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12. CONTROL OF A MANIPULATOR BY A
HIERARCHICAL NETWORK

12.1 The Robot for the New Task

In Chapter 11 we have shown how an artificial neural network can learn to
position a robot arm with its gripper at a desired target. This fundamental
capability is the basis of our approach to a new and more complex task in
robotics: the control of coordinated grasping movements for simple objects
(Martinetz and Schulten 1990).
As we reach for a can of beer or soda, we hardly ever think about the vast
complexity involved in grasping an object or, correspondingly, what must be
regarded in detail while driving an artificial manipulator. For one thing, the
movement to be performed depends on the location of the object in the work
space. The shape of the object plays a crucial role in planning a grasping
movement. It must be estimated where the center of mass lies because,
if there is too large a distance between the center of mass and the chosen
grasping position, then undesirable torques can arise which make it difficult
to hold the object steadily. The object has to be sufficiently narrow at some
place to account for the limited opening of the gripper. The orientation of the
object must be considered since grasping an upright object like a beverage
requires a different gripper position than that which is effective for the same
object on its side. Even the contour of the object must be considered so that
the gripper does not slip, and so on.
These complications make us realize the difficulty in developing an overall
grasping strategy, and so it should not come as a surprise that this problem
forms an area of current research. So far there have been only partial solu-
tions. One promising approach, for instance, uses potential fields of artificial
charge distributions which guide the arm and the gripper along the desired
trajectory towards the final position (Hwang 1988, Ritter 1990).
We restrict the discussion in this chapter to the complications surrounding
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the orientation and location of an object to be fetched. We consider a pliers-
type end effector of the form displayed in Fig. 12.2, and we choose a relatively
simple shape for the object to be grasped, namely, a cylinder. By choosing
a rotationally symmetric object the problems relating to the selection of a
proper grasping point are simplified, since in this case reaching for the center
of the cylinder from any direction is appropriate. Aside from the position in
the work space, the orientation of the cylinder is the only other factor which
determines the final position of the arm and the gripper.
In Fig. 12.1 we see the model of the robot that we used in our computer sim-
ulations. Neither the position of the cameras nor the work space has changed
relative to the simulation model of the previous chapter. The geometry of the
present robot model, however, imitates the shape of the human arm. This
configuration allows the robot always to approach presented objects from the
front. By “from the front” we mean that it is possible to bring the gripper
into a position between the object and the base of the robot, and from this
position the gripper proceeds to grasp the object. This anthropomorphically
designed form of the robot arm will later allow the robot to use a grasping
strategy which corresponds to a motion that is typical for humans. When
grasping an object by hand, humans usually reach from the front. Only in
exceptional cases does one opt for a different strategy as might happen, for
example, when impeded by an obstacle or when picking up an object from
its far side. The robot arm has three degrees of freedom by which each arm
configuration is uniquely determined (there is no redundancy). As before,
the arm can rotate around its vertical axis (θ1) and around the axes of the
middle (θ2) and the outer (θ3) joints, which are parallel to each other and
parallel to the horizontal plane. For the orientation of the gripper, two de-
grees of freedom are available. The first degree of freedom is given by the
axis at the “wrist,” which is parallel to the middle and outer joint of the arm.
The second degree of freedom allows rotation around the gripper’s symmetry
axis.
Figure 12.2 shows a sketch of the gripper with its two joint angles β1 and β2

and the normal vector n which describes the orientation of the gripper. This
vector is perpendicular to the symmetry axis and perpendicular to the flat
side of the gripper. The point P in Fig. 12.2 denotes the place of the gripper
which must be guided towards the center of the cylinder to be grasped.
Simultaneously, it is necessary to orient the normal vector n parallel to the
axis of the cylinder. Therefore, this normal vector must be able to take on
any orientation. This is ensured by the two joint angles β1 and β2. The
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Abb. 12.1: Model of the robot used in the simulation, the two cameras, and
the work space. The robot itself is now in its geometry similar to the form of
the human arm. This construction makes it always possible to drive towards
objects from the front. The robot’s arm has three degrees of freedom: rotation
around the vertical axis plus the middle and outer joint, whose axes are parallel
to each other and perpendicular to the vertical direction as in previous models.
The orientation of the gripper can be modified by two degrees of freedom. The
axis of the first joint is parallel to the joint axes of the middle and the outer joint
of the arm. The second joint can rotate the gripper around its own symmetry
axis.
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Abb. 12.2: A sketch of the gripper with its two joint angles β1 and β2 and the
normal vector n, which describes the orientation of the gripper. Also shown is a
coordinate system which is attached to the last segment. The components n1,
n2, and n3 of the normal vector n relative to this coordinate system are given
by Eq. (164). The point P denotes the center and, thereby, the location of the
gripper which must be guided towards the center of the cylinder to be grasped.

