 4.1: These three plots show p1, p2 and p3 as a function of x for consecutive times t =
0.0, 0.1, . . . , 1.0 and x0 = 0.5; the length unit is L = 4

β c , the time unit is T = 4
D β2 c2

while pi

(i = 1, 2, 3) is measured in 1
L .
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72 Smoluchowski Diffusion Equation

Figure 4.2: Plot of p(x, t|0.5, 0) = p1(x, t|0.5, 0) + p2(x, t|0.5, 0) + p3(x, t|0.5, 0) vs. x for t =
0.0, 0.025, 0.05, 0.1, 0.2, 0.4, 0.8,∞. Same units as in Figure 4.1.

the boundary equilibrate into a Boltzmann distribution exp(−β c x). These particles are collected
in the term (4.55). One can intuitively think of the latter term as accounting for particles which
impinged onto the surface at x = 0 more than once.
In order to prove that (4.52–4.55) provides a solution of (4.28, 4.31, 4.50, 4.51) we note

lim
t→0

p1(x, t|x0, 0) = δ(x − x0) (4.60)

lim
t→0

p2(x, t|x0, 0) = eβ c x0 δ(x + x0) (4.61)

lim
t→0

p3(x, t|x0, 0) = 0 (4.62)

where (4.60, 4.61) follow from the analogy with the solution of the free diffusion equation, and
where (4.62) follows from (4.59). Since δ(x + x0) vanishes in [0,∞[ for x0 > 0 we conclude that
(4.31) holds.
The analogy of p1(x, t|x0, 0) and p2(x, t|x0, 0) with the solution (4.39) reveals that these two distri-
butions obey the Smoluchowski equation and the boundary condition (4.51), but individually not
the boundary condition (4.50). To demonstrate that p3 also obeys the Smoluchowski equation we
introduce again τ = D t, b = β c and the function

f =
1√
4πτ

exp
[
− b x − (x + x0 − b τ)2

4 τ

]
. (4.63)

For p3(x, τ/D|x0, 0), as given in (4.55), holds then

∂τ p3(x, τ |x0, 0) = f b
x + x0 + b τ

2 τ
(4.64)

∂x p3(x, τ |x0, 0) = −1
2

b2 e−b x erfc
[
x + x0 − b τ√

4 τ

]
− f b (4.65)

∂2
x p3(x, τ |x0, 0) =

1
2

b3 e−b x erfc
[
x + x0 − b τ√

4 τ

]
+ f b

x + x0 − b τ

2 τ
+ f b2 . (4.66)

It follows for the r.h.s. of the Smoluchowski equation(
∂2

x + b ∂x

)
p3(x, τ |x0, 0) = f b

x + x0 + b τ

2 τ
. (4.67)
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4.2: Linear Potential 73

Since this is identical to (4.64), i.e., to the l.h.s. of the Smoluchowski equation, p3(x, t|, x0, 0) is a
solution of this equation.
We want to demonstrate now that p(x, t|, x0, 0) defined through (4.52–4.55) obey the boundary
condition at x = 0, namely, (4.50). We define for this purpose the function

g =
1√
4π τ

exp
[
−(x0 − b τ)2

4 τ

]
. (4.68)

It holds then at x = 0

b p1(0, τ |, x0, 0) = g b (4.69)
b p2(0, τ |, x0, 0) = g b (4.70)

b p3(0, τ |, x0, 0) =
1
2

b2 erfc
[
x0 − b τ√

4 τ

]
(4.71)

∂x p1(x, τ |, x0, 0)
∣∣∣
x=0

= g b
x0 − b τ

2 τ
(4.72)

∂x p2(x, τ |, x0, 0)
∣∣∣
x=0

= g b
−x0 − b τ

2 τ
(4.73)

∂x p3(x, τ |, x0, 0)
∣∣∣
x=0

= − g b − 1
2

b3 erfc
[
x0 − b τ√

4 τ

]
(4.74)

where we used for (4.70, 4.73) the identity

b x0 − (x0 + b τ)2

4 τ
= −(x0 − b τ)2

4 τ
. (4.75)

From (4.69–4.74) one can readily derive the boundary condition (4.50).
We have demonstrated that (4.52–4.55) is a proper solution of the Smoluchowski equation in a
half-space and in a linear potential. It is of interest to evaluate the fraction of particles which are
accounted for by the three terms in (4.52). For this purpose we define

Nj(t|x0) =
∫ ∞

0
dx pj(x, t|x0, 0) . (4.76)

One obtains then

N1(t|x0) =
1√
4π τ

∫ ∞

0
dx exp

[
−(x − x0 + b τ)2

4 τ

]
=

1√
4π τ

∫ ∞

−x0+bτ
dx exp

[
− x2

4 τ

]
=

1
2

2√
π

∫ ∞

−x0+bτ√
4τ

dx exp
[−x2

]
=

1
2

erfc
[−x0 + b τ√

4 τ

]
(4.77)

Similarly one obtains

N2(t|x0) =
1
2

exp[b x0] erfc
[
x0 + b τ√

4 τ

]
. (4.78)

For N3(t|x0) one derives, employing (4.56),

N3(t|x0) =
1
2

b

∫ ∞

0
dx exp[−b x]

2√
π

∫ ∞

x+x0−bτ√
4τ

dy exp
[−y2

]
(4.79)
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Figure 4.3: Plots of N1, N2 and N3 vs. t, for x0 = 0. The length and time units are the same as in
Figure 4.1. For all t > 0 holds N1 + N2 + N3 = 1.

