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In 1827 the botanist Robert Brown examined under his microspcope pollen of plants suspended in
water. He observed that the pollen, about 10−6m in diameter, performed stochastic motions of the
order of 10−5m. Even though Brown could not explain the cause of this motion any continuous
stochastic process like that of a pollen is now referred to as Brownian dynamics.
In this chapter we introduce a numerical technique that generates a solution of the Fokker-Planck
equation (5.1) by simulating an ensemble of stochastic processes. Due to these stochastic processes
one calls this numerical method Brownian dynamics as well.
We provide two derivations of the numerical method of Brownian dynamics. In the first section we
transform the Fokker-Planck equation (5.1) into a multi-dimensional integral. We then explain in
the second section how to evaluate this multi-dimensional integral using the Monte Carlo integration
method introduced in the previous chapter. We show in the third section that this Monte Carlo
integration is equivalent to simulating an ensemble of stochastic processes. The equivalence is shown
by deriving the Brownian dynamics method a second time starting with the stochastic differential
equation (5.2). We examplify the idea of Brownian dynamics by applying it to a free diffusion model
in the fourth section and conclude this chapter in the fifth section by showing how to incorporate
boundary conditions in Brownian dynamics.

6.1 Discretization of Time

Discretization is the basis of many numerical procedures. This also holds true for Brownian dy-
namics. The object of discretization is the continuous time axis. A computer can not represent a
continuous line or function. The infinitely many points would simply not fit into a finite digital
computer nor could they be processed in a finite amount of time. Hence, one needs to approximate
a continuous dimension with a finite set of points. This approximation is called discretization.
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92 Brownian Dynamics

We solve the Fokker-Planck equation numerically by breaking the time axes paramerized by t into
discrete points labeled by t0, t1, t2, . . . . These time points do not need to be equally spaced, but
they usually are to simplfy the calculations.
One now has to adapt the Fokker-Planck equation (2.148) to the discretized time axis. For the
sake of simplicity we consider the one-dimensional version

∂t p(x, t|x0, t0) = −∂xA(x, t) p(x, t|x0, t0) +
1
2
∂2
xB

2(x, t) p(x, t|x0, t0) . (6.1)

Let p(x, t|x0, t0) be the, yet unknown, solution of (6.1) for the initial condition x(t0) = x0. One finds
a solution p(x, t|x0, t0) on a discrete sequence of times {t0, t1, t2, . . . } by constructiong transition
probabilities p(xi+1, ti+1|xi, ti) from one discrete time point ti to the next. With these transition
probabilities one can reassemble the complete solution p(x, t|x0, t0).
We need to first disassemble the time evolution of p(x, t|x0, t0) into many small time increments.
For this purpose we proceed as follows. To obtain a solution p(x2, t2|x0, t0) with an initial starting
position at x(t0) = x0 one can first solve for p(x1, t1|x0, t0) which describes the solution for an
intermediate state at some time t1 prior to t2 and after t0. The probability distribution at time t1
may then be taken as the initial condition for a second solution of (6.1) reaching from time t1 to
time t2. This second solution can be assembled due to the linearity of (6.1) using p(x2, t2|x1, t1)
for the initial condition x(t1) = x1. Summing p(x2, t2|x1, t1) over all possible initial positions x1 in
the domain Ω weighted with the initial probability determined through p(x1, t1|x0, t0) one obtains
p(x2, t2|x0, t0) and the Chapman Kolmogorow equation

p(x2, t2|x0, t0) =
∫

Ω
dx1 p(x2, t2|x1, t1) p(x1, t1|x0, t0) . (6.2)

This is the Chapman-Kolmogorov equation encountered already above [c.f. (9.17)]. The process of
dividing the evolution in the interval [t0, t2] into consecutive evolution in the intervals [t0, t1] and
[t1, t2] can be repeated. For this purpose one starts from (6.2), replaces variables x2 and t2 with
x3 and t3, and applies (6.2) to p(x3, t3|x1, t1) while naming the intermediate state x2 and t2. One
derives

p(x3, t3|x0, t0) =
∫

Ω
dx1 p(x3, t3|x1, t1) p(x1, t1|x0, t0)

