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Preface i

Preface

The following notes introduce Quantum Mechanics at an advanced level
addressing students of Physics, Mathematics, Chemistry and Electrical En-
gineering. The aim is to put mathematical concepts and techniques like the
path integral, algebraic techniques, Lie algebras and representation theory
at the readers disposal. For this purpose we attempt to motivate the various
physical and mathematical concepts as well as provide detailed derivations
and complete sample calculations. We have made every effort to include in
the derivations all assumptions and all mathematical steps implied, avoiding
omission of supposedly ‘trivial’ information. Much of the author’s writing
effort went into a web of cross references accompanying the mathematical
derivations such that the intelligent and diligent reader should be able to
follow the text with relative ease, in particular, also when mathematically
difficult material is presented. In fact, the author’s driving force has been
his desire to pave the reader’s way into territories unchartered previously
in most introductory textbooks, since few practitioners feel obliged to ease
access to their field. Also the author embraced enthusiastically the potential
of the TEX typesetting language to enhance the presentation of equations
as to make the logical pattern behind the mathematics as transparent as
possible. Any suggestion to improve the text in the respects mentioned are
most welcome. It is obvious, that even though these notes attempt to serve
the reader as much as was possible for the author, the main effort to follow
the text and to master the material is left to the reader.

The notes start out in Section 1 with a brief review of Classical Mechanics
in the Lagrange formulation and build on this to introduce in Section 2 Quan-
tum Mechanics in the closely related path integral formulation. In Section 3
the Schréodinger equation is derived and used as an alternative description of
continuous quantum systems. Section 4 is devoted to a detailed presentation
of the harmonic oscillator, introducing algebraic techniques and comparing
their use with more conventional mathematical procedures. In Section 5 we
introduce the presentation theory of the 3-dimensional rotation group and
the group SU(2) presenting Lie algebra and Lie group techniques and apply-
ing the methods to the theory of angular momentum, of the spin of single
particles and of angular momenta and spins of composite systems. In Sec-
tion 6 we present the theory of many—boson and many—fermion systems in
a formulation exploiting the algebra of the associated creation and annihila-
tion operators. Section 7 provides an introduction to Relativistic Quantum
Mechanics which builds on the representation theory of the Lorentz group
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and its complex relative SI(2,C). This section makes a strong effort to in-
troduce Lorentz—invariant field equations systematically, rather than relying
mainly on a heuristic amalgam of Classical Special Relativity and Quantum
Mechanics.

The notes are in a stage of continuing development, various sections, e.g.,
on the semiclassical approximation, on the Hilbert space structure of Quan-
tum Mechanics, on scattering theory, on perturbation theory, on Stochastic
Quantum Mechanics, and on the group theory of elementary particles will
be added as well as the existing sections expanded. However, at the present
stage the notes, for the topics covered, should be complete enough to serve
the reader.

The author would like to thank Markus van Almsick and Heichi Chan
for help with these notes. The author is also indebted to his department and
to his University; their motivated students and their inspiring atmosphere
made teaching a worthwhile effort and a great pleasure.

These notes were produced entirely on a Macintosh II computer using
the TEX typesetting system, Textures, Mathematica and Adobe Illustrator.

Klaus Schulten
University of Illinois at Urbana—Champaign
August 1991



Chapter 1

Lagrangian Mechanics

Our introduction to Quantum Mechanics will be based on its correspondence
to Classical Mechanics. For this purpose we will review the relevant concepts
of Classical Mechanics. An important concept is that the equations of mo-
tion of Classical Mechanics can be based on a variational principle, namely,
that along a path describing classical motion the action integral assumes a
minimal value (Hamiltonian Principle of Least Action).

1.1 Basics of Variational Calculus

The derivation of the Principle of Least Action requires the tools of the
calculus of variation which we will provide now.
Definition: A functional S| | is a map

S[]: F —R; F={q1);q: [to,t1] € R — RM; q(t) differentiable}
(1.1)
from a space F of vector-valued functions ¢(¢) onto the real numbers. ¢(t)
is called the trajectory of a system of M degrees of freedom described by the
configurational coordinates q(t) = (q1(t),q2(t), ... qun(t)).

In case of N classical particles holds M = 3N, i.e., there are 3N con-
figurational coordinates, namely, the position coordinates of the particles in
any kind of coordianate system, often in the Cartesian coordinate system.
It is important to note at the outset that for the description of a classical
system it will be necessary to provide information ¢(t) as well as %cj’(t). The
latter is the velocity vector of the system.

Definition: A functional S]] is differentiable, if for any ¢(t) € F and §q(t) €

1
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Fe where

d
Fo = {00(0); 631t) € F,100(0)| < €, |-500(0)| < €%, t € [to, 1] C B}

(1.2)
a functional §S[-, -] exists with the properties
(i) S[at) + 6q(t)] = S[at)] + 65[q(t),5q(t)] + O(e?)
(13) 0S[q(t),dq(t)] is linear in 5q(t). (1.3)

dS[-, -] is called the differential of S[]. The linearity property above implies

5SIAL), 01 671 (1) + 02 0B(1)] = o 5SIT(), 57 (1)) + a2 5SIq(), 635(1)]

(1.4)
Note: §q(t) describes small variations around the trajectory ¢(t), i.e. ¢(t) +
dq(t) is a ‘slightly’ different trajectory than ¢(t). We will later often assume
that only variations of a trajectory ¢(t) are permitted for which 6¢(ty) = 0
and d¢(t1) = 0 holds, i.e., at the ends of the time interval of the trajectories
the variations vanish.

It is also important to appreciate that 6S[-, -] in conventional differ-
ential calculus does not correspond to a differentiated function, but rather
to a differential of the function which is simply the differentiated function
multiplied by the differential increment of the variable, e.g., df = %dw or,

in case of a function of M variables, df = Zj]‘/il %dxj.

We will now consider a particular class of functionals S| | which are
expressed through an integral over the the interval [tg, t1] where the integrand
is a function L(q(t), £4(t),t) of the configuration vector ¢(t), the velocity
vector %(j’(t) and time t. We focus on such functionals because they play a
central role in the so-called action integrals of Classical Mechanics.

In the following we will often use the notation for velocities and other
time derivatives %d’(t) = ¢(t) and % = ;.

