
Chapter 11

Spinor Formulation of Relativistic
Quantum Mechanics

11.1 The Lorentz Transformation of the Dirac Bispinor

We will provide in the following a new formulation of the Dirac equation in the chiral representation
defined through (10.225–10.229). Starting point is the Lorentz transformation S̃(~w, ~ϑ) for the
bispinor wave function Ψ̃ in the chiral representation as given by (10.262). This transformation
can be written

S̃(~z) =
(
a(~z) 0

0 b(~z)

)
(11.1)

a(~z) = exp
(

1
2
~z · ~σ

)
(11.2)

b(~z) = exp
(
−1

2
~z ∗ · ~σ

)
(11.3)

~z = ~w − i ~ϑ . (11.4)

We have altered here slightly our notation of S̃(~w, ~ϑ), expressing its dependence on ~w, ~ϑ through
a complex variable ~z, ~z ∈ C3.
Because of its block-diagonal form each of the diagonal components of S̃(~z), i.e., a(~z) and b(~z),
must be two-dimensional irreducible representations of the Lorentz group. This fact is remarkable
since it implies that the representations provided through a(~z) and b(~z) are of lower dimension then
the four-dimensional natural representation1 L(~w, ~ϑ)µν . The lower dimensionality of a(~z) and b(~z)
implies, in a sense, that the corresponding representation of the Lorentz group is more basic than
the natural representation and may serve as a building block for all representations, in particular,
may be exploited to express the Lorentz-invariant equations of relativistic quantum mechanics.
This is, indeed, what will be achieved in the following.
We will proceed by building as much as possible on the results obtained sofar in the chiral repre-
sentation of the Dirac equation. We will characterize the space on which the transformations a(~z)

1We will see below that the representations a(~z) and b(~z) are, in fact, isomorphic to the natural representation,

i.e., different L(~w, ~ϑ)µν correspond to different a(~z) and b(~z).
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356 Spinor Formulation

and b(~z) act, the so-called spinor space, will establish the map between L(~w, ~ϑ)µν and a(~z), b(~z),
express 4-vectors Aµ, Aν , the operator ∂µ and the Pauli matrices ~σ in the new representation and,
finally, formulate the Dirac equation, neutrino equation, and the Klein–Gordon equation in the
spinor representation.

A First Characterization of the Bispinor States

We note that in case ~w = 0 the Dirac transformations are pure rotations. In this case a(~z) and
b(~z) are identical and read

a(i ~ϑ) = b(i ~ϑ) = exp
(
−1

2
~ϑ · ~σ

)
, θ ∈ R

3 . (11.5)

The transformations in this case, i.e., for ~z = i~ϑ, ~ϑ ∈ R3, are elements of SU(2) and correspond, in

fact, to the rotational transformations of spin-1
2 states as described by D

( 1
2

)

mm′(~ϑ), usually expressed
as product of rotations and of functions of Euler angles α, β, γ (see Chapter 5). For ~ϑ = (0, β, 0)T

the transformations are

a(i β ê2) = b(i β ê2) =
(
d

( 1
2

)

mm′(β)
)

=
(

cosβ2 − sinβ2
sinβ2 cosβ2

)
. (11.6)

as given by (5.243). This characterization allows one to draw conclusions regarding the state space
in which a(~z) and b(~z) operate, namely, a space of vectors

(
state1
state2

)
for which holds(

state 1 ∼ |12 ,+
1
2〉

state 2 ∼ |12 ,−
1
2〉

)
~z = i~ϑ, ~ϑ ∈ R3 (11.7)

where “∼” stands for “transforms like”. Here |12 ,±
1
2〉 represents the familiar spin–1

2 states.
Since a(~z) acts on the first two components of the solution Ψ̃ of the Dirac equation, and since b(~z)
acts on the third and fourth component of Ψ̃ one can characterize Ψ̃

Ψ̃1(xµ) ∼ |12 ,+
1
2〉

Ψ̃2(xµ) ∼ |12 ,−
1
2〉

Ψ̃3(xµ) ∼ |12 ,+
1
2〉

Ψ̃4(xµ) ∼ |12 ,−
1
2〉

 ~z = i~ϑ, ~ϑ ∈ R3 . (11.8)

We like to stress that there exists, however, a distinct difference in the transformation behaviour of
Ψ̃1(xµ), Ψ̃2(xµ) and Ψ̃3(xµ), Ψ̃4(xµ) in case ~z = ~w + i~ϑ for ~w 6= 0. In this case holds a(~z) 6= b(~z)
and Ψ̃1(xµ), Ψ̃2(xµ) transform according to a(~z) whereas Ψ̃3(xµ), Ψ̃4(xµ) transform according to
b(~z).

