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Rates of Diffusion-Controlled
Reactions
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The metabolism of the biological cell, the control of its development and its communication with
other cells in the organism or with its environment involves a complex web of biochemical reactions.
The efficient functioning of this web relies on the availability of suitable reaction rates. Biological
functions are often controlled through inhibition of these reaction rates, so the base rates must be
as fast as possible to allow for a wide range of control. The maximal rates have been increased
throughout the long evolution of life, often surpassing by a wide margin rates of comparable test
tube reactions. In this respect it is important to realize that the rates of biochemical reactions
involving two molecular partners, e.g., an enzyme and its substrate, at their optimal values are
actually determined by the diffusive process which leads to the necessary encounter of the reactants.
Since many biochemical reactions are proceeding close to their optimal speed, i.e., each encounter
of the two reactants leads to a chemical transformation, it is essential for an understanding of
biochemical reactions to characterize the diffusive encounters of biomolecules.
In this section we want to describe first the relative motion of two diffusing biomolecules subject
to an interaction between the partners. We then determine the rates of reactions as determined by
the diffusion process. We finally discuss examples of reactions for various interactions.

10.1 Relative Diffusion of two Free Particles

We consider first the relative motion in the case that two particles are diffusing freely. One can
assume that the motion of one particle is independent of that of the other particle. In this case
the diffusion is described by a distribution function p(r1, r2, t|r10, r20, t0) which is governed by the
diffusion equation

∂t p(r1, r2, t|r10, r20, t0) =
(
D1∇2

1 + D2∇2
2

)
p(r1, r2, t|r10, r20, t0) (10.1)

where ∇j = ∂/∂rj , j = 1, 2. The additive diffusion operators Dj∇2
j in (10.1) are a signature of

the statistical independence of the Brownian motions of each of the particles.
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138 Rates of Diffusion-Controlled Reactions

Our goal is to obtain from (10.1) an equation which governs the distribution p(r, t|r0, t0) for the
relative position

r = r2 − r1 (10.2)

of the particles. For this purpose we express (10.1) in terms of the coordinates r and

R = a r1 + b r2 (10.3)

which, for suitable constants a, b, are linearly independent. One can express

∇1 = a∇R − ∇ , ∇2 = b∇R + ∇ (10.4)

where ∇ = ∂/∂r. One obtains, furthermore,

∇2
1 = a2∇2

R + ∇2 − 2a∇R∇ (10.5)
∇2

2 = b2∇2
R + ∇2 + 2b∇R∇ (10.6)

The diffusion operator

D̂ = D1∇2
1 + D2∇2

2 (10.7)

can then be written

D̂ = (D1a
2 + D2b

2)∇2
R + (D1 + D2) ∇2 + 2 (D2b − D1a)∇R∇ (10.8)

If one defines

a =
√
D2/D1 , b =

√
D1/D2 (10.9)

one obtains

D̂ = (D1 + D2)∇2
R + (D1 + D2) ∇2 . (10.10)

The operator (10.10) can be considered as describing two independent diffusion processes, one
in the coordinate R and one in the coordinate r. Thus, the distribution function may be writ-
ten p(R, t|R0, t0)p(r, t|r0, t0). If one disregards the diffusion along the coordinate R the relevant
remaining relative motion is governed by

∂tp(r, t|r0, t0) = (D1 + D2) ∇2p(r, t|r0, t0) . (10.11)

This equation implies that the relative motion of the two particles is also governed by a diffusion
equation, albeit for a diffusion coefficient

D = D1 + D2 . (10.12)

March 28, 2000 Preliminary version



10.2. DIFFUSION-CONTROLLED REACTIONS UNDER STATIONARY CONDITIONS 139

Relative Motion of two Diffusing Particles with Interaction

We seek to describe now the relative motion of two molecules which diffuse while interacting ac-
cording to a potential U(r) where r = r2 − r1. The force acting on particle 2 is −∇2U(r) = F ;
the force acting on particle 1 is −F . The distribution function p(r1, r2, t|r10, r20, t0) obeys the
Smoluchowski equation

∂t p =
[ (
D1∇2

1 + D2∇2
2

)
(10.13)

− D2β∇2 · F (r) + D1β∇1 · F ] p .