relation between the three components of the normal vector n and the joint
angles is given by

n1 = − sin β1 cos β2

n2 = − sin β2

n3 = cos β1 cos β2 (12.1)

where n1, n2, and n3 are the projections of n on the coordinate system shown
in Fig. 12.2, spanned by the unit vectors n̂1, n̂2, and n̂3. In Fig. 12.2 n̂1 runs
parallel to the longitudinal axis of the outer segment, n̂2 is perpendicular to
n̂1 and lies parallel to the x-y plane, and n̂3 is perpendicular to both.
That we are really able to orient n in any direction can be recognized particu-
larly well when we perform the transformation β1 → −β̄1 and β2 → β̄2−90◦.
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Then we obtain

n1 = sin β̄1 sin β̄2

n2 = cos β̄2

n3 = cos β̄1 sin β̄2, (12.2)

which corresponds to the polar representation of a three-dimensional vector
n with β̄1 as the polar angle and β̄2 as the azimuthal angle.

12.2 View through Cameras

The task of the neural network is again to transform input signals, delivered
by the cameras, into suitable joint angles for the arm and the gripper. In the
previous chapter we assumed that an image processing system extracts the
required image coordinates of the target location from the camera images.
Again we do not want to be concerned with details of the image processing,
and we take for granted that we have a suitable image processing system
which extracts the required input data from the camera images. To be able
to grasp a cylinder, the neural network needs, in addition to the information
about the location of the cylinder in the work space, information about the
cylinder’s orientation in space. At each position in the work space, the cylin-
der has two additional orientational degrees of freedom which determine the
angles of the configuration that is required for arm and gripper while grasp-
ing.
In what form do the cameras deliver the necessary information about the
orientation of the cylinder? In Fig. 12.3 we see the bars that result from the
projection of a cylinder onto the image planes of the two cameras. The bar
locations in the two image planes implicitly contain the information about
the location of the cylinder in space. The orientations of the bars in the
image planes provide the information about the spatial orientation of the
cylinder axis.
As can be seen in Fig. 12.3 we describe the location of the center of each
bar by its two-dimensional coordinates in the respective image plane of each
camera and combine the two coordinate pairs to a four-dimensional vector u.
To describe the orientation of each bar we use its projection onto the x- and
y-axes of each camera’s image plane. To be able to determine this projection
uniquely with respect to its sign, it is necessary to assign a direction to the
bar in the image plane. In Fig. 12.3 a particular end of the bar is marked
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Abb. 12.3: The cylinder as seen from cameras 1 and 2. One end of each
bar is marked by an arrow head (see text). The position of the centers of
both bars described by (ux1, uy1, ux2, uy2) determines the spatial position of the
cylinder. The coordinate set (xx1, xy1, xx2, xy2) in a normalized form contains
the information about the orientation of the cylinder that is needed by the neural
net.

by an arrowhead. It does not matter which end is picked, but it must be
certain that in both image planes the special end is the same actual end
of the cylinder. This demands that the image processing system is able to
identify the corresponding ends of both bars. This could be achieved, for
example, through comparison of textures. In the case of a soda can, the
image processing system must be able to find out which end of both bars
corresponds, e.g., to the top.
Thus, there are always two equal possibilities for selecting the special end
of the bars. In our simulation, which will be described in greater detail, we
choose always that end of the bar that lies “higher” in the image plane of
camera 2, i.e., in the coordinate system of the camera’s image plane, the
one located in the more positive region of the y-axis. The image processing
system must then identify the corresponding end of the bar in the image
plane of camera 1, and also mark it there.
The projections yield a pair of two-dimensional vectors denoted by (xx1, xy1)
and (xx2, xy2) which uniquely describe both bars, including the selected di-
rection. Combining this pair of vectors, we obtain a four-dimensional vector
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that contains, in addition to the orientation, information about the length
of both bars. Because the information about the length of both bars which
is correlated to the length of the cylinder is not relevant for the task, we
normalize (xx1, xy1, xx2, xy2) and obtain the four-dimensional input signal x
that now exclusively contains the required information on the cylinder’s ori-
entation. The two four-dimensional vectors u and x together comprise the
complete information that is needed by the neural net to direct the grasping
movement.

