Solution to Problem Set
Physics 498TBP
by Sinan Arslan

1 Verhulst Equation

(a)

At the stationary points a = 215,25, the time derivative of x vanishes, i.e.,

r—a% =0, (1)
r1s = 0, (2)
Tos = 1. (3)

The linear approximation of equation (1, homework) around « = a = 1425 is
5i = fla)+duflaoe, (4)
= (1-2a)dz. (5)

Solution for this equation is

bx(t) = ox(0)ell—201, (6)

and its behavior around the stationary points is

_Jex(0)et x1s=0
oa(t) = {5(E(0)6_t xos =1 @)

In the first case z(t) moves away from z1, = 0 and in the second case it gets closer to the
T9s = 1. Accordingly x15 and z9s are stable and unstable stationary points, respectively.

(b)

The exact solution of the equation

d
e ®)
can be derived by writing
dx
=dt
o~ )

and integrating both sides




From this follows

z(t)

/dx<i+ ! > = t,
r 1—=x

z(0)

log z — log(1 — x)|£(()t) = t,
x(t) xo
1 -1 =t
Ogl—x(t) Ogl—xo ’
x(t) _ %o
1 —x(t) 1—x9

One can reorganize the equation (14) to obtain the solution for z(t),

Zo
t) = .
z(t) xo+ (1 —xp)e~t

(11)

(12)

(13)

(14)

(15)

The behavior of the solution around the stationary points can be obtained by expanding it
near stationary points. For x &~ 1, one can express dz(t) = z(t) — 1 from the equation (15),

 (zo—1)et
ox(t) = x0 —1—0(1 —z0)e t’

For small values of 6x(0) = zo — 1 and dz(t) = z(t) — 1, equation (16),

B §z(0)e
14 62(0) — dz(0)et’

dx(t)

can be expanded as follows

6z(t) ~ 0z(0)e " (1 — 6z(0) + 6z(0)e™") ~ dz(0)e".

Similarly one can derive for x(¢) ~ 0 and dz(0) = o — 0,

Sz (t) ~ 6x(0)e’.
Equations (18) and (19) are identical to those derived in section (a).
(c)

We can rewrite equation (3, homework) as

Tn

Tl = (1 —h)+ hay,

From this follows
i —1=(1-hz,'+h—1,

and

(16)



We can now define a new variable, u,, = 2,1 —1, so that the recursion relation can be simplified
as follows:

Up = (1 = h)up_1. (23)
The solution of this equation is
up, = (1 — h)"up. (24)
The answer we seek is obtained by switching back to z,,
b =1—(1—a25H) (1 —h)"™ (25)

From this equation one can see that x,, coverges to 1, i.e., lim, .oz, =1for 1 > h > 0. z,
still tends to 1 for 2 > h > 1, but it oscillates around 1, so probably A > 1 is not a good
approximation although it still converges to 1.
Replacing n with ¢/h and x,, with z(¢) in the equation (25) yields
1

®l) = 17 (1 — g )(1— hyt/e” (26)

The term (1 — h)!/" becomes et in the limit where h — 0. One can prove this in the following
way:

lim (1 — 1)/" = exp |log ( lim (1 — k)" 2
fim (1= )% = exp log (hlg})( Ak (27)
= exp }Lin%)log(l — h)t/h] , (28)
B log(1 — h)
= exp }ILI_)I% T] . (29)

One can use ’'Hospital’s Rule, since both the numerator and the denominator in the equation
(29) is zero when h = 0.

o)
= log(1 — h)
: _pn\t/h < O
lim (1 — k) exp [}}3}) T E ] ; (30)
op t
=1
. ({-h
= exp [hg}) (—%)] , (31)
= exp[—t]. (32)
Hence the equation (26) becomes
2(t) = (33)

zo+ (1 — xp)et

in the limit where h — 0. Equation (33) is same as the exact solution we obtained in section

(b).



2 Limit Cycle

Equation (5, homework) can be expressed in polar coordinates by using the substitutions

x =rcosb, (34)
y =rsinf, (35)
& =rcosh —rsind, (36)
§ =7sinf +rcosf . (37)
Thus the equation (5, homework) in polar coordinates becomes
cosf —rsinf 0 = rsinf + rcos0f(r), (38)
7sinf + 7 cosf = —rcosf + rsinOf(r). (39)

By multiplying both sides of the equations (38) and (39) by cosf and sin 6, respectively, then
adding them, one obtains

r=rf(r). (40)
Similarly one can derive
6=—1. (41)

Equation (41) means that the system {z(¢), y(t)} rotates around origin with a constant angular
velocity —1. We can now find the solutions of equation (40) for three cases of f(r).
For f(r) = 1 — 72, equation (40) becomes

dr

o == r?). (42)

