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9. THE OCULOMOTOR SYSTEM: A BIOLOGICAL
EXAMPLE

9.1 Oculomotor Control and Superior Colliculus

When reading, looking at a painting, or steering a car the eyes make numer-
ous movements, most of which consist of short, jerky jumps called saccades.
Saccades function to direct a small, slightly deepened region (the fovea) in
the center of the retina towards particular locations in the visual field. An
extraordinarily high number of light sensitive cells reside in the fovea, pro-
viding particularly high resolution of any object whose image resides there.
As soon as the attention of an observer is caught by an object the image
of which is outside of the fovea, a saccade moves the eyeball such that the
image leaps into the fovea. When reading, for example, only a few letters
can be simultaneously in focus, and even single words longer than two or
three letters must be viewed piecewise by successive saccades. Most of the
time, the saccade traverses an angle between four minutes and forty degrees
( Korn 1982). Larger changes in direction usually occur only when the eyes
and head move simultaneously.
The control of eye movements, the oculomotor control, has often been the
subject of neurophysiological investigations. The advantage one has in in-
vestigating the oculomotor system stems from the particularly close relation
between eye motions and motor nerve signals. Due to the relatively small and
constant mass of the eyeball and the capability of the muscle apparatus of
the eye to react with a comparatively large and extremely rapid deployment
of force, inertial effects play only a minor role, and the motions of the eyeball
provide an accurate mapping of the nerve signals that control the muscle.
It is not precisely known where the decision is made concerning which object
of the visual field should be in the primary focus. Clinical findings lead to
the inference that parts of the parietal lobe play a vital role in this decision
process ( Wurtz et al. 1986). Experiments have shown that the saccades are
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triggered in the superior colliculus, a mounded, multilayered neuron sheet
that is located in the upper region of the brain stem ( Sparks and Nelson
1987). The relation between the location of receptors on the retina which
are, e.g., excited by a small light point, and the place of neurons in the upper
layer of the superior colliculus that are simultaneously excited, is continuous
and topology conserving. This implies that a topographic sensory map from
the retina to the upper layer of the superior colliculus, a so-called retinotopic
map, is realized. In contrast to that, and essential for the saccadic control of
eye movements, the lower layer provides an example of a motor map similar
to the one described in Chapter 8. Locations in this layer correspond in an
ordered way to saccadic changes in view direction that can be triggered by
excitation of neurons at the corresponding locations. Such excitations can be
artificially created by stimulation via inserted electrodes. With excitations
thus invoked, the direction of the saccades turns out to be quite independent
from the intensity of the stimulus; rather, their direction is mainly determined
by the location of the stimulus in the layer.
There is an interesting relationship between the retinotopic map in the upper
layer and the motor map in the lower layer. The layers lie against one
another such that local excitations of the neurons in the lower layer trigger a
saccade which moves the fovea to a location which was previously kept by the
receptive fields of the corresponding top-lying neurons of the upper layer. In
other words, if one transfers an excitation in the upper layer that was caused
by a localized light stimulus on the retina to the directly underlying neurons
of the motor map, then the result is an eye motion that leads the fovea to the
light stimulus. This correspondence led to the formulation of the fovealization
hypothesis: According to this hypothesis, the alignment of the sensory and
the motor map in the superior colliculus serves to create saccades for the
centering of images in the fovea (Robinson 1972).
The correct functioning of such a system demands that both maps correspond
precisely to one another. This requires an exact, topographically ordered
wiring from the retina to the sensory layer and also an exact, topographically
organized assignment of saccadic motion vectors to the neurons of the motor
layer. As experiments have also shown, the oculomotor system can adaptively
follow changes in the interrelation between visual input and the saccades
needed for centering. For example, test subjects were equipped with both
contact lenses and eye glasses such that the corrections of the glasses and the
contact lenses exactly cancelled each other. Because of the distance between
glasses and contact lenses, such a combination acts like a (weak) “Galileic
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telescope,” and previously correct saccades now miss their target by some
degrees because of the combined devices. In the beginning the eye reacts
with additional corrective motions after each saccade to compensate for the
errors artificially created. This state of affairs does not remain, however;
it has been experimentally determined that already after 9–14 minutes the
oculomotor system has adapted the saccades so well that subsequent eye
motions can no longer be distinguished from eye motions of subjects without
the contact lenses/glasses combination. Larger corrective motions were no
longer required ( Henson 1977). This shows that beyond the formation of
appropriate, topographically ordered connections, the oculomotor system can
use the appearance of errors to adaptively change its saccades.
In the following we present a simple model which, on the basis of a few sim-
ple learning principles, can adaptively form a sensory map and corresponding
motor map in order to control saccades. As before, we consider only a min-
imum of biological detail in order to motivate the following mathematical
model. The starting point of our model is a lattice A of formal neurons, as
they were described in Chapter 8. Each formal neuron r corresponds to a
receptive field centered on the retina at the location wr, and the excitation
of this neuron leads to a saccade which causes a translation of a visual object
on the retina by a vector w(out)