=
∫∫

Ω
dx2 dx1 p(x3, t3|x2, t2) p(x2, t2|x1, t1) p(x1, t1|x0, t0) . (6.3)

These steps may be repeated again. Doing so (N − 1)-times one obtains

p(xN , tN |x0, t0) =
∫
· · ·
∫

Ω︸ ︷︷ ︸
(N−1) times

(
N−1∏
i=1

dxi p(xi+1, ti+1|xi, ti)

)
p(x1, t1|x0, t0) . (6.4)

The procedure above has divided now the time evolution of p(xN , tN |x0, t0) into N steps over time
intervals [ti+1, ti] where ti, i = 1, 2, . . . , N−1 denotes the intermediate times. We will identify below
t and tN . In order to evaluate p(xN , tN |x0, t0) we need to determine the transition probabilities
p(xi+1, ti+1|xi, ti). The respective algorithm can exploit the possibility that one can choose the time
intervals [ti+1, ti] very short such that certain approximations can be envoked without undue errors.
In fact, for equally spaced time points ti the length of each time segment is ∆t = (ti − ti−1) =
(t − t0)/N . One can choose N always large enough that the time period ∆t is short enough to
justify the approximations introduced below.
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6.2. MONTE CARLO INTEGRATION OF STOCHASTIC PROCESSES 93

Let ∆x be the typical distance that a particle governed by the probability distribution p(x, t0 +
∆t|x0, t0) may cover due to drift and diffusion within a time period ∆t, i.e.

∆x =
∣∣∣〈〈x〉〉∣∣∣ +

√〈〈
x2
〉〉

∼
∣∣A(x0, t0)

∣∣∆t + B(x0, t0)
√

∆t . (6.5)

The approximation introduced assumes that A(x, t) and B(x, t) are constant for each time period
[ti, ti+1] and spatially independent in each range [xi −∆x, xi + ∆x],

A
(
t ∈ [ti, ti+1], x ∈ [xi −∆x, xi + ∆x]

)
∼ A(ti, xi) (6.6)

B
(
t ∈ [ti, ti+1], x ∈ [xi −∆x, xi + ∆x]

)
∼ B(ti, xi) , (6.7)

One replaces than the functions p(xi+1, ti+1|xi, ti) in (6.4) by solutions of the Fokker-Planck equa-
tion (6.1) with constant coefficients A(x, t) and B(x, t). In case of boundary conditions at x→ ±∞
the resulting expression is, according to (4.28, 4.39)

p(xi+1,ti+1|xi, ti) =

1√
2π B2(xi, ti) (ti+1 − ti)

exp

(
−
(
xi+1 − xi −A(xi, ti) (ti+1 − ti)

)2
2B2(xi, ti) (ti+1 − ti)

)
. (6.8)

We will consider solutions for other boundary conditions on page 100 further below.
Employing (6.8) in the iterated form of the Chapman-Kolmogorow equation (6.4), one derives

p(x,t|x0, t0) = (6.9)∫
· · ·
∫

Ω︸ ︷︷ ︸
(N−1) times

(
N−1∏
i=1

dxi

)
N−1∏
i=0

1√
2π B2(xi, ti) ∆t

exp

(
−
(
xi+1 − xi −A(xi, ti) ∆t

)2
2B2(xi, ti) ∆t

)
.

Thus, we have solved the Fokker-Planck equation (6.1) up to an N -dimensional integral. This
integral needs to be evaluated numerically for which purpose one applies the Monte Carlo integration
method.

