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11. VISUOMOTOR COORDINATION
OF A ROBOT ARM

In this chapter we again use the extension of Kohonen’s model that includes
the learning of output values. By employing this extended model we will
enable a robot system to learn to automatically position its end effector at a
target that has been presented in the robot’s work space (Ritter, Martinetz,
and Schulten 1989; Martinetz, Ritter, and Schulten 1989, 1990a, 1990b).
“End effector” is the name given in robotics to a tool at the end of the
robot arm, e.g., a gripper, a welding electrode, etc. End effector positioning
is an integral part of almost any task with which a robot system might be
confronted. Examples of tasks include grasping of objects, application of
welding points, insertion of devices, or, to mention a task from robotics that
has not yet been satisfactorily accomplished, the planning of trajectories to
circumvent obstacles. Obviously, end effector positioning is fundamental for
all robot tasks and, therefore, we turn to this problem first.
Figure 11.1 shows a robot system as it has been simulated in the computer.
The robot consists of a triple-jointed arm, positioned in front of the work
space. The arm can pivot around its base (θ1), and the other two joints (θ2,
θ3) allow the arm to move in a vertical plane. For successful operation the
robot requires information about the location of the targets. Humans obtain
this information through their eyes. Correspondingly, we equip our robot
with two cameras which can observe the work space. It is important to use
two cameras in order to perceive the three-dimensionality of the space.
Since the work space of the robot is three-dimensional, we will now use, in
contrast to examples in previous chapters, a three-dimensional Kohonen net,
i.e., a Kohonen lattice. With this step we seem to deviate from the net-
works actually realized in the brain, which appear to have a two-dimensional
topology, because, as we know, the cortex consists of a two-dimensional
arrangement of neural functional units, the so-called micro-columns. (see,
e.g., Kandel and Schwartz 1985). But this discrepancy is only an apparent
one; the actual relevant topology, given by the connecting structure of the



11. Visuomotor Coordination of a Robot Arm 157

Abb. 11.1: Model of the simulated robot system. The arm has three degrees
of freedom: rotation around the vertical axis (θ1), a middle joint (θ2), and an
outer joint (θ3). The axes of the middle joint and the outer joint are parallel to
each other, and are both horizontal and perpendicular to all three arm segments.
Camera 1 is in front of the work space, and camera 2 is located on the left side
of the robot.

neurons or functional units, can very well deviate from the morphological
arrangement on the cortex. Suppose we take a three-dimensional wire lattice
and press it into a two-dimensional layer. The connecting structure between
the lattice nodes has of course not been changed by this modification; it
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is still three-dimensional in spite of the fact that all lattice nodes now lie
in a plane. Accordingly, the connecting structure between neural units in
the brain might be multi-dimensional even if the neurons are arranged in
a two-dimensional layer. The three-dimensional topology does not change
any essential features of Kohonen’s algorithm. Only the lattice vectors r are
three-dimensional, and the distance ‖r − s‖ to the excitation center is now
measured in a three-dimensional lattice.
During the training phase, the position of the targets in the work space are
chosen randomly. Before each movement the target is viewed by the cameras,
the signals of which are fed into the neural net. Each neural unit is responsible
for a particular region observed by the cameras. For each incoming signal
that neuron which is momentarily responsible for the location of the target
becomes activated and transmits its output values to the motor control.
The three-dimensional coordinates of the location of the target, however, are
not directly available; each camera only delivers the location at which the
target appears in its two-dimensional visual field. The network must then
derive proper output values for the joint motors to position the end effectors
properly.
The neural network does not receive any prior information about, for exam-
ple, the location of the cameras or the lengths of the robot arm segments.
Rather it has to learn these geometrical relationships in order to correctly
convert the camera information into motor signals. For this reason the un-
trained arm will initially not reach most targets. In each trial the deviation
is observed by the cameras and then used to improve the output values. At
each successive step a new target point is presented to the robot, providing
the opportunity for further learning. The robot represents an autonomous
system that works in a closed-loop mode and performs completely without a
teacher. The robot system receives all the information needed for adaptation
from its own stereo cameras and, thus, learns without an external teacher
(See also Ginsburg and Opper 1969; Barto and Sutton 1981; Kuperstein
1987, 1988; Miller 1989).

11.1 The Positioning Action

As displayed schematically in Fig. 11.2, each target point generates an im-
age point on the image plane of each camera. The two-dimensional position
vectors ~u1, ~u2 of the image points in the image planes of cameras 1 and 2
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implicitly transmit to the system the spatial position of the target point
which is uniquely defined by (~u1, ~u2). We combine both vectors to one four-
dimensional input signal u = (~u1, ~u2). In order to be able to correctly position
its end effector, the robot system must be able to perform the transformation
~θ(u) from image point coordinates u of the target to the required set of joint

angles ~θ = (θ1, θ2, θ3) of the arm. This transformation depends on the geom-
etry of the robot arm as well as on the location and imaging characteristics
of the cameras, and should be adapted automatically through the learning
method.

Abb. 11.2: Schematic diagram of the positioning action. The two-dimensional
coordinates ~u1 and ~u2 of the target in the image planes of cameras 1 and 2
are combined to a four-dimensional vector u = (~u1, ~u2) and then transmitted
to the three-dimensional Kohonen net. The neural unit s which is responsible
for the region in which the target is momentarily located is activated and makes
available its two output elements, the expansion terms of 0-th and first order,
~θs and As. These terms determine the joint angles needed for the movement
towards the target.

