Chapter 11

Spinor Formulation of Relativistic
Quantum Mechanics

11.1 The Lorentz Transformation of the Dirac Bispinor

We will provide in the following a new formulation of the Dirac equation in the chiral representation
defined through (10.225-10.229). Starting point is the Lorentz transformation S(i, J) for the
bispinor wave function W in the chiral representation as given by (10.262). This transformation
can be written

S(z) = <a("7 b(o ) (11.1)

0 Z
- 1,
a(Z) = exp ( 57 a) (11.2)
. 1.,
b(Z) = exp < 57 > (11.3)
7 = i (11.4)
We have altered here slightly our notation of S (0, _') expressing its dependence on w0, J through

a complex variable 7,7 € C3.

Because of its block-diagonal form each of the diagonal components of S(Z), i.e., a(Z) and b(%),
must be two-dimensional irreducible representations of the Lorentz group. This fact is remarkable
since it implies that the representations provided through a(Z) and b(Z) are of lower dimension then
the four-dimensional natural representation! L (17, 19) . The lower dimensionality of a(Z) and b(Z)
implies, in a sense, that the corresponding representatlon of the Lorentz group is more basic than
the natural representation and may serve as a building block for all representations, in particular,
may be exploited to express the Lorentz-invariant equations of relativistic quantum mechanics.
This is, indeed, what will be achieved in the following.

We will proceed by building as much as possible on the results obtained sofar in the chiral repre-
sentation of the Dirac equation. We will characterize the space on which the transformations a(Z)

1We will see below that the representations a(Z) and b(Z) are, in fact, isomorphic to the natural representation,

i.e., different L(w,J)*  correspond to different a(Z) and b(Z).
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356 Spinor Formulation

and b(2) act, the so-called spinor space, will establish the map between L (1, 75)“1, and a(2), b(2),
express 4-vectors A¥, A, the operator d,, and the Pauli matrices ¢ in the new representation and,
finally, formulate the Dirac equation, neutrino equation, and the Klein—-Gordon equation in the
spinor representation.

A First Characterization of the Bispinor States

—

We note that in case @/ = 0 the Dirac transformations are pure rotations. In this case a(Z) and
b(Z) are identical and read

N[ —

a(id) = b(id) = exp<——ﬁ-5> . 0 e R, (11.5)

The transformations in this case, i.e., for Z = i, € R3, are elements of SU(Z) and correspond, in

(3)

fact, to the rotational transformations of spln—— states as described by D, 2 (1), usually expressed
as product of rotations and of functions of Euler angles «, 3,7 (see Chapter 5). For J = (0,8,0)"

the transformations are

1 B _ginB
a(igen) = wisen) = (i) = (Gof o). (11.6)
2 2

as given by (5.243). This characterization allows one to draw conclusions regarding the state space

in which a(Z) and b(Z) operate, namely, a space of vectors (ZEZEE;) for which holds

state 2 ~

( state 1 ~ |3,
35

l\DIler—t

i > Z =i, JeR’ (11.7)

where “~” stands for “transforms like’. Here |§, l) represents the familiar spinfl states.

wp_qu_.

Since a(Z) acts on the first two components of the solution W of the Dirac equation, and since b(Z)
acts on the third and fourth component of U one can characterize U

Uy () ~ \%,+%>
‘1’2(35“) ~ \5,—§> - .70 3

Z =, 9 € R°. 11.8
iy(a#) ~ |5, +5) (118)
y(ah) ~ |5, —3)

We like to stress that there exists, however, a distinct difference in the transformation behaviour of
Wy (ah), Ua(at) and W3(z#), Ua(z#) in case 2 = @ + 40 for @ # 0. In this case holds a(2) # b(Z)
and Wy (z#), ¥y(z#) transform according to a(Z) whereas Ws(x#), Uy(x*) transform according to
b(2).