12.3 Hierarchical Arrangement of Kohonen
Networks

To represent the input signals describing the location and the orientation
of the cylinder, we use a network that is composed of an hierarchical ar-
rangement of many subordinated Kohonen nets. As depicted in Fig. 12.4,
the network architecture is composed of a set of two-dimensional sub-lattices
which are arranged in a three-dimensional super-lattice.
To represent the input signals responsible for the spatial position, we again
choose, as in the last chapter, a three-dimensional Kohonen lattice, however,
providing it with two-dimensional subnets at its nodes. Each node of the
three-dimensional super-lattice, i.e., each sub-lattice, specializes in a small
subregion of the work space during the learning process. Within each of
these subregions of the work space, a topology-conserving representation of
the different orientations of the cylinder emerges through the corresponding
subnet.
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Abb. 12.4: Hierarchical arrangement of Kohonen nets. A two-dimensional sub-
lattice is assigned to every node of the three-dimensional super-lattice. If s is
the subnet of the super-lattice that is closest to the cylinder, then the element q
within s that best describes the orientation of the cylinder is selected to determine
the output.

The output values are attached to the elements of the two-dimensional sub-
lattices. A hierarchically organized selection process chooses the element out
of all sub-lattices whose output values will later determine the joint angles for
the particular object position and orientation. The selected element should
represent the spatial position of the cylinder better than all the other ele-
ments. In the selection process we can restrict ourselves to that sub-lattice
of the three-dimensional super-lattice which is closest to the object position.
The element of this subnet that is also closest to the input signal in the space
of cylinder orientations will then finally determine the output values.
If we denote the position of every subnet r in the four-dimensional space of
camera coordinates U by wr, then we search for the particular subnet s for
which holds

‖u−ws‖ ≤ ‖u−wr‖, for all r.

This is followed by the selection of the neural unit within the subnet s which
is finally to be activated. By zsp, we denote the position attached to every
element p of the sub-lattice s in the space of the input signals x which de-
scribe the cylinder’s orientation. By taking also into account the information



12. Control of a Manipulator by a Hierarchical Network 196

about the cylinder’s orientation, the element q of s which finally determines
the output signals is defined by

‖x− zsq‖ ≤ ‖x− zsp‖, for all p.

Because of the hierarchical organization of the Kohonen nets, the time needed
to search for the neural unit responsible for the output can be kept short.
In our case the relevant submanifold of the whole input signal space, i.e.,
U ⊗ X, is five-dimensional because of the five degrees of freedom of the
cylinder. If one made an unstructured assignment of this space with equal
discretization points, e.g., by applying a five-dimensional Kohonen net, the
time needed for the selection of the element q would increase as N5 where
N is the number of elements of the Kohonen net along a single dimension.
Due to the hierarchical structure of the network and, consequently, due to
the hierarchically organized selection method, the search time tsearch in our
case increases only as

tsearch ∼ N3
S +N2

E. (12.3)

Here N3
S is the number of subnets and N2

E is the number of elements per
subnet. The selection of the responding neuron can consequently be managed
much faster, assuming NE ≈ NS ≈ N . Although the control task has become
much more complex, the search time tsearch does not increase faster with the
number of net nodes per dimension than in the case of a robot without a
gripper. The search time still increases only as N3.
After the selection of the subnet with ws closest to u and the neural unit
with zsq closest to x, adaptation steps are performed on both levels of the
hierarchy of the network. These steps cause (i) a shift of all subnets in the
space of camera coordinates U and (ii) an adjustment of all elements of all
subnets in the space of cylinder orientations X. The shift of the subnets is
accomplished by the familiar adaptation step

wnew
r = wold

r + ε · hrs(u−wold
r ), for all r . (12.4)

The adjustment of the elements of the selected subnet s is also accomplished
according to the Kohonen rule, which yields

znew
sp = zold

sp + δ · gpq(x− zold
sp ), for all p. (12.5)