Theorem: Let

31 .
Sla®)] = | - dt L{q(t), q(t).?) (1.5)
0
where L(-, -, -) is a function differentiable in its three arguments. It holds

t1

XfoL d (oL
aq]' dt

t1 M
ssiat).oa) = [ "at {g 8q>] 5qj<t>} . ;g;jaqj<t>
(1.6)

to
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For a proof we can use conventional differential calculus since the func-
tional (1.6) is expressed in terms of ‘normal’ functions. We attempt to
evaluate

Sty + 6q()] = [ de L(q) +8de).dte) +0d0.0) (L)

to

through Taylor expansion and identification of terms linear in dg;(t), equat-
ing these terms with §5[g(t),0¢(t)]. For this purpose we consider

M
L)+ 00) 7000 = a0+ X (S + Sa) + 0
j=1 q; q;

‘ (1.8)
We note then using £ f(t)g(t) = f(t)g(t) + f(t)g(t)

oL d (oL d oL
Tsq = — | 26q: ) — [ S22 ) bg; 1.9
94 0 = (aqj 5%) (dt 8%) %4; (1.9)

This yields for S[q(t) + 6q(t)]

. u M TorL 4 (oL n Mg (oL )
S[q(t)] + ; dlth::1 [8—% -5 (T@)] dq; + dtjz:: 7 ( q.‘qu) + O(e?)
(1.10)

From this follows (1.6) immediately.

We now consider the question for which functions the functionals of the
type (1.5) assume extreme values. For this purpose we define
Definition: An extremal of a differentiable functional S| ] is a function g.(t)
with the property

0S[q.(t),dq(t)] = 0 for all 4q(t) € Fe. (1.11)

The extremals ¢.(¢) can be identified through a condition which provides
a suitable differential equation for this purpose. This condition is stated in
the following theorem.
Theorem: Fuler—Lagrange Condition
For the functional defined through (1.5), it holds in case 6¢(tg) = dq(t1) = 0
that ¢.(¢) is an extremal, if and only if it satisfies the conditions (j =

1,2,...,M)
d (0L oL
il - = = 1.12

dt (8%) 8qj 0 ( )
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The proof of this theorem is based on the property
Lemma: If for a continuous function f(t)

f: [to,t1] CR — R (1.13)

holds .
Cdt f(OR() = 0 (1.14)

to

for any continuous function h(t) € F. with h(tp) = h(t;) = 0, then
f(t) = 0 on [tg,t1]. (1.15)

We will not provide a proof for this Lemma.
The proof of the above theorem starts from (1.6) which reads in the
present case

t1 M
5S[q(t), 5q(t)] = /t dt {Z B—qu - %(S—é)] 5qj(t)} . (116)

=1

This property holds for any d¢; with 6¢(t) € F.. According to the Lemma
above follows then (1.12) for j = 1,2,... M. On the other side, from (1.12)
for j = 1,2,... M and 6q;(to) = dq;(t1) = 0 follows according to (1.16)
the property dS[q.(t), -] = 0 and, hence, the above theorem.

An Example

As an application of the above rules of the variational calculus we like to
prove the well-known result that a straight line in R? is the shortest connec-
tion (geodesics) between two points (x1,y1) and (z2,y2). Let us assume that
the two points are connected by the path y(x), y(x1) = y1, y(x2) = ya.
The length of such path can be determined starting from the fact that the
incremental length ds in going from point (x,y(x)) to (z + dx, y(x + dz)) is

ds = \/(dac)2 + (Z;—i/?dac)2 = dx\[1 + (%)2 (1.17)

The total path length is then given by the integral

s = /: dry/1 + (%)2 (1.18)
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s is a functional of y(z) of the type (1.5) with L(y(z), %) = /1 + (dy/dzx)>.
The shortest path is an extremal of s[y(z)] which must, according to the
theorems above, obey the Euler-Lagrange condition. Using ¢y = % the

condition reads
d (0L d y
el = —[—2 ) =0. 1.1
dx (8y’) dx ( 1+ (y’)2> 0 (1.19)

From this follows y'/1/1 + (y/)? = const and, hence, y' = const. This in
turn yields y(x) = ax + b. The constants a and b are readily identified
through the conditons y(z1) = y1 and y(z2) = y2. One obtains

y1—y2(
r1 — I9

y(z) = r — x2) + Y2 (1.20)

Exercise 1.1.1: Show that the shortest path between two points on a sphere
are great circles, i.e., circles whose centers lie at the center of the sphere.

1.2 Lagrangian Mechanics

The results of variational calculus derived above allow us now to formulate
the Hamiltonian Principle of Least Action of Classical Mechanics and study
its equivalence to the Newtonian equations of motion.

Threorem: Hamiltonian Principle of Least Action

The trajectories ¢(t) of systems of particles described through the Newtonian
equations of motion

d ou
o (mjg;) + 24, 0 ;5=12...M (1.21)

are extremals of the functional, the so-called action integral,

st = [ de Lig). ). ) (1.22)

to
where L(G(t), G(t), t) is the so-called Lagrangian
L(q(t),q(t),t) = > =mjqd — Ulqr,q,---,qn) - (1.23)

=12
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Presently we consider only velocity—-independent potentials. Velocity—dependent
potentials which describe particles moving in electromagnetic fields will be
considered below.

For a proof of the Hamiltonian Principle of Least Action we inspect
the Euler—Lagrange conditions associated with the action integral defined
through (1.22, 1.23). These conditions read in the present case

oL d (OL ou d
— — (=] =0 —=— — —(m.ij;) = 1.24

which are obviously equivalent to the Newtonian equations of motion.

Particle Moving in an Electromagnetic Field

We will now consider the Newtonian equations of motion for a single par-
ticle of charge q with a trajectory 7(t) = (x1(t),z2(t),z3(t)) moving in
an electromagnetic field described through the electrical and magnetic field
components E(F,t) and E(F,t), respectively. The equations of motion for
such a particle are

d . . . _
Smi) = F(it); F(7t) = ¢ Bt +

(PR

7 x B(F,t) (1.25)

where % = ¥ and where F(7,t) is the Lorentz force.