For each target u the neural unit whose receptive field entails the target
location responds. As before, the receptive fields are defined by synaptic
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strengths wr that now consist of four components as does u. A neural unit s
is responsible for all targets u for which the condition ‖ws− u‖ ≤ ‖wr− u‖
holds, where r denotes all neurons on the lattice that are different from s.
The responding neural unit provides as output values a suitable set of joint
angles ~θ = (θ1, θ2, θ3) that is transmitted to the three joint motors and that

should lead the end effector to the target. To generate ~θ, two output ele-
ments that must be learned are assigned to each neuron: a three-dimensional
vector ~θr and a 3×4-matrix Ar. At the end of the learning phase, when ~θr

and Ar have taken on the desired values, the angle positions ~θr will lead the
end effector to the center of the receptive field of neuron r; i.e., ~θr defines
the move of the end effector into the target position u = wr. The Jacobian
matrix Ar = δ~θ/δu serves to linearly correct the joint angles if the input vec-
tor u does not coincide with wr. This correction is accomplished by a linear
expansion around wr which is restricted to the region of responsibility of the
particular neural unit r. The angular configuration ~θ that is transmitted to
the joints by unit s is then given by

~θ = ~θs + As(u−ws). (11.1)

At the end of the learning process this expression corresponds to a linear
expansion around ws of the exact transformation ~θ(u). The vector ~θs is
given by the expansion term of zeroth order, and As is given by the Jacobian
matrix for ~θ(u) at ws.

The values ~θr and Ar should assume values ~θ 0
r , A0

r in the course of the
learning which minimize the average output error. By the use of Eq. (11.1)

the exact transformation of ~θ(u) is approximated by an adaptive covering of

the domain of ~θ(u) with locally valid linear mappings. When compared with
the sole use of discrete output values, the introduction of Ar implies that
maps with less discretization points (neural units) are sufficient to reach a
given precision.
The two vectors (~u1, ~u2), combined into the single vector u, span a four-
dimensional space. All the target positions lie within the three-dimensional
work space as indicated in Figs. 11.1 and 11.2. Hence, the input signals
u of the cameras are all located in a three-dimensional submanifold of the
four-dimensional input signal space, making it unnecessary to use a four-
dimensional Kohonen net to represent the input signal space—a Kohonen
net with a three-dimensional lattice topology is sufficient. If we knew the
relevant submanifold, i.e., if we had precise knowledge about the position
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of the image planes relative to the work space, then we could, with the
initialization, “plant” the nodes of the neural net into the submanifold, and
the learning algorithm, as before, would in principle only have to “unfold”
the net onto this submanifold.

Abb. 11.3: Occupation of the three-dimensional subspace with discretization
points. The four-dimensional input signal space, U , schematically displayed, is
initially homogeneously filled with the elements of the three-dimensional Kohonen
net. The input signals u lie exclusively within the three-dimensional submanifold
W . Therefore, all elements move rapidly into the relevant subspace of U , and a
“waste” of unused discretization points W is avoided.

However, supplying any a priori knowledge about the system to the learning
algorithm, e.g., precise information about the location of the cameras, should
be avoided. Our goal is for the robot system to find out such information by
itself while it is learning. Only then are the desired adaptive capabilities of
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an algorithm available to enable the robot to adapt to possible changes in the
precise system data, e.g., caused by corrosion, wear of its parts, or camera
shifts. In our model this means that the robot system must find for itself
the relevant three-dimensional submanifold in the space U = U1 ⊗ U2 of the
two connected image planes U1, U2 in order to distribute as homogeneously
as possible the lattice points that are necessary for the discretization.
Lacking a priori knowledge about the location of the relevant subspace,
we distribute the nodes of the neural lattice randomly within the four-
dimensional input signal space at the beginning of the learning phase. The
positions of the lattice nodes in the space U are described as before by four-
dimensional vectors wr. Because the incoming input stimuli u = (~u1, ~u2) all
lie within the yet unknown submanifold, just a few learning steps cause a
“contraction” of all net nodes onto this relevant subspace. This contraction
is schematically displayed in Fig. 11.3
The representation of only the submanifold by the network is a direct conse-
quence of the feature of Kohonen’s algorithm that has been discused exten-
sively in Chapter 5, i.e., adaptation of the density of the net nodes according
to the probability density of the input signals. Since the input probability
distribution in the present case differs from zero only on the submanifold, it
follows that in equilibrium the density of the net nodes will be zero outside
the submanifold. In this way the robot system can discover by itself the
subspace relevant for its functioning. In the ensuing course of learning, the
three-dimensional net will unfold within this three-dimensional subspace and
will homogeneously distribute its nodes as discretization points.
This again demonstrates the effectiveness of the model in using a finite num-
ber of neural units, or more generally, memory units. We could have initial-
ized the total, four-dimensional space with rigid discretization points. With
this naive approach, the number of memory elements required to achieve
a suitable representation would be much higher because the number of re-
quired memory elements increases exponentially with the dimensionality of
the space. If we used a 20×20×20 lattice in our model, then the memory
requirement to fill the total four-dimensional space with the same density
of discretization points would be greater by at least a factor of twenty. In
most cases the additional memory requirement would be even higher since
the actual work space spans only part of the visual field of each camera.
The output values are learned by analysing the positioning error. The posi-
tioning of the arm occurs in two steps. If s is the node which responds to the
target u, then in a first step the positioning of the end effector is achieved by
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means of the linear approximation (11.1) of the exact transformation ~θ(u).

The resulting position of the angle is denoted by ~θi. This first step causes
the joint angles to assume a position given by

~θi = ~θs + As(u−ws). (11.2)

The image point coordinates vi of the end effector corresponding to ~θi are
recognized by the cameras and are then used for a second step, a corrective
movement.
This correction is achieved in the following way: if the end effector is in the
vicinity of the target after the first step of the positioning process, then the
expression ‖u−vi‖ is already sufficiently small and, to a good approximation,
~θgoal−~θi = A0

s(u−vi), where ~θgoal is the angle configuration needed to reach
the target. Thus the corrective movement is simply given by the change in
joint angles

∆~θ = As(u− vi). (11.3)

The resulting image point coordinates vf of the final position of the end
effector are again recognized by the cameras and, along with vi, are put
into a subsequent adaptation step. The corrective movement can be iterated
several times, thereby reducing the positioning error as much as desired as far
as imperfections of the equipment permit this. Satisfying results can often
be obtained with just a single or very few corrective steps. In the following
description we assume, therefore, two positioning steps, a gross movement
described by (12.2) and a corrective movement described by (12.3).

