Solutions to Linear Algebra Quiz Physics 480 / Fall 1999 Professor Klaus Schulten

Problem 1: Inner Product

In the "conventional" notation the vectors $|1\rangle$, $|2\rangle$, $|1'\rangle$, $|2'\rangle$ can be defined as

$$|1\rangle = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}, \quad |2\rangle = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}, \quad |1'\rangle = \begin{pmatrix} a'_1 \\ a'_2 \end{pmatrix}, \quad |2'\rangle = \begin{pmatrix} b'_1 \\ b'_2 \end{pmatrix}.$$

$$(1)$$

where

$$\begin{pmatrix} a_1' \\ a_2' \end{pmatrix} = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$
 (2)

$$\begin{pmatrix} b_1' \\ b_2' \end{pmatrix} = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}. \tag{3}$$

The scalar products are

$$\langle 1|2\rangle = a_1^*b_1 + a_2^*b_2 , \qquad (4)$$

and similar for $\langle 1'|2'\rangle$. It follows, using

$$a_1' = \cos\phi \ a_1 - \sin\phi \ a_2 \tag{5}$$

$$a_2' = \sin\phi \, a_1 + \cos\phi \, a_2 \tag{6}$$

$$b_1' = \cos\phi \ b_1 - \sin\phi \ b_2 \tag{7}$$

$$b_2' = \sin\phi \, b_1 + \cos\phi \, b_2 \tag{8}$$

and the definition $c = \cos \phi$, $s = \sin \phi$,

$$\langle 1'|2'\rangle = (ca_1 - sa_2)^* (cb_1 - sb_2) + (sa_1 + ca_2)^* (sb_1 + cb_2)$$

$$= c^2 a_1^* b_1 - sc a_2^* b_1 - cs a_1^* b_2 + s^2 a_2 b_2$$

$$+ s^2 a_1^* b_1 + cs a_2^* b_1 + sc a_1^* b_2 + c^2 a_2 b_2$$

$$= (c^2 + s^2) a_1^* b_1 - (sc - cs) a_2^* b_1$$

$$- (cs - sc) a_1^* b_2 + (s^2 + c^2) a_2^* b_2$$
(9)

From $c^2 + s^2 = 1$ and sc - cs = 0 follows the desired result.

Problem 2: Commutator

Using the definition $[L_1, L_2] = L_1 L_2 - L_2 L_1$ we obtain

$$\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{pmatrix} - \begin{pmatrix}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{pmatrix}$$

$$= \begin{pmatrix}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix} - \begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}$$

$$= \begin{pmatrix}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}.$$
(10)

Problem 3: Function of Operator

The expression $\exp A$ is defined through the Taylor expansion of the exponential

$$\exp A = 1 + A + \frac{1}{2}A^2 + \frac{1}{6}A^3 + \cdots$$
 (11)

Using

$$A^{2} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \tag{12}$$

and the resulting property $A^n = 0$ for any n > 1, we obtain

$$\exp A = 1 + A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}. \tag{13}$$

Problem 4: Matrix Diagonalization

The form of the matrix implies that

$$|1\rangle = \begin{pmatrix} 1\\0\\0 \end{pmatrix} \tag{14}$$

is an eigenvector with eigenvalue $\lambda_1 = 2$. The remaining two eigenvectors are of the form

$$|2\rangle = \begin{pmatrix} 0 \\ a_1 \\ b_1 \end{pmatrix}, \quad |3\rangle = \begin{pmatrix} 0 \\ a_2 \\ b_2 \end{pmatrix}$$
 (15)

where the components a_1 , b_1 , a_2 , b_2 and the eigenvalues associated with $|2\rangle$, $|3\rangle$ are defined through the eigenvalue problem posed by the 2×2-matrix

$$\left(\begin{array}{cc}
3 & -1 \\
-1 & 3
\end{array}\right).$$
(16)

The normalized eigenvectors and associated eigenvalues of the latter problem are

$$|\tilde{2}\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix}, \quad |\tilde{3}\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-1 \end{pmatrix}$$
 (17)

$$\lambda_2 = 2 \,, \quad \lambda_3 = 4 \,. \tag{18}$$

We conclude that the 2nd eigenvector and 3rd eigenvector of the original problem are

$$|2\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\1\\1 \end{pmatrix}, \quad |3\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\1\\-1 \end{pmatrix}$$
 (19)

with the associated eigenvalues given by (18). We note that, due to the degeneracy $\lambda_1 = \lambda_2 = 2$, any linear combination $c_1|1\rangle + c_2|2\rangle$ is also an eigenvector with eigenvalue 2, but that there exist only two linearly independent eigenvectors with eigenvalue 2.

Problem 5: Function Space

A scalar product can be defined through

$$\langle n|m\rangle = \int_0^L dx \, \psi_n(x) \, \psi_m(x) \,. \tag{20}$$

It follows indeed, using $\sin \alpha \sin \beta = \frac{1}{2} [\cos(\alpha - \beta) - \cos(\alpha + \beta)],$

$$\langle n|m\rangle = \frac{1}{L} \int_0^L dx \left[\cos \frac{(n-m)\pi x}{L} - \cos \frac{(n+m)\pi x}{L} \right]$$
 (21)

or choosing as integration variable y = x/L

$$\langle n|m\rangle = \int_0^1 dy \left[\cos(n-m)\pi x - \cos(n+m)\pi x\right]. \tag{22}$$

In case of n = m follows

$$\langle n|n\rangle = \int_0^1 dy \left[1 - \cos 2n\pi x\right] = 1 - \frac{1}{2n\pi} \left[\sin 2n\pi - \sin(0)\right] = 1.$$
 (23)

In case of $n \neq m$ follows

$$\langle n|m\rangle = \frac{1}{(n-m)\pi} [\sin(n-m)\pi - \sin(0)] - \frac{1}{(n+m)\pi} [\sin(n+m)\pi - \sin(0)] = 0.$$
 (24)

Accordingly, the set of functions with the scalar product (21) is orthonormal and we can state

$$\langle n|m\rangle = \delta_{nm} \tag{25}$$

From $f(x) = \sum_{m} c_{m} \psi_{m}(x)$ follows

$$\int_{0}^{L} dx \, \psi_{n}(x) f(x) = \sum_{m} c_{m} \int_{0}^{L} dx \, \psi_{n}(x) \psi_{m}(x)$$

$$= \sum_{m} c_{m} \, \delta_{nm} = c_{n} . \qquad (26)$$

It follows

$$c_m = \left(\frac{2}{L}\right)^{\frac{1}{2}} \int_0^{L/2} dx \sin\frac{m\pi x}{L} = \frac{\sqrt{2L}}{m\pi} \sin\frac{m\pi}{2}.$$
 (27)