Relationship Between a(~z) and b(~z)

The transformation b(~z) can be related to the conjugate complex of the transformation a(~z), i.e.,
to

a∗(~z) = exp
(

1
2
~z ∗ · ~σ ∗

)
(11.9)
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where ~σ ∗ = (σ∗1, σ
∗
2, σ
∗
3). One can readily verify [c.f. (5.224)]

σ1 = σ∗1 , σ2 = −σ∗2 , σ3 = σ∗3 . (11.10)

From this one can derive
b(~z) = ε a∗(~z) ε−1 (11.11)

where

ε =
(

0 1
−1 0

)
, ε−1 =

(
0 −1
1 0

)
. (11.12)

To prove (11.11) one first demonstrates that for ε and ε−1 as given in (11.12) does, in fact, hold
ε ε−1 = 11. One notices then, using εf(a)ε−1 = f(εaε−1),

ε a∗(~z)ε−1 = exp
[

1
2
~z ∗
(
ε~σ ∗ε−1

) ]
. (11.13)

Explicit matrix multiplication using (5.224, 11.10, 11.12) yields

εσ1ε
−1 = −σ1 = −σ∗1

εσ2ε
−1 = σ2 = −σ∗2 (11.14)

εσ3ε
−1 = −σ3 = −σ∗3 ,

or in short
ε~σε−1 = −~σ ∗ . (11.15)

Similarly, one can show
ε−1~σε = −~σ ∗ , (11.16)

a result to be used further below. Hence, one can express

ε a∗(~z) ε−1 = exp
(
−1

2
~z ∗ · ~σ

)
= b(~z) . (11.17)

We conclude, therefore, that the transformation (11.1) can be written in the form

S̃(~z) =
(
a(~z) 0

0 ε a∗(~z) ε−1

)
(11.18)

with a(~z) given by (11.2, 11.4) and ε, ε−1 given by (11.12). This demonstrates that a(~z) is the
transformation which characterizes both components of S̃(~z).

Spatial Inversion

One may question from the form of S̃(~z) why the Dirac equation needs to be four-dimensional,
featuring the components Ψ̃1(xµ), Ψ̃2(xµ) as well as Ψ̃3(xµ), Ψ̃4(xµ) even though these pairs of
components transform independently of each other. The answer lies in the necessity that application
of spatial inversion should transform a solution of the Dirac equation into another possible solution
of the Dirac equation. The effect of inversion on Lorentz transformations is, however, that they
alter ~w into −~w, but leave rotation angles ~ϑ unaltered.
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Let P denote the representation of spatial inversion in the space of the wave functions Ψ̃. Obviously,
P2 = 11, i.e., P−1 = P. The transformation S̃(~z) in the transformed space is then

P S̃(~w + i~ϑ)P = S̃(−~w + i~ϑ) =
(
b(~z) 0

0 a(~z)

)
, (11.19)

i.e., the transformations a(~z) and b(~z) become interchanged. This implies

P


Ψ̃1

Ψ̃2

Ψ̃3

Ψ̃4

 =


Ψ̃3

Ψ̃4

Ψ̃1

Ψ̃2

 . (11.20)

Obviously, the space spanned by only two of the components of Ψ̃ is not invariant under spatial
inversion and, hence, does not suffice for particles like the electron which obey inversion symmetry.
However, for particles like the neutrinos which do not obey inversion symmetry two components
of the wave function are sufficient. In fact, the Lorentz invariant equation for neutrinos is only
2–dimensional.

11.2 Relationship Between the Lie Groups SL(2,C) and SO(3,1)

We have pointed out that a(i~ϑ), ~ϑ ∈ R3, which describes pure rotations, is an element of SU(2).
However, a(~w + i~ϑ) for ~w 6= 0 is an element of

SL(2,C) = {M, M is a complex 2× 2–matrix,det(M) = 1 } . (11.21)

One can verify this by evaluating the determinant of a(~z)

det( a(~z) ) = det
(
e

1
2
~z·~σ
)

= etr( 1
2
~z·~σ) = 1 (11.22)

which follows from the fact that for any complex, non-singular matrix M holds2

det
(
eM
)

= etr(M) (11.23)

and from [c.f. (5.224)]
tr(σj ) = 0 , j = 1, 2, 3 . (11.24)

Exercise 11.2.1: Show that SL(2,C) defined in (11.21) together with matrix multiplication as
the binary operation forms a group.

2The proof of this important property is straightforward in case of hermitian M (see Chapter 5). For the general
case the proof, based on the Jordan–Chevalley theorem, can be found in G.G.A. Bäuerle and E.A. de Kerf Lie
Algebras, Part (Elsevier, Amsterdam, 1990), Exercise 1.10.3.
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Mapping Aµ onto matrices M(Aµ)

We want to establish now the relationship between SL(2,C) and the group L↑+ of proper, or-
thochronous Lorentz transformations. Starting point is a bijective map between R4 and the set of
two-dimensional hermitian matrices defined through

M(Aµ) = σµA
µ (11.25)

where

σµ =


(

1 0
0 1

)
︸ ︷︷ ︸

σ0

,

(
0 1
1 0

)
︸ ︷︷ ︸

σ1

,

(
0 −i
i 0

)
︸ ︷︷ ︸

σ2

,

(
1 0
0 −1

)
︸ ︷︷ ︸

σ3

 . (11.26)

The quantity σµ thus defined does not transform like a covariant 4–vector. In fact, one wishes
that the definition (11.25) of the matrix M(Aµ) is independent of the frame of reference, i.e., in a
transformed frame should hold

σµA
µ Lρν

−→
σµA

′µ . (11.27)

Straightforward transformation into another frame of reference would replace σµ by σ′µ. Using
Aµ = (L−1)µνA′ν one would expect in a transformed frame to hold

σµA
µ L

ρ
ν

−→
σ′µ (L−1)µν A′ν . (11.28)

Consistency of (11.28) and (11.27) requires then

Lν
µσ′µ = σν (11.29)

where we used (10.76). Noting that for covariant vectors according to (10.75) holds a′ν = Lν
µaµ

one realizes that σµ transforms inversely to covariant 4–vectors. We will prove below [cf. (11.135)]
this transformation behaviour.
M(Aµ) according to (11.25) can also be written

M(Aµ) =
(
A0 + A3 A1 − iA2

A1 + iA2 A0 − A3

)
. (11.30)

Since the components of Aµ are real, the matrix M(Aµ) is hermitian as can be seen from inspection
of (11.26) or from the fact that the matrices σ0, σ1, σ2, σ3 are hermitian. The function M(Aµ) is
bijective, in fact, one can provide a simple expression for the inverse of M(Aµ)

M ′ = M(Aµ) ↔ Aµ =
1
2

tr
(
M ′ σµ

)
. (11.31)

Exercise 11.2.2: Show that σ0, σ1, σ2, σ3 provide a linear–independent basis for the space of
hermitian 2×2–matrices. Argue why M(Aµ) = σµA

µ provides a bijective map. Demonstrate that
(11.31) holds.