11.2 The Learning Method

The learning algorithm for obtaining suitable elements ~θr and Ar for each
unit r uses a gradient descent on a quadratic error function. In each learning
step the gradients of the error functions are calculated from the positioning
error in order to obtain the direction to the minimum. If neural unit s was
responsible for generating the arm movements, the improved values of ~θs and
As are then given

~θ ∗ = ~θ old
s + δ1 ·A old

s (u− vi)

A∗ = Aold
s + δ2 ·Aold

s (u− vf )∆vT , (11.4)

where ∆v = vf − vi, vf and vi as defined in Section 11.1. A derivation
of these learning rules will be given in Section 11.3. The factors δ1 and δ2
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denote the step size of the gradient descent. On the one hand the step sizes
should not be too small, for otherwise the number of iterations would be
unnecessarily high. On the other hand, they should not be too large, for
then a learning step could overshoot the minimum. As we will see later
in a mathematical analysis of the learning method, the values δ1 = 1 and
δ2 = 1/‖∆v‖2 are optimal.

The new estimates ~θ ∗ and A∗ that were obtained by the gradient descent
(11.4) are used to improve the output elements of neural unit s as well as
those of its neighbors. Here, as in previous chapters, we employ a learning
procedure for the output elements that is analogous to Kohonen’s original
algorithm and is given by

~θnew
r = ~θold

r + ε′h′rs(
~θ ∗ − ~θold

r )

Anew
r = Aold

r + ε′h′rs(A
∗ −Aold

r ). (11.5)

This learning step modifies a whole population of neural units in the vicinity
of unit s. As a following display of simulation results will show, the coop-
eration between neighboring neural units resulting from Eq. (11.5) is crucial
for rapid learning and for convergence to a satisfactory final state. With-
out cooperation between neighbors, some output elements ~θr and Ar might
not converge towards their desired values, and could become “stuck” in local
minima during the gradient descent in a way similar to what occurred in the
example of oculomotor control. A more detailed mathematical analysis of
this behavior will be given in Chapter 15.
Our learning algorithm for the Kohonen net and the output elements ~θr and
Ar can be summarized into eight steps as follows:

1. Present a randomly chosen target point in the work space.

2. Let the cameras observe the corresponding input signal u.

3. Determine the lattice point (neural unit) s := φw(u) to which u is
assigned in the lattice.

4. Move the end effector to an intermediate position by setting the joint
angles to

~θi = ~θs + As(u−ws),

and register the corresponding coordinates vi of the end effector in the
image planes of the cameras.
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5. Execute a correction of the end effector position from step 5 according
to

~θf = ~θi + As(u− vi),

and observe the corresponding camera coordinates vf .

6. Execute the learning step for the receptive field of r according to

wnew
r = wold

r + εhrs(u−wold
r ).

7. Determine improved values ~θ ∗ and A∗ using

~θ ∗ = ~θ old
s + δ1 ·A old

s (u− vi)

A∗ = Aold
s + δ2 ·Aold

s (u− vf )(vf − vi)
T .

8. Execute a learning step for the output values of the neural unit s as
well as of its neighbors r

~θnew
r = ~θold

r + ε′h′rs(
~θ ∗ − ~θold

r )

Anew
r = Aold

r + ε′h′rs(A
∗ −Aold

r )

and continue on with step 1.

The second phase of the positioning process (steps 5–8), aside from the cor-
rection of the end effector position that resulted from the first motion phase,
generates pairs of camera coordinates vi and vf for the learning of Ar and ~θr.
The Jacobian matrices Ar describe the relation between a small change of the
joint angles and the corresponding change in position of the end effector in
the camera coordinates. The generally small corrective movements therefore
deliver value pairs that must be connected by the Jacobian matrices that are
to be learned, and thus, the corrective movements are used in Eq. (11.4) to
iteratively improve the Jacobian matrices Ar.
As soon as the Jacobian matrices have been learned, they can be used to
improve the expansion terms of zeroth order ~θr. Each term should lead the
end effector in camera coordinates towards the corresponding discretization
point wr. The corresponding error, as seen through the cameras, can be
evaluated by the Jacobian matrices to obtain a suitable correction of ~θr which
then results in an improved value ~θ ∗ in learning step (11.4).
Thus, the Jacobian matrices Ar contribute significantly to three important
aspects of the learning algorithm:
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1. Calculation of the joint angle changes for the corrective step in order
to

(a) reduce the positioning error, and

(b) generate a pair (vi,vf ) for an adaptation step of Ar itself.

2. Improvement of the expansion terms of zeroth order by evaluating the
error seen through the cameras to obtain a correction for ~θr.

The Jacobian matrix Ar is a most essential element of the presented algo-
rithm for learning and controlling the kinematics of the robot arm. In the
next section we present a mathematical derivation of the learning algorithm
to further illuminate the crucial role of the Jacobian Ar during the learning
process.

11.3 A Derivation of the Learning Method

We now want to substantiate mathematically the method for determining
the estimates ~θ ∗ and A∗. For this purpose we consider the neural lattice
to be unfolded and stabilized to the extend that the space of input vectors
is well represented by the network nodes and that larger shifts of the dis-
cretization points wr no longer occur. We can then assume the location
of the discretization points to be sufficiently constant and can neglect their
change by the Kohonen algorithm, so that in the following we only need to
consider the behavior of the output elements ~θr and Ar.
If the end effector positions vf , vi, as provided by the cameras, lie sufficiently
close to the currently implicated discretization point ws, then the linear
relation

~θf − ~θi = A0
s(vf − vi). (11.6)

is approximately satisfied. The matrix A0
s in this equation is to be obtained

by the learning algorithm using the pairs (~θi, ~θf ) and (vi,vf ).