r . The two layers of sensory and motor neurons
are replaced by a single layer. The vectors wr and w(out)

r , respectively, bring
together the location of the receptive field of a sensory neuron r and the cor-
responding saccade which is triggered when the underlying motor neuron r is
stimulated. Furthermore, we describe the correspondence between the visual
stimulus and the resultant saccade simply by a pair of values (wr,w

(out)
r ) of

the centrally localized neuron. In reality, the resultant saccade is determined
by a group of excited neurons localized at r. (In particular, in our model we
do not imitate the continuous interpolation which is caused by the simulta-
neous activity of many neurons.) As long as saccades w(out)

r do not lead to a
centering of the visual stimulus at the retina location wr, corrective saccades
are necessary. The following section will show how these corrective saccades
can be gradually reduced by a simple learning method and how, simultane-
ous to that, the arrangement of the receptive fields, whose center points are
determined by the vectors wr, can organize itself topographically.
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9.2 A Stepwise Method for Learning Saccades

The learning algorithm of our model is suggested by the corrective saccades
of the oculomotor system. If an object within the visual field draws one’s
attention, a corresponding saccade is triggered. This saccade might not lead
the object’s image precisely into the fovea in which case a second, corrective
saccade would occur to reduce this error. If this correction step really brings
an improvement, i.e., the image moves closer to the fovea, the corrective
saccade will be accepted for later eye movements. This means that a model
neuron that has triggered a wrong saccade will next time trigger a saccade
that is the sum of the wrong saccade plus the correction step. Only a single
correction step is allowed in our model. After that, a new stimulus is pre-
sented, i.e., the attention is shifted to a new, randomly chosen object in the
visual field.
The model assumes that the new object of attention is randomly chosen
each time, yet the choice is governed by a fixed probability density which
qualitatively follows the natural distribution of receptors on the retina. The
region in the fovea is unused because, there, no saccades become triggered.
Figure 9.1 shows the chosen probability distribution of input stimuli as a
function of the distance from the center of the retina. It corresponds to a
Gaussian distribution with a width of σr = 40◦ notched out at the center.
The region of the fovea has a radius of 1.0◦ (Korn 1982).
The formation of the wiring between neurons and light receptors in the retina,
i.e., the sensory map, occurs in analogy to the formation of the somatotopic
map of the hand (Chapter 7). For the simulation we use the substitute dy-
namics described in Chapter 7 as well as two-dimensional coordinate vectors
wr. Again, an image point at the location v on the retina selects that neuron
s for which the distance ‖ws − v‖ is smallest and causes an adaptation step
(70) for the vectors wr which are the determining quantities of the “input
wiring.”
As a new feature, we add the learning of the output values, the saccade
vectors w(out)

r . The two-component vector w(out)
r depicts the displacement

of an image point on the retina that results from this saccade. In the ideal
case this displacement leads into the center, i.e., if one considers each vector
w(out)

r as “attached” to the receptor at wr, then all vectors must precisely
end in the fovea.
These learning rules can now be mathematically formulated as follows. If v
is the distance vector on the retina from the fovea to an image point and
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Abb. 9.1: The probability density of the input stimuli in our model as a function
of the distance to the center of the retina. This probability density roughly
corresponds to the receptor density on the retina excluding the region of the
fovea.

w(out)
s the saccade of the neuron s which is most strongly excited by the

image at v, then the new retinal location of the image after executing the
saccade w(out)

s is given by v′ = v + w(out)
s . If v′ does not fall into the fovea,

i.e., ‖v′‖ > Rfovea, where Rfovea corresponds to a diameter of 1◦, v′ selects,

as v did previously, a neuron s′ which triggers another saccade w
(out)
s′ , the

corrective saccade. Every time this yields an improvement, i.e., every time
when ‖v+w(out)

s +w
(out)
s′ ‖ < ‖v+w(out)

s ‖, the original saccade w(out)
s becomes

improved by the corrective saccade w
(out)
s′ :

u = w(out,old)
s + w

(out,correction)
s′ . (9.1)