The following important property holds for M(Aµ)

det (M(Aµ) ) = AµAµ (11.32)

which follows directly from (11.30).
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Transforming the matrices M(Aµ)

We define now a transformation of the matrix M(Aµ) in the space of hermitian 2× 2–matrices

M
a−→ M ′ = aM a† , a ∈ SL(2,C) . (11.33)

This transformation conserves the hermitian property of M since

(M ′)† = ( aM a† )† = (a†)†M †a† = aM a† = M ′ (11.34)

where we used the properties M † = M and (a†)† = a. Due to det(a) = 1 the transformation
(11.33) conserves the determinant of M . In fact, it holds for the matrix M ′ defined through (11.33)

det(M ′) = det( aM a† ) = det(a) det(a†) det(M)
= [det(a)]2 det(M) = det(M) . (11.35)

We now apply the transformation (11.33) to M(Aµ) describing the action of the transformation in
terms of transformations of Aµ. In fact, for any a ∈ SL(2,C) and for any Aµ there exists an A′µ

such that

M(A′µ) = aM(Aµ) a† . (11.36)

The suitable A′µ can readily be constructed using (11.31). Accordingly, any a ∈ SL(2,C) defines
the transformation [c.f. (11.31)]

Aµ
a−→ A′µ =

1
2

tr
(
aM(Aµ) a†σµ

)
. (11.37)

Because of (11.32, 11.35) holds for this transformation

A′µA′µ = AµAµ (11.38)

which implies that (11.37) defines actually a Lorentz transformation. The linear character of the
transformation becomes apparent expressing A′µ as given in (11.37) using (11.25)

A′µ =
1
2

tr
(
a σνa

†σµ

)
Aν (11.39)

which allows us to express finally

A′µ = L(a)µν Aν ; L(a)µν =
1
2

tr
(
a σνa

†σµ

)
. (11.40)

Exercise 11.2.3: Show that L(a)µν defined in (11.40) is an element of L↑+.
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L(a)µν provides a homomorphism

We want to demonstrate now that the map between SL(2, C) and SO(3,1) defined through L(a)µν
[cf. (11.40)] respects the group property of SL(2, C) and of SO(3,1), i.e.,

L̄µρ = L(a1)µν L(a2)µρ︸ ︷︷ ︸
product

in SO(3,1)

= L( a1 a2︸ ︷︷ ︸
product

in SL(2,C)

)µρ (11.41)

For this purpose one writes using tr(AB) = tr(BA)

L(a1)µν L(a2)µρ =
∑
ν

1
2

tr
(
a1σνa

†
1σµ

) 1
2

tr
(
a2σρa

†
2σν

)
=

∑
ν

1
2

tr
(
σνa

†
1σµa1

) 1
2

tr
(
a2σρa

†
2σν

)
. (11.42)

Defining
Γ = a†1σµa1 , Γ′ = a2σρa

†
2 (11.43)

and using the definition of L̄µρ in (11.41) results in

L̄µρ =
1
4

∑
ν,α,β
γ,δ

(σν)αβΓβα Γγδ(σν)δγ =
1
4

∑
α,β
γ,δ

AαβγδΓβα Γγδ (11.44)

where
Aαβγδ =

∑
ν

(σν)αβ(σν)δγ . (11.45)

One can demonstrate through direct evaluation

Aαβγδ =


2 α = β = γ = δ = 1
2 α = β = γ = δ = 2
2 α = γ = 1 , β = δ = 2
2 α = γ = 2 , β = δ = 1
0 else

(11.46)

which yields

L̄µρ =
1
2
(

Γ11Γ′11 + Γ22Γ′22 + Γ12Γ′21 + Γ21Γ′12

)
=

1
2

tr
(

ΓΓ′
)

=
1
2

tr
(
a†1σµa1 a2σρa

†
2

)
=

1
2

tr
(
σµa1a2σρa

†
2a
†
1

)
=

1
2

tr
(
a1a2σρ(a1a2)†σµ

)
= L(a1a2)µρ . (11.47)

This completes the proof of the homomorphic property of L(a)µν .
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Generators for SL(2, C) which correspond to ~K, ~J

The transformations a ∈ SL(2,C) as complex 2 × 2–matrices are defined through four complex
or, correspondingly, eight real numbers. Because of the condition det(a) = 1 only six independent
real numbers actually suffice for the definition of a. One expects then that six generators Gj and
six real coordinates fj can be defined which allow one to represent a in the form

a = exp

 6∑
j=1

fjGj

 . (11.48)