Knowing A0
s, we can calculate the 0-th order expansion term ~θ 0

s = ~θ(ws)
since the linear relation

~θ(ws)− ~θ(vi) = A0
s(ws − vi) (11.7)

holds in a sufficiently small vicinity around ws. Since ~θ(vi) = ~θi is given by

Eq. (11.2) from the positioning process of the joint angles, we obtain for ~θ 0
s
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the expression
~θ 0

s = ~θs + As(u−ws) + A0
s(ws − vi). (11.8)

Taking
~θ ∗ = ~θs + As(u− vi) (11.9)

as an improved estimate for ~θs (see Eq.(11.4)) leads to ~θ ∗ → ~θ 0
s with As →

A0
s. Therefore, it is sufficient to develop an algorithm which provides the

correct Jacobian matrix A0
s for every network node s, since then learning

step (11.9) is able to provide us with the correct zeroth order expansion

terms ~θ 0
s .

In the learning phase the points (~θi,vi), (~θf ,vf ), and every target point u

are elements of a whole sequence (~θνi ,v
ν
i ), (~θνf ,v

ν
f ) and uν of training data

where ν = 1, 2, 3, . . ..1 In the following we will consider a single lattice point
s, and ν will index only that part of the sequence of training data that leads
to an improvement of the output values of s.
In principle it is possible to calculate A0

s from vi, vf and ~θi, ~θf in Eq. (11.6)
by using the method of least mean square error. The advantage of this
method is that, in terms of the only approximate linear relation (11.6), the
mean square error given by

E(As) =
1

2

∑
ν

[
(~θνf − ~θνi )−As(v

ν
f − vνi )

]2
(11.10)

can be minimized for all training data simultanously. Concerning the adap-
tivity of the system, however, such a procedure has the disadvantage that
first the quantities (~θνi ,v

ν
i ), (~θνf ,v

ν
f ) need to be accumulated before a result

becomes available. After that As is fixed, and the system can adapt to later
slow variations of the relation ~θ(u) only by a complete re-evaluation of As.
Moreover, a criterion would be needed to decide if a re-evaluation of As is
necessary. To avoid these disadvantages we opt for an iterative method that
improves an existing approximation As(t) of A0

s for every new value pair

(~θνi ,v
ν
i ), (~θνf ,v

ν
f ). A suitable iterative algorithm employes the technique of

linear regression and was suggested for application in adaptive systems by
Widrow and Hoff (1960).

1 It is not necessary that the values ~θi and ~θf are explicitly available to the learning
algorithm. Here they are only listed as intermediate values for the derivation of the
learning method and will later be replaced by expressions that will make it possible
to use exclusively vi and vf provided by the cameras.
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By this method one obtains an improved value A∗ = As + ∆As for As by
setting

∆As = δ ·
(
∆~θν −As∆vν

)
(∆vν)T . (11.11)

Here ∆~θν = ~θνf − ~θνi , ∆vν = vνf − vνi , and δ is the learning step width.
As long as δ � 1/‖∆v‖2 and a stationary probability distribution of the

quantities (~θνi ,v
ν
i ), (~θνf ,v

ν
f ) exists, then a sufficient number of steps (11.11)

approximates a descent along the direction

∑
ν

(
∆~θν −As∆vν

)
(∆vν)T = −dE(As)

dAs

(11.12)

where E(As) is the error function (11.10) to be minimized. Obviously, the
Widrow-Hoff method leads to a minimization of E(As) by realising a gradient
descent of the mean square error E(As) “on average.” Although an individual
step (11.11) may even increase E(As), many adaptation steps (11.11) lead
to an decrease of the error E(As).
In applying (11.3), the equation determining the corrective movement, one
can eliminate the explicit input of angle positions in learning step (11.11)
and, thereby, employ only values provided by the cameras, namely the image
coordinates u, vi, and vf of the target and the actual end effector posi-

tions. With ∆~θν = As(u
ν − vi) from (11.3) the adaptation step (11.11) can

be written
A∗ = Aold

s + δ ·Aold
s

(
uν − vνf

)
(∆vν)T . (11.13)

Since, in the course of learning, we approximate the Jacobian matrices with
increasing accuracy, the learning step (11.9) for the expansion terms of 0-th

order will deliver better and better values ~θ∗. Learning step (11.9) can also
be interpreted as a gradient descent on a quadratic error function. In this
case the quadratic error function is given by

E(~θs) =
1

2

∑
ν

(
~θνi − ~θs −A0

s

(
vνi −ws

))2
. (11.14)

Taking the derivative with respect to ~θs and employing Eq.(11.2) yields

−dE(~θs)

d~θs

=
∑
ν

(
As

(
uν −ws

)
−A0

s

(
vνi −ws

))
. (11.15)
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Since A0
s is initially unknown, we replace A0

s by the best available estimate,
namely As. The error caused by this substitution is reduced by the improve-
ment of As with every trial movement and vanishes at the end of the learning
process.2 As for the Jacobian matrices, the adaptation step

~θ ∗ = ~θ old
s + δ ·Aold

s

(
uν − vνi

)
(11.16)

leads to a gradient descent “on average” on the function (11.14).
When this learning step is compared to Eq. (11.8) (where the index ν is
again omitted), we recognize that both expressions become equivalent when
Aold

s = A0
s and the step size is δ = 1. Therefore, if the Jacobian matrices are

learned correctly, we obtain through Eq. (11.16) also a correct new estimate
~θ ∗ for the adjustment of the expansion terms of 0-th order, as long as we
choose for the step size its optimal value δ = 1.

11.4 Simulation Results

Having described the neural network algorithm for training the robot, we now
present the results of a simulation involving this algorithm. The lattice which
represents the work space consists of 7×12×4 neural units. As in previous
simulations, the values of the parameters ε, ε′, σ, and σ′ decrease with the
number of performed learning steps. For all four parameters we chose a time
dependence of xi(xf/xi)

t/tmax with tmax = 10, 000. For the initial and final
values, xi and xf , we chose εi = 1, εf = 0.005, ε′i = 0.9, ε′f = 0.5, σi = 3,
σf = 0.1, σ′i = 2 and σ′f = 0.05. The learning step widths δ1 and δ2 were set
to their optimal values δ1 = 1 and δ2 = 1/‖∆v‖2.
The three arm segments of the robot arm simulated have a length of 0.13,
0.31 and 0.33 units, respectively, starting with the segment at the base of
the robot. In the same units, the work space is a rectangular cube with
0.1 < x < 0.5,−0.35 < y < 0.35, 0 < z < 0.23, where the x- and y-axes lie
in the horizontal plane with the x-axis along the short edge. The aperture
of camera 1 is located at (x, y, z) = (0.7, 0, 0.12) and points towards the
coordinate (0.15, 0, 0); the aperture of camera 2 is located at (0.3, 1, 0.25)
and points towards (0.3 , 0 , 0.2). Both of the two cameras have a focal length
of 0.05 units.