Relationship Between a(Z) and b(2)

—\

The transformation b(Z) can be related to the conjugate complex of the transformation a(2), i.e.,
to

1
a*(Z) = exp <§Z*-E*> (11.9)
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where 6* = (o}, 03,0%). One can readily verify [c.f. (5.224)]
o1 = o7, o9 = —05, o3 = 03 . (11.10)

From this one can derive
b(2) = ea*(2)e ! (11.11)

e:<_(1)(1)), 6—1:<?_é>. (11.12)

To prove (11.11) one first demonstrates that for € and €1 as given in (11.12) does, in fact, hold

ee~! = 1. One notices then, using ef(a)e™! = f(eac™ ),

where

-1

1
ea*(2)e”" = exp |:§Z_'*(65"*61):| . (11.13)

Explicit matrix multiplication using (5.224, 11.10, 11.12) yields

coret = —0y = —of
coget =0y = —0} (11.14)
cose !l = —g3 = —03 ,
or in short
gt = ", (11.15)
Similarly, one can show
e lde = —5*, (11.16)

a result to be used further below. Hence, one can express
wrn —1 | -
ea*(Z)e " = exp 570 ) = b(Z) . (11.17)

We conclude, therefore, that the transformation (11.1) can be written in the form
s [ a(?) 0
S(2) = < 0 ea*(Z)e ! > (11.18)

with a(Z) given by (11.2, 11.4) and ¢, ¢! given by (11.12). This demonstrates that a(Z) is the

transformation which characterizes both components of S(Z)

Spatial Inversion

One may question from the form of S () why the Dirac equation needs to be four-dimensional,
featuring the components ¥ (z*), Uy(z#) as well as W3(z#), Wy(z*) even though these pairs of
components transform independently of each other. The answer lies in the necessity that application
of spatial inversion should transform a solution of the Dirac equation into another possible solution
of the Dirac equation. The effect of inversion on Lorentz transformations is, however, that they
alter w into —w, but leave rotation angles ¥ unaltered.
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Let P denote the representation of spatial inversion in the space of the wave functions 0. Obviously,
P? = 1, ie., Pt = P. The transformation S(Z) in the transformed space is then

PS(@ + i) P = S(—w + id) = ( b(og) a(og) > : (11.19)

i.e., the transformations a(2) and b(2) become interchanged. This implies

vy Ty

¥y ¥,

- — - . 11.2
P ¥, ¥, ( 0)

Uy Uy

Obviously, the space spanned by only two of the components of ¥ is not invariant under spatial
inversion and, hence, does not suffice for particles like the electron which obey inversion symmetry.
However, for particles like the neutrinos which do not obey inversion symmetry two components
of the wave function are sufficient. In fact, the Lorentz invariant equation for neutrinos is only
2—dimensional.

11.2 Relationship Between the Lie Groups SL(2,C) and SO(3,1)

We have pointed out that a(i),J € R3, which describes pure rotations, is an element of SU(2).

=,

However, a(w + ) for & # 0 is an element of
SL(2,C) = { M, M is a complex 2 x 2-matrix,det(M) = 1} . (11.21)

One can verify this by evaluating the determinant of a(Z2)

det(a(2)) = det (55.3) = 79 = (11.22)
which follows from the fact that for any complex, non-singular matrix M holds?
det (eM) = (M) (11.23)
and from [c.f. (5.224)]
tr(o;) =0, j =123, (11.24)

Exercise 11.2.1: Show that SL(2,C) defined in (11.21) together with matrix multiplication as
the binary operation forms a group.

2The proof of this important property is straightforward in case of hermitian M (see Chapter 5). For the general
case the proof, based on the Jordan—Chevalley theorem, can be found in G.G.A. Béauerle and E.A. de Kerf Lie
Algebras, Part (Elsevier, Amsterdam, 1990), Exercise 1.10.3.
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Mapping A" onto matrices M (A*)

We want to establish now the relationship between SL(2,C) and the group L’L of proper, or-
thochronous Lorentz transformations. Starting point is a bijective map between R* and the set of
two-dimensional hermitian matrices defined through

M(A") = o, A" (11.25)

ClEDEDCDG ] e

/
-~ -~

(o) g1 g9 g3

where

The quantity o, thus defined does not transform like a covariant 4—vector. In fact, one wishes
that the definition (11.25) of the matrix M (A*) is independent of the frame of reference, i.e., in a

transformed frame should hold e

o, A"
H —

o A (11.27)

Straightforward transformation into another frame of reference would replace o, by O'L. Using
AP = (L71)#, A" one would expect in a transformed frame to hold