We want to determine now the generators of the transformation a(~z) as defined in (11.2) which
correspond to the generators K1,K2,K3, J1, J2, J3 of the Lorentz transformations Lµν in the natural
representations, i.e., correspond to the generators given by (10.47, 10.48). To this end we consider
infinitesimal transformations and keep only terms of zero order and first order in the small variables.
To obtain the generator of a(~z) corresponding to the generator K1, denoted below as κ1, we write
(11.36)

M(LµνAν) = aM(Aµ) a† (11.49)

assuming (note that gµν is just the familiar Kronecker δµν)

Lµν = gµν + ε (K1)µ ν (11.50)
a = 11 + ε κ1 . (11.51)

Insertion of (K1)µν as given in (10.48) yields for the l.h.s. of (11.49), noting the linearity of M(Aµ),

M(Aµ + ε (K1)µ ν Aν) = M(Aµ) + εM( (−A1,−A0, 0, 0) )
= M(Aµ) − ε σ0A

1 − ε σ1A
0 (11.52)

where we employed (11.25) in the last step. For the r.h.s. of (11.49) we obtain using (11.51)

( 11 + ε κ1 )M(Aµ) ( 11 + ε κ†1 )

= M(Aµ) + ε (κ1M(Aµ) + M(Aµ)κ†1 ) + O(ε2)

= M(Aµ) + ε (κ1σµ + σµκ
†
1 )Aµ + O(ε2) . (11.53)

Equating (11.52) and (11.53) results in the condition

σ0A
1 − σ1A

0 = (κ1σµ + σµ κ
†
1 )Aµ . (11.54)

This reads for the four cases Aµ = (1, 0, 0, 0), Aµ = (0, 1, 0, 0), Aµ = (0, 0, 1, 0), Aµ = (0, 0, 0, 1)

−σ1 = κ1σ0 + σ0κ
†
1 = κ1 + κ†1 (11.55)

σ0 = κ1σ1 + σ1κ
†
1 (11.56)

0 = κ1σ2 + σ2κ
†
1 (11.57)

0 = κ1σ3 + σ3κ
†
1 . (11.58)

One can verify readily that

κ1 = −1
2
σ1 (11.59)
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obeys these conditions. Similarly, one can show that the generators κ2, κ3 of a(~z) corresponding to
K2,K3 and λ1, λ2, λ3 corresponding to J1, J2, J3 are given by

κ = −1
2
~σ , ~λ =

i

2
~σ . (11.60)

We can, hence, state that the following two transformations are equivalent

L(~w, ~ϑ) = e~w·
~K + ~ϑ· ~J︸ ︷︷ ︸

∈ SO(3,1)
acts on 4–vectors Aµ

, a(~w − i~ϑ) = e−
1
2

(~w − i~ϑ)·~σ︸ ︷︷ ︸
∈ SL(2,C)

acts on spinors φα ∈ C2

(characterized below)

(11.61)

This identifies the transformations a(~z = ~w − i~ϑ) as representations of Lorentz transformations, ~w
describing boosts and ~ϑ describing rotations.

Exercise 11.2.4: Show that the generators (11.60) of a ∈ SL(2,C) correspond to the generators
~K and ~J of Lµν .

11.3 Spinors

Definition of contravariant spinors

We will now further characterize the states on which the transformation a(~z) and its conjugate
complex a∗(~z) act, the so-called contravariant spinors. We consider first the transformation a(~z)
which acts on a 2-dimensional space of states denoted by

φα =
(
φ1

φ2

)
∈ C2 . (11.62)

According to our earlier discussion holds

φ1 transforms under rotations (~z = i~ϑ) like a spin–1
2 state |12 ,+

1
2〉

φ2 transforms under rotations (~z = i~ϑ) like a spin–1
2 state |12 ,−

1
2〉 .

We denote the general (~z = ~w + i~ϑ) transformation by

φ′α = aαβ φ
β def= aα1φ

1 + aα2φ
2 , α = 1, 2 (11.63)

where we extended the summation convention of 4-vectors to spinors. Here

a(~z) = ( aαβ ) =
(
a1

1 a1
2

a2
1 a2

2

)
(11.64)

describes the matrix a(~z).
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Definition of a scalar product

The question arises if for the states φα there exists a scalar product which is invariant under
Lorentz transformations, i.e., invariant under transformations a(~z). Such a scalar product does,
indeed, exist and it plays a role for spinors which is as central as the role of the scalar product
AµAµ is for 4–vectors. To arrive at a suitable scalar product we consider first only rotational
transformations a(i~ϑ). In this case spinors φα transform like spin–1

2 states and an invariant, which
can be constructed from products φ1χ2, etc., is the singlet state. In the notation developed in
Chapter 5 holds for the singlet state

|1
2
,

1

2
; 0, 0〉 =

∑
m=±1

2

(0, 0|1
2
,m;

1

2
,−m) |1

2
,m〉1|

1

2
,−m〉2 (11.65)

where | · · ·〉1 describes the spin state of “particle 1” and | · · ·〉2 describes the spin state of “particle
2” and (0, 0|12 ,±

1
2 ; 1

2 ,∓
1
2) stands for the Clebsch–Gordon coefficient. Using (0, 0|12 ,±

1
2 ; 1

2 ,∓
1
2) =

±1/
√

2 and equating the spin states of “particle 1” with the spinor φα, those of “particle 2” with
the spinor χβ one can state that the quantity

Σ =
1√
2

(
φ1 χ2 − φ2 χ1

)
(11.66)

should constitute a singlet spin state, i.e., should remain invariant under transformations a(i~ϑ). In
fact, as we will demonstrate below such states are invariant under general Lorentz transformations
a(~z).

