
Solution to Problem Set
Physics 498TBP
by Sinan Arslan

1 Verhulst Equation

(a)

At the stationary points a = x1s,2s, the time derivative of x vanishes, i.e.,

x− x2 = 0, (1)
x1s = 0, (2)
x2s = 1. (3)

The linear approximation of equation (1, homework) around x = a = x1s,2s is

δẋ = f(a) + ∂xf |aδx, (4)
= (1− 2a)δx. (5)

Solution for this equation is

δx(t) = δx(0)e(1−2a)t. (6)

and its behavior around the stationary points is

δx(t) =

{
δx(0)et x1s = 0
δx(0)e−t x2s = 1

(7)

In the first case x(t) moves away from x1s = 0 and in the second case it gets closer to the
x2s = 1. Accordingly x1s and x2s are stable and unstable stationary points, respectively.

(b)

The exact solution of the equation

dx

dt
= x− x2, (8)

can be derived by writing

dx

x− x2
= dt, (9)

and integrating both sides

x(t)∫
x(0)

dx

x− x2
=

t∫
0

dt. (10)
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From this follows

x(t)∫
x(0)

dx

(
1
x

+
1

1− x

)
= t, (11)

log x− log(1− x)|x(t)
x0

= t, (12)

log
x(t)

1− x(t)
− log

x0

1− x0
= t, (13)

x(t)
1− x(t)

=
x0

1− x0
et. (14)

One can reorganize the equation (14) to obtain the solution for x(t),

x(t) =
x0

x0 + (1− x0)e−t
. (15)

The behavior of the solution around the stationary points can be obtained by expanding it
near stationary points. For x ≈ 1, one can express δx(t) = x(t)− 1 from the equation (15),

δx(t) =
(x0 − 1)e−t

x0 + (1− x0)e−t
. (16)

For small values of δx(0) = x0 − 1 and δx(t) = x(t)− 1, equation (16),

δx(t) =
δx(0)e−t

1 + δx(0)− δx(0)e−t
, (17)

can be expanded as follows

δx(t) ≈ δx(0)e−t
(
1− δx(0) + δx(0)e−t

)
≈ δx(0)e−t. (18)

Similarly one can derive for x(t) ≈ 0 and δx(0) = x0 − 0,

δx(t) ≈ δx(0)et. (19)

Equations (18) and (19) are identical to those derived in section (a).

(c)

We can rewrite equation (3, homework) as

xn+1 =
xn

(1− h) + hxn
. (20)

From this follows

x−1
n+1 − 1 = (1− h)x−1

n + h− 1, (21)

and

x−1
n+1 − 1 = (1− h)(x−1

n − 1). (22)
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We can now define a new variable, un = x−1
n −1, so that the recursion relation can be simplified

as follows:

un = (1− h)un−1. (23)

The solution of this equation is

un = (1− h)nu0. (24)

The answer we seek is obtained by switching back to xn,

x−1
n = 1− (1− x−1

0 )(1− h)n. (25)

From this equation one can see that xn coverges to 1, i.e., limn→∞ xn = 1 for 1 ≥ h > 0. xn
still tends to 1 for 2 > h ≥ 1, but it oscillates around 1, so probably h ≥ 1 is not a good
approximation although it still converges to 1.

Replacing n with t/h and xn with x(t) in the equation (25) yields

x(t) =
1

1− (1− x−1
0 )(1− h)t/h

. (26)

The term (1−h)t/h becomes e−t in the limit where h→ 0. One can prove this in the following
way:

lim
h→0

(1− h)t/h = exp
[
log
(

lim
h→0

(1− h)t/h
)]

, (27)

= exp
[

lim
h→0

log(1− h)t/h
]
, (28)

= exp

[
lim
h→0

log(1− h)
h
t

]
. (29)

One can use l’Hospital’s Rule, since both the numerator and the denominator in the equation
(29) is zero when h = 0.

lim
h→0

(1− h)t/h = exp

[
lim
h→0

∂
∂h

log(1− h)
∂
∂h

h
t

]
, (30)

= exp

[
lim
h→0

−1
(1−h)

1
t

]
, (31)

= exp [−t] . (32)