6.2 Monte Carlo Integration of Stochastic Processes

The integral on the r.h.s. of (6.4) and (6.9) is a truely high-dimensional integral. The Monte Carlo
method is therefore the appropriate integration method.
Before we apply the Monte Carlo method we modify equation (6.4) slightly. The probability
distribution p(x, t|x0, t0) is not always what one wants to determine. A more feasible construct is
the average q̄(t|x0, t0) of an arbitrary observable Q with a sensitivity function q(x) in state space Ω
given by the integral

q̄(t|x0, t0) =
∫

Ω
dx q(x) p(x, t|x0, t0) . (6.10)

Equation (6.10) is very comprehensive. Even the probability distribution p(x̃, t|x0, t0) can be viewed
as an observable Q, namely, for the sensitivity function qx̃(x) = δ(x− x̃).
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94 Brownian Dynamics

We now apply the Monte Carlo integration method as stated in equation (5.26) to the expanded
form of (6.10)

q̄(t|x0, t0) =
∫

Ω
dx q(x) × (6.11)∫
· · ·
∫

Ω︸ ︷︷ ︸
(N−1) times

(
N−1∏
i=1

dxi p(xi+1, ti+1|xi, ti)

)
p(x1, t1|x0, t0) .

One can associate q(x) with f(x) and the product of p(xi+1, ti+1|xi, ti) with p(x). The only problem
now is finding a random number generator that produces random numbers r̃ with a distribution
equivalent to the product of all p(xi+1, ti+1|xi, ti). This seems to be an impossible endeavor unless
one recalls how the product of all the p(xi+1, ti+1|xi, ti) came about.
Let us start with the case N = 0. Given a random number generator that produces numbers
r̃(x0, t0) with a distribution p(x, t|x0, t0) the solution is

q̄(t|x0, t0) =
∫

Ω
dx q(x) p(x, t|x0, t0)

∼ 1
M

M∑
k=1

q(r̃k(x0, t0)) . (6.12)

We denote the x0 and t0-dependence of the random numbers r̃k(x0, t0) explicitly for later use. The
reader should note that r̃k(x0, t0) exhibits a distribution p(x, t|x0, t0) around x0.
Implementing the Chapman-Kolmogorov equation (6.2) for p(x, t|x0, t0) once we obtain the case
N = 1 and two nested integrals.

q̄(t|x0, t0) =
∫

Ω
dx q(x)

∫
Ω
dx1 p(x, t|x1, t1) p(x1, t1|x0, t0) . (6.13)

To approximate (6.13) numerically one determines first the inner integral with the integration
variable x1. The Monte Carlo method yields

q̄(t|x0, t0) ∼
∫

Ω
dx q(x)

1
M

M∑
k0=1

p(x, t|rk0(x0, t0), t1) . (6.14)

In a second step one applies applies the Monte Carlo method to the outer integral, now however
with a probability distribution p(x, t|r̃k0(x0, t0), t1) exhibiting the inital starting point r̃k1(x0, t0).
We therefore use the random numbers r̃k1(r̃k0(x0, t0), t1).

q̄(t|x0, t0) ∼ 1
M2

M∑
k1=1

M∑
k0=1

q(r̃k1(r̃k0(x0, t0), t1)) . (6.15)

Note the nesting of random numbers r̃k1(r̃k0(x0, t0), t1). The Gaussian random number r̃k1(. . . ) is
distributed around the previous random number r̃k0(. . . ) which itself is distributed around x0.
Performing the above steps N times, thus iterating the Chapman-Kolmogorov equation (6.9), one
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6.3. ITO CALCULUS AND BROWNIAN DYNAMICS 95

obtains

q̄(t|x0, t0) =
∫

Ω
dx q(x)

∫
· · ·
∫

Ω︸ ︷︷ ︸
(N−1) times

(
N−1∏
i=1

dxi p(xi+1, ti+1|xi, ti)

)
p(x1, t1|x0, t0)

∼ 1
MN

M∑
k0=1

M∑
k1=1

· · ·
M∑

kN=1

q(r̃kN (. . . r̃k1(r̃k0(x0, t0), t1) . . . , tN )) , (6.16)

where the random numbers r̃kj (xj , tj) should exhibit the probability distributions

p
(
r̃kj (xj , tj)

