
Chapter 9

Adjoint Smoluchowski Equation
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9.1 The Adjoint Smoluchowski Equation

The adjoint or backward Smoluchowski equation governs the r0-dependence of the solution p(r, t|r0, t0)
of the Smoluchowski equation also referred to as the forward equation. The backward equation
complements the forward equation and it often useful to determine observables connected with the
solution of the Smoluchowski equation.

Forward and Backward Smoluchowski Equation

The Smoluchowski equation in a diffusion domain Ω can be written

∂t p(r, t|r0, t0) = L(r) p(r, t|r0, t0) (9.1)

where

L(r) = ∇ ·D
(
∇ − β F (r)

)
. (9.2)

For F (r) = −∇U(r) one can express

L(r) = ∇ ·D e−β U(r)∇ eβ U(r) . (9.3)

With the Smoluchowski equation (9.1) are associated three possible spatial boundary conditions
for h(r) = p(r, t|r0, t0) on the surface ∂Ω of the diffusion domain Ω with local normal â(r):

(i) â(r) ·D
(
∇ − β F (r)

)
h(r) = 0 , r ∈ ∂Ω (9.4)

(ii) h(r) = 0 , r ∈ ∂Ω (9.5)
(iii) â(r) ·D

(
∇ − β F (r)

)
h(r) = w(r) h(r) , r ∈ ∂Ω (9.6)
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132 Adjoint Smoluchoswki Equations

where, in the latter equation, w(r) is a continuous function which describes the effectivity of the
surface ∂Ω to react locally. In case of F (r) = −∇U(r) one can express (9.4)

(i) â(r) ·De−β U(r)∇ eβ U(r) h(r) = 0 , r ∈ ∂Ω . (9.7)

Similarly, one can write (9.6) in the form

(iii) â(r) ·De−β U(r)∇ eβ U(r) h(r) = w(r) h(r) , r ∈ ∂Ω . (9.8)

The equations (9.1–9.6) allow one to determine the probability p(r, t|r0, t0) to find a particle at
position r at time t, given that the particle started diffusion at position r0 at time t0. It holds

p(r, t0|r0, t0) = δ(r − r0) . (9.9)

For the Smoluchowski equation (9.1) exists an alternative form

∂tp(r, t|r0, t0) = L†(r0) p(r, t|r0, t0) , (9.10)

the so-called adjoint or backward equation, which involves a differential operator that acts on
the r0-dependence of p(r, t|r0, t0). The latter operator L†(r0) is the adjoint of the operator L(r)
defined in (9.2) above.
Below we will determine the operator L†(r0) as well as the boundary conditions which the solution
p(r, t|r0, t0) of (9.10) must obey when p(r, t|r0, t0) obeys the boundary conditions (9.4–9.6) in the
original, so-called forward Smoluchowski equation (9.1).
Before proceeding with the derivation of the backward Smoluchowski equation we need to provide
two key properties of the solution p(r, t|r0, t0) of the forward Smoluchowski equation (9.1) connected
with the time translation invariance of the equation and with the Markov property of the underlying
stochastic process.

Homogeneous Time

In case that the Smoluchowski operator L(r) governing (9.1) and given by (9.3) is time-independent,
one can make the substitution t → τ = t − t0 in (9.1). This corresponds to the substitution
t0 → τ0 = 0. The Smoluchowski equation (9.1) reads then

∂τ p(r, τ |r0, 0) = L(r) p(r, τ |r0, 0) (9.11)

the solution of which is p(r, t − t0|r0, 0), i.e., the solution of (9.1) for p(r, 0|r0, 0) = δ(r − r0). It
follows

p(r, t|r0, t0) = p(r, t− t0|r0, 0) . (9.12)

Chapman-Kolmogorov Equation

The solution p(r, t|r0, t0) of the Smoluchowski equation corresponds to the initial condition (9.9).
The solution p(r, t) for an initial condition

p(r, t0) = f(r) (9.13)

can be expressed

p(r, t) =
∫

Ω
dr0 p(r, t|r0, t0) f(r0) (9.14)
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9.1: Derivation of the Adjoint Equation 133

as can be readily verified. In fact, taking the time derivative yields

∂t p(r, t) =
∫

Ω
dr0 ∂t p(r, t|r0, t0) f(r0)

= L(r)
∫

Ω
dr0 p(r, t|r0, t0) f(r0) = L(r) p(r, t) . (9.15)

Furthermore, we note using (9.9)

p(r, t0) =
∫

Ω
dr0 δ(r − r0) f(r0) = f(r) . (9.16)

One can apply identity (9.14) to express p(r, t|r0, t0) in terms of the probalities p(r, t|r1, t1) and
p(r1, t1|r0, t0)

p(r, t|r0, t0) =
∫

Ω
dr1 p(r, t|r1, t1) p(r1, t1|r0, t0) . (9.17)