The first two terms on the r.h.s. can be expressed in terms of the coordinates R and r according
to (10.10). For the remaining terms holds, using (10.4, 10.9),

D2∇2 − D1∇1 = (D1 + D2)∇ (10.14)

Hence, one can write the Smoluchowski equation (10.13)

∂t p =
[

(D1 + D2) ∇2
R + (D1 +D2) ∇ · (∇ − β F )

]
p . (10.15)

This equation describes two independent random processes, free diffusion in the R coordinate and
a diffusion with drift in the r coordinate. Since we are only interested in the relative motion of
the two molecules, i.e., the motion which governs their reactive encounters, we describe the relative
motion by the Smoluchowski equation

∂t p(r, t|r0, t0) = D∇ · (∇ − β F ) p(r, t|r0, t0) . (10.16)

10.2 Diffusion-Controlled Reactions under Stationary Conditions

We want to consider now a reaction vessel which contains a solvent with two types of particles ,
particle 1 and particle 2, which engage in a reaction

particle 1 + particle 2 → products . (10.17)

We assume that particle 1 and particle 2 are maintained at concentrations c1 and c2, respectively,
i.e., the particles are replenished as soon as they are consumed by reaction (10.17). We also consider
that the reaction products are removed from the system as soon as they are formed.
One can view the reaction vessel as containing pairs of particles 1 and 2 at various stages of the
relative diffusion and reaction. This view maintains that the concentration of particles is so small
that only rarely triple encounters, e.g., of two particles 1 and one particle 2, occur, so that these
occurences can be neglected. The system considered contains then many particle 1 and particle 2
pairs described by the Smoluchowski equation (10.16). Since the concentration of the particles is
maintained at a steady level one can expect that the system adopts a stationary distribution of
inter-pair distances p(r) which obeys (10.16), i.e.,

∇D(r) · (∇ − β F ) p(r) = 0 , (10.18)

subject to the condition

p(r) � |r| → ∞ c1 c2 . (10.19)
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140 Rates of Diffusion-Controlled Reactions

Reaction (10.17) is described by the boundary condition

n̂ ·D(r) (∇ − βF ) p(r) = w p(r) at |r| = Ro. (10.20)

for some constant w.
The occurence of reaction (10.17) implies that a stationary current develops which describes the
continuous diffusive approach and reaction of the particles. We consider in the following the case
that the particles are governed by an interaction potential which depends solely on the distance
|r| of the particles and that the diffusion coefficient D also depends solely on |r| . The stationary
Smoluchowski equation (10.18) reads then

( ∂rD(r) )( ( ∂r − β F (r) ) p(r)) = 0 (10.21)

to which is associated the radial current

Jtot(r) = 4πr2D(r)( ∂r − β F (r) ) p(r)) (10.22)

where we have summed over all angles θ, φ obtaining the total current at radius r. For F (r) =
− ∂rU(r) one can express this

Jtot(r) = 4πr2D(r) exp[−βU(r)] ( ∂r exp[βU(r)] p ) . (10.23)

However, Jtot(r) must be the same at all r since otherwise p(r) would change in time, in contrast
to the assumption that the distribution is stationary. It must hold, in particular,

Jtot(Ro) = Jtot(r) . (10.24)

The boundary condition (10.20), together with (10.23), yields

4πR2
o w p(Ro) = 4πr2D(r) exp[−βU(r)] ( ∂r exp[βU(r)] p(r) ) . (10.25)

This relationship, a first order differential equation, allows one to determine p(r).
For the evaluation of p(r) we write (10.25)

∂r

(
eβU(r) p(r)

)
=

R2
ow

r2D(r)
p(Ro) eβU(r) . (10.26)

Integration
∫∞
r dr · · · yields

p(∞) eβU(∞) − p(r) eβU(r) = R2
ow p(Ro)

∫ ∞
r

dr′
eβU(r′)

r′2D(r′)
(10.27)

or, using (10.19) and U(∞) = 0

p(r) eβU(r) = c1c2 − R2
ow p(Ro)

∫ ∞
r

dr′
eβU(r′)

r′2D(r′)
(10.28)

Evaluating this at r = Ro and solving for p(Ro) yields

p(Ro) =
c1c2 e

−βU(Ro)

1 + R2
ow e

−βU(Ro)
∫∞
Ro
dr eβU(r)/r2D(r)