)
= p(xj+1tj+1|xj , tj) . (6.17)

The iteration above simplifies the problem of finding an appropriate random number generator. We
now need random numbers that simply obey (6.17). In the specific case (6.8) one can generate the
appropriate random numbers r̃k(x0, t0) utilizing a Gaussian number generator as described in the
previous chapter. If rk is a random number with the normalized Gaussian probability distribution
exp(−r2/2)/

√
2π dr one obtains r̃k(x0, t0) with the mapping

r̃k(x0, t0) = B(x0, t0)
√
t− t0 rk + A(x0, t0) (t− t0) + x0 . (6.18)

With the help of (5.18) one can verify

p(r̃(x0, t0)) =
1√

2π B2(x0, t0) (t− t0)
exp

(
−
(
r̃(x0, t0)− x0 −A(x0, t0) (t− t0)

)2
2B2(x0, t0) (t− t0)

)
. (6.19)

Thus, we finally have all the ingredients to perform the Monte Carlo integration (6.16). However,
before putting (6.16) to use we can simplify the summations. The nesting of random numbers
r̃kN (. . . r̃k1(r̃k0(x0, t0), t1) . . . , tN ) is in effect a random walk starting at x0 and proceeding with
Gaussian random steps r̃ki . With the summations in (6.16) one takes the average over all random
walks that can be formed with a given set of M random steps r̃ki for i = 1, . . . , N . One can simplify
this equation by summing over MN independent random pathes r̃lN (. . . r̃l1(r̃l0(x0, t0), t1) . . . , tN )
instead. Equation (6.16) becomes

q̄(t|x0, t0) ∼ 1
MN

MN∑
l=1

q(r̃lN (. . . r̃l1(r̃l0(x0, t0), t1) . . . , tN )) . (6.20)

6.3 Ito Calculus and Brownian Dynamics

Before applying Brownian dynamics in the form of equation (6.20) we want to shed light on the
close relation between the Monte Carlo integration introduced above and the concept of stochastic
processes as described in chapter 2.
Equation (6.20) describes the algorithm of Brownian dynamics. In essence one simulates the random
walk of a given number of Brownian particles and samples their final position in state space Ω. To
demonstrate this we return to chapter 2. Within the framework of Ito calculus we consider the
stochastic differential equation (2.138) that corresponds to the Fokker-Planck equation (6.1)

∂t x(t) = A(x(t), t) + B(x(t), t) η(t) . (6.21)
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96 Brownian Dynamics Applications

The corresponding Ito-formula (2.137) is

df [x(t)] = A(x(t), t)
(
∂x f [x(t)]

)
dt + B(x(t), t)

(
∂x f [x(t)]

)
dω(t)

+
1
2
B2(x(t), t)

(
∂2
x f [x(t)]

)
dt . (6.22)

Assume f [x(t)] = x(t). We thus derive for x(t)

dx(t) = A(x(t), t) dt + B(x(t), t) dω(t) . (6.23)

Integrating (6.23) over small time periods ∆t for which we can assume A(x(t), t) and B(x(t), t) to
be constant we obtain the finite difference equation

x(t+ ∆t)− x(t) = A(x(t), t) ∆t + B(x(t), t) ∆ω , (6.24)

with ∆ω being a random variable with the Gaussian probability distribution (2.48) for D = 1/2.
Such a random variable can be generated with a normalized Gaussian random number r and the
mapping ∆ω =

√
∆t r

x(t+ ∆t)− x(t) = A(x(t), t) ∆t + B(x(t), t)
√

∆t r . (6.25)

Note, that x(t+∆t)−x(t) in (6.25) is the same as r̃(x0, t)−x0 defined in (6.18). Iterating equation
(6.25) and thus numerically integrating the stochastic differential equation (6.21) according to Ito
calculus, we generate a sample path x(t) starting at any given x(t0) = x0. Such a sample path can
then be used in the Monte Carlo procedure (6.20).