Just as hrs determined the neighborhood within the three-dimensional super-
lattice, now gpq determines the neighborhood within each two-dimensional
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subnet. By the adaptation step ((12.4) we obtain a topology-conserving dis-
tribution of subnets in the input signal space U . Therefore, it is guaranteed
that subnets that are neighbors in the super-lattice must represent a sim-
ilar distribution of input signals x. Hence, it makes sense to extend the
adaptation step for the neurons p in the selected subnet s onto all neighbor-
ing subnets r in a way that decreases with the distance from s. To do so we
again use hrs as a measure for the neighborhood within the three-dimensional
super-lattice. This motivates us to replace ((12.5) by the adaptation step

znew
rp = zold

rp + δ · hrsgpq(x− zold
sp ), for all r,p (12.6)

for all neurons p of all subnets r.
A hierarchical arrangement of Kohonen nets is useful when the input channels
can be combined to groups of different modality with different priority for
the quality of their representation. In our case the input signals had the
modalities “position” and “orientation.” In selecting the best, i.e., closest
to u and x, element of the network, the modality “position” had a higher
priority because the gripper attached to the end effector has to be first placed
at the object before an alignment of the gripper position makes any sense.
By combining elements into groups with identical receptive fields in the space
of location information, we obtain a whole set of elements that represent the
location information of a cylinder equally well. Within this set, the element is
selected which, in addition, provides the best information on the orientation
of the cylinder.
Interestingly enough, one finds similar hierarchical structures in the visual
cortex of higher animals (Hubel and Wiesel 1974; Blasdel and Salama 1986;
Obermayer et al. 1990, 1991). Orientation-sensitive neurons are arranged
according to a hierarchically composed topographic map in the visual cortex.
Locations on the map represent “locations in the visual field” as well as the
“orientation” of a bar appearing on the retina. The visual cortex can be
parcelled into many small sections, each of which corresponds to one location
in the visual field. Within each of these sections, each neuron is specialized
for a different bar orientation, and the whole orientation spectrum of 180◦

is represented within each section. In this way, a connection between the
sections on the visual cortex and the subnets presented in this chapter can be
made. The arrangement of the sections on the visual cortex then corresponds
to the arrangement of the subnets in the super-lattice.
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12.4 The Output Values and the Positioning Process

The required joint angles are uniquely given by the spatial position and the
orientation of the cylinder, i.e., by the presentation of the target for P and
the direction for n (see Fig. 12.2). The overall five degrees of freedom of the
robot’s arm and gripper are required in order to handle the three degrees
of freedom for the spatial position plus the two degrees of freedom of the
cylinder’s orientation. It is not possible to decouple the arm and gripper
configurations which are required for the different positions and orientations
of the cylinder. Similar orientations of the cylinder at different locations in
the work space require not only different configurations of the arm but also
different alignments of the gripper’s joints. The situation is similar when the
cylinder at the same location appears with different orientations of its axis.
In this case not only must the orientation of the gripper be changed, as one
might at first assume, but also the arm must compensate by small corrections
of its joint angles for the small shift of the gripper’s center P that was caused
by a change of the direction of the normal vector n. Mathematically put, this
means that the arm’s joint angles ~θ = (θ1, θ2, θ3) and the angles of the gripper
~β = (β1, β2) depend simultaneously on u as well as on x. If we combine all

five joint angles to the vector ~φ = (θ1, θ2, θ3, β1, β2), then it holds

~φ(u,x) =

( ~θ(u,x)
~β(u,x)

)
. (12.7)

After presentation of the object the neural unit q within the subnet s is
selected which will be responsible for determining suitable output values for
setting the joint angles ~φ. For this purpose each element p of every subnet
r, in the following denoted by rp, stores two terms, a term ~φrp for gross-
positioning and a tensor Arp which serves to lineraly interpolate between

neighboring units rp. ~φrp in this case is a five-dimensional vector and Arp is

of dimensions 5×8. The representation of the transformation ~φ(u,x) that has
to be learned is achieved by covering the input signal space with locally valid
linearizations of ~φ(u,x). The linearizations are done around the locations
w̃rp = (wr, zrp), where w̃rp denotes the position in the whole input signal
space (the product space U ⊗ X) connected with unit rp. If we combine
both input signals u and x into ũ = (u,x), then the responding neural unit
sq generates as an output signal the joint angles

