
Problem Set 3
Physics 483 / Fall 2002
Professor Klaus Schulten

Problem 1: MIT Bag Model of Quark Confinement

Hadrons are strongly interacting particles. There are two major types of
hadrons: mesons, which are bosons with integral spin and baryons, which
are fermions with half-integral spin. Mesons are believed to be composed of a
“valence” quark (q) and antiquark (q̄) pair, surrounded by a “sea” of gluons
and other qq̄ pairs; baryons are supposedly composed of three valence quarks
surrounded by a similar sea. Furthermore, quarks are believed to exist only
in the combinations of quarks and antiquarks which exist in baryons and
mesons. If we attempt to remove a single quark from such a combination,
the energy grows with the distance between the quark and its neighbors,
until the energy becomes so large that it is energetically favorable to create
a qq̄ pair and break the “string” connecting the quark to its neighbors.
Because of this property of the forces which bind quarks together, quarks
are said to be confined.

The MIT model is a very simple model for hadronic structure. Suppose
the hadron occupies a spherical volume of radius R. If a quark is inside
this volume, we assume its mass is small, and it may be taken to be zero.
If the quarks gets outside, interactions with the neighboring quarks which
make up the rest of the hadron are assumed to generate an infinite mass for
the quark. Since this implies infinite energy, the quark will not penetrate
outside of the hadronic volume.

To describe this model quantitively, we solve the Dirac equation for the
ground state and first excited state with V = 0. The mass is m = 0 inside
the hadronic volume and m →∞ outside it.

(a) We assume the wave function of stationary state has the same form as
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Prove that the parity operator P = γ0P̂ commutes with H, which is the
Hamiltonian of a Dirac particle in a spherically symmetric potential V (r)
with ~A = 0. P̂ has the following property

P̂ g(~r) = g(−~r), (3)

with g(~r) being an arbitrary spatial function. Verify that the above two
states belong to different eigenstates of P .

(b) Use equations (10.411 − 10.414) to derive differential equations for f1,
g1 and f2, g2.

(c) Take V = 0 and eliminate g1 to derive secondary differential equation
for f1 and do the same for f2.



(d) Show that f1 and f2 satisfy the differential equation of spherical Bessel
functions [
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]
fl(k0r) = 0. (4)

Give your expressions of k2
0 and l. What are your expected values for l? Are

they the same as what you obtained?

(e) If k2
0 ≥ 0, the solutions of Eq.4 are jl(k0r) and nl(k0r). While if k2

0 =
−K2

0 < 0, the solutions are h
(1)
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l (iK0r) have singular behavior at r → 0 and r → ∞, respectively, we

must only take jl(k0r) and h
(1)
l (iK0r) as our solution. Useful expressions of

the spherical Bessel functions are:
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· · · · · · · · · · · · . (5)

Recursion relations are

2l + 1
x

fl(x) = fl−1(x) + fl+1(x) (6)

f ′
l (x) =

1
2l + 1

[lfl−1(x)− (l + 1)fl+1(x)], (7)

where fl(x) can be any of jl(x), nl(x) and hl(ix), and f ′ refers to the
derivative of f with respect to its argument x. (In case you feel unfa-
miliar with the spherical Bessel functions, there is a good introduction
in chapter 7 of the class notes or at http://phyastweb.la.asu.edu/phy501-
shumway/2001/notes/lec25.pdf). If we denote f1 and f2 as fl, show that

g1(x) =
κ

m + E
fl−1(x) (8)

g2(x) = − κ

m + E
fl+1(x), (9)

where x = κr, so that κ = k0 when k2
0 > 0, and κ = iK0 when k2

0 < 0.

(f) Show that the general solutions have the following form:
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(g) Now we are interested in the positive energy solution only. Also note
that the ground state is characterized by j = 1

2 , l = 0. Which solution
should you choose? What is its parity? Under the limit that m = 0 when
r < R, and m → ∞ when r > R, write down the wave function of the
ground state. You do not need to normalize it.

(h) The ground state energy can be obtained by matching the wave function
inside and outside the sphere at r = R. What is the ground state energy?
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(Hint: You need a prefactor memR for the wave function outside the hadronic
volume to avoid it vanishing everywhere outside the sphere with radius R.)

(i) The first excited state is characterized by l = 1 and j = 3
2 . What’s its

parity then? What’s the energy?

(j) Plot the radial solutions of ground state and first excited state using
R = 1 and m = 50 outside the sphere.

Problem 2: Relativistic Hydrogen-type Atom

Evaluate and plot the radial wave functions for the 2p 1
2

and 2p 3
2

states of
hydrogen-type atoms using the expressions derived in the class notes.

The problem set needs to be handed in by Thursday, October 17,
2002 into the mail box of Deyu Lu in Loomis.
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