2 Due to this error, the learning step does not point exactly in the direction of the
negative gradient.
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The Kohonen net in the four-dimensional space cannot, of course, be directly
displayed. In lieu of a direct display we show a projection of the network
nodes from the four-dimensional input space onto the image planes of cam-
eras 1 and 2. Each lattice point appears in the center of its receptive field on
the image plane of cameras 1 and 2. If wr = (~wr1, ~wr2) is the four-dimensional
spatial vector of the lattice point r, then we depict r at ~wr1 on the image
plane of camera 1 and at ~wr2 on the image plane of camera 2. In this way
the initial state of the net is shown in the two top frames of Fig. 11.4. The
distribution of the network nodes was generated by assigning, on the image
plane of camera 1, random values to the coordinate pairs ~wr1 from a ho-
mogeneous probability distribution. The coordinate pairs ~wr2 on the image
plane of camera 2 were initialized accordingly. Therefore, we see in the top
two frames of Fig. 11.4 a homogeneous distribution of the 336 lattice points.
This implies that the initial distribution of the discretization points wr in
the four-dimensional space U is homogeneous, as well.
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Abb. 11.4: Configuration of the neural lattice initially (top), after 2000 (mid-
dle), and after 6000 learning steps (bottom). The left column presents the image
plane of camera 1, showing wr1 for all lattice nodes; the right column shows the
image plane of camera 2, showing wr2
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The two middle frames of Fig. 11.4 show the Kohonen net after 2000 learning
steps. The work space and the robot arm have been displayed from the view
of the corresponding camera. In Fig. 11.1 camera 1 is opposite to the robot
arm, and camera 2 is to the right of the robot arm. Accordingly, we see the
scene on the image planes of the cameras. In the top two frames of Fig. 11.4
no details can be seen yet because the connections between the elements of
the Kohonen net completely cover the image planes. That the lattice, after
2000 learning steps, seems to “float” within the three-dimensional confines of
the work space demonstrates that the Kohonen net represents already only
the relevant subspace, however, only the central part of it.
The bottom frames of Fig. 11.4 show the Kohonen net after 6000 learning
steps, a stage of the learning process where the positioning error has already
reached its minimum value. The receptive fields of the network nodes have
developed in a way that all possible target positions in the work space are
equally represented. This gives rise to a “distortion” of the net to an extent
that is determined by the affine projection of the work space onto the corre-
sponding camera image plane and which in turn depends on the location of
the camera. This can be seen particularly well in the image plane of camera 2
as shown in the right column of Fig. 11.4. For an homogeneous representation
of the input signals, the network nodes on the image plane of camera 2 that
are responsible for the back region of the work space must lie significantly
more densely than the network nodes that represent target positions in the
front part of the work space. By a proper distribution of its receptive fields
according to the input stimulus density, the Kohonen algorithm yields this
required “distortion” automatically.
To depict the learning of the output values, we again display frames from
cameras 1 and 2 at different phases of the training. The two top frames of
Fig. 11.5 show the initial state of the terms ~θr which provide the zero order
contribution to the linear Taylor expansion (11.2) to be learned by each
neural unit. The corresponding position of the end effector, after setting the
joint angles ~θr, is marked by a cross in each camera’s visual field. These end
effector positions are obtained by aiming at the target points u = (~wr1, ~wr2),
for which the first order terms Ar(u − wr) in (11.2) vanish. At the end of

the training, the camera coordinates of the end effector corresponding to ~θr

should coincide with ~wr1 and ~wr2 of the lattice node r. The deviations of
the end effector positions from ~wr1 and ~wr2 indicate the residual error of the
output values ~θr. These errors are depicted in Fig. 11.5 in the visual field of
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each camera by a corresponding line segment. The initial values of ~θr were
chosen randomly, yet with the constraint that the end effector remains in
front of the robot.
The development of the Jacobian matrices Ar is illustrated in Fig. 11.6. For
the purpose of illustration we assume that the robot arm is asked to perform
small test movements parallel to the three edges of the work space. The
desired movements if carried out correctly form a rectangular tripod. The
starting positions for these test movements are the end effector positions that
correspond to the joint angles ~θr. Through the cameras we observe the test
movements actually performed. Initially, because of the random assignment
of the Jacobian matrices Ar, the test movements show no similarity what-
soever to the desired rectangular tripods. The initial values of the matrices
Ar were all chosen in the same way, namely, Aijr = η for all lattice points
r where η is a random variable that is homogeneously distributed in the
interval [−10, 10].
The middle frames of Fig. 11.5 and Fig. 11.6 present the test of the 0-th order
terms ~θr and of the Jacobian matrices Ar after 2000 learning steps. At this
stage the end effector positions resulting from the joint angles ~θr all lie within
the work space (Fig. 11.5). The test movements for Ar (Fig 11.6) already
look approximately like rectangular tripods, except that the amplitudes of
the movements are still too small. The bottom frames of Figs. 11.5 and 11.6
show the result after 6000 training instances, a stage where the positioning
error has already reached its minimum; the output values ~θr and Ar have
been optimized. As desired, the end effector positions resulting from ~θr,
indicated by cross marks, now coincide with the image locations ~wr1 and
~wr2 of the network nodes, and the test movements for testing the Jacobian
matrices are also performed as desired. Only near the base of the robot
do test movements deviate slightly from the shape of a perfect rectangular
tripod, an effect caused by a singularity in the transformation ~θ(u). Because