Here again, we take advantage of the continuity of the mapping between
retinal locations and saccade vectors by allowing the model neurons in the
neighborhood to participate in the learning process of the output value w(out)

s ,
in analogy with the learning step for wr. Just as in Chapter 8 we employ
the formula

w(out,new)
r = w(out,old)

r + ε′h′rs(u−w(out,old)
r ). (9.2)
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Here u is the improved estimation for w(out)
s defined in Eq. (9.1), and just

as hrs did previously, h′rs depends only on the lattice distance drs = ‖r− s‖
between the neurons r and s. The parameter ε′ measures the learning step
width.
Thus, our model for the oculomotor system can be summarized by the fol-
lowing steps:

0. Begin with a random assignment of the elements r of the lattice A with
receptive fields determined by the synaptic strengths wr, and with a
random assignment of the saccades w(out)

r to be triggered.

1. In accordance with the probability distribution P (v) shown in Fig. 9.1,
choose a vector v which represents a new “visual input.” v points from
the fovea to the retinal location of the new input.

2. Determine the center of excitation s in the layer A of formal neurons
by the condition

‖v −ws‖ ≤ ‖v −wr‖, for all r ∈ A. (9.3)

3. Perform a learning step

w(new)
r = w(old)

r + εhrs(v −w(old)
r ), for all r ∈ A (9.4)

for the positions of the receptive fields.

4. Execute the saccade w(out)
s , so that the position v of the image is

changed according to

v′ = v + w(out)
s .

5.a) If the visual object lies in the fovea, i.e., ‖v′‖ < Rfovea, then go back
to step 1.

5.b) If the image does not lie in the fovea, i.e., ‖v′‖ ≥ Rfovea, then determine
the new center of excitation s′, belonging to the retinal location v′ of
the image, according to

‖v′ −ws′‖ ≤ ‖v′ −wr‖ for all r ∈ A. (9.5)
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Execute a corrective saccade w
(out)
s′ . If the correction is an improvement

, i.e., ‖v′ + w
(out)
s′ ‖ < ‖v′‖, perform a learning step for the saccades

according to
u = w(out)

s + w
(out)
s′ (9.6)

w(out,new)
r = w(out,old)

r + ε′h′rs(u−w(out,old)
r ) ∀r ∈ A (9.7)

and go back to step 1. If the correction does not yield an improvement,
i.e., ‖v′ + w

(out)
s′ ‖ ≥ ‖v′‖, then omit the learning step and return to

step 1.

Steps 1–3 constitute the algorithm for the formation of the topology-conserving
map onto A as explained in Chap. 7. The newly added steps 4 and 5 change
the assignment of A with output values w(out)

r . The change occurs accord-
ing to the principle of unsupervised learning as mentioned in the previous
chapter. The correct control actions must be discovered by the learning al-
gorithm itself. This requires a search process in the space of possible values.
In our algorithm this occurs by introducing corrective saccades. Again, a
reward function is available only to tell how well the control has mastered
the given task. In our case we employ the binary criterion “came closer to
the fovea” versus “moved away from the fovea,” which decides between the
alternatives “learn” versus “ignore.” By using the function h′rs, step 5 causes
the neighboring neural units r to participate in the learning process when
the search of the neural unit s is successful. This not only accelerates signif-
icantly the learning process but also contributes strongly to the convergence
of the system to the desired state. Without the participation of neighboring
neurons in the learning process, some of the neurons remain in a state in
which saccades grossly deviate from the target value. This will be elucidated
by the following presentation of simulation results.
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Abb. 9.2: Learning saccadic eye movements according to Eqs. (9.3) – (9.11).
The figure shows the lattice in its initial configuration on the retina. The wiring
between the receptors and the neural net is chosen completely at random.

9.3 A Computer Simulation

Abb. 9.5: After 20,000 learning steps the saccades have already become crudely
ordered. All vectors point towards the center.
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Abb. 9.3: The saccades associated with the lattice points at the start of the
simulation. The direction and length of each vector are chosen at random. The
variation in length corresponds to eye rotation angles between 0◦ through 9◦.

Abb. 9.6: Learning saccadic eye movements according to Eqs. (9.3) – (9.11).
The figure shows the state after 200,000 learning steps with an assignment be-
tween receptors and lattice points which is neighborhood-conserving and which
follows the density P (v) .
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Abb. 9.7: After 200,000 learning steps the saccades point towards the center
of the retina. A blowup of the foveal region (Fig. 9.5) makes visible the precise
positions of the endpoints of the vectors wout

r .