6.4 Free Diffusion

We now test the numerical Brownian dynamics procedure outlined above. For this purpose we
resort to examples that can be solved analytically.
We begin with free diffusion in an infinite domain. The Fokker Planck equation, i.e., the respectively
Einstein diffusion equation, is

∂t p(x, t|x0, t0) = D∂2
x p(x, t|x0, t0) . (6.26)

Comparing (6.26) and (6.1) one finds the drift coefficient A(x, t) to be zero and the noise coupling
coefficient B(x, t) =

√
2D to be constant in time and space. Thus, assumptions (6.6) and (6.7)

are met for any time step size ∆t = ti+1 − ti. Due to this fact one could choose ∆t = t −
t0 and obtain with (6.8) the final result right away, thereby, rendering the following numerical
simulation, employing a division into many short time intervals, unneccessary. Since we intend to
verify the numerical approach we choose a division into N intermediate time steps nevertheless.
These intermediate steps will become necessary when considering a potential and consequently a
spatially dependent A(x, t) further below.
One can proceed in a straight forward manner. Starting with Gaussian random numbers rk as
generated in (5.23) one derives the required random numbers r̃k(x, t) according to (6.18).

r̃k(x, t) =
√

2D∆t rk + x. (6.27)

These random numbers r̃k(x, t) exhibit the probability distribution

p(r̃(x, t)) =
1√

4πD∆t
exp

(
−
(
r̃(x, t)− x

)2
4D∆t

)
. (6.28)
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6.4: Free Diffusion 97

Figure 6.1: 1000 random trajectories generated by a Brownian dynamics simulation defined by
(6.29).

as shown in (6.19). To determine the endpoint x(t) of a sample path of free diffusion one creates a
chain of random numbers, i.e., a random walk,

x(t = tN ) = r̃N (. . . r̃1(r̃0(x0, t0), t1) . . . , tN )

=
√

2D∆t
N∑
k=1

rk . (6.29)

Figure 6.1 displays an ensemble of 1000 such paths, each path being N = 100 steps long. The
trajectories start at x = 0 and proceed towards the rear, as indicated by the time axis. D = 1 defines
the relation between temporal and spatial units. Ten paths are displayed in black to examplify the
behavior of single random walks. The other 990 paths are shown as a grey background. Note
the parabolic shape of the trajectory distribution in time. This property, the broadening of the
standard deviation of the trajectory distribution proportional to

√
t was derived in (2.51). In the

rear of the figure is a bin count of all trajectory locations at t = 1. The solid line imposed on the
bar chart represents the theoretical solution according to equation (6.28) with ∆t = t− t0.
The paths of (6.29) can be used to determine the expectation value q̄(t|x0, t0) of an observable Q
at time t = tN as described in (6.10) and (6.20). Obviously such a sampling of an observable value
can only be done with a finite ensemble of trajectories. A statistical error in the result is inevitable.
Hence the question: how large is the statistical error?
Assume we know the probability p(x, t|x0, t0). The exact expectation value 〈q(t|x0, t0)〉 is then
given by 〈

q(t|x0, t0)
〉

=
∫

Ω
dx q(x) p(x, t|x0, t0) . (6.30)
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98 Brownian Dynamics Applications

One can rewrite (6.30) in terms of a probabilty distribution p̃(q, t|x0, t0) that does not depend on
x but on the observable value q.〈

q(t|x0, t0)
〉

=
∫

Ω
dq q

∂x(q)
∂q

p(x(q), t|x0, t0)︸ ︷︷ ︸
p̃(q,t|x0,t0)

. (6.31)

With respect to p̃(q, t|x0, t0) we can then express the exact average (6.31) and the variance of the
observable value q(t|x0, t0) in terms of cumulants.〈

q(t|x0, t0)
〉

=
〈〈
q(t|x0, t0)