The fields E(7,¢) and B(7,t) obey the Maxwell equations

VxE+ 1208 =0 (1.26)
V-B =0 (1.27)
= —» 4]

VxB - 12F = — (1.28)
V-E = 4mp (1.29)

where p(7,t) describes the charge density present in the field and J(7,¢)
describes the charge current density. Equations (1.27) and (1.28) can be
satisfied implicitly if one represents the fields through a scalar potential
V/(7,t) and a vector potential A(7,t) as follows

B =VxA (1.30)

104
— - = 1.31
vV e (1.31)

=
1
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Gauge Symmetry of the Electromagnetic Field

It is well known that the relationship between fields and potentials (1.30,
1.31) allows one to transform the potentials without affecting the fields and
without affecting the equations of motion (1.25) of a particle moving in the
field. The transformation which leaves the fields invariant is

A7 t) = A(F,t) + VK(7,1) (1.32)
VL) = V(71 — %%K(ﬁt) (1.33)

Lagrangian of Particle Moving in Electromagnetic Field

We want to show now that the equation of motion (1.25) follows from the
Hamiltonian Principle of Least Action, if one assumes for a particle the
Lagrangian

. 1 -
L(EF ) = Smi® = qV(it) + TGOS (1.34)
C

For this purpose we consider only one component of the equation of motion
(1.25), namely,

d oV q.., =
E(m’l)l) = F1 = —qa—$1 + E [U X B]l . (135)
We notice using (1.30), e.g., B3 = %—‘;‘f - g—‘;‘;
L 3 . . . (04 0A; . (0A; 8A3>
Bly = 9By — 3By — i (222 — ZALY) 5 (221 9
o By = ias = aoba = 2 (ot = o)) = 60 (Ggy ~
(1.36)
This expression allows us to show that (1.35) is equivalent to the Euler—
Lagrange condition
d (0L oL
— (=) - = =0. 1.
dt (31’1) 8901 0 ( 37)
The second term in (1.37) is
oL ov q (0A; . 04, . 0As . )
AT O (i vo2 T ) 1.38
0x1 qaxl + c <8x1 71+ ox1 T2 + 0x1 3 ( )
The first term in (1.37) is
d 8L o d . q dAl o d . q (8_/41 . 8A1 . 8A1 .
dt (8:t1) B dt(mml) + c dt dt(mxl) + c \ Or1 ot Ora T2+ o3 3
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The results (1.38, 1.39) together yield

d, . oV q
where
O _ O, 0y 0dy. DAL 0A L DA
N 61’1 ! 8x1 2 6$1 3 81131 ! 81‘2 2 81‘3 3
. (0As 0A . (0A; 8A3>
= —=_ =] _ —— _ = 1.41
2 <83:1 al'Q) 3 (6953 81‘1 ( )

which is identical to the term (1.36) in the Newtonian equation of motion.
Comparing then (1.40, 1.41) with (1.35) shows that the Newtonian equations
of motion and the Euler-Lagrange conditions are, in fact, equivalent.

1.3 Symmetry Properties in Lagrangian Mechan-
ics

Symmetry properties play an eminent role in Quantum Mechanics since they
reflect the properties of the elementary constituents of physical systems, and
since these properties allow one often to simplify mathematical descriptions.

We will consider in the following two symmetries, gauge symmetry and
symmetries with respect to spatial transformations.

The gauge symmetry, encountered above in connection with the trans-
formations (1.32, 1.33) of electromagnetic potentials, appear in a different,
surprisingly simple fashion in Lagrangian Mechanics. They are the subject
of the following theorem.

Theorem: Gauge Transformation of Lagrangian

The equation of motion (Euler-Lagrange conditions) of a classical me-
chanical system are unaffected by the following transformation of its La-
grangian

L@in = L@y + 5

Y Y dt c

This transformation is termed gauge transformation. The factor Z has been

introduced to make this transformation equivalent to the gauge transforma-

tion (1.32, 1.33) of electyromagnetic potentials. Note that one adds the total
time derivative of a function K(7,t) the Lagrangian. This term is

% (7 t) = g—i(lij + g—iiz + S—Zigg + 8(9_}; = (VK) -7 + %—[t{
(1.43)

K(q,t) (1.42)
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To prove this theorem we determine the action integral corresponding to
the transformed Lagrangian

. t1 A ty s q . t1
S'qt)] = ) dtL'(q,q,t) :/t dtL(q,q,t) + EK(q,t)t
0 0
q f 0
= Slq(t)] + - K@) (1.44)
to

Since the condition dg(ty) = dg(t1) = 0 holds for the variational functions
of Lagrangian Mechanics, Eq. (1.44) implies that the gauge transformation
amounts to adding a constant term to the action integral, i.e., a term not
affected by the variations allowed. One can conclude then immediately that
any extremal of S’[¢(t)] is also an extremal of S[q(t)].

We want to demonstrate now that the transformation (1.42) is, in fact,
equivalent to the gauge transformation (1.32, 1.33) of electromagnetic poten-
tials. For this purpose we consider the transformation of the single particle
Lagrangian (1.34)

g d

12K (145)

. 1 R
L7 7 t) = §m172 —qV(Et) + LAF T+
C

Inserting (1.43) into (1.45) and reordering terms yields using (1.32, 1.33)

. 1 1 0K -
v = gt = (Ve - L 08) + 1 (Awn + VK) 0
1 -
= Jmi® — qV'(7.1) + T4 t) 7. (1.46)
C

Obviously, the transformation (1.42) corresponds to replacing in the La-
grangian potentials V (7, t), A'(F, t) by gauge transformed potentials V' (7, t), E’(F, t).
We have proven, therefore, the equivalence of (1.42) and (1.32, 1.33).

We consider now invariance properties connected with coordinate trans-
formations. Such invariance properties are very familiar, for example, in the
case of central force fields which are invariant with respect to rotations of
coordinates around the center.

The following description of spatial symmetry is important in two re-
spects, for the connection between invariance properties and constants of
motion, which has an important analogy in Quantum Mechanics, and for
the introduction of infinitesimal transformations which will provide a crucial
method for the study of symmetry in Quantum Mechanics. The transforma-
tions we consider are the most simple kind, the reason being that our interest
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lies in achieving familiarity with the principles (just mentioned above ) of
symmetry properties rather than in providing a general tool in the context
of Classical Mechanics. The transformations considered are specified in the
following definition.