This latter identity is referred to as the Chapman-Kolmogorov equation. Both (9.14) and (9.17)
state that knowledge of the distribution at a single instance t, i.e., t = t0 or t = t1, allows one to
predict the distributions at all later times. The Chapman-Kolmogorov equation reflects the Markov
property of the stochastic process assumed in the derivation of the Smoluchowski equation.
We like to state finally the Chapman-Kolmogorov equation (9.17) for the special case t1 = t − τ .
Employing identity (9.12) one obtains

p(r, t|r0, t0) =
∫

Ω
dr1 p(r, τ |r1, 0) p(r1, t− τ |r0, t0) . (9.18)

Taking the time derivative yields, using (9.1),

∂t p(r, t|r0, t0) =
∫

Ω
dr1 p(r, τ |r1, 0) L(r1) p(r1, t− τ |r0, t0) . (9.19)

The Adjoint Smoluchowski Operator

We want to determine now the operator L† in (9.10). For this purpose we prove the following
identity [48]: ∫

Ω
dr g(r) L(r) h(r) =

∫
Ω
dr h(r) L†(r) g(r) +

∫
∂Ω
da · P (g, h) (9.20)

L(r) = ∇ ·D∇ − β∇ ·DF (r) (9.21)
L†(r) = ∇ ·D∇ + β DF (r) ·∇ (9.22)

P (g, h) = g(r) D∇h(r) − h(r) D∇ g(r)
− β DF (r) g(r) h(r) . (9.23)

The operator L†(r) is called the adjoint to the operator L(r), and P (g, h) is called the concomitant
of L(r).
To prove (9.20–9.23) we note, using ∇·w(r) q(r) = q(r)·∇w(r) + w(r)∇·q(r)

∇ ·
(
g D∇h − hD∇ g

)
= ((∇g))D ((∇h)) + g∇ ·D∇h

− ((∇h))D ((∇g)) − h∇ ·D∇ g

= g∇ ·D∇h − h∇ ·D∇ g (9.24)
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134 Adjoint Smoluchoswki Equations

or

g∇ ·D∇h = h∇ ·D∇g + ∇ · ( g D∇h − hD∇g ) . (9.25)

The double brackets ((. . . )) limit the scope of the differential operators.
Furthermore, one can show

∇ ·DF g h = g∇ ·DF h + hDF ·∇ g (9.26)

or

−g∇ · βDF h = hβ DF ·∇ g − ∇ · β DF g h . (9.27)

Equations (9.26, 9.27) can be combined, using (9.21–9.23),

g L h = h L† g + ∇ · P (g, h) (9.28)

from which follows (9.20).
In case

P (g, h) = 0 , for r ∈ ∂Ω , (9.29)

which implies a condition on the functions g(r) and h(r), (9.20) corresponds to the identity

〈g|L(r)h〉Ω = 〈L†(r) g|h〉Ω , (9.30)

a property which is the conventional definition of a pair of adjoint operators. We like to determine
now which conditions g(r) and h(r) must obey for (9.30) to be true.
We assume that h(r) obeys one of the three conditions (9.4–9.6) and try to determine if conditions
for g(r) on ∂Ω can be found such that (9.29) and, hence, (9.30) hold. For this purpose we write
(9.29) using (9.23)

g(r)D
[
∇ f(r) − β F (r) f(r)

]
− h(r)D∇ g(r) = 0 , r ∈ ∂Ω . (9.31)

In case that h(r) obeys (9.4) follows

(i’) â(r) ·D∇ g(r) = 0 , r ∈ ∂Ω . (9.32)

In case that h(r) obeys (9.5), follows

(ii’) g(r) = 0 , r ∈ ∂Ω (9.33)

and, in case that h(r) obeys (9.6), follows

(iii’) w g(r) − â(r) ·D∇ g(r) = 0 , r ∈ ∂Ω . (9.34)

From this we can conclude:

1. 〈g|L(r)h〉Ω = 〈L†(r) g|h〉Ω holds if h obeys (i), i.e., (9.4), and g obeys (i′), i.e., (9.32);

2. 〈g|L(r)h〉Ω = 〈L†(r) g|h〉Ω holds if h obeys (ii), i.e., (9.5), and g obeys (ii′), i.e., (9.33);

3. 〈g|L(r)h〉Ω = 〈L†(r) g|h〉Ω holds if h obeys (iii), i.e., (9.6), and g obeys (iii′), i.e., (9.34).
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Derivation of the Adjoint Smoluchowski Equation

The Chapman-Kolmogorov equation in the form (9.19) allows one to derive the adjoint Smolu-
chowski equation (9.10). For this purpose we replace L(r0) in (9.19) by the adjoint operator using
(9.30)

∂tp(r, t|r0, t0) =
∫

Ω
dr1 p(r, τ |r1, 0) L(r1) p(r1, t− τ |r0, t0) (9.35)

=
∫

Ω
dr1 p(r1, t− τ |r0, t0) L†(r1) p(r, τ |r1, 0) . (9.36)