Le, _ Y
o At " oy, (L Dy, A (11.28)
Consistency of (11.28) and (11.27) requires then
Lto, = o, (11.29)
where we used (10.76). Noting that for covariant vectors according to (10.75) holds a,, = L,"a,

one realizes that o, transforms inversely to covariant 4-vectors. We will prove below [cf. (11.135)]
this transformation behaviour.
M (A") according to (11.25) can also be written

A0 L oA3 Al A2
M(AM) - <A1 + iAZ A0 — A3) . (11'30)

Since the components of A" are real, the matrix M (A#) is hermitian as can be seen from inspection
of (11.26) or from the fact that the matrices oy, 01, 09,03 are hermitian. The function M (A*) is
bijective, in fact, one can provide a simple expression for the inverse of M (A*)

M = M(A") - A = %tr(M'aM) : (11.31)

Exercise 11.2.2: Show that g, 01,092,053 provide a linear-independent basis for the space of
hermitian 2 x 2-matrices. Argue why M(A*) = o, A" provides a bijective map. Demonstrate that
(11.31) holds.

The following important property holds for M (A*)
det (M (A")) = AF*A, (11.32)
which follows directly from (11.30).
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Transforming the matrices M (A*)

We define now a transformation of the matrix M (A*) in the space of hermitian 2 x 2—matrices
M -4 M =aMa, aeSLEC). (11.33)
This transformation conserves the hermitian property of M since
(MY = (aMa")' = (@ MTal = aMal = M (11.34)

where we used the properties M = M and (af)' = a. Due to det(a) = 1 the transformation
(11.33) conserves the determinant of M. In fact, it holds for the matrix M’ defined through (11.33)

det(M') = det(aMa') = det(a)det(a’)det(M)
= [det(a)]*det(M) = det(M) . (11.35)

We now apply the transformation (11.33) to M (A#) describing the action of the transformation in
terms of transformations of A*. In fact, for any a € SL(2,C) and for any A" there exists an A"
such that

M(A™) = a M(A*)al . (11.36)

The suitable A" can readily be constructed using (11.31). Accordingly, any a € SL(2,C) defines
the transformation [c.f. (11.31)]

1
A L qm = 3 tr (aM(A“) aTau> . (11.37)
Because of (11.32, 11.35) holds for this transformation
ArA, = AFA, (11.38)

which implies that (11.37) defines actually a Lorentz transformation. The linear character of the
transformation becomes apparent expressing A’ as given in (11.37) using (11.25)

1
A= (aayaTau) AV (11.39)
which allows us to express finally

A" = La)*, AY;  L(a)*, = %tr(aaycﬁau) : (11.40)

Exercise 11.2.3: Show that L(a)", defined in (11.40) is an element of El.
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L(a)*, provides a homomorphism

361

We want to demonstrate now that the map between SL(2, C) and SO(3,1) defined through L(a)*,

[cf. (11.40)] respects the group property of SL(2, C) and of SO(3,1), i.e.,

L, = L(a)", L(a2), = L( a1ay ),

product ‘ product
in SO(3,1) in SL(2,C)

For this purpose one writes using tr(AB) = tr(BA)

1
L(al)uy L((J/Q)H’p = Z itr (ala,ja];au>

14

1 f
= Z §tr (U,,alaual )
14

tr ( agapagal, )

N = N

tr (agapaga,, ) .

Defining

— A T
I' = ayo,aq, I = agopa,

and using the definition of L#, in (11.41) results in

_ 1 1

L“p = Z E (U,,)QBFBQFM;(U,,)(;,Y = Z g Aa,@fy(srﬂarfy&
v,a,3 a,f
7,8 58

where

Aaﬁ'yé = Z(UV)aB(O-V)(S'y :

v

One can demonstrate through direct evaluation

@ I
I S O
TR
Il [N
L )

I
=22 ®
I
N =22

Aaﬁvé =

e L oL

O NN NN

else

which yields

1
(FHF/H + FQQFIQQ + Flgrgl + I‘21F’12) = §tr(IT’)

tr aTa a ! = lt Tal
10 1a20pa2 5 r aﬂalagapaQal

N =N =N =

tr (alagap(alag)Tau) = L(ara2)", .

This completes the proof of the homomorphic property of L(a)*,.