Abb. 9.4: Learning saccadic eye movements according to Eqs. (9.3) – (9.11).
The figure shows the lattice after 20,000 learning steps. At this time a recogniz-
able ordering of the receptive fields has already taken place.



9. The Oculomotor System: a Biological Example 145

In a computer simulation of the above learning algorithm, we have chosen
a ring-shaped lattice A with 20×30 neurons. The simulation parameters
were chosen as follows: ε(t) = 1/(1 + 125t/tmax), σ(t) = 10 · exp(−5t/tmax),
ε′(t) = exp(−5(t/tmax)

2), and σ′(t) = exp(−5(t/tmax)
2) with tmax = 200, 000.

Recorded at three different stages of the simulation, Figs. 9.2-9.4 show the
assignment of A with receptive fields and the saccades to be executed.

Abb. 9.8: A blowup of Fig. 9.4b in the 1◦ foveal region which is indicated by
the circle. One can see that all saccades actually lead into the foveal region and
that the learning process has been successful.

The parameters for the learning of the receptive fields are chosen in such a
way that they loose a large part of their plasticity at an early stage of the
learning. This early freezing of the receptive fields is necessary because, when
a receptive field is shifted, the target value of the saccade that is required
at that location also changes. Without freezing, saccades that have already
been correctly learned would become invalid under further changes of the
receptive fields. For this reason the learning of the saccades requires the
stabilization of the receptive fields.
Because of the rotational symmetry of the input stimulus distribution, the
Kohonen net we employ is also rotationally symmetric. In the simulation the
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net consists of twenty concentric rings with thirty neural units each. Every
neural unit has two radial and two circumferential neighbors. The depiction
of the net is done in an imaginary “projection onto the retina,” i.e., each
figure shows the retina, and for each neuron r the center wr of its receptive
field is marked on the retina. To indicate the adjacency of neural units, we
have connected the marks of lattice neighbors by lines.
The outer ring represents the whole visual field from −90◦ to +90◦. The
innermost ring encircles the fovea with a radius Rfovea which corresponds to
an area of the visual field of 1◦. The saccades w(out)

r at each lattice point are
drawn as arrows; they specify the shifting of an image on the retina when
the saccade is executed.
Figure 9.2 displays the initial-state assignment with random synaptic strengths
wr and random saccades w(out)

r . The magnitude of the saccades varies be-
tween 0◦ and 9◦. Figure 9.3 shows the situation after 20, 000 learning steps.
At this stage a regular assignment between the retina and lattice points has
already emerged and all the saccades are directed towards the center. In
Fig. 9.4, after 200, 000 learning steps, a well-ordered connectivity with the
retina that is in accordance with the input stimulus distribution P (v) has be-
come established. The receptive fields lie more densely in the region around
the fovea than farther out, where the decrease of the Gaussian input distri-
bution gives rise to a lower resolution. All the corresponding saccades now
actually point towards the center of the retina. Because, in Fig. 9.4b, the
positions of the endpoints of the vectors w(out)

r cannot be clearly observed,
Fig. 9.5 shows a blowup of the foveal region: one can notice that all saccades
actually lead the targeted image into the fovea; the learning method has been
successful.
The precise form of the distance measure between two neural units in the
lattice is inconsequential for the organizational process to converge; however,
sometimes a certain metric may fit a problem better than other distance
measures. For example, in the above simulation we used the “Manhattan”
rather than the Euclidean metric. (The “Manhattan-distance” between two
lattice points r and s is the minimal number of lattice steps required to go
from r to s.) Equal distances in the lattice, i.e., in the neuron layer, can
correspond to completely different distances between the corresponding re-
ceptive fields in the space of input signals. It is the distances between the
centers of receptive fields which become visible in pictures such as Figs. 9.2–
9.4. In contrast, it is the distances in the lattice which determine the spa-
tial interaction between the neurons themselves and, thereby, determine the
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distance-dependent adaptation steps in the model. This feature can be quite
advantageous, as is particularly manifest in the vicinity of the fovea. There,
receptors that are directly opposite to each other lie close together but have
to learn saccades that differ as much as saccades that belong to receptive
fields directly opposite and at the periphery of the retina. At both receptor
pairs the required saccade directions of the partners differ by the same angle,
namely 180◦. Therefore, it makes sense to use the “Manhattan” metric which
yields, for the foveal and peripheral pair, the same lattice distance between
the diametrically opposite neural units, namely 15 lattice sites.