〉〉
, (6.32)〈(

q(t|x0, t0) −
〈
q(t|x0, t0)

〉)2
〉

=
〈〈
q2(t|x0, t0)

〉〉
. (6.33)

The variance (6.33) is the variance of single sample readings of an observable Q. Equation (6.33)
does not apply to an expectation value q̄(t|x0, t0), which is the average of an ensemble of sam-
ples. Nevertheless, denoting the outcome of an i-th reading by q(i)(t|x0, t0) one can express the
expectation value according to (6.20)

q̄(t|x0, t0) =
1
M

M∑
i=1

q(i)(t|x0, t0) . (6.34)

The second order cumulant of (6.34) renders

〈〈
q̄2(t|x0, t0)

〉〉
=

〈〈(
1
M

M∑
i=1

q(i)(t|x0, t0)

)2〉〉

=
1
M2

〈〈(
M∑
i=1

q(i)(t|x0, t0)

)2〉〉
. (6.35)

Since every q(i)(t|x0, t0) stems from an independent trajectory sample one can apply (2.44) and we
can write 〈〈

q̄2(t|x0, t0)
〉〉

=
1
M2

M∑
i=1

〈〈(
q(i)(t|x0, t0)

)2
〉〉
. (6.36)

Every sample q(i)(t|x0, t0) should also exhibit the same variance (6.33) so that we finally obtain

〈〈
q̄2(t|x0, t0)

〉〉
=

1
M2

M∑
i=1

〈〈
q2(t|x0, t0)

〉〉
=

1
M

〈〈
q2(t|x0, t0)

〉〉
. (6.37)

Hence, the variance of the average of M samples is about 1/M times smaller than the variance
of a single sample. Consequently the standard deviation of the expectation value decreases with
1/
√
M .

To finally determine the statistical error of an expectation value q̄(t|x0, t0) given by the standard

deviation
√〈〈

q̄2(t|x0, t0)
〉〉

one has to provide a value for the cumulant
〈〈
q2(t|x0, t0)

〉〉
in (6.37). An
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6.4: Free Diffusion 99

estimate for the upper limit of this variance is sufficient in most cases. One can provide an estimate
either with the help of some analytical approximation or by simply determining the variance of an
ensemble of M̃ samples q(i)(t|x0, t0) according to

〈〈
q2(t|x0, t0)

〉〉
≈ 1

M̃ − 1

M̃∑
i=1

(
q(i)(t|x0, t0) − q̄(t|x0, t0)

)2
. (6.38)

To examplify the tools just introduced we will consider a bin count. For a bin count one measures
the probability q[a,b] to find a trajectory end point within a given interval [a, b], called bin. The
sensitivity function q(x) for a single bin reaching from a to b is q[a,b](x) = Θ(x − a) − Θ(x − b)1.
One can determine the expectation value q̄[a,b](t|x0, t0) with the help of (6.15), (6.20) and (6.29)

q̄[a,b](t|x0, t0) =
∫

Ω
dx q[a,b](x) p(x, t|x0, t0)

≈ 1
M

M∑
l=1

q[a,b]

√2D∆t
N∑
kl=1

rkl

 . (6.39)

Performing calculation (6.39) for an array of adjacent bins one can approximate a probability
density distribution p(x, t|x0, t0) as shown in the rear of Figure 6.1. For that purpose one takes the
expectation value q̄[a,b](t|x0, t0) of each bin and divides it by the base length |b− a| . One thereby
obtains an estimate for the probability density between a and b

p(x ∈ [a, b], t|x0, t0) ≈ p̄[a,b](t|x0, t0)

=
q̄[a,b](t|x0, t0)
|b− a|

. (6.40)