Definition of covariant spinors

Expression (11.66) is a bilinear form, invariant and as such has the necessary properties of a scalar3

product. However, this scalar product is anti-symmetric, i.e., exchange of φα and χβ alters the
sign of the expression. The existence of a scalar product gives rise to the definition of a dual
representation of the states φα denoted by φα. The corresponding states are defined through

φ1 χ2 − φ2 χ1 = φ1χ1 + φ2χ2 (11.67)

It obviously holds

χα =
(
χ1

χ2

)
=
(
χ2

−χ1

)
. (11.68)

We will refer to φα, χβ, . . . as contravariant spinors and to φα, χβ, . . . as covariant spinors. The
relationship between the two can be expressed(

φ1

φ2

)
= ε

(
φ1

φ2

)
(11.69)

ε =
(

0 1
−1 0

)
(11.70)

3‘Scalar’ implies invariance under rotations and is conventionally generalized to invariance under other symmetry
trasnformations.
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as can be verified from (11.68). The inverse of (11.69, 11.70) is(
φ1

φ2

)
= ε−1

(
φ1

φ2

)
(11.71)

ε−1 =
(

0 −1
1 0

)
. (11.72)

Exercise 11.3.1: Show that for any non-singular complex 2× 2–matrix M holds

εM ε−1 = det(M)
(
M−1

)T
The matrices ε, ε−1 connecting contravariant and covariant spinors play the role of the metric
tensors gµν , gµν of the Minkowski space [cf. (10.10, 10.74)]. Accordingly, we will express (11.69,
11.70) and (11.71, 11.72) in a notation analogous to that chosen for contravariant and covariant
4–vectors [cf. (10.72)]

φα = εαβ φ
β (11.73)

φα = εαβ φβ (11.74)

εαβ =
(
ε11 ε12

ε21 ε22

)
=
(

0 1
−1 0

)
(11.75)

εαβ =
(
ε11 ε12

ε21 ε22

)
=
(

0 −1
1 0

)
(11.76)

The scalar product (11.67) will be expressed as

φαχα = φ1χ1 + φ2χ2 = φ1 χ2 − φ2 χ1 . (11.77)

For this scalar product holds
φαχα = −χαφα . (11.78)

The transformation behaviour of φα according to (11.63, 11.73, 11.75) is given by

φ′α = εαβ a
β
γ ε

γδ φδ (11.79)

as can be readily verified.

Proof that φαχα is Lorentz invariant

We want to verify now that the scalar product (11.77) is Lorentz invariant. In the transformed
frame holds

φ′αχ′α = aαβ εαγa
γ
δε
δκ φβχκ . (11.80)

One can write in matrix notation

aαβ εαγa
γ
δε
δκ =

[ (
ε a ε−1

)T
a
]
κβ

. (11.81)



366 Spinor Formulation

Using (11.2) and (11.14) one can write

ε a ε−1 = ε e
1
2
~z·~σε−1 = e

1
2
~z·ε~σε−1

= e−
1
2
~z·~σ ∗ (11.82)

and with f(A)T = f(AT ) for polynomial f(A)(
ε a ε−1

)T = e−
1
2
~z·(~σ ∗)T = e−

1
2
~z·~σ = a−1 (11.83)

Here we have employed the hermitian property of ~σ, i.e., ~σ† = (~σ ∗)T = ~σ. Insertion of (11.83)
into (11.81) yields

aαβ εαγa
γ
δε
δκ =

[ (
ε a ε−1

)T
a
]
κβ

=
[
a−1a

]
κβ

= δκβ (11.84)

and, hence, from (11.80)
φ′αχ′α = φβχβ . (11.85)

The complex conjugate spinors

We consider now the conjugate complex spinors

(φα)∗ =
( (

φ1
)∗(

φ2
)∗ ) . (11.86)

A concise notation of the conjugate complex spinors is provided by

(φα)∗ = φα̇ =

(
φ1̇

φ2̇

)
(11.87)

which we will employ from now on. Obviously, it holds φk̇ = (φk)∗, k = 1, 2. The transformation
behaviour of φα̇ is

φ′α̇ = (aαβ)∗ φβ̇ (11.88)

which one verifies taking the conjugate complex of (11.63). As discussed above, a∗(~z) provides
a representation of the Lorentz group which is distinct from that provided by a(~z). Hence, the
conjugate complex spinors φα̇ need to be considered separately from the spinors φα. We denote

(aαβ)∗ = aα̇β̇ (11.89)

such that (11.88) reads

φ′α̇ = aα̇β̇φ
β̇ (11.90)

extending the summation convention to ‘dotted’ indices.
We also define covariant versions of φα̇

φα̇ = (φα)∗ . (11.91)
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The relationship between contravariant and covariant conjugate complex spinors can be expressed
in analogy to (11.73, 11.76)

φα̇ = εα̇β̇ φ
β̇ (11.92)

φα̇ = εα̇β̇ φβ̇ (11.93)
εα̇β̇ = εαβ (11.94)

εα̇β̇ = εαβ (11.95)

where εαβ and εαβ are the real matrices defined in (11.75, 11.75). For the spinors φα̇ and χα̇ thus
defined holds that the scalar product

φα̇χα̇ = φ1̇χ1̇ + φ2̇χ2̇ (11.96)

is Lorentz invariant, a property which is rather evident.
The transformation behaviour of φα̇ is

φ′α̇ = εα̇β̇a
β̇
γ̇ε
γ̇δ̇φδ̇ . (11.97)

The transformation, in matrix notation, is governed by the operator ε a∗(~z) ε−1 which arises in
the Lorentz transformation (11.18) of the bispinor wave function Ψ̃, ε a∗(~z) ε−1 accounting for the
transformation behaviour of the third and fourth spinor component of Ψ̃. A comparision of (11.18)
and (11.97) implies then that φα̇ transforms like Ψ̃3, Ψ̃4, i.e., one can state

φ1̇ transforms under rotations (~z = i~ϑ) like a spin–1
2 state |12 ,+

1
2〉

φ2̇ transforms under rotations (~z = i~ϑ) like a spin–1
2 state |12 ,−

1
2〉 .