9.4 The Convergence of the Learning Process

In this section we demonstrate that under certain conditions the algorithm
which was employed to learn the saccadic eye movements must converge. For
this purpose we make two assumptions. First, we consider a stage at which
a corrective saccade always gives rise to an improvement. This is valid when
all vectors have oriented themselves towards the center which is, as one can
see in Fig. 9.3, already the case after comparatively few learning steps (in
most cases 10% of the total number is sufficient). In addition, we assume
that the receptive fields on the retina lie dense enough that we may make
the transition from discrete lattice points to a continuum of r-values, as we
did in Chapter 5 when we considered the representation of the ultrasonic
spectrum on the bat’s auditory cortex. By this assumption the sets of values
wr and w(out)

r meld into continuous vector fields w(r) and w(out)(r). Since
we assume the lattice to be maximally ordered, the inverse r(w) exists, and
we can define

w(out)(u) = w(out)(r(u)). (9.8)

w(out)(u) is the saccade which is triggered if the visual stimulus is at the
retina location u. In addition, a glance at the simulation data shows that
σ′, the range of the interactions between neighbors, has a very small value
from the start and decreases monotonically. We will see that from the time
when all vectors are beginning to point towards the inner region, cooperation
between neighbors is no longer necessary for convergence. If we set h′rs = δrs,
then only the saccade at the lattice point s, in whose receptive field the
stimulus v was located, experiences an adaptation step.
Under these conditions our learning algorithm can be mathematically formu-
lated as follows: with an input stimulus v the saccade w(out)(v) is triggered
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and leads to the retinal location v+w(out)(v). The corrective saccade is then
given by w(out)(v + w(out)(v)). Thus, the saccade at v changes according to
step 5 of our algorithm by

∆w(out)(v) = ε′w(out)(v + w(out)(v)). (9.9)

It is beneficial to introduce the new variable

x(u) = u + w(out)(u). (9.10)

Here, x(u) is the shift which the saccade w(out)(u) still lacks to lead an image
into the fovea. In our algorithm x(u) should converge to zero since at the end
it should be true that w(out)(u) = −u. Equation (9.9) then can be written

xnew(v) = xold(v) + ε′ w
(out)
old (xold(v))

= (1− ε′)xold(v) + ε′
[
xold(v) + w

(out)
old (xold(v))

]
= (1− ε′)xold(v) + ε′xold(xold(v)). (9.11)

For estimation purposes we now want to make mathematically precise the
condition that at some point in time all vectors have become oriented towards
the center. “All vectors are oriented towards the center” shall mean

‖u‖ − ‖u + w(u)‖
‖u‖

> δ, for all u ∈ V, with δ > 0. (9.12)

There should exist a fixed δ > 0 which satisfies Eq. (9.12) for all u ∈ V
simultaneously. Rearranging (9.12) yields

‖x(u)‖ < ‖u‖(1− δ), for all u ∈ V. (9.13)

If we replace u by x(u) in Eq. (9.13), then

‖x(x(u))‖ < ‖x(u)‖(1− δ) for all u ∈ V (9.14)

is also true. Through the triangle inequality (9.11) becomes

‖xnew(v)‖ ≤ (1− ε′)‖xold(v)‖+ ε′‖xold(xold(v))‖
< (1− ε′δ)‖xold(v)‖, (9.15)

since 0 < ε′ < 1 and, because of (9.12), 0 < δ ≤ 1. Due to the nonexistent
lateral interaction, the saccade of a lattice point is changed only if the stim-
ulus falls into the lattice point’s receptive field. But then, according to the
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above inequality, the residual error is diminished by at least a factor (1−ε′δ).
On average, after N learning steps the neural unit s has been excited HsN
times by a stimulus, where

Hs =
∫
Fs

P (v) dv. (9.16)

Fs is the size of the receptive field of neural unit s on the retina. There-
fore, as the number of learning steps N increases, the error of the saccade
at s approaches zero on average faster than (1− ε′δ)HsN , resulting in the
convergence of our algorithm under the above conditions.

Abb. 9.9: Learning saccadic eye movements according to Eqs.9.2 – 9.11, but
without cooperative learning as described through (9.11), i.e., with hrs = δrs.
After 200,000 learning steps the rotationally symmetric Kohonen net again dis-
plays the same assignment between receptors and lattice points.
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Abb. 9.10: Without cooperation between neighbors, not all of the saccades
learn the targeted value. In particular a few saccades in the outer region of the
retina give rise to totally wrong directions.