Definition: Infinitesimal One-Parameter Coordinate Transformations

A one-parameter coordinate transformation is decribed through

P o= (Fe), 77 €R® e € R (1.47)

where the origin of € is chosen such that
7 (7,0) = 7. (1.48)
The corresponding infinitesimal transformation is defined for small € through

or'

F(Fe) = F + R + 0(2); R =
86 =0

(1.49)

In the following we will denote unit vectors as a, i.e., for such vectors
holds a-a = 1.

Examples of Infinitesimal Transformations

The beauty of infinitesimal transformations is that they can be stated in a
very simple manner. In case of a translation transformation in the direction
é nothing new is gained. However, we like to provide the transformation
here anyway for later reference

7o=T7 + eé. (1.50)

A non-trivial example is furnished by the infinitesimal rotation around
axis é
Po=T + eéxT. (1.51)

We would like to derive this transformation in a somewhat complicated, but
nevertheless instructive way considering rotations around the xs—axis. In
this case the transformation can be written in matrix form

@) cose —sine 0 1
b | = | sine cose 0 X9 (1.52)
zh 0 0 1 T3
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In case of small € this transformation can be written neglecting terms O(€?)
using cose = 1 + O(€?), sine = € + O(€?)

.1‘/1 Tl 0 — O 1
ah | = z2 |+ € 0 0 zo | + O(?) (1.53)
xh 3 0 0 O 23

One can readily verify that in case é = é3 (é; denoting the unit vector in
the direction of the z;—axis) (1.51) reads

7= 7F - Toé1 + x1 69 (1.54)
which is equivalent to (1.53).

Anytime, a classical mechanical system is invariant with respect to a
coordinate transformation a constant of motion exists, i.e., a quantity C(7, F)
which is constant along the classical path of the system. We have used here
the notation corresponding to single particle motion, however, the property
holds for any system.

The property has been shown to hold in a more general context, namely
for fields rather than only for particle motion, by Noether. We consider
here only the ‘particle version’ of the theorem. Before the embark on this
theorem we will comment on what is meant by the statement that a classical
mechanical system is invariant under a coordinate transformation. In the
context of Lagrangian Mechanics this implies that such transformation leaves
the Lagrangian of the system unchanged.

Theorem: Noether’s Theorem

If L(q, é, t) is invariant with respect to an infinitesimal transformation ¢ =
q + EQ((j') then Z 1 QJT is a constant of motion.

We have generalized in this theorem the definition of infinitesimal coordinate
transformation to M—dimensional vectors ¢.

In order to prove Noether’s theorem we note

4G =4q + EQj(_) (1.55)

i = d + € Z aq L, . (1.56)

Inserting these infinitesimal changes of ¢; and ¢; into the Lagrangian L(g, g, t)
yields after Taylor expansion, neglecting terms of order O(e?),

M M
. . oL oL 9Q;
L'(G.qt) = LG4t + 20, i) 1.57
(7, q,t) (¢, q:t) GjE_laqug ]Ek 94, Oux r (1.57)



12 Lagrangian Mechanics

where we used %Qj = 2,@4:1(%@]-)%. Invariance implies L' = L, i.e., the
second and third term in (1.57) must cancel each other or both vanish. Using
the fact, that along the classical path holds the Euler-Lagrange condition

% = 4(IL) one can rewrite the sum of the second and third term in
q; t\0q;

(1.57)

M M
Z d [ OL oL d d Z oL
(Q]E (3_%> ! a_‘ijEQ]) ot j:1Qj8—qJ‘ -0 0

J=1

From this follows the statement of the theorem.

Application of Noether’s Theorem

We consider briefly two examples of invariances with respect to coordinate
transformations for the Lagrangian L(7,¥) = $mo? — U(F).

We first determine the constant of motion in case of invariance with
respect to translations as defined in (1.50). In this case we have Q; =

éj-¢é, j = 1,2,3 and, hence, Noether’s theorem yields the constant of motion

3 oL 3
ZQJT — 6. Zéjmj;j = é-mi. (1.59)
j=1 Ly J=1

We obtain the well known result that in this case the momentum in the
direction, for which translational invariance holds, is conserved.

We will now investigate the consequence of rotational invariance as de-
scribed according to the infinitesimal transformation (1.51). In this case we
will use the same notation as in (1.59), except using now Q; = é;-(éx7). A
calculation similar to that in (1.59) yields the constant of motion (é x 7)-mu.
Using the cyclic property (@ x b) - ¢ = (bx &) -d@ = (¢x @) - b allows one
to rewrite the constant of motion é - (7 x m¥) which can be identified as the
component of the angular momentum m# x ¥ in the é direction. It was, of
course, to be expected that this is the constant of motion.

The important result to be remembered for later considerations of sym-
metry transformations in the context of Quantum Mechanics is that it is
sufficient to know the consequences of infinitesimal transformations to pre-
dict the symmetry properties of Classical Mechanics. It is not necessary to
investigate the consequences of global. i.e, not infinitesimal transformations.



Chapter 2

Quantum Mechanical Path
Integral

2.1 The Double Slit Experiment

Will be supplied at later date

2.2 Axioms for Quantum Mechanical Description
of Single Particle

Let us consider a particle which is described by a Lagrangian L(7, f“’, t). We

provide now a set of formal rules which state how the probability to ob-

serve such a particle at some space—time point 7, ¢ is described in Quantum
Mechanics.

1. The particle is described by a wave function (7, t)
Y:R* @R — C. (2.1)
2. The probability that the particle is detected at space—time point 7, ¢ is
[W(F O =T )y () (2.2)

where Z is the conjugate complex of z.

3. The probability to detect the particle with a detector of sensitivity
f(r)is
GGl (2.3)

13
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Quantum Mechanical Path Integral

where (2 is the space volume in which the particle can exist. At present
one may think of f(7) as a sum over d—functions which represent a
multi—slit screen, placed into the space at some particular time and
with a detector behind each slit.

. The wave function (7, t) is normalized

[ ari@or =1 vt e fo.n), (2.4)
Q

a condition which enforces that the probability of finding the particle
somewhere in Q at any particular time ¢ in an interval [to, 1] in which
the particle is known to exist, is unity.