Changing the order of integration yields

N3(t|x0) =
b√
π

∫ ∞

x0−bτ√
4τ

dy exp
[−y2

] ∫ √
4τy−x0+bτ

0
dx exp[−b x]

=
1√
π

∫ ∞

x0−bτ√
4τ

dy exp
[−y2

] − 1√
π

∫ ∞

x0−bτ√
4τ

dy exp
[−(y + b

√
τ)2 + b x0

]
=

1
2

erfc
[
x0 − b τ√

4τ

]
− 1

2
exp[b x0] erfc

[
x0 + b τ√

4 τ

]
.

Employing the identity

1
2

erfc(z) = 1 − 1
2

erfc(−z) (4.80)

one can write finally

N3(t|x0) = 1 − 1
2

erfc
[−x0 + b τ√

4 τ

]
− 1

2
exp[b x0] erfc

[
x0 + bτ√

4τ

]
= 1 − N1(t|x0) − N2(t|x0) . (4.81)

This result demonstrates that the solution (4.52–4.55) is properly normalized. The time dependence
of N1, N2 and N3 are shown in Figure 4.3.

4.3 Diffusion in a One-Dimensional Harmonic Potential

We consider now diffusion in a harmonic potential

U(x) =
1
2

f x2 (4.82)

which is simple enough to yield an analytical solution of the corresponding Smoluchowski equation

∂tp(x, t|x0, t0) = D(∂2
x + βf ∂xx) p(x, t|x0, t0) . (4.83)
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We assume presently a constant diffusion coefficient D. The particle can diffuse in the infinite
space Ω∞. However, the potential confines the motion to a finite area such that the probability
distribution vanishes exponentially for x → ±∞ as expressed through the boundary condition

lim
x→±∞ xn p(x, t|x0, t0) = 0, ∀n ∈ IN . (4.84)

We seek the solution of (4.83, 4.84) for the initial condition

p(x, t0|x0, t0) = δ(x − x0) . (4.85)

In thermal equilibrium, particles will be distributed according to the Boltzmann distribution

p0(x) =
√

f/2πkBT exp
(−fx2/2kBT

)
(4.86)

which is, in fact, a stationary solution of (4.83, 4.84). We expect that the solution for the initial
condition (4.85) will asymptotically decay towards (4.86).
The mean square deviation from the average position of the particle at equilibrium, i.e., from
〈x〉 = 0, is

δ2 =
∫ +∞

−∞
dx (x − 〈x〉)2 p0(x)

=
√

f/2πkBT

∫ +∞

−∞
dxx2 exp

(−fx2/2kBT
)
. (4.87)

This quantity can be evaluated considering first the integral

In(α) = (−1)n
∫ +∞

−∞
dxx2n e−αx2

.

One can easily verify

I1(α) = − ∂αI0(α) =
√

π

2α3/2
. (4.88)

and, through recursion,

In(α) =
Γ
(
n + 1

2

)
αn+ 1

2

, n = 0, 1, . . . (4.89)

One can express δ2 in terms of the integral I1. Defining

κ =
√

f

2kBT
(4.90)

and changing the integration variable x → y = κx yields

δ2 =
1
κ2

1√
π

∫ +∞

−∞
dy y2 e−y2

=
1
κ2

1√
π

I1(1) . (4.91)

According to (4.88) holds I1(1) =
√

π/2 and, hence,

δ2 =
1

2κ2
, (4.92)
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or

δ =
√

kBT/f . (4.93)

For a solution of (4.83, 4.84, 4.85) we introduce dimensionless variables. We replace x by

ξ = x/
√

2δ (4.94)

We can also employ δ to define a natural time constant

τ̃ = 2δ2/D (4.95)

and, hence, replace t by

τ = t/τ̃ . (4.96)

The Smoluchowski equation for

q(ξ, τ |ξ0, τ0) =
√

2 δ p(x, t|x0, t0) (4.97)

reads then

∂τ q(ξ, τ |ξ0, τ0) = (∂2
ξ + 2 ∂ξ ξ) q(ξ, τ |ξ0, τ0) , (4.98)

The corresponding initial condition is

q(ξ, τ0|ξ0, τ0) = δ(ξ − ξ0) , (4.99)

and the boundary condition

lim
ξ→±∞

ξn q(ξ, τ |ξ0, τ0) = 0, ∀n ∈ IN . (4.100)