Hence the equation (26) becomes

x(t) =
x0

x0 + (1− x0)e−t
. (33)

in the limit where h → 0. Equation (33) is same as the exact solution we obtained in section
(b).
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2 Limit Cycle

Equation (5, homework) can be expressed in polar coordinates by using the substitutions

x = r cos θ, (34)
y = r sin θ, (35)

ẋ = ṙ cos θ − r sin θ θ̇, (36)

ẏ = ṙ sin θ + r cos θ θ̇. (37)

Thus the equation (5, homework) in polar coordinates becomes

ṙ cos θ − r sin θ θ̇ = r sin θ + r cos θf(r), (38)

ṙ sin θ + r cos θ θ̇ = −r cos θ + r sin θf(r). (39)

By multiplying both sides of the equations (38) and (39) by cos θ and sin θ, respectively, then
adding them, one obtains

ṙ = rf(r). (40)

Similarly one can derive

θ̇ = −1. (41)

Equation (41) means that the system {x(t), y(t)} rotates around origin with a constant angular
velocity −1. We can now find the solutions of equation (40) for three cases of f(r).

For f(r) = 1− r2, equation (40) becomes

dr

dt
= r(1− r2). (42)

One can write this equation as

dr

(
1
r

+
1
2

(
1

1− r
− 1

1 + r

))
= dt. (43)

Carrying out the integral on both sides

r(t)∫
r0

dr

(
1
r

+
1
2

(
1

1− r
− 1

1 + r

))
=

t∫
0

dt′, (44)
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yields

log r +
1
2

(− log(1− r)− log(1 + r))
∣∣∣∣r(t)
r0

= t, (45)

log r − 1
2

log(1− r2)
∣∣∣∣r(t)
r0

= t, (46)

log
r√

(1− r2)

∣∣∣∣∣
r(t)

r0

= t, (47)

log
r(t)√

1− r2(t)
− log

r0√
1− r2

0

= t, (48)

r(t)√
1− r2(t)

=
r0√

1− r2
0

et. (49)

This expression can be reorganized to get

r(t) =
r0√

r2
0 + (1− r2

0)e−2t
. (50)

From equation (50), one can see that r(t) converges to 1 regardless of the initial condition,
except r0 = 0. Eventually the system begins to move on a circle of radius 1. On the other
hand r = 0 is an unstable stationary point: if the initial condition is r0 = 0, r(t) does not
change in time, but for r0 > 1, it moves to 1.

For f(r) = r2− 1, we get the same solution as above if we replace t with −t. Therefore the
solution is

r(t) =
r0√

r2
0 + (1− r2

0)e2t
. (51)

The behavior of this solution for different initial conditions can be summarized:

lim
t→∞

r(t) =


∞ r0 > 1
1 r0 = 1
0 r0 < 1

(52)

This tells us that the points on the circle of radius r = 1 and whose center at the origin are
unstable stationary points whereas the origin, r = 0 is a stable stationary point.

In case of f(r) = (1− r2)2 the equation (40) reads

dr

dt
= r(1− r2)2. (53)

Gathering each variable on the both sides separately and integrating yields

r(t)∫
r0

dr2

2r2(1− r2)2
=

t∫
0

dt′. (54)

5



By using the substitutions

r2 =
R

(R− 1)
, (55)

dr2 = − dR

(1−R)2
, (56)

one can get

R(t)∫
R0

(
1
R
− 1
)
dR = 2t, (57)

logR−R|R(t)
R0

= 2t, (58)

log
R

eR

∣∣∣∣R(t)

R0

= 2t, (59)

R(t)
eR(t)

=
R0

eR0
e2t. (60)

Let us call this function G(r), then the solution is

G(R(t)) =
R(t)
eR(t)

=
R0

eR0
e2t (61)

where R(t) = r(t)2/(r2(t) − 1). From equation (61), one can see that G(R) has always the
tendency to increase in time for positive initial values G(R0) > 0 or to decrease for negative
values of G(R0).

