
Problem Set 5
Physics 483 / Fall 2002
Professor Klaus Schulten

Problem 1: Spontaneous 2p → 1s emission in hydrogen atom

Determine the rate of spontaneous emission for the 2p → 1s transition in the
hydrogen atom.

Problem2: Selection Rules for One-Photon Absorption in Hydrogen
Atoms

Determine the selection rules for one-photon absorption processes in the hydro-
gen atom, i.e., for which combination of quantum numbers n, `,m for the initial
state and n′, `′,m′ for the final state one can expect non-zero absorption rates.
Assume the dipole approximation and linearly polarized radiation. Express the
operator ~r in the matrix element 〈final state|~r |initial state〉 through linear com-
binations of r Y`m(θ, φ), where Y`m denotes the speherical harmonics, and use
the identity∫ π

0

∫ 2π

0

Y`1m1(θ, φ)Y`2m2(θ, φ)Y`3m3(θ, φ) sin θdθdφ (1)

=
[
(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

] 1
2

(
`1 `2 `3
0 0 0

) (
`1 `2 `3
m1 m2 m3

)

Problem 3: Optical Transitions in Hexatriene

Hexatriene is a molecule of atomic composition C6H8 and a structure as pre-
sented in Fig. 1. The relevant electronic degrees of freedom for optical tran-
sitions involve the 2pz atomic orbitals of carbon atoms φj j=1,2,3,4,5,6 (see
Fig. 1). The molecular electronic wave function can be represented as a linear
combination

ψn =
n∑

j=1

α
(n)
j φj . (2)
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Figure 1: Hexatriene molecule (C6H8); approximate structure.



In this case ψn are the eigenstates of the following Hamiltonian matrix:
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I β 0 0 0 0
β I β 0 0 0
0 β I β 0 0
0 0 β I β 0
0 0 0 β I β
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(a) Show that a solution of (3) is

α
(n)
j = N sin

πnj

7
. (4)

where N is the normalizing coefficient defined through
∑6

j=1 |α
(n)
j |2 = 1. De-

termine the corresponding energy eigenvalues En. Plot the energies. Sketch
which states ψn are occupied and which are unoccupied in the ground state
of a molecule. (Employ the Pauli exclusion principle.) Also sketch the two
lowest one-electron electronic excitations. (Notice that there are two different
transitions that can bring a system to the second excited state.)

(b) Determine the transition dipole moments ~Dnm. For this purpose derive first
the formula

~Dnm =
6∑

j=1

α
∗(n)
j α

(m)
j ~rj . (5)

where ~rj is the position of the center of the j-th atom. For the evaluation use
〈φj |~r|φk〉 ≈ δjk ~rj . Determine the total rate of absorption for the lowest energy
excitation in units Nω/nanoseconds. [Note: For n 6= m it does not matter
where you choose the origin of your coordinate system in which you express ~rj .]

(c) State the selection rules for the optical transitions in hexatriene, i.e., for
which type of states ψn, ψm the transition dipole element ~Dnm vanishes. For
this purpose consider the symmetry properties of the obtained electronic wave-
functions. In particular, consider the symmetry with respect to 180o rotation
around hexatrien’s axis of symmetry. Argue that all wavefunctions are either
even or odd with respect to this symmetry operation. To get the selection rules
consider separately odd-odd, even-even, and odd-even (even-odd) transitions.
Explain why the transition to the second one-electron excited state is forbid-
den, i.e., ~Dnm = ~0.

Problem 5: The Bee’s Compass

Bees and many other animals can perceive the polarization of the sun light
scattered in the sky as it appears to an observer on the ground. You are asked
to provide an estimate for the pattern of polarization across the whole sky.
Assume for this purpose that the ground (earth surface) is a plane P1, and
that all scattering of the sun light in the atmosphere is due to a single elastic
(Rayleigh) scattering event in the sky at positions lying in a plane P2 coplanar
to P1 and, say, 3 km above P1. In order to describe the scattering asume that
the sun’s incident radiation is everywhere parallel at points in P2.
Attach then to each location (xo, yo, 3 km) in P2 a right-handed coordinate sys-
tem, the orthogonal axes (û1, û2, û3) of which are oriented towards East, North,
and“Up”, respectively. Denote the wave vector of the sun’s radiation by ~ks and
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its polar coordinates in the (û1, û2, û3) coordinate system by (ks, θs, φs). Define
the vector ~robs which points from (xo, yo, 3 km) to the position (0, 0, 0) of the
observer in P1. The polar coordinates of ~robs in (û1, û2, û3) are (robs, θobs, φobs).
You are asked to adopt this notation in your solution.
Obviously, according to the suggested model the scattered sun light seen by
the observer is due to radiation impinging on points (xo, yo, 3 km) with wave
vector (ks, θs, φs) and elastically scattered into the direction ~robs. Assume for the
morning sun (θs, φs) = (80o, 0o), for the sun at noon time (θs, φs) = (10o,−90o),
and for the evening sun (θs, φs) = (80o, 180o). Assume that the sun’s radiation
before scattering is unpolarized.
Defining two suitable directions (see class notes on Thomson scattering) û(1)

obs, û
(2)
obs

of polarization of the radiation scattered towards the observer, determine the
scattering cross section dσ1/dΩobs and dσ2/dΩobs of the scattered radiation with
polarization in the directions û(1)

obs and û(2)
obs, respectively. Plot the projection of

the resulting vector
dσ1

dΩobs
û

(1)
obs +

dσ2

dΩobs
û

(2)
obs (6)

onto the plane P2 for the morning, noon time and evening sun, each for a
representative sample of points in the P2 plane. Explain how a bee can tell
from such polarization pattern geographic North.
For your calculation use the expression for Rayleigh scattering derived in class.
Assume that the relevant tensor (êj , j = 1, 2, 3 denotes the three directions of
the cartesian coordinate system)

Rjk =
∑
m

〈0|êj · ~r|m〉〈m|êk · ~r|0〉
εm − εo

(7)

is isotropic, i.e., proportional to the 3× 3 uni matrix 11.

The problem set needs to be handed in by Thursday, November 21,
2002 into the mail box of Deyu Lu in Loomis.
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