the Jacobian matrices A0
r represent the derivative ~θ(u) at the locations wr,

some elements of Ar must take on very large values. Therefore, a more
precise adaptation requires an unacceptably high number of learning steps.
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Abb. 11.5: The end effector positions corresponding to ~θr represented by cross
marks. The deviation from the desired locations u = (~wr1, ~wr1) is displayed by
lines appended to the cross marks. Shown are the states at the beginning (top),
after 2000 (middle), and after 6000 learning steps (bottom). Left (right) column:
view through the image plane of camera 1 (camera 2).
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Abb. 11.6: Training of the Jacobian matrices Ar. Displayed are the result of
small test movements parallel to the edges of the work space, at the beginning,
after 2000, and after 6000 learning steps. Left (right) column: view through the
image plane of camera 1 (camera 2).
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To demonstrate the success of the learning process we show in Fig. 11.7
the dependence of the mean positioning error on the number of trial move-
ments. The mean positioning error at different instances is determined by
an “intermediate test” after every 100 additional learning steps. During each
intermediate test the robot system is presented with 1000 targets which are
chosen at random within the work space. The arithmetic average of the
end effector deviations from the targets provides the mean positioning error.
During the intermediate tests the neural network remains untrained.

Abb. 11.7: The average deviation of the end effector from the target versus the
number of training steps. σ′ denotes the initial range of the cooperation between
neighbors. Without cooperation between neighbors (σ′i = 0) during the learning
of the output values, training progress is slow and the system does not reach an
error-free final state. With cooperation between neighbors (σ′i = 2) the desired
learning of an essentially error-free final state is achieved rapidly. The residual
error after 6000 learning steps is only 0.0004 length units—about 0.06% of the
length of the work space. After 7000 learning steps the third arm segment of
the robot was extended by 0.05 length units, about 10% of the size of the robot
arm. The resulting positioning error, which was initially 0.006 length units or
about 1%, decays with more adaptation steps until the previous minimum value
is regained.
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The cooperation between neighboring neural units as described by (11.5)
plays a decisive role in achieving a fast and precise visuomotor control. To
demonstrate this we show in Fig. 11.7 the positioning error from a simulation
without cooperation between neighbors (σ′i = σ′f = 0 for the neighborhood
function h′rs employed in (11.5)). The resultung error shows that the sys-
tem no longer achieves the learning goal. The positioning error remains
noticeable even after 10,000 trial movements. In contrast, cooperation be-
tween neighbors (initial range of cooperation of σ′i = 2.0) induces the error
to decay rapidly to a small, residual error. After 100 trial movements the
positioning error, in case of cooperation, has decayed to 0.034 length units,
i.e., approximately to about 5% of the length of the work space. After about
6000 learning steps the positioning error has stabilized at a value of 0.0004
length units which corresponds to about 0.06% of the length of the work
space. If the work space were one meter long, the robot would be able to
move to target locations within a few tenths of a millimeter.
To demonstrate the adaptative capability of the neural network algorithm,
we extended the last arm segment to which the end effector is connected by
0.05 length units. This corresponds to a change of about 10% of the total
length of the robot arm. Immediately after this modification, the positioning
error increases since the neural net needs a few adaptation steps to be able
to adjust to this new configuration. It is remarkable that immediately after
the modification the positioning error is about 1%—smaller by a factor of
ten than one would expect from the size of the modification. This is due
to the feedback inherent in the positioning process: the second step in the
positioning of the end effector, the corrective movement ∆~θ = Ar(u − vi),
corrects the deviation of the intermediate end effector position vi from the
targeted position u, which has been increased by the modification of the
robot arm. Extension of the last arm segment changes, for the most part,
the target values of the zeroth order expansion terms ~θr. In contrast to that,
the Jacobian matrices Ar are only affected slightly by the arm extension and,
therefore, are still suitable for the execution of the corrective movement and
for the correction of the error resulting from the wrong ~θr. Figure 11.7 shows
that after a few learning steps the neural net has completely adapted to the
arm extension, and the positioning error has decreased to its previous small
value.
The capability of the algorithm to adapt immediately to small changes in the
robot arm adds significantly to its flexibility. For example, robots trained
and controlled by the suggested algorithm could be equipped with different
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tools without the need for an entirely new course of training.
In the following section we will demonstrate the high degree of flexibility of
the described learning algorithm in another respect. It turns out that the
neural network can control a robot arm with more joints than necessary to
position the end effector to any point in the three-dimensional workspace
without additional modifications in the learning method. We will show how
the neural network algorithm can handle such robots with “redundant degrees
of freedom” which imply the difficulty that no unique relationship exists
between joint angles and end effector positions.

11.5 Control of a Robot Arm
with Redundant Degrees of Freedom

The triple-jointed robot that we discussed in previous sections could reach
any target location within the work space by a unique set of joint angles.3

Mathematically speaking, this implies that there existed a one-to-one map-
ping between target positions and sets of joint angles.
Nonetheless, most organisms capable of movement possess extra degrees of
freedom. The human arm, for example, has four degrees of freedom: three
in the shoulder joint and one in the elbow. It is indeed possible for humans
to reach an object by many different arm configurations. With more than
three degrees of freedom the set of joint angles is not uniquely determined by
the location of the target, but rather there is a whole range of different sets
of angles which will reach the target. From this range, a single set must be
chosen. Such a problem is called an ill posed or under-determined problem
since the constraints that must be fulfilled do not uniquely determine the
solution (Bernstein 1967; Saltzman 1979; Jordan and Rosenbaum 1988).
The redundant degree of freedom in the human arm is, of course, not su-
perfluous; it is particularly convenient when certain configurations are not
possible due to additional constraints, e.g., due to obstacles or when unique
approaches are compulsory. A huge palette of arm configurations offers the
chance to find one that works well.
In the following, however, we will not consider the implications of such con-
straints. We will stick to the task of positioning the end effector in a work

3 Actually there exist two sets of joint angles which lead to a given target location. They
correspond to a “convex” and a “concave” configuration of the arm. By prohibiting,
e.g., the concave configurations, the required set of angles becomes unique.
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space free of obstacles. We want to study the learning performance of the
algorithm of the previous sections as it is applied to an arm with more than
three degrees of freedom. Which arm configurations will the algorithm learn
when it can select from many possibilities for each target?