If after only about 10% of the total number of simulation steps a state is
reached where the learning algorithm for the saccades, even without interact-
ing neighbors, safely converges towards the targeted values, then the question
arises whether we need the cooperation between neighbors at all, especially
since the range was very small from the start as we can see from the sim-
ulation parameters. An answer is apparent in Fig 9.6 where a simulation
result is shown with the same simulation parameters as before, except with
the cooperation between neighbors “turned off.” There we recognize that a
few saccades in the outer region of the retina deviate completely from their
targeted output values and even point away from the center. This is due to
those vectors, which after being acted upon by a stimulus, do not find an
appropriate corrective saccade leading the stimulus closer to the center and,
thereby, yielding a learning step (9.11). By an initial random assignment
there are always a few saccades which evolve by the learning algorithm in a
way that, at some point in time, they point into the receptive field of a neu-
ron whose corrective saccade does not give rise to an improvement. These
badly learned saccades appear mainly in the retina’s outer region because
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there they often find only themselves for corrective saccades. In the learn-
ing algorithm without cooperation between neighbors these saccades have no
longer the opportunity to rotate into the correct direction. Furthermore, we
realize that the overall convergence of the system is slightly worse than in
the case of cooperative learning. In particular, the end points of all vectors
do not yet lead into the fovea even after the simulation has been terminated
after 200,000 steps. This arises simply from the reduced rate of convergence.
A reduced convergence rate is to be expected since without cooperation a
saccade only changes if the center of a stimulation lies precisely in the sac-
cade’s receptive field, and neurons no longer profit from their neighbors. In
principle, however, there is no reason why with further learning steps, except
for some “runaways” in the outer region, the same desired state should not
be reached.
At the beginning of the learning process, the cooperation between neighbors
is essential. At this stage, it has the task of rotating all vectors towards
the inner region. This cooperation is indispensable for a successful, overall
convergence. The isolated saccades which continuously point towards the
outside and which at the end of the simulation without cooperative learning
would not have changed their direction are now shifted towards the center by
their neighbors with more favorable starting values. Indeed, with cooperation
between neighbors, all saccades point towards the center after only 10% of
the learning steps (Fig. 9.3), creating a basis for the desired convergence of
the total system.

9.5 Measurements on Human Subjects

In the model for the learning of oculomotor control presented above, we
employed, with the introduction of corrective saccades, a very simple learning
principle. Perhaps too simple, since measurements by Becker and Fuchs
(1969) show that the simulation results of the algorithm do not quite agree
with experimental observations. The experiments of Becker and Fuchs with
human subjects show that the saccades almost never lead directly into the
fovea. One can infer, however, that the “mistakes” occur by design since the
errors of the first saccades are not randomly distributed around the fovea.
The first saccades are, with few exceptions, too short (undershoot). In fact,
it is believed that the intentional use of a first saccade which is too short
gives rise to advantages, possibly in a better planning and easier execution
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of subsequent eye movements. Compared to those observations, our model
learns its saccadic eye motions much too “well” because at the end of the
learning process all of our saccades precisely lead in the fovea. In our simple
example we have omitted the complicated aspect of planning and restricted
ourselves to the images of immobile objects. An extension of the learning
model must deal with the tracking of objects, where planning ahead will play
an important role. Perhaps the intentional use of undershoots could provide
advantages for a learning method extended in such a way.
Through the pole-balancing and saccadic-control problems, we have seen
how self-organizing, topology-conserving maps can be used in a natural way
for the learning of input/output relations in the form of adaptively organized
“look-up” tables. The topology-conserving feature of the map makes possible
the cooperation between neighboring neural units, which strongly contributes
to the method’s rapid convergence. This will be developed further in the
following chapters. The adaptive capabilities of the map make possible an
automatic optimization of the choice of value pairs represented in the table.
Nonetheless, for mappings between higher dimensional spaces, a very high
number of value pairs must be stored. This difficulty can be somewhat eased
by the use of locally valid linear mappings instead of value pairs. With
linear mappings, more complex control tasks can be handled, such as those
that arise in the motion control of robots. In Chapters 10, 11 and 12 this
will be demonstrated with a neural network which learns the control of a
triple-jointed robot arm and one which learns to control a robot arm with
redundant degrees of freedom.




