
Problem Set 4
Physics 481 / Fall 1994

Professor Klaus Schulten

Problem 1: Two-Fermion Operators

(a) Exercise 9.3.1 of class notes.
(b) Exercise 9.3.2 1 of class notes.
(c) Exercise 9.3.3 1 of class notes.

Problem 2: Ethylene π-Electron States

The molecule ethylene C2H4 has two electrons that move inn two 2pz atomic
orbitals, one 2pz orbital on eithert of its carbons. Denoting the atomic or-
bitals (including spin) by |j, σ〉, j = 1, 2; σ = ±1

2 assume that the Hamil-
tonian for the system is

H = −t
∑
σ

(
c†1σc2σ + c†2σc1σ

)
+ U

(
c†1αc1α c

†
1βc1β + c†2αc2α c

†
2βc2β

)
.

(1)
Here α, β denote spin-up (|12 ,

1
2〉) and spin-down (|12 ,−

1
2〉) states, respec-

tively.

(a) State all possible 2-electron states of the system in the given basis of
single electron states (there are six states).

(b) Determine the Hamiltonian matrix in the basis of 2-electron states de-
termined in (a).

(c) Assume t = 2.5 eV and U = 3 eV and diagonalize the Hamiltonian
using Mathematica. State the energies for all states of the system. Identify
singlet and triplet states.

(d) Determine the energies in (c) for variable U . Plot the energies as a
function of U/t. Discuss the result.

Problem 3: SCF Approximation for 2N Electron System

Let us consider a system of 2N (N ∈ N∗) electrons which move in a set of
one electron states |r, σ >, r = 1, . . . , S (S > N). The spatial separation
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between these states is such that

1. an electron can jump from a given state |r, σ > only into states
|r ± 1, σ >;

2. the Coulomb repulsion between two electrons acts only if they occupy
one and the same orbital state, i.e. |r, σ > and |r,−σ >.

Hence, the model Hamiltonian reads

H = H0 + V , (2)

where
H0 = −

∑
r,s
σ

trsc
†
rσcsσ , (3)

with

trs =


Ir if r = s
βrs if |r, σ > and |s, σ > are nearest neighbors
0 otherwise

(4)

and
V =

v

2

∑
r

σ,σ′

c†rσc
†
rσ′crσ′crσ . (5)

The physical meaning of the newly introduced quantities are: Ir is the
ionization energy of state |r, σ >; βrs is the interaction energy connecting
states |r, σ > and |s, σ > and v is the “on site” Coulomb repulsion energy
between electrons and it is the same for each state |r, σ >.

(a) Following the notations and the procedure of the lecture notes (Sec. 9.5,
9.6) prove that the Hamiltonian (2), in the Self Consistent Field (SCF)
approximation is given by 1

Hmf = H0 + Vmf , (6)

where

Vmf = v
S∑
r=1
σ

[
N∑
m=1

U∗rmUrm

]
c†rσcrσ . (7)

1Corresponding to the reference state specified by Eq.(9.145) in the lecture notes.
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(b) For the benzene molecule C6H6 the matrix form of H0, in the basis of the
six 2pz atomic orbitals of carbon atoms, denoted by |r > (r = 1, . . . , S = 6),
reads

H0 =
∑
r,s,σ

trsc
†
rσcsσ (8)

where trs are the elements of the matrix defined through

t = −



I β 0 0 0 β
β I β 0 0 0
0 β I β 0 0
0 0 β I β 0
0 0 0 β I β
β 0 0 0 β I


. (9)

In the case of the benzene molecule determine analytically the exact eigen-
values of the Hamiltonian (6). (Hint: The translational symmetry dictates
the form of the wave function.) The values for I, β and v above are really
not explicitly needed, but you may use I = v = 11 eV and β = 2.5 eV.

Problem 4: 2D Hubbard Model in the Weak Coupling Approxi-
mation

Consider a two dimensional square lattice with N ×N , (N ∈ N), sites and
lattice spacing a. Assume that each site contains a single atomic orbital
which can accommodate, according to Pauli principle, at most two electrons
corresponding to the two different spin orientations σ = α (= 1

2) and σ =
β (= −1

2). Further, assume that one has N (≤ N2) electrons in the system
and that

(i) an electron can move through the lattice only by hopping from one site
to one of the nearest sites; and

(ii) electrons interact via a repulsive Coulomb interaction only when they
share the same orbital, i.e., they are located at the same lattice site.

The model Hamiltonian of the many–particle system described above
can be written, in the second quantization form, as

H = H0 +H1 , (10)

where
H0 = −t

∑
〈~r,~r′〉
σ

(
c†σ(~r)cσ(~r′) + c†σ(~r′)cσ(~r)

)
, (11)
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and
H1 = U

∑
~r

nα(~r)nβ(~r) . (12)

The Hamiltonian (10–12) is known in the literature as the (one band) Hub-
bard model (HM). Above, H0 describes the kinetic energy of the electrons; t
is the so called hopping amplitude (assumed to be real), c†σ(~r) (cσ(~r)) creates
(destroys) an electron with spin σ at lattice site ~r = (ia, ja), (i, j = 1, ..., N)
and 〈~r, ~r′〉 means that ~r and ~r′ label two nearest lattice sites. On the other
hand, H1 describes the on site Coulomb interaction between electrons; U is
the Coulomb repulsion energy between two electrons located at a same site,
while

nσ(~r) = c†σ(~r)cσ(~r) , (σ = α, β) (13)

gives the occupation number of the one particle state |~r, σ〉 and, obviously,
it can take only two values, namely 0 and 1.

