Problem Set 5
Physics 481 / Spring 2000
Professor Klaus Schulten

Problem 1: Non-Interacting Electron Gas

Consider a system of 2N non-interacting electrons inside a cube with
sides L.

(a) Prove that the one-electron normalized eigenstates, using periodic
boundary conditions, are given by
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where V = L3 is the volume of the cube and the possible values of the
wave vector k are

kx = 7 Ng, Yy = fny ’ z = fnz (2)

where ng,n, and n, are integers ranging from —oo to +oo.
(b) Relate the energy eigenstates given by (1) to those obtained by using

boundary conditions which assume that ¢ (7) vanishes on the inner surface
of the box.

(¢) Show that the number of states (1) with k € (ko, ko + AK) is given by
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where the extra factor of 2 accounts for the two possible spin orientations.
Note that if N is very large (~ 10?3) then we can write (3) in the following
differential form
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(d) The one-particle density of states (DOS) is defined by
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i.e., DOS represents the ratio between the number of states dN within
the energy interval (e, € 4+ de) and the

length de of this interval.

Prove that for a non-interacting electron gas
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(e) According to the Pauli principle, the ground state, i.e., the state with the
lowest total energy, of the non-interacting electron gas is obtained by filling
up all the states (1) with k¥ < kp (the Fermi momentum) or, equivalently,
with € < ep (the Fermi energy)®.

Calculate kr using particle conservation, i.e.,
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Similarly, determine ey by solving the equation
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You can check the correctness of your results via the formula ep = —-F.

Problem 2: Lorentz Transformations

(a) Consider a cylinder oriented along the x3-axis of diameter 2 and length 4
moving along (i) the x1- ax1s and (ii) along the x9-axis with the velocities (in
units of ¢) v = 0, 110, ;, 75- Plot the cylinder as it appears to an observer
in a frame at rest. Use the mathematica command

ParametricPlot3D[Sin]t], Cos|t], u,t,0,2Pi,u,0,4]

IThe filled states in the E—Space form a sphere, called the Fermi-sea or the Fermi-sphere.



(b) Using the transformation behaviour of the momentum 4-vector p# prove
the addition theorem of velocities.

(c) A thin wire along the x3-axis carries a charge density 7 §(x1) d(x2). De-
termine the electrical and magnetic field in the rest frame when the wire
moves along the x3-axis with velocities (in units of ¢) v = 0, 7, 3, 2
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Problem 3: Pion in j—potential

Consider a pion, i.e., particle with spin zero and mass m,, bound by a scalar
potential of the form

V(zh) = =V, 8(r)/4mr? (9)

where r is the radial distance of the pion from the origin. Solve the
Klein Gordon equation for the special case when the solution is static, i.e.,
independent of time. Discuss the significance of your result.

Problem 4: Pion in square well potential

A pion, i.e., a particle of spin zero and mass m., is bound by a scalar one-
dimensional square well potential V' (z!) defined to be

0 R < a!
V(') = { —m2V, 0<az! <R (10)
00 z <0

This could be a very rough model for a pion inside a nucleus of radius

R.

(a) Solve the Klein-Gordon equation in one space dimension for the positive
energy ground state.

(b) Find the value of R such that the positive energy ground state has energy
E, = mqy/1 — V,/2 (11)

Due Thursday, April 13 in mail box of Gheorghe-Sorin Paraoanu.