How much confidence can we have in a probability density distribution determined through (6.40)?
There are two precision objectives to consider. First, one would like to have a sufficient spatial
resolution. The bin size should be smaller than the spatial features of the probability distribu-
tion p(x, t|x0, t0). This can be achieved by implementing a grid with many tiny bins; the smaller
the bin, the better. This however is counteracting the second objective. The statistical error of a
probability density within a bin increases as the bin size decreases. Thus, one has to balance these
two objectives as we will do in the following calculation.
We will focus our attention on a bin [a, b]. The spatial resolution ress of a bin count based on bins
like [a, b] is given by the bin size in relation to the relevant diffusion domain Ω

ress =
|a− b|
|Ω|

. (6.41)

One can define a resolution of the probability density resp in a similar fashion. Let ∆p̄[a,b](t|x0, t0)
be the standard deviation of the probability density in bin [a, b]. One can view this standard
deviation ∆p̄[a,b](t|x0, t0) as the analog to the bin size |a − b|. The relation between the standard
deviation ∆p̄[a,b](t|x0, t0) and the size |p(Ω)| of the overall range of probabilty density values in a
distribution would then define the resolution resp. Hence

resp =
∆p̄[a,b](t|x0, t0)
|p(Ω)|

. (6.42)

1Θ(x) represents Heaviside’s step function: Θ(x) = 0 for x < 0, and Θ(x) = 1 for x > 0.
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100 Brownian Dynamics

To optimize a bin count one has to balance the resolutions ress and resp. We thus assume

ress ≈ resp . (6.43)

Out of this equation we can derive the sample number M needed to achieve the desired precision
goal.
The sample number M enters equation (6.43) via (6.42) and ∆p̄[a,b](t|x0, t0). Starting with (6.40)
one can derive

∆p̄[a,b](t|x0, t0) =
√〈〈

p̄2
[a,b](t|x0, t0)

〉〉
=

√〈〈
p2

[a,b](t|x0, t0)
〉〉

M

=

√〈〈
q2

[a,b](t|x0, t0)
〉〉

M |a− b|2
. (6.44)

〈〈
q2

[a,b](t|x0, t0)
〉〉

can be approximated assuming
〈
q[a,b](t|x0, t0)

〉
to be equal q̄[a,b](t|x0, t0).〈〈

q2
[a,b](t|x0, t0)

〉〉
=

〈(
q[a,b](t|x0, t0) −

〈
q[a,b](t|x0, t0)

〉)2〉 (6.45)

≈
〈(
q[a,b](t|x0, t0) − q̄[a,b](t|x0, t0)

)2〉 (6.46)

=
(
1 − q̄[a,b](t|x0, t0)

)2
q̄[a,b](t|x0, t0) +(

0 − q̄[a,b](t|x0, t0)
)2 (1 − q̄[a,b](t|x0, t0)

)
(6.47)

= q̄[a,b](t|x0, t0)
(
1 − q̄[a,b](t|x0, t0)

)
(6.48)

Inserting (6.48) back into (6.44) one obtains

∆p̄[a,b](t|x0, t0) =

√
q̄[a,b](t|x0, t0)

(
1 − q̄[a,b](t|x0, t0)

)
M |a− b|2

(6.49)

Implementing (6.49) in (6.42) and (6.43) and solving for M we derive

M = q̄[a,b](t|x0, t0)
(
1 − q̄[a,b](t|x0, t0)

) ( |Ω|
|a− b|2 |p(Ω)|

)2

. (6.50)

One can use equation (6.50) to estimate the number of particles needed in a Brownian dynamics
simulation when creating probability distributions via a bin count. In Figure 6.1 we had to con-
sider the parameters |Ω| = 6, ∆x = 0.3, |p(Ω)| = 0.4 and q̄[a,b] = ∆x p̄[a,b] ≈ 0.04. With these
numbers equation (6.50) renders M = 1067 which is roughly the number of trajectories used in our
example. Unfortunately many interesting simulations require much larger M and thus tremendous
computational resources.

