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Problem 1: An important relationship
1a. Since A = diag(λ1, λ2, λ3) implies An = diag(λn

1 , λ
n
2 , λ

n
3 )

U = exp(iA) = diag(eiλ1, eiλ2 , eiλ3) and detU = exp(i(λ1 + λ2 + λ3))
Hence detU = 1 implies (λ1 + λ2 + λ3) = 0mod2π i.e. tr(A) = 0mod2π.

1b. Let h(1), h(2), h(3) be the 3 eigenvectors of A. i.e.
∑3

m=1A
n
mh

m(i) =
εih

n(i), n = 1, 2, 3 Orthogonality of the eigenvectors give,∑
m

hm(i)hm(j) = δij

Let us define the matrix R as

Tm
k = hk(m)

It follows from the above orthogonality condition that

(T−1)l
m = hl(m)

Let us consider the matrix
A′ = TAT−1

The matrix elements of A′ are

(A′)m
n = Tm

k A
k
L(T−1)l

n

= hk(m)Ak
l h

l(n)
= hk(m)εnhk(n)
= εnδmn

Hence A′ is diagonal.
1c.

TUT−1 = TeiAT−1

= 1
∞∑

n=0

in

n!
TAnT−1

=
∞∑

n=0

in

n!
TAT−1TAT−1......TAT−1

= exp[iTAT−1]
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1d.

B =
(
λ1 0
0 λ2

)

implies Bn =
(
λn

1 0
0 λn

2

)

Hence,eB =
(
eλ1 0
0 eλ2

)

1e.

Tr(AB) = AijBji

= BjiAij

= Tr(BA)

Therefore, Tr(TAT−1) = Tr(T−1TA) = Tr(A)
1f.

U = eiA

TUT−1 = eiTAT−1

detTUT−1 = det(eiTAT−1
)

but, detTUT−1 = det(U) therefore, det(U) = 1 implies

det(eiTAT−1
) = 1

which implies
Tr(TAT−1) = 0mod2π

But since Tr(AB) = Tr(BA)
Tr(TAT−1) = 0 imples Tr(A) = 0mod2π

Problem 2: Spin along x1 axis
2a. Taylor expanding the operator(3) we get

eiθσ1/2 =
∞∑

n=0

in

n!
(
θ1
2

)nσn
1

Using the fact that

σ1 =
(

0 1
1 0

)
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σ2
1 = I and i2 = −1 we get,

eiθσ1/2 =
∞∑

n=0

(−1)n

2n!
(
θ1
2

)2n.I + i

∞∑
n=0

(−1)n

(2n+ 1)!
(
θ1
2

)2n+1.σ1

eiθσ1/2 = cos
θ1
2
I + i sin

θ1
2
σ1

=
(

cos θ1
2 i sin θ1

2

i sin θ1
2 cos θ1

2

)

2b. The required probability is given by

P = |M |2

where,
M = yTAX

where

y =
1√
2

(
1
1

)

A =
(

cos(θ1/2) i sin(θ1/2)
i sin(θ1/2) cos(θ1/2)

)

X =
(

1
0

)

It follows M = 1√
2
(cos(θ1/2) + i sin(θ1/2)) Therefore, P = 1/2

Problem 3: Spin in a magnetic field
If the axis of quantization is chosen to be along the magnetic field, then

H = − e

2mc
~σ. ~B

H = − e

2mc
B0

(
1 0
0 −1

)

The time dependence of an arbitrary spin state
(
a
b

)
is given by

ψ(t) = e−iHtψ(0)

=
(

ei e
2mc

Bt a

e−i e
2mc

Bt b

)
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which is the same as a rotation of the spin about the z-axis by an angle
eBt
2mc

3b. For ψ(0) =
(

1
0

)

ψ(t) =
(
ei e

2mc
Bt

0

)

Problem 4: Spin Dynamics
4a.

H =
gµB~

2
(Bxσx +Byσy +Bzσz) + a(

~

2
)2(σe

xσ
n
x + σe

yσ
n
y + σe

zσ
n
z )

Using the fact that
σx|± >= |∓ >

σy|± >= ±i|∓ >

σz|± >= ±1|± >

for both electronic and nuclear spins, we get the Hamiltonian in a matrix
form in the given basis (~ = 1)

H =




gµB
2 B3 + a

4 0 gµB
2 (B1 − iB2) 0

0 gµB
2 B3 − a

4
a
2

gµB
2 (B1 − iB2)

gµB
2 (B1 + iB2) a

2 −gµB
2 B3 − a

4 0
0 gµB

2 (B1 + iB2) 0 −gµB
2 B3 + a

4




For ~B = (0, 0, b) the eigenvalues are a
4 ± 8.8b,−a

4 ± 1
2

√
a2 + (gµBB3)2

4c. The time evolution of a wave function is given by

ψ(t) = e−iHtψ(0)

Here ψ(0) = |2 > We expand it in the basis of eigenvectors of H

|2 >=
4∑

n=1

Cn|n >

Therefore
|ψ(t) >=

∑
n

Cne
−iEnt|n >
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< 2|ψ(t) >=
∑
n

C∗
nCne

−iEnt

Therefore, Probability of finding it in another state,

P = 1 − | < 2|ψ(t) > |2
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