
Chapter 13

The Brownian Oscillator
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The one-dimensional Smoluchowski equation , in case that a stationary flux-free equilibrium state
po(x) exists, can be written in the form

∂tp(x, t) =
kBT

γ
∂x po(x) ∂x [po(x)]−1 p(x, t) . (13.1)

where we employed D = σ2/2γ2 [c.f. (3.12)], the fluctuation-dissipation theorem in the form σ2 =
2kBTγ [c.f. (4.15)], the Onsager form of the Smoluchowski equation (4.18) applied to one dimension,
and po(x) = N exp[−βU(x)]. The form (13.1) of the Smoluchowski equation demonstrates most
clearly that it describes a stochastic system characterized through an equlibrium state po(x) and a
single constant γ governing the relaxation, the friction constant. The equation also assumes that
the underlying stochastic process

γẋ = kBTpo(x)∂xln[po(x)] +
√

2kBTγξ(t) (13.2)

alters the variable x continuously and not in discrete jumps.
One is inclined to envoke the Smoluchowski equation for the description of stochastic processes for
which the equlibrium distribution is known. Underlying such description is the assumption that
the process is governed by a single effective friction constant γ. For the sake of simplicity and in
view of the typical situation that detailed informatiin regarding the relaxation process is lacking,
the Smoluchowski equation serves on well with an approximate descsription.
The most prevalent distribution encountered is the Gaussian distribution

po(x) =
1√
2πΣ

exp
[
−(x − 〈x〉)2

Σ

]
. (13.3)

The reason is the fact that many properties x are actually based on contributions from many
constituents. An example is the overall dipole moment of a biopolymer which results from stochastic
motions of the polymer segments, each contributing a small fraction of the total dipole moment.
In such case the central limit theorem states that for most cases the resulting distribution of x is
Gaussian. This leads one to consider then in most cases the Smoluchowski equation for an effective
quadratic potential

Ueff(x) =
kBT

Σ
(x − 〈x〉)2 . (13.4)
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162 Solution of the Smoluchowski Equation

Due to the central limit theorem the Smoluchowski equation for a Brownian oscillator has a special
significance. Accordingly, we will study the behaviour of the Brownian oscillator in detail.

13.1 One-Dimensional Diffusion in a Harmonic Potential

We consider again the diffusion in the harmonic potential

U(x) =
1
2
f x2 (13.5)

applying in the present case spectral expansion for the solution of the associated Smoluchowski
equation

∂tp(x, t|x0, t0) = D(∂2
x + βf ∂xx) p(x, t|x0, t0) (13.6)

with the boundary condition

lim
x→±∞

xn p(x, t|x0, t0) = 0, ∀n ∈ IN (13.7)

and the initial condition

p(x, t0|x0, t0) = δ(x− x0) . (13.8)

Following the treatment in Chapter 3 we introduce dimensionless variables

ξ = x/
√

2δ , τ = t/τ̃ , (13.9)

where

δ =
√
kBT/f , τ̃ = 2δ2/D . (13.10)

The Smoluchowski equation for the normalized distribution in ξ given by

q(ξ, τ |ξ0, τ0) =
√

2 δ p(x, t|x0, t0) (13.11)

is then again

∂τq(ξ, τ |ξ0, τ0) = (∂2
ξ + 2 ∂ξ ξ) q(ξ, τ |ξ0, τ0) (13.12)

with the initial condition

q(ξ, τ0|ξ0, τ0) = δ(ξ − ξ0) (13.13)

and the boundary condition

lim
ξ→±∞

ξn q(ξ, τ |ξ0, τ0) = 0, ∀n ∈ IN . (13.14)

We seek to expand q(ξ, τ0|ξ0, τ0) in terms of the eigenfunctions of the operator

O = ∂2
ξ + 2∂ξξ , (13.15)
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13.1: Harmonic Potential 163

restricting the functions to the space

{h(ξ) | lim
ξ→±∞

ξn h(ξ) = 0} . (13.16)

We define the eigenfunctions fn(ξ) through

Ofn(ξ) = −λnfn(ξ) (13.17)

The solution of this equation, which obeys (13.14), is well known

fn(ξ) = cn e
−ξ2

Hn(ξ) . (13.18)

Here, Hn(x) are the Hermite polynomials and cn is a normalization constant. The negative eigen-
values are

λn = 2n, (13.19)

The functions fn(ξ) do not form the orthonormal basis with the scalar product (3.129) introduced
earlier. Instead, it holds ∫ +∞

−∞
dξ e−ξ

2
Hn(ξ)Hm(ξ) = 2nn!

√
πδnm . (13.20)

However, following Chapter 5 one can introduce a bi-orthogonal system. For this purpose we choose
for fn(ξ) the normalization

fn(ξ) =
1

2nn!
√
π
e−ξ

2
Hn(ξ) (13.21)

and define

gn(ξ) = Hn(ξ) . (13.22)

One can readily recognize from (13.20) the biorthogonality property

〈gn|fn〉 = δnm . (13.23)