~φi = ~φsq + Asq(ũ− w̃sq). (12.8)
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Equation (12.8) is of the same form as Eq. (12.2) for a robot arm without a
gripper.
Equation (12.8) determines the first movement step which is followed by a
corrective movement—just like in the case of the robot arm without a grip-
per. For this purpose it is necessary to determine the position of the arm and
gripper from both camera perspectives after the first movement step. For one
thing, one needs the image coordinates of the center P of the gripper in cam-
eras 1 and 2. The pair of two-dimensional image coordinates is combined to a
four-dimensional vector denoted by vi. Furthermore, one needs information
about the orientation of the gripper that is provided by the direction of the
normal vector n (see Fig. 12.2). If we imagine the normal vector n projected
onto the camera image planes, then we obtain a two-dimensional vector in
each camera. The orientations of both vectors describe the orientation of
the gripper in camera coordinates, and they must be brought into alignment
with the orientation of the two vectors (xx1, xy1) and (xx2, xy2) that describe
the orientation of the cylinder. The pair of two-dimensional vectors that
describe the orientation of n after the first movement step is combined to a
four-dimensional vector yi. The absolute value of the difference ‖x− yi‖ of
the vector yi and the input signal x is to be minimized.
How can the projection of the normal vector n on the image planes be deter-
mined from the images of the gripper? One possibility would be to attach a
mark that can easily be identified, e.g., a light, on each of the two flat sides
of the gripper directly opposite to each other. The difference vector from the
positions of the two lights as seen from the first camera yields the projection
of the normal vector n onto the image plane of camera 1. Analogously, we
obtain the projection of n onto the image plane of camera 2. Both difference
vectors are then combined to a four-dimensional vector and are normalized
to eliminate the irrelevant information about the distance of both lamps to
each other. In that way, information about the direction of the virtual normal
vector or equivalently, about the orientation of the gripper, can be obtained
in a very simple way from the camera pictures of the gripper.
The information about the intermediate position of the arm vi and about
the intermediate orientation of the gripper yi (resulting from the angles ~φi as
given by (12.8) are again combined into a vector ṽi = (vi,yi). The residual
difference ũ − ṽi between the target coordinates ũ and the intermediate
coordinates ṽi determines a corrective step. This step uses the Jacobian
matrix of the responding neural unit sq and determines a correction for all
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five joint angles,
∆~φ = Asq(ũ− ṽi), (12.9)

by which we obtain the final joint angle configuration ~φf = ~φi+∆~φ. The cor-
responding position and orientation of the gripper is again observed through
the cameras and denoted by ṽf = (vf ,yf ).
The corrective step (12.9) can be performed several times in succession to
further reduce the positioning and orientation error to values only limited
by the imperfections of the devices used in practice, e.g., by the camera
resolution. The corrective step, being based on feedback control, will later
allow us to use a grasping strategy that is similar to the grasping strategy
that humans use. The feedback process allows to move toward an object
cautiously, thereby avoiding a collision with the object. In the following
considerations we will confine ourselves to a single corrective step (12.9).

12.5 The Learning Method for the Output
Values

The use of a vector ~φrp and of a Jacobian matrix Arp to represent the trans-

formation ~φ(u,x) is analogous to the learning algorithm for the robot arm
without a gripper in the previous chapter. This is also true for the posi-
tioning process with its two phases, gross positioning according to (12.8) and
corrective step according to (12.9) (step 5 and step 6 in Section 11.2). There-
fore, we can adopt the algorithm presented in Section 11.3 that we employed
for the learning of the end effector positioning to improve the output values
~φrp and Arp. Only the transformation of the learning success of one neural
unit onto its neighbors will be of a different form because of the hierarchical
architecture of the network.
The corrective movement (12.9) again serves to iteratively determine the
Jacobian matrices from small changes in the joint angles in conjunction with
the corresponding small changes in the camera coordinates. This makes it
possible to determine an improved estimate A∗ for Asq. Combined with the

step that determines an improved estimate ~φ∗, we obtain

~φ∗ = ~φsq + δ1 ·Asq(ũ− ṽi)