The transformation behaviour of Ψ̃ (note that we do not include presently the space-time depen-
dence of the wave function)

Ψ̃′ = S̃(~z) Ψ̃ =

 a(~z)
(Ψ̃1

Ψ̃2

)
εa∗(~z)ε−1

(Ψ̃3

Ψ̃4

)
 (11.98)

obviously implies that the solution of the Dirac equation in the chiral representation can be written
in spinor form 

Ψ̃1(xµ)
Ψ̃2(xµ)
Ψ̃3(xµ)
Ψ̃4(xµ)

 =


φ1(xµ)
φ2(xµ)
χ1̇(xµ)
χ2̇(xµ)

 =
(
φα(xµ)
χβ̇(xµ)

)
. (11.99)

11.4 Spinor Tensors

We generalize now our definition of spinors φα to tensors. A tensor

tα1α2···αkβ̇1β̇2···β̇` (11.100)
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is a quantity which under Lorentz transformations behaves as

t′α1α2···αkβ̇1β̇2···β̇` =
k∏

m=1

aαmγm
∏̀
n=1

aβ̇n δ̇n t
γ1···γk δ̇1···δ̇` . (11.101)

An example is the tensor tαβ̇ which will play an important role in the spinor presentation of the
Dirac equation. This tensor transforms according to

t′αβ̇ = aαγa
β̇
δ̇ t
γδ̇ (11.102)

This reads in matrix notation, using conventional matrix indices j, k, `,m,

t′jk =
(
a t a†

)
jk

=
∑
`,m

aj`a
∗
kmt`m . (11.103)

Similarly, the transformation bevaviour of a tensor tαβ reads in spinor and matrix notation

t′αβ = aαγ a
β
δ t
γδ , t′jk =

(
a t aT

)
jk

=
∑
`,m

aj`akmt`m (11.104)

Indices on tensors can also be lowered employing the formula

tα
β̇ = εαγt

γβ̇ (11.105)

and generalizations thereof.
An example of a tensor is εαβ and εαβ . This tensor is actually invariant under Lorentz transforma-
tions, i.e., it holds

ε′αβ = εαβ , ε′αβ = εαβ (11.106)

Exercise 11.4.1: Prove equation (11.106).

The 4–vector Aµ in spinor form

We want to provide now the spinor form of the 4-vector Aµ, i.e., we want to express Aµ through a
spinor tensor. This task implies that we seek a tensor, the elements of which are linear functions
of Aµ. An obvious candidate is [cf. (11.25] M(Aµ) = σµA

µ. We had demonstrated that M(Aµ)
transforms according to

M ′ = M(LµνAν) = aM(Aµ) a† (11.107)

which reads in spinor notation [cf. (11.102, 11.103)

A′αβ̇ = aαγa
β̇
δ̇A

γδ̇ . (11.108)

Obviously, this transformation behaviour is in harmony with the tensor notation adopted, i.e., with
contravariant indices αβ̇. According to (11.25) the tensor is explicitly

Aαβ̇ =

(
A11̇ A12̇

A21̇ A22̇

)
=
(
A0 + A3 A1 − iA2

A1 + iA2 A0 − A3

)
. (11.109)
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One can express Aαβ̇ also through Aµ

Aαβ̇ =
(
A0 − A3 −A1 + iA2

−A1 − iA2 A0 + A3

)
. (11.110)

The 4-vectors Aµ, Aµ can also be associated with tensors

Aαβ̇ = εαγεβ̇δ̇A
γδ̇ . (11.111)

This tensor reads in matrix notation(
A11̇ A12̇

A21̇ A22̇

)
=

(
0 1
−1 0

) (
A11̇ A12̇

A21̇ A22̇

) (
0 −1
1 0

)

=

(
A22̇ −A21̇

−A12̇ A11̇

)
. (11.112)

Hence, employing (11.109, 11.110) one obtains

Aαβ̇ =
(

A0 − A3 −A1 − iA2

−A1 + iA2 A0 + A3

)
(11.113)

Aαβ̇ =
(

A0 + A3 A1 + iA2

A1 − iA2 A0 − A3

)
. (11.114)

We finally note that the 4–vector scalar product AµBµ reads in spinor notation

AµBµ =
1
2
Aαβ̇Bαβ̇ . (11.115)

Exercise 11.4.2: Prove that (11.115) is correct.