. The time evolution of (7, t) is described by a linear map of the type

t) = /d3r’¢(ﬁtw,t’)zp(ﬂ,t’) t >ttt € [to,t1] (2.5)
Q

. Since (2.4) holds for all times, the propagator is unitary, i.e., (¢ >

t/, t,t, S [to,tl])

Jo @r (T t))? =
fQ d37, fQ dBTI fQ dST” ¢(777 t‘fy7 t/) ¢(77? t‘fW? t/) 1/1(??" tl) ¢(’F"7 t,>

= Jodr|(Ft))* = 1. (2.6)
This must hold for any (7, ¢) which requires
[ ol ST = o — ) (2.7)

. The following so-called completeness relationship holds for the propa-

gator (t > t' ¢, € [to,t1])

/d3r¢(F7t|f¥7t/) ¢(7_J7tl|7?\07t0) = ¢(F7t|F07t0) (28)
Q

This relationship has the following interpretation: Assume that at time
to a particle is generated by a source at one point 7y in space, i.e.,
(7o, t9) = 6(F — 7). The state of a system at time t, described by
(7, t), requires then according to (2.8) a knowledge of the state at
all space points 7 € Q at some intermediate time ¢'. This is different
from the classical situation where the particle follows a discrete path
and, hence, at any intermediate time the particle needs only be known
at one space point, namely the point on the classical path at time ¢'.
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8. The generalization of the completeness property to N — 1 intermediate
points t > tny_1 > tny_o2 > ... >t >ty is

¢’(F7 t|F07 to) = fQ dgTN*1 fQ d3TN*2 e fQ d3r1
AT TN-1,tN-1) A(TN-1,tN-1]TN-2,EN-2) - - - @(71, 11|70, o) (2.9)
Employing a continuum of intermediate times t' € [to,?;1] yields an
expression of the form

F(tN):FN

sttt = [ Tdie)ee). (210

F(to)ZFO
We have introduced here a new symbol, the path integral

F(tN)=FNn
/T d[F(t)] --- (2.11)

—

(to)=r0

which denotes an integral over all paths 7(¢) with end points 7(tg) = 7o
and 7(ty) = 7n. This symbol will be defined further below. The
definition will actually assume an infinite number of intermediate times
and express the path integral through integrals of the type (2.9) for
N — oo.

9. The functional ®[F(¢)] in (2.11) is

B[ (t)] = exp{ % S[F(t)]} (2.12)

where S[r(t)] is the classical action integral

tn .
S[(t)] = / dt L(7, 7, 1) (2.13)
to

and
ho= 1.0545 - 10 2"erg s . (2.14)

In (2.13) L(7,7,t) is the Lagrangian of the classical particle. However,
in complete distinction from Classical Mechanics, expressions (2.12,
2.13) are built on action integrals for all possible paths, not only for
the classical path. Situations which are well described classically will
be distinguished through the property that the classical path gives
the dominant, actually often essentially exclusive, contribution to the
path integral (2.12, 2.13). However, for microscopic particles like the
electron this is by no means the case, i.e., for the electron many paths
contribute and the action integrals for non-classical paths need to be
known.
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The constant i given in (2.14) has the same dimension as the action
integral S[r(t)]. Its value is extremely small in comparision with typical val-
ues for action integrals of macroscopic particles. However, it is comparable
to action integrals as they arise for microscopic particles under typical cir-
cumstances. To show this we consider the value of the action integral for a
particle of mass m = 1 g moving over a distance of 1 cm/s in a time period
of 1 s. The value of S[r(t)] is then

Sa = %mzﬁt = %ergs . (2.15)
The exponent of (2.12) is then S, /h ~ 0.5-10%7, i.e., a very large number.
Since this number is multiplied by ‘i’, the exponent is a very large imaginary
number. Any variations of S, would then lead to strong oscillations of the
contributions exp(%S) to the path integral and one can expect destructive
interference betwen these contributions. Only for paths close to the classical
path is such interference ruled out, namely due to the property of the clas-
sical path to be an extremal of the action integral. This implies that small
variations of the path near the classical path alter the value of the action
integral by very little, such that destructive interference of the contributions
of such paths does not occur.

The situation is very different for microscopic particles. In case of a
proton with mass m = 1.6725 - 1072* g moving over a distance of 1 A
in a time period of 107 s the value of S[7(t)] is S ~ 10726 erg s and,
accordingly, S¢/h ~ 8. This number is much smaller than the one for the
macroscopic particle considered above and one expects that variations of the
exponent of ®[r(t)] are of the order of unity for protons. One would still
expect significant descructive interference between contributions of different
paths since the value calculated is comparable to 2w. However, interferences
should be much less dramatic than in case of the macroscopic particle.

2.3 How to Evaluate the Path Integral

In this section we will provide an explicit algorithm which defines the path
integral (2.12, 2.13) and, at the same time, provides an avenue to evaluate
path integrals. For the sake of simplicity we will consider the case of particles
moving in one dimension labelled by the position coordinate x. The particles
have associated with them a Lagrangian

L(z,3,t) = %mdg? — U(x) . (2.16)
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In order to define the path integral we assume, as in (2.9), a series of times
ty > ty—1 > tny—2 > ... > t1 > to letting N go to infinity later. The
spacings between the times ¢;,1 and ¢; will all be identical, namely

tiy1 — t; = (ty — to)/N = en . (2.17)

The discretization in time leads to a discretization of the paths x(¢) which
will be represented through the series of space-time points

{(l‘o,to), (.561,751>, e (folathl), (SCN,tN)} . (218)

The time instances are fixed, however, the x; values are not. They can
be anywhere in the allowed volume which we will choose to be the interval
| — 00,00[. In passing from one space-time instance (z;,t;) to the next
(j41,tj41) we assume that kinetic energy and potential energy are constant,
namely m(z;j41 —x;)?/ek and U(z;), respectively. These assumptions lead
then to the following Riemann form for the action integral

) <lm7(xj“2_xj)2 - U(:cj)> L (219)

2 €N

The main idea is that one can replace the path integral now by a multiple
integral over 1, x2, etc. This allows us to write the evolution operator using
(2.10) and (2.12)

P(xn,tn|To,to) = UMy oo On [T0day [Tdas ... [Tden_y

; T — )2
exp{%eN Zj\;—ol [%m% _ U(.’E]):| } . (220)

Here, Cy is a constant which depends on N (actually also on other constant
in the exponent) which needs to be chosen to ascertain that the limit in
(2.20) can be properly taken. Its value is

vl

m
= 2.21
On {27”716]\/] ( )