. (10.29)

Using this in (10.28) leads to an expression of p(r).
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We are presently interested in the rate at which reaction (10.17) proceeds. This rate is given by
Jtot(Ro) = 4πR2

ow p(Ro). Hence, we can state

Rate =
4πR2

ow c1c2 e
−βU(Ro)

1 + R2
ow e

−βU(Ro)
∫∞
Ro
dr eβU(r)/r2D(r)

. (10.30)

This expression is proportional to c1c2, a dependence expected for a bimolecular reaction of the
type (10.17). Conventionally, one defines a bimolecular rate constant k as follows

Rate = k c1c2 . (10.31)

This constant is then, in the present case,

k =
4π

eβU(Ro)/R2
ow +

∫∞
Ro
drR(r)

. (10.32)

Here, we defined

R(r) = eβU(r)/r2D(r) (10.33)

a property which is called the resistance of the diffusing particle, a name suggested by the fact that
R(r) describes the Ohmic resistance of the system as shown further below.

10.2.1 Examples

We consider first the case of very ineffective reactions described by small w values. In this case the
time required for the diffusive encounter of the reaction partners can become significantly shorter
than the time for the local reaction to proceed, if it proceeds at all. In this case it may hold

eβU(Ro)

R2
ow

>>

∫ ∞
Ro

drR(r) (10.34)

and the reaction rate (10.32) becomes

k = 4πR2
o w e−βU(Ro) . (10.35)

This expression conforms to the well-known Arrhenius law.
We want to apply (10.32, 10.33) to two cases, free diffusion (U(r) ≡ 0) and diffusion in a
Coulomb potential (U(r) = q1q2/εr, ε = dielectric constant). We assume in both cases a distance-
independent diffusion constant. In case of free diffusion holds R(r) = D−1r−2 and, hence,∫ ∞

Ro

drR(r) = 1/DRo . (10.36)

From this results

k =
4πDRo

1 + D/Row
. (10.37)

In case of very effective reactions, i.e., for very large w, this becomes

k = 4πDRo (10.38)
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142 Rates of Diffusion-Controlled Reactions

which is the well-known rate for diffusion-controlled reaction processes. No bi-molecular rate con-
stant involving a diffusive encounter in a three-dimensional space without attracting forces between
the reactants can exceed (10.38). For instance, in a diffusion-controlled reaction in a solvent with
relative diffusion constant D = 10−5 cm2 s−1 and with reactants such that Ro = 1nm, the
maximum possible reaction rate is 7.56 × 109 Lmol−1 s−1.
In case of a Coulomb interaction between the reactants one obtains∫ ∞

Ro

drR(r) =
1
D

∫ ∞
Ro

dr
1
r2

exp
[
βq1q2

εr

]
=

1
D

∫ 1/Ro

0
dy exp

[
βq1q2y

ε

]
=

1
RLD

(
eRL/Ro − 1

)
(10.39)

where

RL = βq1q2 / ε (10.40)

defines the so-called Onsager radius. Note that RL can be positive or negative, depending on the
sign of q1q2, but that the integral over the resistance (10.39) is always positive. The rate constant
(10.32) can then be written

k =
4πDRL

RLD
R2
ow

eRL/Ro + eRL/Ro − 1
. (10.41)

For instance, suppose we wish to find the maximum reaction rate for a reaction between pyrene-N
and N-dimethylaniline in acetoneitrile. The reaction consists of an electron exchange from pyrene
to dimethylaniline, and the reactants have charges of ±e. The relative diffusion constant of both
reactants in acetonitrile at 25◦ C is 4.53 × 10−5 cm2 s−1, the dielectric constant of acetonitrile at
that temperature is 37.5, and the effective reaction radius Ro of the reactants is 0.7nm. Using
these values, and assuming w → ∞ in (10.41) we obtain an Onsager radius of −10.8nm, and a
maximum reaction rate of k = 6.44 × 1011 Lmol−1 s−1.
In a different solvent, C3H7OH, with relative diffusion constant D = 0.77 × 10−5 cm2 s−1 at
25◦ C and a dielectric constant of 19.7, the Onsager radius is −35.7nm and the maximum reaction
rate is k = 2.08 × 1011 Lmol−1 s−1.
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