A∗ = Asq + δ2 ·Asq(ũ− ṽf )∆ṽT , (12.10)

where ∆ṽ = ṽf − ṽi. For the adaptation step widths δ1 and δ2 we choose, as
in Section 11.2, the optimal values δ1 = 1 and δ2 = 1/‖∆ṽ‖2.
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The new estimates ~φ∗, A∗ obtained by means of Eq. (12.10) are used to im-
prove the output values of the neural unit sq and its neighbors. But in the
present case of a robot arm with gripper we have two hierarchies of neighbor-
hoods, one within the subnet that is described by the neighborhood function
g′pq, and the other between the subnets described by the neighborhood func-
tion h′rs. Not only the neighboring neurons p within the subnet s participate
in the learning of the activated neuron sq, but also the subnets r which are
neighboring in the super-lattice participate according to their distance to the
subnet s. This leads to the adaptation step

~φ new
rp = ~φ old

rp + ε′h′rsg
′
pq

(
~φ ∗ − ~φ old

rp

)
Anew

rp = Aold
rp + ε′h′rsg

′
pq

(
A∗ −Aold

rp

)
(12.11)

for the neural units of all subnets.
The learning steps (12.11) for the output values are of the same form as the
learning step (12.6) for the position zrp attached to each element rp. Both
affect neural units that are neighbors in the subnet and also subnets that are
neighbors in the super-lattice. Instead of the input signals x, the improved
estimates ~φ ∗ and A∗ occur in Eq. (12.11).

12.6 Simulation Results

In this section we describe the results of a simulation of the learning algo-
rithm. For the computer simulation we have employed a super-lattice con-
sisting of 4×7×2 subnets. Each of the subnets contains 3×3 neural units.
The parameters that describe the work space and the position of the cameras
are the same as in the previous chapter.
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Abb. 12.5: The three-dimensional super-lattice, initially (top), after 1000 (mid-
dle), and after 10,000 learning steps (bottom). The left column shows the focal
plane of camera 1, and the right column shows the focal plane of camera 2. At
each node of the super-lattice the corresponding subnet is schematically depicted.
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In total, the robot arm performed 10,000 learning steps. In Fig. 12.5 we
present the development of the three-dimensional super-lattice. We again
show the focal planes of cameras 1 and 2. In the left column of Fig. 12.5
we see the projection of the centers wr of the receptive fields of the subnets
on the focal plane of camera 1. In the same way the projections of wr

on the focal plane of camera 2 are depicted in the right column. In each
projection, subnets which are adjacent in the super-lattice are connected by
straight lines. The state of the super-lattice is shown at the beginning, after
1000, and after 10,000 learning steps. The development of the super-lattice
corresponds, except for a lower number of lattice points, to the development
of the three-dimensional Kohonen lattice in the previous chapter.
We illustrate the development of all the two-dimensional subnets by display-
ing the development of one of them. The input signals of each subnet consist
of four-dimensional vectors x = (xx1, xy1, xx2, xy2), the components of which
were restricted to the interval [−1, 1] through the imposed normalization.
The input signals x are represented by the four-dimensional vectors zrp that
are assigned to the elements of each subnet. The first two components of
zrp represent the occurring bar orientations (xx1, xy1) as seen by camera 1,
and the last two components represent the bar orientations (xx2, xy2) seen
by camera 2. In Fig. 12.6 we show the state of the subnet in the beginning,
after 1000, and after 10,000 learning steps. In the left column the first two
components and in the right column the last two components of zrp are de-
picted. Each of the squares in Fig. 12.6 represents the region −1 < xx < 1,
−1 < xy < 1.
Since the edges of the presented cylinders always lie on the surface of a sphere
(end-points of normalized vector x), it follows that the two-dimensional sub-
manifold that is to be represented by a subnet is also spherical. Each of the
two-dimensional subnets tries to adhere to the surface of the sphere. In the
right column of Fig. 12.6 we see that the subnet shown lies completely in
the upper half of the box. This results from our assignment of the “special”
end of the bar in camera 2 to the end with the larger y-value. Hence, xy2

is always positive and at the end of the learning, only the upper half of the
sphere is covered by the subnet. The vector that describes the bar as seen by
camera 1 may have almost any direction in the focal plane. Thus, in the left
column of Fig. 12.6 the net at the end of the learning phase is more evenly
spread out.
In the simulation just described, we assumed for all the parameters ε, δ,
ε′, σ, σ′, ρ, and ρ′ the same time dependence xi(xf/xi)

t/tmax with tmax =
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Abb. 12.6: The state of a sample subnet at the beginning (top), after 1000
(middle), and after 10,000 learning steps (bottom).