The functions gn(ξ) are the eigenfunctions of the adjoint operator

O+ = ∂2
ξ − 2ξ∂ξ , (13.24)

i.e., it holds

O+gn(ξ) = −λngn(ξ) . (13.25)

The eigenfunction property (13.25) of gn(ξ) can be demonstrated using

〈g|Of〉 = 〈O+g|f〉 . (13.26)

or through explicit evaluation.
The eigenfunctions fn(ξ) form a complete basis for all functions with the property (13.14). Hence,
we can expand q(ξ, τ |ξ0, τ0)

q(ξ, τ |ξ0, τ0) =
∞∑
n=0

αn(t)fn(ξ) . (13.27)
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164 Solution of the Smoluchowski Equation

Inserting this into the Smoluchowski equation (13.12, 13.15) results in

∞∑
n=0

α̇n(τ)fn(ξ) = −
∞∑
n=0

λn αn(τ) fn(ξ) . (13.28)

Exploiting the bi-orthogonality property (13.23) one derives

α̇m(τ) = −λm αm(τ) . (13.29)

The general solution of of this differential equation is

αm(τ) = βm e−λmτ . (13.30)

Upon substitution into (13.27), the initial condition (13.13) reads

∞∑
n=0

βn e
−λnτ0 fn(ξ) = δ(ξ − ξ0) . (13.31)

Taking again the scalar product with gm(ξ) and using (13.23) results in

βm e−λmτ0 = gm(ξ0) , (13.32)

or

βm = eλmτ0 gm(ξ0) . (13.33)

Hence, we obtain finally

q(ξ, τ |ξ0, τ0) =
∞∑
n=0

e−λn(τ−τ0) gn(ξ0) fn(ξ) , (13.34)

or, explicitly,

q(ξ, τ |ξ0, τ0) =
∞∑
n=0

1
2nn!
√
π
e−2n(τ−τ0)Hn(ξ0) e−ξ

2
Hn(ξ) . (13.35)

Expression (13.35) can be simplified using the generating function of a product of two Hermit
polynomials

1√
π(1−s2)

exp
[
−1

2(y2 + y2
0) 1+s2

1−s2 + 2yy0
s

1−s2

]

=
∞∑
n=0

sn

2nn!
√
π
Hn(y) e−y

2/2Hn(y0) e−y
2
0/2 . (13.36)

Using

s = e−2(τ−τ0) , (13.37)

one can show

q(ξ, τ |ξ0, τ0)
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13.1: Harmonic Potential 165

=
1√

π(1− s2)
exp

[
−1

2
(ξ2 + ξ2

0)
1 + s2

1− s2
+ 2ξξ0

s

1− s2
− 1

2
ξ2 +

1
2
ξ2

0

]
. (13.38)

We denote the exponent on the r.h.s. by E and evaluate

E = −ξ2 1
1− s2

− ξ2
0

s2

1− s2
+ 2ξξ0

1
1− s2

= − 1
1− s2

(ξ2 − 2ξξ0s + ξ2
0s

2)

= −(ξ − ξ0s)2

1− s2
(13.39)

We obtain then

q(ξ, τ |ξ0, τ0) =
1√

π(1− s2)
exp

[
−(ξ − ξ0s)2

1− s2

]
, (13.40)

where s is given by (13.37). One can readily recognize that this result agrees with the solution
(4.119) derived in Chapter 3 using transformation to time-dependent coordinates.
Let us now consider the solution for an initial distribution h(ξ0). The corresponding distribution
q̃(ξ, τ) is (τ0 = 0)

q̃(ξ, τ) =
∫
dξ0

1√
π(1− e−4τ )

exp
[
−(ξ − ξ0e

−2τ )2

1− e−4τ

]
h(ξ0) . (13.41)

It is interesting to consider the asymptotic behaviour of this solution. For τ →∞ the distribution
q̃(ξ, τ) relaxes to

q̃(ξ) =
1√
π
e−ξ

2

∫
dξ0 h(ξ0) . (13.42)

If one carries out a corresponding analysis using (13.34) one obtains

q̃(ξ, τ) =
∞∑
n=0

e−λnτ fn(ξ)
∫
dξ0 gn(ξ0)h(ξ0) (13.43)

∼ f0(ξ)
∫
dξ0 gn(ξ0)h(ξ0) as τ →∞ . (13.44)

Using (13.21) and (13.22), this becomes

q̃(ξ, τ) ∼ 1√
π
e−ξ

2
H0(ξ)︸ ︷︷ ︸

=1

∫
dξ0 h(ξ0) (13.45)

in agreement with (13.42). One can recognize from this result that the expansion (13.43), despite
its appearance, conserves total probability

∫
dξ0 h(ξ0). One can also recoginze that, in general,

the relaxation of an initial distribution h(ξ0) to the Boltzmann distribution involves numerous
relaxation times, given by the eigenvalues λn, even though the original Smoluchowski equation
(13.1) contains only a single rate constant, the friction coefficient γ.
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