Abb. 11.8: Simulated robot with redundant degrees of freedom. The arm has
a total of five joints: one joint permitting rotation around the vertical axis and
four joints about which the arm can move in the vertical plane.

Common methods for the control of an arm with redundant degrees of free-
dom eliminate the under-determination of the control problem by selecting
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that joint angle configuration that minimizes a reward function in addition
to reaching the target point (Kirk 1970; Hogan 1984; Nelson 1983). Psy-
chophysical experiments show that humans also prefer arm configurations
that minimize certain “costs.” It has been shown (Cruse et. al. 1990) that
humans prefer arm configurations using middle-range angles, i.e., fully ex-
tended or tightly contracted angles are generally avoided. Such a tendency
can be modelled in an algorithm by selecting from all possible arm configu-
rations the one that minimizes a suitable reward function, such as,

E(~θ ) =
L∑
i=1

(
θi − θ(0)

i

)2
. (11.17)

Here θ
(0)
i is a middle-ranged value for joint i. Joint angle configurations that

deviate from θ
(0)
i increase the “costs” and are therefore less desireable.

Another form of the reward function is obtained if the arm is supposed to be
as “lazy” as possible while moving, i.e., the change of the joint angles of the
arm should be as small as possible. This is a sensible, real-life requirement;
it reduces both the wear and tear and the energy consumption.
If we denote the difference between two points that are neighbors, either in
space or in camera coordinates, by ∆u, then the norm ‖∆~θ‖ of the difference
between the joint angles which correspond to these points should be as small
as possible on average. Mathematically, this constraint can be written as〈∑

i,j

(
∆θi
∆uj

)2〉
∆u

= Min. (11.18)

Here ∆θi denotes the change of the i-th joint angle and ∆uj denotes the
difference in the j-th component of the space or camera coordinates. If
we assume that the distribution of the occurring movements ∆u which is
averaged over in Eq. (11.18) is isotropic—which implies 〈∆u∆uT 〉 = γ1
where γ is a scalar and 1 is the identity matrix—then it can be shown that
the constraint to minimize the reward function (11.18) is equivalent to the

constraint that, for the inversion of the transformation u(~θ), the particular

inverse ~θ(u) must be selected from the whole range of possibilities for which
the norm ‖A‖ =

√
trAAT of the Jacobian

A(u) =
∂~θ(u)

∂u
(11.19)
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is minimal at each location u. It is natural then to look for the inverse that
fulfills this constraint.
The Jacobian matrices A(u) of all the possible inverse transformations ~θ(u)

generate joint angle changes ∆~θ = A(u)∆u for a given ∆u. If we denote

by B̂(~θ ) the Jacobian matrices of the so-called “forward transformation”

u(~θ ), which is, in contrast to its inverse transformation ~θ(u), uniquely de-
termined and which is often easily obtained, then it holds for every pair of
corresponding ∆u, ∆~θ,

∆u = B̂(~θ )∆~θ. (11.20)

The Jacobian matrices A(u) of the inverse ~θ(u) for which we are searching
must obey the condition

B̂
(
~θ(u)

)
A(u) = 1.

A cannot be determined from this equation by inversion of B̂ because in the
case of redundant degrees of freedom, B̂ is rectangular and, therefore, not
invertible. Here we face the same situation as in Chapter 3 where we had
to determine the optimal memory matrix of an associative memory. There
we obtained a solution with the help of the pseudo-inverse of B̂ (Albert
1972). From Chapter 3 we know that upon selecting the pseudo-inverse, the
constraint to minimize the norm ‖A‖ is fulfilled simultaneously. Thus, the
desired solution for A is

A = lim
α→0

B̂T
(
B̂B̂T + α1

)−1
. (11.21)

Of the many possible transformations that are inverse to the transformation
u(~θ ), there is one that generates movements with minimal changes in the
joint angles. If that particular transformation is called for, then the inverse
~θ(u) whose Jacobian matrices are given by the pseudo-inverse (11.21) of the

Jacobian matrices of u(~θ) yields the solution.
In robotics the precise form of the reward function is often only of minor
importance. The reward function often only serves to smooth the robot
arm’s movements. For two adjacent target points an algorithm could select
two completely different arm configurations when there are redundant degrees
of freedom. By employing a reward function one ensures that adjacent target
points will be assigned to similar arm configurations.
The assignment of similar joint angles to adjacent target points is, in fact, one
of the main features of our learning algorithm. In contrast to other common
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methods, we do not have to minimize an explicitly formulated reward func-
tion. By the construction of a topographic map between input signal space
and neural net it is made sure that adjacent target points always activate
adjacent elements in the network. In addition, learning step (11.5) forces
adjacent lattice nodes to adapt their output towards similar values. At the
end of the learning phase the output values will vary smoothly from node to
node. Both features bring about a continuous and smooth transformation
from the input signal space of target points to the output space of joint angle
sets. This transformation guarantees smooth and efficient movements of the
arm.

11.6 Simulation Results

In Fig. 11.8 we see the robot system as simulated in the computer, now com-
posed of five joints and, therefore, having two redundant degrees of freedom.
As before the robot arm can pivot around its vertical axis, and the other
joint axes are parallel to each other and parallel to the horizontal plane. The
length of the arm segments were chosen as follows, beginning at the base
of the robot: 0.13, 0.19, 0.19, 0.19, and 0.15 length units. The Kohonen
net used in this simulation had the same size as the previous one, namely
7×12×4 lattice nodes. The parameters ε, ε′, σ and σ′ as well as their time
dependence, the location of the cameras, and the parameters describing the
work space were adopted unchanged from the simulation of the triple-jointed
robot arm. In connection with the five joints the vectors ~θr now have five
components, and the matrices Ar are now 5×4-dimensional.
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Abb. 11.9: The average deviation of the end effector from the target during
training for a robot system with redundant degrees of freedom. As for the robot
arm with only three joints the residual error after 6000 learning steps is 0.0004
length units, i.e., approximately 0.06% of the length of the work space. In order
to test the adaptation capability we extended the last arm segment after 7000
learning steps by 0.05 length units. The resulting positioning error decays with
additional adaptation steps until it has regained its previous value of 0.0004 after
2000 additional learning steps.