10, 000. The parameters ρ and ρ′ denote the width of the Gaussians gpq and
g′pq introduced in 12.6) and (12.11). For the initial and final values of the
parameters we chose εi = 1, εf = 0.01, δi = 1, δf = 0.01, ε′i = 0.8, ε′f = 0.4,
σi = 1.5, σf = 0.3, σ′i = 1, σ′f = 0.3, ρi = 1, ρf = 0.1, ρ′i = 1, ρ′f = 0.3.
In Fig. 12.7 we illustrate the learning success by presenting the positioning
and orientation error as a function of the number of learning steps. The
corresponding errors were determined by performing a test after every 100
trial movements. For each test we suspended the learning and monitored the
performance by presenting a randomly oriented cylinder at 1000 randomly
chosen locations within the work space. The mean error at that stage of
learning was computed by averaging over the errors of the 1000 test move-
ments. Two quantities were monitored: (i) the positioning error, i.e., the
difference between the center of the gripper P and the center of the cylinder,
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Abb. 12.7: The mean positioning (in % of the length of the workspace) and
orientation error (in degree) as a function of the number of learning steps. Af-
ter 10,000 learning steps the positioning error is 0.004, which corresponds to
about 0.6% of the length work space. The slightly larger error compared to the
robot arm without a gripper in the previous chapter is due to the smaller three-
dimensional main lattice. The orientation error of the gripper decreased to the
small value of 1.7◦ after 10,000 learning steps. This value is much smaller than
necessary for successful performance of the task.

and (ii) the difference between the gripper orientation and the orientation of
the cylinder, measured in degrees. The positioning error after 10,000 learning
steps has decayed to 0.004, which corresponds to 0.6% of the length of the
work space. The positioning error is slightly larger than in the previous chap-
ter where only the end-effector positioning was learned. This results from
a six-times smaller number of nodes of the three-dimensional super-lattice
and, therefore, a much smaller resolution for the positioning task. Yet, a po-
sitioning error of 0.004 is still acceptable for the task. The error in orienting
the gripper at the end of the learning phase measured 1.7◦. The precision in
orienting the gripper is much higher than is usually necessary for grasping
tasks and comparable to human performance. It is remarkable that such a
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precision could be achieved through subnets consisting of only nine nodes.

12.7 A Simple Grasping Strategy

We have seen that the robot system can learn orientation and positioning of
a gripper in relation to a cylindrical object. However, this is not enough in
order to be able to grasp the object. In addition, an adequate strategy for
approaching the object is necessary. The object has to be approached such
that the robot’s arm and gripper do not collide with it. For that reason we
have chosen, as mentioned earlier in this chapter, a robot architecture which
allows the robot to always approach the object from the front (see Fig. 12.1).
That means the gripper can always be positioned between the base of the
robot and the object. In the following we present a grasping strategy which
takes advantage of such a robot architecture.
Humans usually carry out grasping movements by first coarsely position-
ing the hand in front of the object and then, controlled by a feedback loop,
smoothly approach and finally grasp the object. We will choose a correspond-
ing strategy for the robot arm. Until now the robot has tried to directly move
the center of the gripper P to the center of the cylinder by means of move-
ment step (12.8). However, such an approach would lead in most cases to
a collision with the object. The learning algorithm has to acquire a trajec-
tory of the manipulator which during the transition from the previous joint
angles to the new ones avoids collisions. Which type of trajectory avoids
collisions with the cylinder? If we assume that the gripper already has its
proper orientation, then it is sufficient for the last portion of the trajectory to
be arranged such that the continuation of the symmetry axis of the gripper
always crosses the symmetry axis of the cylinder. To ensure this, we must
modify our previous moving strategy.
For that purpose the point P which until now was placed in the center of
the gripper and by design was moved to coincide with the center of the
cylinder, is now slid out along the symmetry axis of the gripper to a position
shown in Fig. 12.8, namely to a position in front of the gripper. The learning
algorithm, by placing the point P at the center of the cylinder, positions
the gripper in front of the cylinder rather than colliding with it. At the
same time, during the first movement step, the gripper adjusts to its proper
orientation. A feedback-guided movement follows that leads the center of the
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Abb. 12.8: The sketch of the gripper shown in Fig. 12.2. We slide the point
P , which is to be moved to the center of the cylinder by the first movement
step, out along the symmetry axis of the gripper until it lies well in front of the
gripper.