One can write this equation as

1 1 1 1
-+ = - = dt. 4
dr<r+2<1—r 1+r>> (43)

Carrying out the integral on both sides

7(t)

[or(ie (i) - [

0




yields

log r + % (—log(1—r) —log(l+1)) = t, (45)

1 0
logr — 3 log(1 — r?) =, (46)

o
log W } = t, (47)
log 17'_(7?“2(75) — log ﬁ = t, (48)

r(t r
vl )
This expression can be reorganized to get

r(t) = = (50)

\/7‘0 177‘ 62t'

From equation (50), one can see that r(t) converges to 1 regardless of the initial condition,
except rg = 0. Eventually the system begins to move on a circle of radius 1. On the other
hand » = 0 is an unstable stationary point: if the initial condition is 9 = 0, 7(¢) does not
change in time, but for rg > 1, it moves to 1.

For f(r) = r?—1, we get the same solution as above if we replace t with —¢. Therefore the
solution is

r(t) = ”) (51)
\/ o+ To e%
The behavior of this solution for different initial conditions can be summarized:
oo rg>1
limr(t) =<1 ro=1 (52)
t—o0
0 ro <1

This tells us that the points on the circle of radius = 1 and whose center at the origin are
unstable stationary points whereas the origin, » = 0 is a stable stationary point.
In case of f(r) = (1 —r%)? the equation (40) reads

dr
i r(1—r?)2 (53)

Gathering each variable on the both sides separately and integrating yields

t
/ 5201~ 122 1 —r2 / dt'. (54)
0



By using the substitutions

re = R-1) (55)
dR
2 _
dr 1—R? (56)
one can get
R(t)
1
——1|dR = 2t
[ (5-1)m == o7
0
log R — R = 21, (58)
R(t)
log% = 2t, (59)
e g,
R(t) Ry o
oRO) — ¢Ro (60)

G(R(t)) = = L (61)

where R(t) = r(t)2/(r?(t) — 1). From equation (61), one can see that G(R) has always the
tendency to increase in time for positive initial values G(Rp) > 0 or to decrease for negative
values of G(Ry).

From equation (53), we know that the stationary points are r = 0 and r = 1. If 19 = 0,
then Ry = G(Rp) = 0 and the system does not move from r = 0. Where 1 > r9 > 0, G(Ry) is
negative and the system moves towards r = 1, because lim, ;- G(R(t)) = —oo. So r = 0
is an unstable stationary point whereas r = 1~ is a stable stationary point (1~ corresponds to
a value that approaches 1 from left). The behavior of the system is depicted in figure 1, based
on the function G(r)

If the system is at a point such that » > 1, which means G(R) > 0 then the system goes
away from the point » = 1 | because r has to increase in order for G(R) to increase by time,
which is the condition imposed by equation (61). So the r = 17 is an unstable stationary
point.

3 Bonhoefer-van der Pol Equation

(a)

Since #1(t) and Zo(t) are zero at the stationary points (z1s,z2s), equation (6, homework)
becomes

:B183
fi(z1s, 225) = ¢ | a5 + 15 — 5 +z] =0, (62)
1
f2(l‘15,$23) = _E ($1s + bxas — a) = 0. (63)



From these equations we get
T2s =

0 =

G(r)

Figure 1: G(r) vs. r

1

pla— 1) (64)
1 3

(@ —21,) + w1 - %—I—z (65)

which has one real solution (x5, z25) for a certain value of z. It is plotted in figure 2 for values

of z between —2 and 2.

Figure 2: Stationary points z1s and xog vs. z

(b)

Elements of the matrix M in the equation (dz; = x1 — x5, 0T2 = T2 — T2s),

ox = Mox,



can be calculated by using M; = O f;(z1,22)|

Xg’

M — <C(1__1/xjs) —If/c) _ (67)

If the eigenvalues and the eigenvectors of the matrix M are denoted by A2 and mq 2, respec-
tively, then the solution for the equation (66) is given by

At

0x(t) = cymy e’ + comy et2t, (68)

where ¢ and ¢y are determined by the initial condition dx(0). One can easily tell from this
equation that around a stable stationary point (z1s, Z2s), A1,2 must have negative real parts.

For z = 0, the stationary point is x5 = (1.20,—0.62). The corresponding matrix and the
eigenvalues are given by

~132 3
M = <—0.33 —0.27)’ (69)
Ala = —0.79 + 0.85i. (70)
So the stationary point x5 = (1.20, —0.62) is stable due to the e~*™ term in the solution.

With similar arguments, for z = —0.4, the stationary point x; = (0.91, —0.26) is found to be
unstable, because the real part of the eigenvalues of the corresponding matrix M,

053 3
M = <—0.33 —0.27)’ (71)

are positive, i.e.,

Ao = 0.13 £ 0.92i. (72)

(c)

Using the discretized form of the differential equation given in the problem,
Xn+1 = Xp + At f(xn), (73)

one can get curves like in figure 3 for z = 0 and z = —0.4, with several starting points.
Corresponding stationary points for these z values, i.e., (1.20,—0.62) and (0.91,—0.26) are
marked in the plots.