(11.41)

(11.42)

(11.43)

(11.44)

(11.45)

(11.46)

(11.47)
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Generators for SL(2, C) which correspond to K, J

The transformations a € SL(2,C) as complex 2 x 2-matrices are defined through four complex
or, correspondingly, eight real numbers. Because of the condition det(a) = 1 only six independent
real numbers actually suffice for the definition of a. One expects then that six generators G; and
six real coordinates f; can be defined which allow one to represent a in the form

6
a=exp| > fG|. (11.48)
j=1

We want to determine now the generators of the transformation a(Z) as defined in (11.2) which
correspond to the generators K1, Ko, K3, J1, J2, J3 of the Lorentz transformations L*,, in the natural
representations, i.e., correspond to the generators given by (10.47, 10.48). To this end we consider
infinitesimal transformations and keep only terms of zero order and first order in the small variables.
To obtain the generator of a(Z) corresponding to the generator K7, denoted below as k1, we write
(11.36)

M (LM, AY) = a M(A*)al (11.49)

assuming (note that g, is just the familiar Kronecker §,,,)
L*, = 4" + e (K", (11.50)
a = 1 + erg. (11.51)

Insertion of (K1)*, as given in (10.48) yields for the Lh.s. of (11.49), noting the linearity of M (A*),

M(A* 4 e (K", AY) = M(A*) + eM((-A',—A°0,0))
M(A") — eogA' — ey A° (11.52)

where we employed (11.25) in the last step. For the r.h.s. of (11.49) we obtain using (11.51)

(1 + ery ) M(A") (1 + ex))
= M(A") + e(mIM(A") + M(A"D) + O()
= M((A*) + e(kio, + JHK];)A” + O(%) . (11.53)

Equating (11.52) and (11.53) results in the condition

00At — 51AY = (Ko, + 0, &];)A". (11.54)
This reads for the four cases A* = (1,0,0,0), A* = (0,1,0,0), A* = (0,0,1,0), A* = (0,0,0,1)
T

—01 = K109 + UoliJ{ = K1 + K (11.55)
o0 = ko1 + oukl (11.56)
K109 + o9kl (11.57)
0 = kio3 + o3k . (11.58)
One can verify readily that
K1 = —%01 (11.59)
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obeys these conditions. Similarly, one can show that the generators k2, k3 of a(Z) corresponding to
Ko, K3 and A1, A9, A3 corresponding to Ji, Jo, J3 are given by

1 .
k= —=0a, A=

5 . (11.60)

N | .

We can, hence, state that the following two transformations are equivalent

L(@,0) = TE+IT (@ — i) = e 3@ i) (11.61)
€ S0(3,1) € SL(2,C)
acts on 4-vectors A* acts on spinors ¢ € C?

(characterized below)

—.

This identifies the transformations a(z'= @ — i) as representations of Lorentz transformations, w
describing boosts and ¢ describing rotations.

Exercise 11.2.4: Show that the generators (11.60) of a € SL(2,C) correspond to the generators
K and J of L*,.

11.3 Spinors

Definition of contravariant spinors

We will now further characterize the states on which the transformation a(Z2) and its conjugate
complex a*(Z) act, the so-called contravariant spinors. We consider first the transformation a(Z)
which acts on a 2-dimensional space of states denoted by

o 451 c 2 11.62
— 2 . ( * )
According to our earlier discussion holds

¢'  transforms under rotations (Z = iJ) like a spin-3 state |1, +3)
¢* transforms under rotations (Z = i) like a spin—3 state |3, —3) .

=,

We denote the general (2 = @ + ) transformation by
P = a P def a®1pt + a%d?, a =1,2 (11.63)
where we extended the summation convention of 4-vectors to spinors. Here

o9 = (0 = (& 5 (11.64)

a“y av2

describes the matrix a(Z).
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Definition of a scalar product

The question arises if for the states ¢® there exists a scalar product which is invariant under
Lorentz transformations, i.e., invariant under transformations a(Z). Such a scalar product does,
indeed, exist and it plays a role for spinors which is as central as the role of the scalar product
AFA,, is for 4-vectors. To arrive at a suitable scalar product we consider first only rotational
transformations a(iﬁ). In this case spinors ¢* transform like spinf% states and an invariant, which
can be constructed from products ¢'y?, etc., is the singlet state. In the notation developed in
Chapter 5 holds for the singlet state