From equation (53), we know that the stationary points are r = 0 and r = 1. If r0 = 0,
then R0 = G(R0) = 0 and the system does not move from r = 0. Where 1 > r0 > 0, G(R0) is
negative and the system moves towards r = 1, because limr(t)→1− G(R(t)) = −∞. So r = 0
is an unstable stationary point whereas r = 1− is a stable stationary point (1− corresponds to
a value that approaches 1 from left). The behavior of the system is depicted in figure 1, based
on the function G(r)

If the system is at a point such that r > 1, which means G(R) > 0 then the system goes
away from the point r = 1 , because r has to increase in order for G(R) to increase by time,
which is the condition imposed by equation (61). So the r = 1+ is an unstable stationary
point.

3 Bonhoefer-van der Pol Equation

(a)

Since ẋ1(t) and ẋ2(t) are zero at the stationary points (x1s, x2s), equation (6, homework)
becomes

f1(x1s, x2s) = c

(
x2s + x1s −

x1s
3

3
+ z

)
= 0, (62)

f2(x1s, x2s) = −1
c

(x1s + bx2s − a) = 0. (63)
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Figure 1: G(r) vs. r

From these equations we get

x2s =
1
b

(a− x1s) (64)

0 =
1
b

(a− x1s) + x1s −
x3

1s

3
+ z (65)

which has one real solution (x1s, x2s) for a certain value of z. It is plotted in figure 2 for values
of z between −2 and 2.
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Figure 2: Stationary points x1s and x2s vs. z

(b)

Elements of the matrix M in the equation (δx1 = x1 − x1s, δx2 = x2 − x2s),

δẋ = Mδx, (66)

7



can be calculated by using Mjk = ∂kfj(x1, x2)|xs
,

M =
(
c(1− x2

1s) c
−1/c −b/c

)
. (67)

If the eigenvalues and the eigenvectors of the matrix M are denoted by λ1,2 and m1,2, respec-
tively, then the solution for the equation (66) is given by

δx(t) = c1m1 e
λ1t + c2m2 e

λ2t. (68)

where c1 and c2 are determined by the initial condition δx(0). One can easily tell from this
equation that around a stable stationary point (x1s, x2s), λ1,2 must have negative real parts.

For z = 0, the stationary point is xs = (1.20,−0.62). The corresponding matrix and the
eigenvalues are given by

M =
(
−1.32 3
−0.33 −0.27

)
, (69)

λ1,2 = −0.79 ± 0.85 i. (70)

So the stationary point xs = (1.20,−0.62) is stable due to the e−0.79t term in the solution.
With similar arguments, for z = −0.4, the stationary point xs = (0.91,−0.26) is found to be
unstable, because the real part of the eigenvalues of the corresponding matrix M,

M =
(

0.53 3
−0.33 −0.27

)
, (71)

are positive, i.e.,

λ1,2 = 0.13 ± 0.92 i. (72)

(c)

Using the discretized form of the differential equation given in the problem,

xn+1 = xn + ∆t f(xn), (73)

one can get curves like in figure 3 for z = 0 and z = −0.4, with several starting points.
Corresponding stationary points for these z values, i.e., (1.20,−0.62) and (0.91,−0.26) are
marked in the plots.

(d)

When we include the noise term,

xn+1 = xn + ∆t f(xn) + σ
√

∆t
(
ζ1(n)
ζ2(n)

)
(74)

trajectories will look like in figure 4. In mathematica , one way of getting gaussian distributed
random numbers, ζj(n), is using the following code:
<< Statistics‘ContinuousDistributions‘
ndist = NormalDistribution[0, 1] %% where the mean and the standard deviation
%% of the distribution are specified respectively.
ζ = Random[ndist]

x1(t) for the case z = −0.4 is plotted separately in figure 5.
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Figure 3: x1(t), x2(t) trajectories for different starting points (open ends of the trajectories).
In case of a stable stationary point, all the trajectories come to rest at the stationary point
whereas in case of an unstable stationary point the system begins a cyclic motion, regardless
of its starting point.
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Figure 4: x1(t), x2(t) trajectories of the system, in case of gaussian random noise for several
initial conditions (σ = 0.15, ∆t = 0.01 ).

4 Cable Equation

Solution for the cable equation

v(x, t) =

√
2
a

∑
n=1,3,...