∂µ in spinor notation

The relationship between 4–vectors Aµ, Aµ and tensors tαβ̇ can be applied to the partial differential
operator ∂µ. Using (11.110) one can state

∂αβ̇ =
(

∂0 − ∂3 −∂1 + i∂2

−∂1 − i∂2 ∂0 + ∂3

)
. (11.116)

Similarly, (11.114) yields

∂αβ̇ =
(

∂0 + ∂3 ∂1 + i∂2

∂1 − i∂2 ∂0 − ∂3

)
. (11.117)
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σµ in Tensor Notation

We want to develop now the tensor notation for σµ (11.26) and its contravariant analogue σµ

σµ =
((

1 0
0 1

)
,

(
0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

))
σµ =

((
1 0
0 1

)
,

(
0 −1
−1 0

)
,

(
0 i
−i 0

)
,

(
−1 0

0 1

))
(11.118)

For this purpose we consider first the transformation behaviour of σµ and σµ. We will obtain the
transformation behaviour of σµ, σµ building on the known transformation behaviour of γ̃µ. This is
possible since γ̃µ can be expressed through σµ, σµ. Comparision of (10.229) and (11.118) yields

γ̃µ =
(

0 σµ

σµ 0

)
. (11.119)

Using (11.15) one can write
σµ = ε (σµ)∗ ε−1 (11.120)

and, hence,

γ̃µ =
(

0 σµ

ε (σµ)∗ ε−1 0

)
. (11.121)

One expects then that the transformation properties of σµ should follow from the transformation
properties established already for γµ [c.f. (10.243)]. Note that (10.243) holds independently of the
representation chosen, i.e., holds also in the chiral representation.
To obtain the transformation properties of σµ we employ then (10.243) in the chiral representation
expressing S(Lηξ) by (11.18) and γµ by (11.121). Equation (10.243) reads then(

a 0
0 εa∗ε−1

)(
0 σµ

ε(σµ)∗ε−1 0

)(
a−1 0
0 εa∗ε−1

)
Lνµ =(

0 σν

ε(σν)∗ε−1 0

)
. (11.122)

The l.h.s. of this equation is(
0 aσµε−1(a∗)−1ε

εa∗(σµ)∗ε−1a−1 0

)
Lνµ (11.123)

and, hence, one can conclude

aσµε−1(a∗)−1ε Lνµ = σν (11.124)
εa∗(σµ)∗ε−1a−1 Lνµ = ε(σν)∗ε−1 . (11.125)

Equation (11.125) is equivalent to

a∗(σµ)∗ε−1a−1ε Lνµ = (σν)∗ (11.126)

which is the complex conjugate of (11.124), i.e., (11.125) is equivalent to (11.124). Hence, (11.124)
constitutes the essential transformation property of σµ and will be considered further.
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One can rewrite (11.124) using (11.16, 11.2)

ε−1(a∗)−1ε = ε−1e−
1
2
~z ∗·~σ ∗ε = e−

1
2
~z ∗·ε−1~σ ∗ε = e

1
2
~z ∗·~σ . (11.127)

Exploiting the hermitian property of ~σ, e.g., (~σ ∗)T = ~σ yields using (11.2)

ε−1(a∗)−1ε = e
1
2
~z ∗·(~σ ∗)T =

[
e

1
2
~z ∗·~σ ∗

]T
= [a∗]T . (11.128)

One can express, therefore, equation (11.124)

a σµ [a∗]T Lνµ = σν . (11.129)

We want to demonstrate now that the expression aσµ[a∗]T is to be interpreted as the transform
of σµ under Lorentz transformations. In fact, under rotations the Pauli matrices transform like
(j = 1, 2, 3)

σj −→ a(i~ϑ)σj
(
a(i~ϑ)

)†
= a(i~ϑ)σj

(
a∗(i~ϑ)

)T
. (11.130)

We argue in analogy to the logic applied in going from (11.107) to (11.108) that the same trans-
formation behaviour applies then for general Lorentz transformations, i.e., transformations (11.2,
11.4) with ~w 6= 0. One can, hence, state that σµ in a new reference frame is

σ′µ = a σµ a† (11.131)

where a is given by (11.2, 11.4). This transformation behaviour, according to (11.102, 11.103)
identifies σµ as a tensor of type tαβ̇. It holds according to (11.118)(

(σµ)11̇ (σµ)12̇

(σµ)21̇ (σµ)22̇

)
=

(
1 0
0 1

)
︸ ︷︷ ︸

µ= 0

,

(
0 −1
−1 0

)
︸ ︷︷ ︸

µ= 1

,

(
0 i
−i 0

)
︸ ︷︷ ︸

µ= 2

,

(
−1 0

0 1

)
︸ ︷︷ ︸

µ= 3

,

 (11.132)

and (
(σµ)11̇ (σµ)12̇

(σµ)21̇ (σµ)22̇

)
=

(
1 0
0 1

)
︸ ︷︷ ︸

µ= 0

,

(
0 1
1 0

)
︸ ︷︷ ︸

µ= 1

,

(
0 −i
i 0

)
︸ ︷︷ ︸

µ= 2

,

(
1 0
0 −1

)
︸ ︷︷ ︸

µ= 3

,

 . (11.133)

Combining (11.129, 11.131) one can express the transformation behaviour of σµ in the succinct
form

Lνµ σ
′µ = σν . (11.134)
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Inverting contravariant and covariant indices one can also state

Lν
µ σ′µ = σν . (11.135)

This is the property surmised already above [cf. (11.29)]. We can summarize that σµ and σµ
transform like a 4–vector, however, the transformation is inverse to that of ordinary 4–vectors.
Each of the 4×4 = 16 matrix elements in (11.132) and (11.133) is characterized through a 4-vector
index µ, µ = 0, 1, 2, 3 as well as through two spinor indices αβ̇. We want to express now σµ and
σµ also with respect to the 4–vector index µ in spinor form employing (11.114). This yields