The graph in Fig. 11.9 shows the decay of the positioning error with the
number of performed learning steps. As with the robot arm with only three
degrees of freedom the error decays rapidly in the beginning and reaches, after
only 200 learning steps, a value of 0.027 length units, which corresponds
to about 4% of the length of the work space. It is noteworthy that the
positioning error after 6000 learning steps reaches the same minimal value
of 0.0004 length units as the triple-jointed robot, in spite of the increased
number of degrees of freedom. After 7000 trial movements, we again extended
the last arm segment by 10% of the length of the robot arm to test the
adaptational capability of the system. As in the triple-jointed case, the
positioning error initially increases but then decays again with additional
adaptation steps until the previous value of 0.0004 learning steps is regained.
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Abb. 11.10: Stroboscopic rendering of a movement of the robot arm. The
robot arm passes along the diagonal of the work space with its end effector.
Due to the redundancy of the robot arm each point along the trajectory can
be reached by an infinite number of joint angle sets. The topology-preserving
feature of the algorithm forces the use of joint angles that give rise to a smooth
movement.

In order to test how well adjacent target points are reached by similar arm
configurations, the robot is commanded to move along a trajectory of target
points. In Fig. 11.10 the arm’s movement in such a test is shown by monitor-
ing the arm’s position at different times. We recognize that the robot indeed
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performs a smooth motion while moving its end effector along the diagonal
of the work space. This demonstrates that the learning algorithm adapts to
those arm configurations out of the many possible ones that lead to smooth
changes in the joint angles as the arm moves. This is achieved without the
explicit minimization of a reward function. The development of a topology-
-preserving mapping between the input signal space and the neuron lattice,
and between the space of output values and the neuron lattice alone does the
job (Martinetz et al. 1990b).

11.7 The Neural Network as a
“Look-Up Table ”

The presented network for the learning of visuomotor control of arm move-
ments can adapt to arbitrary, continuous, nonlinear input-output relations.
The learning algorithm belongs to the class of “learning by doing” methods.
The approach of the algorithm really amounts to the generation of a look-
up table. After presentation of an input value (target position) an entry

(~θs,As) must be taken from a table (Kohonen net) that determines the joint
angles that are needed to reach the target. The table entry, however, does
not immediately deliver the required joint angles, which would correspond
to the approximation of the transformation ~θ(u) to be learned by a step

function, but rather two expansion terms for the representation of ~θ(u) up
to linear order are made available. From the expansion terms the required
joint angles can be determined to a much greater precision. Each table entry
is responsible for only a small subregion of the input signal space; thus, an
approximation of the input-output relation to be learned is obtained by a
covering of the input signal space with locally valid linear mappings.
The use of Kohonen’s algorithm offers the advantage of a flexible wiring be-
tween input values and the entries (network nodes) in the table (network),
which depends on the input values which have already occurred. The Ko-
honen algorithm ensures that, in fact, all slots of the table are utilized, and
by this the limited number of possible entries are optimally employed. Fur-
thermore, the Kohonen algorithm distributes the entries in the table such
that entries which are neighbors in the table are assigned to input values
which are neighbors in the input space, based on a given metric. In our ex-
ample we used the Euclidean metric in the camera coordinates. In order to
represent the three-dimensional work space in this neighborhood-conserving
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way, we employed a three-dimensional “table.” In addition to the Kohonen
algorithm which exclusively organizes the distribution of the entries of the
table, we used an algorithm for the learning of suitable entry contents. Here
we used an adaptation step following the Widrow-Hoff rule. An additional
cooperation between neighboring entries of the table supports the conver-
gence of the learning algorithm, because, as a consequence of the Kohonen
algorithm, neighboring table entries must take on similar contents. It even
turns out that without the transfer of each learning success to neighboring
entries, the table (neural net) does not converge towards the desired state.

The visuomotor control task with its input-output relation ~θ(u) is one ex-
ample among many other control tasks which can be learned by the neural
network described. In a real-life implementation there is an opportunity to
further abstract the notion of input and output values. Why should the im-
age point coordinates be used explicitly as input values and why should the
output values provide explicitly the angles to be set? The presented method
adapts arbitrary continuous nonlinear input-output relations. Therefore, a
sufficient prerequisite for the application of the learning method is the use
of a continuous coding of the input and output signals. Instead of the image
point coordinates that we have used so far, the voltage values provided from
the cameras could be directly used as input signals for the neural net, without
requiring the precise knowledge about the relation between object positions
and voltage values. Correspondingly, we would not have to take care of the
precise transformation from voltage impulses into rotation movements of the
joint motors, or of the amplifiers, filters etc. that might be installed between
the input and the output. In case of an “antropomorphic” arm, output
values that describe muscle contractions could be delivered instead of joint
angles. The algorithm would autonomously adapt the complicated nonlinear
transformation from muscle contractions to joint angles. It is only necessary
that the response of the robot arm to target points is continuous and repro-
ducible. The coding of the input-output relation can remain unknown and
also the inner workings of the robot system may be considered as a “black
box.” The neural network will adapt to all unknown specifications with the
help of the learning algorithm and will achieve its learning goal without help
from outside.
With this we conclude this chapter about the learning of one of the basic tasks
in robotics, namely end effector positioning. After the robot has learned to
reach objects at arbitrary locations in the work space, the next step will be
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to learn simple manipulations. For these manipulations in most of the cases
the grasping of objects will be necessary. The grasping of objects is the next
basic task that a robot must accomplish after end effector positioning, which
is the reason that we consider this problem more closely in the following
chapter.