2.4 Propagator for a Free Particle

As a first example we will evaluate the path integral for a free particle
following the algorithm introduced above.
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Rather then using the integration variables z;, it is more suitable to
define new integration variables y;, the origin of which coincides with the
classical path of the particle. To see the benifit of such approach we define
a path y(t) as follows

z(t) = za(t) + y(t) (2.22)

where x.(t) is the classical path which connects the space-time points
(z0,t0) and (zpn,txN), namely,

IN = T4 — ). (2.23)

a;cl(t) = xg + N — fo

It is essential for the following to note that, since z(tg) = x¢(tg) = o and
z(ty) = zq(ty) = xn, it holds

y(to) = y(tn) = 0. (2.24)

Also we use the fact that the velocity of the classical path 4 = (zy —
10)/(tn—to) is constant. The action integral® S[x(t)|z(to) = zo, (tn) = zN]
for any path x(t) can then be expressed through an action integral over the
path y(t) relative to the classical path. One obtains

Slz(t)|x(to) = xo, z(tn) = zN] ftth m(i% + 2iqy + 9°) =
Jixdtima? + mig [(Ndty + [LNdtimg? (2.25)
The condition (2.24) implies for the second term on the r.h.s.
17 .
dty = y(tn) — ylto) = 0. (2.26)

to

The first term on the r.h.s. of (2.25) is, using (2.23),

tnN 1 1 _ 2
it S a2, = Ly = 20) (2.27)
to 2 2 tN — tO
The third term can be written in the notation introduced
tn 1 9
dt Emy = Slz(t)|x(to) =0, z(ty) = 0] , (2.28)
to

1'We have denoted explicitly that the action integral for a path connecting the space—
time points (zo,t0) and (zn,tn) is to be evaluated.
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i.e., due to (2.24), can be expressed through a path integral with end-
points z(tg) = 0, z(ty) = 0. The resulting expression for S[x(t)|z(ty) =
xo, z(ty) = xzN] 18

S[z(t)|z(te) = o, x(tn) = zn] = ;mw + 0+ (229)
+ Slz(t)|z(te) = 0, z(ty) = 0] .

This expression corresponds to the action integral in (2.13). Inserting the
result into (2.10, 2.12) yields

im (zn — x0)? z(tn)= i
Ban, tlro to) = exp l—wl / (1)) exp {§ s |

2h ty —to (t0)=0
(2.30)
a result, which can also be written
im (xn — x0)>
¢(1‘N,t]\[‘$o,t0) = exp l%ﬁ] gb(o,tN’O,to) (2.31)
N — o

Evaluation of the necessary path integral

To determine the propagator (2.31) for a free particle one needs to evaluate
the following path integral

ol

¢(07tN‘07t0) = th_’OO |:27r:;il€N} X

- . — )2
X IS dyr - [T dyn 1 exp {% en i %m(y”lefy])] (2.32)

N
The exponent E can be written, noting yg = yny = 0, as the quadratic form

m

E = —— (2 — y1iy2 — vou1 + 295 — Yays — Ys3y2
2hen
+2y3 —— YN—2YN-1 — YN—1YN—2 + 2UN_1)
N—-1
=0 > Yiajpyk (2.33)

7,k=1
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where ajj, are the elements of the following symmetric (N — 1) x (N — 1)
matrix

2 —1 0 ... 0 0

-1 2 -1 ... 0 0

0 -1 2 ... 0 0

m

: = 2.34
(aﬂ’“> Dhen A (2:34)

0 0 0 2 —1

0 0 0 —1 2

The following integral

+o0 400 N-1
/ dyl“'/ dyn—rexp i > yjanyk (2.35)

- - Gk=1
must be determined. In the appendix we prove

+00 +00 . d (ZT(')d %
/ dy - - / dyn-1exp | ¢ Z yibiryr | = det(bir) . (2.36)
—0o0 —0o0 ]

J,k=1

which holds for a d-dimensional, real, symmetric matrix (b;x) and det(bjz) #
0.

m

In order to complete the evaluation of (2.32) we split off the factor 57

in the definition (2.34) of (ajj) defining a new matrix (Aj;) through

m

— A . 2.37
2h€N jk ( )

ajk =
Using
m
2hen

N—-1
det(ajk):[ } det(Ajp) | (2.38)

a property which follows from det(¢B) = ¢"detB for any n x n matrix B,
we obtain

N N-1
2

m ] [QWiheN} T2 1
2mihe N m det(Ajz)

60, tal0st0) = limy—o | (2.39)

In order to determine det(A;j) we consider the dimension n of (A, ), presently
N — 1, variable, let say n, n = 1,2,.... We seek then to evaluate the deter-
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minant of the n X n matrix

2 -1 0 ... 0 0
-1 2 -1 0 0
0 -1 2 ... 0 0

Dy, = S A (2.40)
o 0 0 ... 2 -1
0 0 0 -1 2

For this purpose we expand (2.40) in terms of subdeterminants along the last
column. One can readily verify that this procedure leads to the following
recursion equation for the determinants

D, = 2Dy — Dyp_s. (2.41)

To solve this three term recursion relationship one needs two starting values.
Using

Dy = |(2)] = 2; D2=|<_f ‘§>|=3 (2.42)

one can readily verify
D, =n+1. (2.43)
We like to note here for further use below that one might as well employ
the ‘artificial’ starting values Dy = 1, D; = 2 and obtain from (2.41) the
same result for Do, Ds, .. ..

Our derivation has provided us with the value det(A;;) = N. Inserting
this into (2.39) yields

1

m 2
0.tn10.t0) = limn e |—r 2.44
$(0,tn10,t0) ZmN""[mheNN} (2.44)

and with eyN = ty — to , which follows from (2.18) we obtain

N|=

$(0, 10, t0) = m ] . (2.45)

[2m’h(tN —to)
Expressions for Free Particle Propagator

We have now collected all pieces for the final expression of the propagator
(2.31) and obtain, defining t = ty, z = zn

B m 2 im (z — 2¢)?
QS(I’,t’CUO,tO) = |:27T2h(t—to):| exXp [2/7,15—250] . (246)
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This propagator, according to (2.5) allows us to predict the time evolution
of any state function ¢ (xz,t) of a free particle. Below we will apply this to a
particle at rest and a particle forming a so-called wave packet.