gripper smoothly and without collisions towards the center of the cylinder.1

Ê To accomplish the latter motion we employ a corrective movement de-
scribed by (12.9). This corrective movement, rather than having to reduce
the deviation between P and the center of the cylinder, now has to reduce
the remaining discrepancy between the center of the gripper and the center
of the cylinder. This latter discrepancy may be relatively large, depending
on how far P lies in front of the gripper. Therefore, we now have to carry
out the corrective movement not just once, but several times, until the resid-
ual positioning error drops below a desired minimal value. By v′i we denote
the location of the center of the gripper after the first movement step (12.8)
as seen by the cameras. This location along with the orientation yi of the

1 The reader may note the similarity between the approach presented here and the ob-
served strategy of saccadic eye movements which undershoot fovea targets as discussed
in Section 9.5
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gripper is denoted by ṽ′i = (v′i,yi). We then obtain

∆~φ = γAsq(ũ− ṽ′i) (12.12)

for the corrective movement in approaching the object, where γ is the pa-
rameter which determines the step size.
With the first movement step, we achieve the crossing of the symmetry axis
of the gripper with the symmetry axis of the cylinder. While the gripper
approaches the cylinder by the corrective movements (12.12), these axes must
remain intersected with one another. This would be guaranteed if Asq(ũ−ṽ′i)

were exactly the required joint angle difference ~φ(ũ) − ~φ(ṽ′i). Since this is
not exactly the case, the choice of γ = 1 can lead to a significant deviation of
the resulting trajectory from the desired trajectory along the line connecting
the gripper center and the center of the cylinder. By choosing γ � 1 and,
consequently, by adding a number of feedback loops (12.12), we force the
deviation from the desired trajectory to remain small, enabling the approach
towards the object to proceed smoothly and collisionless.
As an improved estimate for ~φsq we obtain, as before,

~φ∗ = ~φsq + δ1 ·Asq(ũ− ṽi). (12.13)

Nonetheless, the equation that determines the improved estimate for Asq

needs to be modified compared to (12.10) since we now employ several cor-
rection movements with step sizes γ < 1. As before we denote the position of
P on the focal planes of the cameras after the first movement step by vi, and
in combination with yi we define ṽi = (vi,yi). If, as before, we denote the
position of P and the gripper’s orientation after the first corrective movement
by ṽf , the expression

A∗ = δ1 ·
[
∆~φ−Asq(ṽf − ṽi)

]
[ṽf − ṽi]

T (12.14)

which corresponds to Eq. (11.11) yields in conjunction with (12.12)

A∗ = δ1 ·Asq [γ(ũ− ṽ′i)− (ṽf − ṽi)] [ṽf − ṽi]
T (12.15)

as an improved estimate for Asq. As in the earlier procedure, A∗ is computed

using only values provided by the cameras. As adaptation steps for all ~φrp

and Arp we employ again (12.11).
Without major revisions we have been able to realize the described grasping
strategy by our algorithm; the Jacobian matrices Arp allow us to set up the
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Abb. 12.9: “Stroboscopic” rendering of a grasping movement of the robot. The
chosen movement strategy enables the robot to approach the cylinder without
collisions.

feedback loop in a natural way. The robot arm is now able to approach
the cylinders that are presented within the work space without inadvertently
colliding with them. To demonstrate the action of the robot arm, we show
“stroboscopic” renderings of two grasping movements in Figs. 12.9 and 12.10.
In every approach of the cylinder three corrective fine movements (12.12)
were carried out after the gross positioning. For the step size γ of the fine
movements, we chose 0.3 + 0.2 · n with n = 1, 2, 3 as the number of the
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Abb. 12.10: “Stroboscopic” rendering of a second grasping movement. Again
the robot carries out the grasping movement successfully.

currently preformed correction step. One can see in Figs. 12.9 and 12.10
that in both cases the robot arm system accomplishes the grasping movement
successfully.
We have seen that it is possible by the neural network algorithm introduced
to solve not only the basic problem of end-effector positioning, but also to
approach the more complex task of grasping simple objects. It turns out
that less computational power and memory for controlling the robot arm
are required if, as the complexity of the task rises, the network architecture
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becomes increasingly structured. By employing a hierarchical arrangement of
Kohonen networks, the input signals for controlling the grasping movements
can be represented in a natural way. In Chapter 13 we will turn to questions
which arise under the dynamic control of robot arms.