The 2D Hubbard model cannot be solved (i.e., diagonalized) exactly.
Nevertheless, one can obtain “exact” solutions of the HM if one employs
extra approximations. The purpose of this problem is to solve the HM in
the so called weak coupling limit, when U << t holds, and when, as a 0th

order approximation we can drop H1 in Eq.(10) retaining only the kinetic
energy term H0. The spectrum of H0 can be calculated exactly and then,
the term H1 can be treated as a small perturbation. So our ultimate goal
in this problem is to determine the ground state of H0.

(a) For convenience consider that N is a large even number and that one has
periodic boundary conditions, i.e., the sites ~r+N(±a,±a) and ~r are equiv-
alent. Now for an arbitrary function f(~r) we can introduce the following
discrete Fourier transforms

f(~r) =
∑
~k

f̃(~k)ei~k~r , (14)

and
f̃(~k) =

1
N2

∑
~r

f(~r)e−i~k~r , (15)

where (
−N

2
+ 1

)
π

a
≤ kµ ≤

N

2
π

a
, (µ = x, y) (16)

Prove that in the thermodynamic limit (N →∞) Eq.(14) becomes

f(~r) = A

∫∫
d2k

(2π)2
f̃(~k)ei~k~r , (17)

4



where A = (Na)2 is the “volume” of the 2D square lattice, −π
a ≤ kµ ≤ π

a ,
(µ = x, y), and kµ now is a continous variable.

(b) Show that by employing the Fourier transform (17), H0 can be diago-
nalized as

H0 = A
∑
σ

∫∫
d2k

(2π)2
ε(~k)c̃†σ(~k)c̃σ(~k) , (18)

where
ε(~k) = −4t (cos(kxa) + cos(kya)) . (19)

So, in the weak coupling approximation the 2D Hubbard model is equivalent
with a system of N non–interacting, spin 1/2, particles with dispersion law
(i.e., the energy of a particle for a given value of ~k) given by Eq.(19). Note
that ε(~k) can take values only within the range of a finite interval known as
the energy band width.

(c) The ground state |Gnd〉 of a non–interacting many–fermion system is
obtained by filling up the Fermi sea, i.e., by distributing the fermions in
the one–particle quantum states (according to Pauli’s exclusion principle
a certain quantum state can accommodate one and only one fermion at a
time) corresponding to energy values less or equal to the so called Fermi
energy εF .

Prove that we have the following expressions for the

(i) ground state
|Gnd〉 =

∏
~k,σ

ε(~k)≤εF

c̃σ(~k)|0〉 , (20)

where |0〉 denotes the vacuum, i.e., the state without any particle
present;

(ii) ground state energy

E0 = 2A
∫∫

ε(~k)≤εF

d2k

(2π)2
ε(~k) , (21)

(iii) total number of particles

N = 2A
∫∫

ε(~k)≤εF

d2k

(2π)2
. (22)

5



Now all we left to do is to determine the Fermi energy εF as a function
of t, a and N/N2.

(d) Eq.(22) allows us to calculate εF in terms of the so called filling factor
defined through

n ≡ N
N2

(
=

total number of particles
total number of lattice sites

)
. (23)

Argue that 0 ≤ n ≤ 2 and then prove that n and εF are related through
the following equation

n =
a2

2π2
A(εF ) , (24)

where
A(εF ) =

∫∫
ε(~k)≤εF

d2k (25)

is the area enclosed in the k–plane by the iso–energy curve ε(~k) = εF .
Eq.(24) gives εF as an implicit function of n.

(e) By employing the ContourPlot feature of Mathematica (or by any other
means) plot the iso–energy curves ε(~k) = εF in the (kx, ky) plane. In your
plot single out the curve corresponding to εF = 0. Indicate on the same plot
the location of the curves corresponding to εF < 0 and εF > 0 respectively.

(f) Using Eq.(24), prove that

(i) εF (n = 1) = 0 , and

(ii) εF (2− n) = εF (n) , 0 ≤ n ≤ 1 .

(This last equation has to do with the particle–hole symmetry of the model.)

(g) By evaluating numerically the area A(εF ) for εF ∈ [−8t, 8t] and by using
Eq.(24) determine the functional dependence εF (n); provide your answer as
a plot of εF /8t vs. n.

(h) Proceeding similarly as at part (g), determine numerically the ground
state energy density E0 ≡ E0/A as a function of the filling factor n. Present
your results as a plot of E0/t vs. n.

(i) Analogue to the one–particle density operator (see lecture notes) one can
define the so called one–particle density of states (DOS) through

ρ(ε) =
∫∫

d2k

(2π)2
δ(ε− ε(~k)) , (26)
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where δ(x) is the Dirac–delta functional. ρ(ε)dε gives us the number of one–
particle states (with a definite spin orientation) corresponding to energies
ε ∈]ε, ε+ dε[.

Show that the following relations hold

E0 = 2A
∫ εF

−8t
ερ(ε)dε , (27)

and
n = 2a2

∫ εF

−8t
ρ(ε)dε . (28)

Try to obtain an analytic expression for ρ(ε) and then plot ρ(ε) vs. ε.
Note that ρ(ε) can be evaluated numerically even if you are not able to find
an analytical expression for it. Notice that ρ(ε) has an integrable singular-
ity for ε = 0 (the so called van Hove singularity). The simplest (but not
necessarily the best) way of dealing with this singularity during your nu-
merical calculations (by using Mathematica or anything else) is to eliminate
a small interval around ε = 0 (say −105 < ε/t < 105) from the spectrum
−8t < ε < 8t.

Due Tuesday, March 21 in mail box of Gheorghe-Sorin Paraoan.
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