The result (2.46) can be generalized to three dimensions in a rather
obvious way. One obtains then for the propagator (2.10)

m )r explimw] . (2.47)

7 |70, to) = | umn
o7 7o, to) [Qm'h(tto oh t—to

One-Dimensional Free Particle Described by Wave Packet

We assume a particle at time t = t, = 0 is described by the wave function

1
N ZC(Q) . Do
Y(xo,tg) = {7@52} exp <_252 + i (2.48)
Obviously, the associated probability distribution
1

112 x?

2 _ 0
ot = || e ( —ﬁ) (2.49)
is Gaussian of width §, centered around zy = 0, and describes a single

particle since

172 too x3
[W] LOO dxo exp 52 ) = 1. (2.50)

One refers to such states as wave packets. We want to apply axiom (2.5) to
(2.48) as the initial state using the propagator (2.46).

We will obtain, thereby, the wave function of the particle at later times.
We need to evaluate for this purpose the integral

o =[] ]

+oo im (x — x9)? x3 Do
d MM T r) 6, Poy 1251
/_oo xoexp[% ‘ 252 T Ty o| (251)

N

Ey(zo,x) + E(x)

For this evaluation we adopt the strategy of combining in the exponential
the terms quadratic (~ 22) and linear (~ z¢) in the integration variable to
a complete square

b\> b’
axd +2bxg = a (wo + a) - (2.52)
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and applying (2.247).
We devide the contributions to the exponent E,(x,,z) + E(x) in (2.51)
as follows

E,(zo,7) = ;—7; {xi (1 + Z%) — 2z, (3: - %t) + f(x)] (2.53)
E(z) = % [ — f@)] . (2.54)

One chooses then f(z) to complete, according to (2.52), the square in (2.53)

flx) = (L%t) : (2.55)

This yields

2
m ht x — Pet

Ey(zo,x) = — | woy/1 4+ - 20 . (2.56)
2ht md2 1_}_7;%

One can write then (2.51)

1 1
1 1 oo
P(z,t) = { ! r { m r eE(x)/ dxg ePe@om) (2.57)

w02 | | 2mint .

and needs to determine the integral

_l’_
I = / oodxo eFo(zo:7)
— o
+ | p ?
o0 m ht r — 22t
= / dxgexp ot Tor/1+14 52 1
= i ik

/+ood [ im (1+,ht) v - g’ 2.55)
= T ex - 11— To — T— Q57 A 4.
oo O o mdz) \ " T 1+t

The integrand is an analytical function everywhere in the complex plane
and we can alter the integration path, making certain, however, that the
new path does not lead to additional contributions to the integral.
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We proceed as follows. We consider a transformation to a new integration
variable p defined through

ht rz — Byt
i(l—i2>p:$0—,";t. (2.59)
\/ mo 1+ZW

An integration path in the complex xz¢—plane along the direction

\/i (1 - z%) (2.60)

is then represented by real p values. The beginning and the end of such path
are the points

. .t . . ht
Zi:—OOX\/l(l—’LW>’ Zé:—f-OOX\/Z(l_'LW) (261)

whereas the original path in (2.58) has the end points

Z1 = —00, 29 = +00. (2.62)

If one can show that an integration of (2.58) along the path z; — 2] and
along the path 29 — 24 gives only vanishing contributions one can replace
(2.58) by

it +oo m it \?
I =]i(l-i— d —— |1+ (=5 ’| (263
Vi (i) [ [ (14 i) ) 7] o
which can be readily evaluated. In fact, one can show that 2] lies at —oo —
i x oo and 2 at +00 + i x co. Hence, the paths between z; — 2] and
z9 — zb have a real part of zy of £oo. Since the exponent in (2.58) has

a leading contribution in x¢ of —23/d? the integrand of (2.58) vanishes for
Rexy — foo. We can conclude then that (2.63) holds and, accordingly,

2miht
o [ 264
m(1 + z—még)

Equation (2.57) reads then

1 : exp|E(x)] . (2.65)
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Seperating the phase factor

1 — il |1
T (2.66)
+’LW
yields
1 — ity i 1 i
P(x,t) = — exp| E(x)] . 2.67
@0 = || || eelE@l. o

We need to determine finally (2.54) using (2.55). One obtains

z2 it %%t
Blz) = - 202(1 +i-1L) - L+ilh 1440 (2.68)
and, using
lib:a—la—fb, (2.69)
finally
x — Pog)2 i p?
E(z) = _W + i%x - mp—%t (2.70)

which inserted in (2.67) provides the complete expression of the wave func-
tion at all times ¢

1 1
1 — it 1 i
z,t) = _mo X 2.71
oo = ] e ) &7
— Bog)? ht | p2
X exp l—(:ﬂ—%(1 — i) + i - 3p—0t1 .
202(1 + 5g7) mo h h2m

The corresponding probability distribution is

N[

(z — Bog)?
exp [— 67%2)] . (2.72)

9 1
|¢(Cﬂ,t)’ = |ﬁ'52 (1 T r2¢2 )1 2(1 4 it

m2§4
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Comparision of Moving Wave Packet with Classical Motion

It is revealing to compare the probability distributions (2.49), (2.72) for the
initial state (2.48) and for the final state (2.71), respectively. The center
of the distribution (2.72) moves in the direction of the positive z-axis with
velocity v, = p,/m which identifies p, as the momentum of the particle.
The width of the distribution (2.72)

S4[1 + — (2.73)

increases with time, coinciding at t = 0 with the width of the initial dis-
tribution (2.49). This ‘spreading’ of the wave function is a genuine quan-
tum phenomenon. Another interesting observation is that the wave function
(2.71) conserves the phase factor exp[i(p,/h)z| of the original wave function
(2.48) and that the respective phase factor is related with the velocity of the
classical particle and of the center of the distribution (2.72). The conserva-
tion of this factor is particularly striking for the (unnormalized) initial wave
function

¥(xo,t0) = exp (z]:; xo) , (2.74)

which corresponds to (2.48) for 6 — oo. In this case holds

Do i p;
Y(x,t) = exp(zgx - ﬁ%t> . (2.75)
i.e., the spatial dependence of the initial state (2.74) remains invariant in
time. However, a time-dependent phase factor exp[— % (pZ2/2m) t] arises which
is related to the energy € = p2/2m of a particle with momentum p,. We
had assumed above [c.f. (2.48)] t, = 0. the case of arbitrary ¢, is recovered
iby replacing t — t, in (2.71, 2.72). This yields, instead of (2.75)

V(@ t) = exp(iii:x _ ;ﬁ(t _ to)> . (2.76)

From this we conclude that an initial wave function

Do i p?
V(To, to) = exp(z]; To — h;;nu,) . (2.77)
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becomes at t > t,
)
.Po v Do
t) = —r — —=—2t 2.78
Y(z,t) exp(Zma: 5 ) (2.78)

i.e., the spatial as well as the temporal dependence of the wave function re-
mains invariant in this case. One refers to the respective states as stationary
states. Such states play a cardinal role in quantum mechanics.