11 1 1 1 1
-.2:0,0) = 0,0|-.m; =, — - - - 11.65
|2527 ) > Z ( ) ’27m727 m)’27m>1|2’ m>2 ( )
m::t%
where |- - )1 describes the spin state of “particle 17 and |- --)s describes the spin state of “particle

27 and (0,0]%,i%; %,;%) stands for the Clebsch—Gordon coefficient. Using (0,0]%,i%; %,$%) =
+1/ V2 and equating the spin states of “particle 17 with the spinor ¢®, those of “particle 27 with
the spinor x? one can state that the quantity

1
Yo (b = 2t 11.66
5 (077 = °x) (11.66)
should constitute a singlet spin state, i.e., should remain invariant under transformations a(z’ﬁ). In
fact, as we will demonstrate below such states are invariant under general Lorentz transformations

a(z).

Definition of covariant spinors

Expression (11.66) is a bilinear form, invariant and as such has the necessary properties of a scalar®
product. However, this scalar product is anti-symmetric, i.e., exchange of ¢® and x? alters the
sign of the expression. The existence of a scalar product gives rise to the definition of a dual
representation of the states ¢® denoted by ¢.. The corresponding states are defined through

o' X — X = o + xe (11.67)
It obviously holds
2
X1 X
= = . 11.68
w= ()= () (1168)
We will refer to ¢, x?,... as contravariant spinors and to @, X3, - -- as covariant spinors. The

relationship between the two can be expressed

( z; ) = € < z; ) (11.69)

e — (_(1) é) (11.70)

3¢Scalar’ implies invariance under rotations and is conventionally generalized to invariance under other symmetry

trasnformations.
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as can be verified from (11.68). The inverse of (11.69, 11.70) is

( z; > = ! ( 2; ) (11.71)

et = <(1) _é> . (11.72)

Exercise 11.3.1: Show that for any non-singular complex 2 x 2-matrix M holds

eMe ' = det(M) (MY

The matrices €,e” ' connecting contravariant and covariant spinors play the role of the metric

tensors g, g"” of the Minkowski space [cf. (10.10, 10.74)]. Accordingly, we will express (11.69,
11.70) and (11.71, 11.72) in a notation analogous to that chosen for contravariant and covariant
4-vectors [cf. (10.72)]

bo = €apd’ (11.73)

. €11 €12 _ 01
w = () ( 00 .
o _ el ¢l2 B 0 -1
€ = 21 (22 = 1 0

The scalar product (11.67) will be expressed as

(11.76)

P"Xa = O'x1 + ¢'x2 = ' X° — &X' (11.77)
For this scalar product holds
P Xa = —X"a - (11.78)

The transformation behaviour of ¢, according to (11.63, 11.73, 11.75) is given by

b = €apa’y € s (11.79)

«

as can be readily verified.

Proof that ¢“y, is Lorentz invariant

We want to verify now that the scalar product (11.77) is Lorentz invariant. In the transformed
frame holds

¢,axla = aaﬁ €a'ya75€6n d)BXn . (11.80)

One can write in matrix notation

A g €aya’ 5 = [(eae_l)T a} 5 (11.81)
K,



366 Spinor Formulation

Using (11.2) and (11.14) one can write

caet = eerTll = eaFed! — mpFO” (11.82)
and with f(A4)T = f(AT) for polynomial f(A)
(eae_1 )T = e 27@)T o ma¥F o gl (11.83)
Here we have employed the hermitian property of 7, i.e., & = (*)7 = &. Insertion of (11.83)
into (11.81) yields
A% g €aya’ 5% = [(eae_l)T aLﬁ = [a_la]nﬂ = kg (11.84)
and, hence, from (11.80)
qb'ax/a = (;Sﬁxﬁ. (11.85)

The complex conjugate spinors

We consider now the conjugate complex spinors
1 *
(¢™)* = < E%) : (11.86)

A concise notation of the conjugate complex spinors is provided by

(¢%)" = ¢* = (il ) (11.87)

which we will employ from now on. Obviously, it holds qﬁk = (¢*)*,k = 1,2. The transformation
behaviour of ¢¢ is