Note that L(r1) in (9.35) acts on the first spatial variable of p(r1, t − τ |r0, t0) whereas L†(r1) in
(9.36) acts on the second spatial variable of p(r, τ |r1, 0). Taking the limit τ → (t− t0) yields, with
p(r1, t− τ |r0, t0)→ δ(r1 − r0),

∂t p(r, t|r0, t0) = L†(r0) p(r, t− t0|r0, 0) , (9.37)

i.e., the backward Smoluchowski equation (9.10).
We need to specify now the boundary conditions which the solution of the adjoint Smoluchowski
equation (9.37) must obey. It should be noted here that the adjoint Smoluchowski equation (9.37)
considers p(r, t|r0, t0) a function of r0, i.e., we need to specify boundary conditions for r0 ∈ Ω.
The boundary conditions arise in the step (9.35) → (9.36) above. This step requires:

1. In case that p(r, t|r0, t0) obeys (i) for its r-dependence, i.e., (9.4) for r ∈ ∂Ω, then p(r, t|r0, t0)
must obey (i′) for its r0-dependence, i.e., (9.32) for r0 ∈ ∂Ω;

2. In case that p(r, t|r0, t0) obeys (ii) for its r-dependence, i.e., (9.5) for r ∈ ∂Ω, then p(r, t|r0, t0)
must obey (ii′) for its r0-dependence, i.e., (9.33) for r0 ∈ ∂Ω;

3. In case that p(r, t|r0, t0) obeys (iii) for its r-dependence, i.e., (9.6) for r ∈ ∂Ω, then
p(r, t|r0, t0) must obey (iii′) for its r0-dependence, i.e., (9.34) for r0 ∈ ∂Ω.

We note finally that L†(r), given by (9.22), in case that the force F (r) is related to a potential,
i.e., F (r) = −∇U(r), can be written

L†(r) = eβ U(r)∇ ·D e−β U(r)∇ . (9.38)

This corresponds to expression (9.3) for L.

9.2 Correlation Functions

Often an experimentalist prepares a system in an initial distribution B(r) po(r) at a time t0 and
probes the spatial distribution of the system with sensitivity A(r) at any time t > t0. The
observable is then the socalled correlation function

CA(r)B(r) (t) =
∫

Ω
dr

∫
Ω
dr A(r) p(r, t|r, t0) B(r) , (9.39)

where p(r, t|r, t0) obeys the backward Smoluchowski equation (9.37) with the initial condition

p(r, t0|r0, t0) = δ(r − r0) . (9.40)
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136 Adjoint Smoluchoswki Equations

and the adjoint boundary conditions (9.32, 9.33, 9.34).
We like to provide a three examples of correlation functions. A trivial example arises in the case
of A(r) = δ(r − r ′) and B(r) = δ(r − r ′′)/po(r) ′) which yields

CAB (t) = p(r ′, t|r ′′, t0) . (9.41)

In the case one can only observe the total number of particles, i.e. A(r) = 1, and for the special
case B(r) = δ(r − r ′)/po(r) ′), the correlation function is equal to the total particle number ,
customarily written

N(t, r ′) = C1 δ(r− r′)/po(r) ′) (t) =
∫

Ω
dr p(r, t|r ′, t0) . (9.42)

The third correlation function, the so-called Mößbauer Lineshape Function, describes the absorption
and re-emissions of γ-quants by 57Fe. This isotope of iron can be enriched in the heme group of
myoglobin. The excited state of 57Fe has a lifetime Γ−1 ≈ 100ns before te isotope reemits the γ-
quant. The re-emitted γ-quants interfere with the incident, affecting the lineshape of the spectrum.
In the limit of small motion of the iron the following function holds for the spectral intensity

I(ω) =
σ0Γ

4

∫ ∞
−∞

dt e−iωt−
1
2

Γ|t| G(k, t) , (9.43)

where

G(k, t) =
∫
dr

∫
dr e

ik·(r− r0) p(r, t|r, 0) p0(r0) = Ceik·r e−ik·ro . (9.44)

The term −1
2Γ|t| in the exponent of (9.43) reflects the Lorentzian broadening of the spectral line

due to the limited lifetime of the quants.
In order to evaluate a correlation function CA(r)B(r) (t) one can determine first the quantity

CA(r)(t|ro) =
∫

Ω
dr A(r) p(r, t|ro, to) (9.45)

and evaluate then

CA(r)B(r)(t|ro) =
∫
droB(ro)p(r, t|ro, to) . (9.46)

CA(r)(t|ro) can be obtained by carrying out the integral in (9.45) over the backward Smoluchowski
equation (??9.37)). One obtains

∂tCA(r)(t|ro) = L†(r)CA(r)(t|ro) (9.47)

with the initial condition

CA(r)(t0|ro) = A(r0) (9.48)

and the appropriate boundary condition selected from (9.32, 9.33, 9.34).
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