The prefactor of p(x, t|x0, t0) in the definition (4.97) is dictated by the condition that q(ξ, τ |ξ0, τ0)
should be normalized, i.e.,∫ +∞

−∞
dx p(x, t|x0, t0) =

∫ +∞

−∞
dξ q(ξ, τ |ξ0, τ0) = 1 (4.101)

In the following we choose

τ0 = 0 . (4.102)

In order to solve (4.98, 4.99, 4.100) we seek to transform the Smoluchowski equation to the free
diffusion equation through the choice of the time-dependent position variable

y = ξ e2τ , y0 = ξ0 , (4.103)

replacing

q(ξ, τ |ξ0, 0) = v(y, τ |y0, 0) . (4.104)

We note that this definition results in a time-dependent normalization of v(y, τ |y0, 0), namely,

1 =
∫ +∞

−∞
dξ q(ξ, τ |ξ0, 0) = e−2τ

∫ +∞

−∞
dy v(y, τ |y0, 0) . (4.105)
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The spatial derivative ∂y, according to the chain rule, is determined by

∂ξ =
∂y

∂ξ
∂y = e2τ ∂y (4.106)

and, hence,

∂2
ξ = e4τ ∂2

y (4.107)

The l.h.s. of (4.98) reads

∂τq(ξ, τ |ξ0, 0) = ∂τv(y, τ |y0, 0) +
∂y

∂τ︸︷︷︸
2y

∂yv(y, τ |y0, 0) . (4.108)

The r.h.s. of (4.98) becomes

e4τ ∂2
yv(y, τ |y0, 0) + 2 v(y, τ |y0, 0) + 2 ξe2τ︸︷︷︸

y

∂yv(y, τ |y0, 0) , (4.109)

such that the Smoluchowski equation for v(y, τ |y0, 0) is

∂τv(y, τ |y0, 0) = e4τ ∂2
yv(y, τ |y0, 0) + 2 v(y, τ |y0, 0) . (4.110)

To deal with a properly normalized distribution we define

v(y, τ |y0, 0) = e2τ w(y, τ |y0, 0) (4.111)

which yields, in fact,∫ ∞

−∞
dξ q(ξ, τ |ξ0, 0) = e−2τ

∫ ∞

−∞
dy v(y, τ |y0, 0) =

∫ ∞

−∞
dy w(y, τ |y0, 0) = 1 . (4.112)

The Smoluchowski equation for w(y, τ |y0, 0) is

∂τw(y, τ |y0, 0) = e4τ ∂2
y w(y, τ |y0, 0) (4.113)

which, indeed, has the form of a free diffusion equation, albeit with a time-dependent diffusion
coefficient. The initial condition which corresponds to (4.99) is

w(y, 0|y0, 0) = δ(y − y0) . (4.114)

It turns out that the solution of a diffusion equation with time-dependent diffusion coefficient D̃(τ)

∂τw(y, τ |y0, τ0) = D̃(τ) ∂2
y w(y, τ |y0, τ0) (4.115)

in Ω∞ with

w(y, τ0|y0, τ0) = δ(y − y0) (4.116)

is a straightforward generalization of the corresponding solution of the free diffusion equation (3.30),
namely,

w(y, τ |y0, τ0) =
(

4π
∫ τ

0
dτ ′ D̃(τ ′)

)− 1
2

exp

[
− (y − ξ0)2

4
∫ τ
0 dτ ′ D̃(τ ′)

]
. (4.117)
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This can be readily verified. Accordingly, the solution of (4.113, 4.114) is

w(y, τ |y0, 0) =
(

4π
∫ τ

0
dτ ′ e4τ ′

)− 1
2

exp
[
− (y − y0)2

4
∫ τ
0 dτ ′ e4τ ′

]
. (4.118)

The corresponding distribution q(ξ, τ |ξ0, 0) is, using (4.103, 4.104, 4.111),

q(ξ, τ |ξ0, 0) =
1√

π(1 − e−4τ )
exp

[
−(ξ − ξ0e

−2τ )2

1 − e−4τ

]
. (4.119)

and, hence, using (4.94, 4.95, 4.96, 4.97), we arrive at

p(x, t|x0, t0) =
1√

2πkBT S(t, t0)/f
exp

[
−
(
x − x0 e−2(t−t0)/τ̃

)2
2kBTS(t, t0)/f

]
(4.120)

S(t, t0) = 1 − e−4(t−t0)/τ̃ (4.121)
τ̃ = 2kBT / fD . (4.122)

One notices that this distribution asymptotically, i.e., for t → ∞, approaches the Boltzmann
distribution (4.86). We also note that (4.120, 4.121, 4.122) is identical to the conditional probability
of the Ornstein-Uhlenbeck process (2.81, 2.82) for γ = 2/τ̃ and σ2 = 2kBT .
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