F = (a%p) ¢ (11.88)

which one verifies taking the conjugate complex of (11.63). As discussed above, a*(Z) provides
a representation of the Lorentz group which is distinct from that provided by a(Z). Hence, the
conjugate complex spinors ¢ need to be considered separately from the spinors ¢“. We denote

(a%)" = a% (11.89)
such that (11.88) reads
¢ = a®z0° (11.90)

extending the summation convention to ‘dotted’ indices.
We also define covariant versions of ¢

$a = (¢a)” . (11.91)



11.4: Spinor Tensors 367

The relationship between contravariant and covariant conjugate complex spinors can be expressed
in analogy to (11.73, 11.76)

Pa = €45 ¢ (11.92)
ot = gy (11.93)
€5 = C€ap (11.94)
B = of (11.95)

where €, and €’ are the real matrices defined in (11.75, 11.75). For the spinors ¢% and x4 thus
defined holds that the scalar product

#xe = Oxi + PP (11.96)

is Lorentz invariant, a property which is rather evident.
The transformation behaviour of ¢4 is

o, = edﬂ-aﬁﬁewqﬁs. (11.97)

The transformation, in matrix notation, is governed by the operator ea*(Z)e ! which arises in
the Lorentz transformation (11.18) of the bispinor wave function ¥, ea*(Z) e~ accounting for the
transformation behaviour of the third and fourth spinor component of U. A comparision of (11.18)
and (11.97) implies then that ¢4 transforms like Uy, Uy, ie., one can state

—.

¢i  transforms under rotations (Z = i) like a spin-4 state |5, +1)
¢5 transforms under rotations (2" = i) like a spin-1 state |3, —3) .

The transformation behaviour of ¥ (note that we do not include presently the space-time depen-
dence of the wave function)

a(?) (%’;)

ea*(Z2)e! (éi)

UV =SV = (11.98)

obviously implies that the solution of the Dirac equation in the chiral representation can be written
in spinor form

B (o) o

bty | _ | @6 | _ (e

) | T | wlen) | T (xg-@:“)) | (H.99)
Wy (z) X5 (zH)

11.4 Spinor Tensors
We generalize now our definition of spinors ¢ to tensors. A tensor

ponaz-arf 2B (11.100)
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is a quantity which under Lorentz transformations behaves as
. . . k [ . . .
parazapfifa-fe H a“m., H aﬁnén $ KO0 (11.101)
m=1 n=1

An example is the tensor 98 which will play an important role in the spinor presentation of the
Dirac equation. This tensor transforms according to

o8 = g 0l 110 (11.102)

This reads in matrix notation, using conventional matrix indices j, k, £, m,

th = (ataf)jk =" ajeaiton - (11.103)
lm

Similarly, the transformation bevaviour of a tensor t* reads in spinor and matrix notation

0 = a%a%s 0%, th = (ata"), = ) ajarmton (11.104)
£m

Indices on tensors can also be lowered employing the formula
te? = eayt? (11.105)

and generalizations thereof.
An example of a tensor is €*” and €qp3- This tensor is actually invariant under Lorentz transforma-
tions, i.e., it holds

P =Py = eap (11.106)

Exercise 11.4.1: Prove equation (11.106).

The 4—vector A" in spinor form

We want to provide now the spinor form of the 4-vector A*| i.e., we want to express A" through a
spinor tensor. This task implies that we seek a tensor, the elements of which are linear functions
of A*. An obvious candidate is [cf. (11.25] M(A*) = o0,A". We had demonstrated that M (A*)
transforms according to

M' = M(L*,AY) = aM(A*)al (11.107)

which reads in spinor notation [cf. (11.102, 11.103)
AP = g2 0 A0 (11.108)

Obviously, this transformation behaviour is in harmony with the tensor notation adopted, i.e., with
contravariant indices a3. According to (11.25) the tensor is explicitly

o Ali Al? A0 4 A3 Al — A2
Aﬁ:(AQi A22>:<A1+iA2 AO—A?’)' (11.109)
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One can express A% also through A,

- Ao — Az —Ai +iA
aB _ 0 3 1 2
AP = <_A1 A At Ag ) . (11.110)

The 4-vectors A*, A, can also be associated with tensors
)
Aaﬁ. = 60[7665147 . (11111)

This tensor reads in matrix notation

A Ap\ 0 1 Al g2 0 —1
Ayi Ay B -10 A2l p22 1 0

AQQ _A2i
_ ( g ) . (11.112)
Hence, employing (11.109, 11.110) one obtains
AV — A3 Al — A2

L Ao+ Ay A+ A
Ay = <A1 i A _A3) . (11.114)

We finally note that the 4-vector scalar product A*B,, reads in spinor notation

1 .
A'B,, = §AaﬁBaﬁ~ . (11.115)

Exercise 11.4.2: Prove that (11.115) is correct.