(d)

When we include the noise term,

Xnil = Xn 4+ At f(xp) + oV AL @EZ;) (74)

trajectories will look like in figure 4. In mathematica , one way of getting gaussian distributed
random numbers, (;(n), is using the following code:
<< Statistics‘ContinuousDistributions’
ndist = NormalDistribution[0O, 1] %% where the mean and the standard deviation
%% of the distribution are specified respectively.
¢ = Random[ndist]

x1(t) for the case z = —0.4 is plotted separately in figure 5.
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Figure 3: x1(t), z2(t) trajectories for different starting points (open ends of the trajectories).
In case of a stable stationary point, all the trajectories come to rest at the stationary point
whereas in case of an unstable stationary point the system begins a cyclic motion, regardless
of its starting point.

z=0 2 x2s
O Stable

7z=-0.4
OuUnstable

Figure 4: z1(t), x2(t) trajectories of the system, in case of gaussian random noise for several
initial conditions (o = 0.15, At = 0.01 ).

4 Cable Equation

Solution for the cable equation

U(%, t) = a r (7% (t) COSs W (75)

n=1,3,

obeys the boundary conditions, i.e.,
2 nm . nhmx

O0p0(2,t)] g = . %an(t) sin —— , (76)

n=1,3,...

=0

=0 (77)



, X1

Figure 5: x1(t) vs. t, for the case z = —0.4. (0 = 0.15, At = 0.01).

and

v(a,t) = \f > an(t cos— (78)

n=1,3,...
— 0. (79)

Inserting the general solution (75) into the cable equation provides us with the solution that
governs o, (t):

= (0 — 93 + Do(z,t) (80)
= \/g 72 <dn(t) COS% + ay(t) (%)QCOS% + an(t) cos %) (81)
\/7 Z <ozn (%)2 an(t) + an(t)> cos n2_7;x (82)

n=1,3,.

In order for above summation to vanish, the term in the parenthesis must vanish. One can prove
this by integrating both sides of the equation (82) with cos(mmz/2a) where m = 1,3,5,...:

0= \/> Z by, cos—c SW;MCd (83)

n=1,3,.

where by, is the term in the parenthesis in equation (82). The integral in the equation (83) can
be calculated by using the identity

1
cos Acos B = 5 (cos(A+ B) + cos(A — B)).
/ad nmx mmr 1 / /d —n)x (84)
oS —Cos— — = xcos ."L‘COS
0 0
si (m+n)m . (m— n)7r
_ 2 HT Sl 5

10



Let us define m = n + k where k can be any even integer, since m and n are both odd. With
this substitution, the equation (85) becomes

a
nrr  mrx  a (sin(n+ 5 sinkF
/dmcosgcos 5q §< (n—i—%)ﬂ + %ﬂ (86)
0
ok s km
sin(% sin I
_af_ in( 2,37r 11117r2 (87)
2 (n + 5)77 5
i kw
a Sin o5
_ ¢ 88)
km (
2 < B )
_ § k=0 (ie,m=n) (89)
0 k#0(i.e,m#n)
In other words, one can state
a
nmx mmx a
/dmcosﬂcos oy §5mn. (90)
0

From equations (eqn.need.proof.proved) and (83), one gets

a
0= /2 . 91
ﬁzg (o1)

from which we obtain
b = 0 (92)

where m = 1,3, 5, .... Thus we have proved that each and every term in the parenthesis of the
summation in the equation (82) must be zero, i.e.,

n(t) = — <1 + ”2”2> an(t). (93)

4a?
Solution for this equation is given by

n-mw

an(t) = an(0) exp {_ (1+ - 2) t} . (94)

4a?
The coefficients, ay,(0), are determined through the initial condition,
v(z,0) = Z an(O)\/gcos T (95)
n=1,3,... a 2a

By integrating both sides with cos(mmx/2a), one gets

a

a
mnx 2 mnx nwT
/v(x,()) cos —— dx = E \/;an(O)/cos 5, €08 Wdac. (96)
0

0 n=1,3,...

11



From the equations (90) and (96), we obtain

1= \@ n:%man(())anm. (97)

We can now write the coefficient o, (0) as

Consequently using equations (98), (94) and (75), one obtains the complete solution,

2,2

(@ t) = 2 mcos%exp [— <1+ i )t} . (99)

4a?

Figure 6: v 234(x,t) vs. z,t. Higher modes, in other words, narrower cosines, die off quickly
by the time, so the initial Dirac delta function broadens while its magnitude decreases (see
equation(99)).
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