6.5 Reflective Boundary Conditions

So far in this chapter we have considered solely Brownian dynamics with boundaries at x →
±∞. We now seek to account for the existence of refelctive boundaries at finite positions in
the diffusion domain. For the purspose of a numerical Brownian dynamics description we divide
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6.5: Reflective Boundary Conditions 101

again teh evolution of teh probability function into many small time intervals, assuming that
the corresponding ∆x and ∆t values are small such that conditions (6.6) and(6.7) are satisfied.
Furthermore we now assume, that the average spatial increment ∆x of a simulated trajectory is
minute compared to the spatial geometry of the diffusion domain and its reflective boundary. In
this case a stochastic trajectory will most likely encounter not more than a single boundary segment
in each time interval. It will be permissible, therefore, to consider only one boundary segment at
a time. Furthermore, we approximate these boundary segments by planes, which is appropriate as
long as the curvature of the boundary is small in comparison to ∆x.
Under all these conditions one can again provide an approximate analytical solution p(x, t0 +
∆t|x0, t0) for a single simulation step. One can then use this solution to construct an adequate
numerical simulation over longer time intervals.
As stated, we assume refelective boundaries governed by the boundary condition (4.24)

â(x) ·J p(x, t|x0, t0) = 0 , x on ∂Ωi , (6.51)

where â(x) denotes the normalized surface vector of the planar boundary segment. One derives an
analytical solution for p(x, t|x0, t0) in the present case by emulating a mirror image of a diffusing
particle behind the planar boundary segment so that the flow of particles and the flow of mirror
particles through the boundary segment cancel each other to satisfy (6.51). This is established
through the probability

p(x, t0 + ∆t|x0, t0) =

(
1√

2π [B·BT] (x0, t0) ∆t

)n
exp
[
−(x− x0 −A(x0, t0) ∆t)2

2 [B·BT] (x0, t0) ∆t

]
(6.52)

+

(
1√

2π [B·BT] (x0, t0) ∆t

)n
exp

[
−(x−R∂Ω[x0 +A(x0, t0) ∆t])2

2 [B·BT] (x0, t0) ∆t

]
.

R∂Ω denotes the operation of reflection at the boundary plane ∂Ω. To perform the reflection
operation R∂Ω explicitly one splits every position vector x into two components, one parallel x‖
and one orthogonal x⊥ to the planar boundary ∂Ω. If b ∈ ∂Ω one can express the operation of
reflection as

x‖
R∂Ω7−→ x‖ (6.53)

x⊥
R∂Ω7−→ 2 b⊥ − x⊥ . (6.54)

With this notation one can write boundary condition (6.51) as([
B·BT

]
(x, t)

2
∂x⊥ − A(x, t)

)
p(x, t0 + ∆t|x0, t0)

∣∣∣∣∣
x∈∂Ω

= 0 . (6.55)

and one can easily verify that equation (6.52)

p(x, t|x0, t0) =

(
1√

2π [B·BT] (x0, t0) ∆t

)n (
exp
[
−(x− x0)2

4D∆t

]
(6.56)

+ exp

[
−
(
x‖ − x0‖

)2 + (x⊥ + x0⊥ − 2 b⊥)2

2 [B·BT] (x0, t0) ∆t

] )

is a solution of the diffusion equation which obeys (6.55).
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102 Brownian Dynamics

The function on the r.h.s. of (6.56) describes a Wiener process which is modified, in that the
endpoint of the Gaussian distribution which reaches across the boundary ∂Ω is ‘reflected’ back into
the domain Ω. The modified Wiener process is therefore defined as follows

x(t+ ∆t) =

x(t) +
√

2D∆t r(t) , if x(t) +
√

2D∆t r(t) ∈ Ω

R∂Ω

[
x(t) +

√
2D∆t r(t)

]
, if x(t) +

√
2D∆t r(t) 6∈ Ω

(6.57)

Whenever x(t+ ∆t) reaches outside the domain Ω the actual value of the coordinate x(t+ ∆t) is
readjusted according to the rules set by Eq. (6.57).
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