αn(t) cos
nπx

2a
(75)

obeys the boundary conditions, i.e.,

∂xv(x, t)|x=0 =

√
2
a

∑
n=1,3,...

nπ

2a
αn(t) sin

nπx

2a

∣∣∣∣∣∣
x=0

, (76)

= 0 (77)
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Figure 5: x1(t) vs. t, for the case z = −0.4. (σ = 0.15, ∆t = 0.01).

and

v(a, t) =

√
2
a

∑
n=1,3,...

αn(t) cos
nπ

2
, (78)

= 0. (79)

Inserting the general solution (75) into the cable equation provides us with the solution that
governs αn(t):

0 = (∂t − ∂2
x + 1)v(x, t) (80)

=

√
2
a

∑
n=1,3,...

(
α̇n(t) cos

nπx

2a
+ αn(t)

(nπ
2a

)2
cos

nπx

2a
+ αn(t) cos

nπx

2a

)
(81)

=

√
2
a

∑
n=1,3,...

(
α̇n(t) +

(nπ
2a

)2
αn(t) + αn(t)

)
cos

nπx

2a
(82)

In order for above summation to vanish, the term in the parenthesis must vanish. One can prove
this by integrating both sides of the equation (82) with cos(mπx/2a) where m = 1, 3, 5, ...:

0 =

√
2
a

∑
n=1,3,...

bn

a∫
0

cos
nπx

2a
cos

mπx

2a
dx (83)

where bn is the term in the parenthesis in equation (82). The integral in the equation (83) can
be calculated by using the identity

cosA cosB =
1
2

(cos(A+B) + cos(A−B)) .

a∫
0

dx cos
nπx

2a
cos

mπx

2a
=

1
2

 a∫
0

dx cos
(m+ n)πx

2a
+

a∫
0

dx cos
(m− n)πx

2a

 (84)

=
a

2

(
sin (m+n)π

2
(m+n)π

2

+
sin (m−n)π

2
(m−n)π

2

)
(85)
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Let us define m = n+ k where k can be any even integer, since m and n are both odd. With
this substitution, the equation (85) becomes

a∫
0

dx cos
nπx

2a
cos

mπx

2a
=

a

2

(
sin(n+ k

2 )π

(n+ k
2 )π

+
sin kπ

2
kπ
2

)
(86)

=
a

2

(
−

sin(k2 )π

(n+ k
2 )π

+
sin kπ

2
kπ
2

)
(87)

=
a

2

(
sin kπ

2
kπ
2

)
(88)

=

{
a
2 k = 0 (i.e.,m = n)
0 k 6= 0 (i.e.,m 6= n)

(89)

In other words, one can state
a∫

0

dx cos
nπx

2a
cos

mπx

2a
=

a

2
δmn. (90)

From equations (eqn.need.proof.proved) and (83), one gets

0 =
√
a

2

∑
n=1,3,...

bnδmn, (91)

from which we obtain

bm = 0 (92)

where m = 1, 3, 5, .... Thus we have proved that each and every term in the parenthesis of the
summation in the equation (82) must be zero, i.e.,

α̇n(t) = −
(

1 +
n2π2

4a2

)
αn(t). (93)

Solution for this equation is given by

αn(t) = αn(0) exp
[
−
(

1 +
n2π2

4a2

)
t

]
. (94)

The coefficients, αn(0), are determined through the initial condition,

v(x, 0) =
∑

n=1,3,...

αn(0)

√
2
a

cos
nπ

2a
. (95)

By integrating both sides with cos(mπx/2a), one gets
a∫

0

v(x, 0) cos
mπx

2a
dx =

∑
n=1,3,...

√
2
a
αn(0)

a∫
0

cos
mπx

2a
cos

nπx

2a
dx. (96)
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From the equations (90) and (96), we obtain

1 =
√
a

2

∑
n=1,3,...

αn(0)δnm. (97)

We can now write the coefficient αm(0) as

αm(0) =

√
2
a
. (98)

Consequently using equations (98), (94) and (75), one obtains the complete solution,

v(x, t) =
2
a

∑
n=1,3,...

cos
nπx

2a
exp

[
−
(

1 +
n2π2

4a2

)
t

]
. (99)

v(x, t) is plotted in figure 6.
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Figure 6: v1,2,3,4(x, t) vs. x, t. Higher modes, in other words, narrower cosines, die off quickly
by the time, so the initial Dirac delta function broadens while its magnitude decreases (see
equation(99)).
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