Problem Set 6
Physics 483 / Fall 2002
Professor Klaus Schulten

Problem 1: Hamiltonian and total charge of free Dirac field.

Lagrangian density of free Dirac field is Lp = V(4" 8, —mI)¥, where 9, is

defined as ¥ 9, U = ¥(9, V) — (9,V)V, I is the 4 x 4 identity matrix, and
U = Ut40, Using the quantilization formula,
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and the anticommutation rules
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show that the Hamiltonian and the total charge have the following forms:
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(Hint: To evaluate expressions such as 8%&@ and %Em, we need specify the

direction of 0 operator, when the field operators a and a are not commutable
such as for Fermions. Here we restrict ourselves to the following definitions:
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Problem2: Derive equations of motion for Dirac particle coupled with
electromagnetic field.

Given the Lagrangian densities
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show Euler Lagrangian equations lead to
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Problem 3: Feynman propagator of EM field

Using the field operator expansion
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to prove
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where € is an infinitesimal positive number.

Problem 4: Feynman propagator of Dirac particle
For Dirac particle, prove that
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The problem set needs to be handed in by Thursday, December 12,

2002 into the mail box of Deyu Lu in Loomis.