0, in spinor notation

The relationship between 4-vectors A*, A,, and tensors %8 can be applied to the partial differential
operator 0,,. Using (11.110) one can state

~ do — 85 —0y + i
af o 3 il p)
90 = < o — it B8 ) . (11.116)

Similarly, (11.114) yields

o Oy + 03 01 + 105
(9aﬂ = <al — iy Dy — Os > . (11.117)
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0, in Tensor Notation

We want to develop now the tensor notation for o, (11.26) and its contravariant analogue o*
_ 10 0 1 0 —i 1 0
on = 01)°\1o0o)'\i 0/ o -1
10 0 -1 0 i -1 0
T
P (G V) () () (e )

For this purpose we consider first the transformation behaviour of ¢# and o,. We will obtain the
transformation behaviour of o#, o, building on the known transformation behaviour of ¥#. This is
possible since ¥# can be expressed through o*,0,. Comparision of (10.229) and (11.118) yields

= ( 0 Jou) . (11.119)

Ou

Using (11.15) one can write
o, = € (ot) et (11.120)

and, hence,

ST (6 (a“(;*el Ug”) , (11.121)

One expects then that the transformation properties of o* should follow from the transformation
properties established already for v [c.f. (10.243)]. Note that (10.243) holds independently of the
representation chosen, i.e., holds also in the chiral representation.

To obtain the transformation properties of o we employ then (10.243) in the chiral representation
expressing S(L"¢) by (11.18) and +* by (11.121). Equation (10.243) reads then

a 0 0 ot a! 0 v _
0 ea*e! e(a)*et 0 0 ea*et e
0 o¥
(e(aV)*e—l ; > . (11.122)

The Lh.s. of this equation is

0 acte l(a*)"te y
< ea*(ot)* e ta™t 0 Loy (11.123)

and, hence, one can conclude

acte Y(a*)tel?, = o (11.124)
ea*(c")*eta P LY, = e(o¥)et. (11.125)

Equation (11.125) is equivalent to
a*(o")*etatel”, = (0¥)* (11.126)

which is the complex conjugate of (11.124), i.e., (11.125) is equivalent to (11.124). Hence, (11.124)
constitutes the essential transformation property of o* and will be considered further.
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One can rewrite (11.124) using (11.16, 11.2)

e L(a*) e = ete 2T e = ematTe e o 37T (11.127)
Exploiting the hermitian property of &, e.g., (7*)T = & yields using (11.2)
11 Lyw (39T 1zege T T
€ (a") e = ez = |:62 } = [a"]" . (11.128)

One can express, therefore, equation (11.124)
act [a*)" LY, = o”. (11.129)

We want to demonstrate now that the expression ac*[a*]” is to be interpreted as the transform
of o under Lorentz transformations. In fact, under rotations the Pauli matrices transform like
(=123

o; — a(id)o; (a(iﬁ))T = a(id) o; (a*(iﬁ))T . (11.130)

We argue in analogy to the logic applied in going from (11.107) to (11.108) that the same trans-
formation behaviour applies then for general Lorentz transformations, i.e., transformations (11.2,
11.4) with @ # 0. One can, hence, state that o* in a new reference frame is

o = aoctal (11.131)

where a is given by (11.2, 11.4). This transformation behaviour, according to (11.102, 11.103)
identifies o as a tensor of type t*7. It holds according to (11.118)

(é?)’(-? é)(f;é)(é?) (11.132)

and

) o) () (o) | o

~~

nw=0 p=1 pn=2 n=3

Combining (11.129, 11.131) one can express the transformation behaviour of ¢* in the succinct
form
L, o™ = o¥. (11.134)
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Inverting contravariant and covariant indices one can also state

LYo, = o,. (11.135)