σαβ̇ =
(

σ0 + σ3 σ1 + iσ2

σ1 − iσ2 σ0 − σ3

)
= 2


(

1 0
0 0

) (
0 1
0 0

)
(

0 0
1 0

) (
0 0
0 1

)
 (11.136)

where on the rhs. the submatrices correspond to tαβ̇ spinors. We can, in fact, state

(
σαβ̇

)γδ̇
=


(

(σ11̇)11̇ (σ11̇)12̇

(σ11̇)21̇ (σ11̇)22̇

) (
(σ12̇)11̇ (σ12̇)12̇

(σ12̇)21̇ (σ12̇)22̇

)
(

(σ21̇)11̇ (σ21̇)12̇

(σ21̇)21̇ (σ21̇)22̇

) (
(σ22̇)11̇ (σ22̇)12̇

(σ22̇)21̇ (σ22̇)22̇

)
 . (11.137)

Equating this with the r.h.s. of (11.136) results in the succinct expression

1
2

(
σαβ̇

)γδ̇
= δαγδβ̇δ̇ . (11.138)

Note that all elements of σαβ̇ are real and that there are only four non-vanishing elements.
In (11.138) the ‘inner’ covariant spinor indices, i.e., α, β̇, account for the 4–vector index µ, whereas
the ‘outer’ contravariant spinor indices. i.e., γ, δ̇, account for the elements of the individual Pauli
matrices. We will now consider the representation of σµ, σµ in which the contravariant indices are
moved ‘inside’, i.e., account for the 4-vector µ, and the covariant indices are moved outside. The
desired change of representation(σµ)αβ̇ −→ (σµ)αβ̇ corresponds to a transformation of the basis of
spin states (

f
g

)
−→

(
g
−f

)
= ε

(
f
g

)
(11.139)

and, hence, corresponds to the transformation(
(σµ)11̇ (σµ)12̇

(σµ)21̇ (σµ)22̇

)
=
(

0 1
−1 0

)(
(σµ)11̇ (σµ)12̇

(σµ)21̇ (σµ)22̇

)(
0 −1
1 0

)
(11.140)

where we employed the expressions (11.12) for ε and ε−1. Using (11.110) to express σαβ̇ in terms
of σµ yields together with (5.224)

σαβ̇ =
(

σ0 − σ3 σ1 + iσ2

−σ1 − iσ2 σ0 + σ3

)
= 2


(

0 0
0 1

) (
0 0
−1 0

)
(

0 −1
0 0

) (
1 0
0 1

)
 (11.141)
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and, employing then transformation (11.140) to transform each of the four submatrices, which in
(11.137) are in a basis (· · ·)αβ̇ to a basis (· · ·)αβ̇ results in

(
σαβ̇

)
γδ̇

=


(

(σ11̇)11̇ (σ11̇)12̇

(σ11̇)21̇ (σ11̇)22̇

) (
(σ12̇)11̇ (σ12̇)12̇

(σ12̇)21̇ (σ12̇)22̇

)
(

(σ21̇)11̇ (σ21̇)12̇

(σ21̇)21̇ (σ21̇)22̇

) (
(σ22̇)11̇ (σ22̇)12̇

(σ22̇)21̇ (σ22̇)22̇

)


= 2


(

1 0
0 0

) (
0 1
0 0

)
(

0 0
1 0

) (
0 0
0 1

)
 . (11.142)

This can be expressed
1
2

(
σαβ̇

)
γδ̇

= δαγδβ̇δ̇ . (11.143)

Combined with (11.138) one can conclude that the following property holds

1
2

(
σαβ̇

)γδ̇
=

1
2

(
σαβ̇

)
γδ̇

= δαγδβ̇δ̇ . (11.144)

The Dirac Matrices γµ in spinor notation

We want to express now the Dirac matrices γ̃µ in spinor form. For this purpose we start from the
expression (11.121) of γ̃µ. This expression implies that the element of γ̃µ given by ε σµε−1 is in the
basis |αβ̇ whereas the element of γ̃µ given by σµ is in the basis |αβ̇. Accordingly, we write

γ̃µ =

(
0 (σµ)αβ̇

((σµ)αβ̇)∗ 0

)
. (11.145)

Let Aµ be a covariant 4–vector. One can write then the scalar product using (11.115)

γ̃µAµ =

(
0 (σµ)αβ̇Aµ

((σµ)αβ̇)∗Aµ 0

)

=

(
0 1

2(σγδ̇)
αβ̇Aγδ̇

1
2((σγδ̇)αβ̇)∗Aγδ̇ 0

)
. (11.146)

Exploiting the property (11.144) results in the simple relationship

γ̃µAµ =

(
0 Aαβ̇

Aαβ̇ 0

)
. (11.147)
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11.5 Lorentz Invariant Field Equations in Spinor Form

Dirac Equation

(11.147) allows us to rewrite the Dirac equation in the chiral representation (10.226)

i γµ∂µΨ̃(xµ) =

(
0 i ∂αβ̇

i ∂αβ̇ 0

)
Ψ̃(xµ) = m Ψ̃(xµ) . (11.148)

Employing Ψ̃(xµ) in the form (11.99) yields the Dirac equation in spinor form

i ∂αβ̇ χβ̇ = mφα (11.149)
i ∂αβ̇ φ

α = mχβ̇ . (11.150)

The simplicity of this equation is striking.