This is the property surmised already above [cf. (11.29)]. We can summarize that o* and o,
transform like a 4—vector, however, the transformation is inverse to that of ordinary 4—vectors.
Each of the 4 x4 = 16 matrix elements in (11.132) and (11.133) is characterized through a 4-vector
index p,pu = 0,1,2,3 as well as through two spinor indices af3. We want to express now o and
o, also with respect to the 4-vector index g in spinor form employing (11.114). This yields

<1 0) <o 1)
0 = ( oo + 03 al+wQ> _ 0 0 0 0 (11.136)

o1 — tog 09 — 03 0 0 00
1 0 0 1

where on the rhs. the submatrices correspond to o8 spinors. We can, in fact, state

_ (%i)l% (011)1? (012)1% (012)1?

(U .>”‘5 _ (011)?" (o99)% (013)?" (095)% (11.137)

5 = . . . . . .
“ (021)1% (‘721)1? (022)1% (‘722)1?
(09i)*" (097)% (095)*" (095)%
Equating this with the r.h.s. of (11.136) results in the succinct expression
1 6
5 (005) " = s (11.138)

Note that all elements of o ; are real and that there are only four non-vanishing elements.

In (11.138) the ‘inner’ covariant spinor indices, i.e., a, B, account for the 4—vector index u, whereas
the ‘outer’ contravariant spinor indices. i.e., 7, 8, account for the elements of the individual Pauli
matrices. We will now consider the representation of ¢, 0, in which the contravariant indices are
moved ‘inside’, i.e., account for the 4-vector i, and the covariant indices are moved outside. The
desired change of representation(o,)*” — (0,,), ; corresponds to a transformation of the basis of

spin states

<£>%<_gf>:e<£> (11.139)
and, hence, corresponds to the transformation

(0uhi (ou)is > < 0 1 > (Uu)li (Uu)lé < 0 -1 >
_ , . 11.140
(o G -1 0) @2t @2 JL1 o (H140)

where we employed the expressions (11.12) for € and e~!. Using (11.110) to express 0% in terms
of 0, yields together with (5.224)

(0 0> <0 0>
Uaﬂ':< oo — 03 01+102>:2 ( 01 -1 0 (11.141)

—01 — 109 09 + 03 0 -1 10
0 O 0 1
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and, employing then transformation (11.140) to transform each of the four submatrices, which in
(11.137) are in a basis (---)*? to a basis (- - ")ap Tesults in

( .)11 ( .)12 ( _)11 ( .)12
af _ (011)21 (011)22 (012)21 (012)22
<U >75 N (‘72?)11 (02?)12 (‘72?)11 (‘72?)12
(‘721)21 (021)22 (022)21 (022)22
10 01
= 2 < 8 8 > < 8 8 > . (11.142)
< 10 > < 01 >
This can be expressed
1 <0a6> 5 (11.143)
2 o B '

Combined with (11.138) one can conclude that the following property holds
1 w1 ;
Ly N _ Ly ey _ N
> (003) > (o )75 SB35 (11.144)

The Dirac Matrices +* in spinor notation

We want to express now the Dirac matrices #* in spinor form. For this purpose we start from the
expression (11.121) of 4#. This expression implies that the element of ¥# given by e ¢! is in the

basis |, 3 whereas the element of ¥# given by o* is in the basis |*?. Accordingly, we write

H af
= (((au()) i (‘70) ) : (11.145)

Let A, be a covariant 4-vector. One can write then the scalar product using (11.115)

) B 0 ()P A
A, = («‘ﬂ)ag')*Ap 0 u)

0 Ly . QBA’YS
B (%((avé)ag)*f‘ws ) V% ) ‘ )

Exploiting the property (11.144) results in the simple relationship

af
FhA, = < AOB Ao ) . (11.147)
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11.5 Lorentz Invariant Field Equations in Spinor Form

Dirac Equation

(11.147) allows us to rewrite the Dirac equation in the chiral representation (10.226)

N, () = < Z,O i%aB ) B(a") = mB(h) . (11.148)

Employing ¥(z*) in the form (11.99) yields the Dirac equation in spinor form

100y, = mo° (11.149)
i@aﬁ- (f)a = Tn)(['3 . (11.150)

The simplicity of this equation is striking.