2.5 Propagator for a Quadratic Lagrangian

We will now determine the propagator (2.10, 2.12, 2.13)

ﬁ(tN)ZfEN q
sonctalote) = [ de@en| L se@)}  29)
{L’(to):xo h
for a quadratic Lagrangian
1 1
L(x,d,t) = 5m;1'c2 - Ec(t)ac2 — e(t)x . (2.80)
For this purpose we need to determine the action integral
tN
Slz(t)] = dt' L(z,2,t) (2.81)
to

for an arbitrary path x(¢) with end points z(tg) = z¢ and z(ty) = zn. In
order to simplify this task we define again a new path y(t)

z(t) = za(t) + y(t) (2.82)

which describes the deviation from the classical path z.(¢) with end points
ze(to) = xo and x4 (ty) = zn. Obviously, the end points of y(t) are

y(to) = 0 5 yltn) = 0. (2.83)
Inserting (2.80) into (2.82) one obtains
L(:L'cl +y, & + ?)(t)7 t) = L(xclv Tel, t) + L/(y) y(t)7 t) + oL (284)

where
. I 1 2
L($cl7$clat) = imxcl - éc(t)xcl - e(t)xd
. 1 . 1
Ly, g(t),t) = gmi® — ey’

oL = maqy(t) — c(t)zay — e(t)y . (2.85)
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We want to show now that the contribution of JL to the action integral
(2.81) vanishes?. For this purpose we use

.. d . .
Eay = E(fvcl y) — Eay (2.86)

and obtain

2 . tN N ..
dtoL = m [iqy)ll — /t dt [mia(t) + c(t) za(t) + e(t)] y(t) .
0
(2.87)
According to (2.83) the first term on the r.h.s. vanishes. Applying the Euler—
Lagrange conditions (1.24) to the Lagrangian (2.80) yields for the classical
path

to

mig + c(t)za + e(t) = 0 (2.88)

and, hence, also the second contribution on the r.h.s. of (2.88) vanishes. One
can then express the propagator (2.79)

Sz, t|T0,te) = exp{%S[xd(t)]}d;(O,tNIO,to) (2.89)
where
- y(tn)=0 i [N , )
so.xito) = [0 Solen{ | [Carwan ). o)

Evaluation of the Necessary Path Integral

We have achieved for the quadratic Lagrangian a separation in terms of a
classical action integral and a propagator connecting the end points y(tg) =
0 and y(tn) = 0 which is analogue to the result (2.31) for the free particle
propagator. For the evaluation of &(O,tN\O,to) we will adopt a strategy
which is similar to that used for the evaluation of (2.32). The discretization
scheme adopted above yields in the present case

N
~ ) y
H(0,tn[0,t0) = limy oo | gimr]® % (2.91)
too +o00 ; N=1{ 1. (yj+1—;)* 1 2
2The reader may want to verify that the contribution of L to the action integral is

actually equal to the differential §.5[xi, y(t)] which vanishes according to the Hamiltonian
principle as discussed in Sect. 1.
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where ¢; = ¢(t;), t; = to + en j. One can express the exponent E in (2.91)
through the quadratic form

N-1
E =i Y yjayk (2.92)
k=1

where aj;, are the elements of the following (N — 1) x (N — 1) matrix

2 -1 0o ... 0 0
—1 2 -1 ... 0 0
m 0 -1 2 ... 0 0
(“"’“) T 2hen | o
0 0 0 2 -1
0 0 0 -1
cic 0 O 0 0
0 Co 0 0
ev| 0 0 e ... 0 0
I I VO S (29%)
0 0 0 ... cy—2 0
0O 0 O 0 cn-1

In case det(aj;) # 0 one can express the multiple integral in (2.91) according
to (2.36) as follows

3(0,tx10,t0) = limy oo :%Z’;EN} 3 l(ﬁ?&;] :
: :
. 1
— limy oo _zrm o ] (2.94)
In order to determine (5(0, tn|0,tp) we need to evaluate the function
f(to,tn) = limn—oo [EN (2:N>N_ldet(a)] . (2.95)

According to (2.93) holds

Dy, & [Q’%}N—l det(a) (2.96)
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PR -1 0

~1 2 R 1

B 0 —1 2— ey
0 0 ... 2— Dy, -1
0 0 S1o2- Doy,

In the following we will asume that the dimension n = N — 1 of the matrix
in (2.97) is variable. One can derive then for D,, the recursion relationship

2
Dy = (2 - ENcn> Dyt — Dy_s (2.97)
m

using the well-known method of expanding a determinant in terms of the
determinants of lower dimensional submatrices. Using the starting values
[c.f. the comment below Eq. (2.43)]

Dy=1; D =2- N (2.98)
m

this recursion relationship can be employed to determine Dy_;. One can
express (2.97) through the 2nd order difference equation
Dypy1 — 2Dy, + Dy St D,

= ——. 2.99
Z, m (2.99)

Since we are interested in the solution of this equation in the limit of van-
ishing ey we may interpret (2.99) as a 2nd order differential equation in the
continuous variable t = ney + tg

de(tﬂa t) C(t)
———— = — —= f(to,1) . 2.100
dt2 m f( 0, ) ( )
The boundary conditions at ¢ = tg, according to (2.98), are
f(tosto) = enDo = 0;
2

df (to,t) __Di=Do _, ey . _
Y = =2-la-1=1. @

We have then finally for the propagator (2.79)

&(x, t]z0, to) = [WT”(HJ o { % Slra(®)] } (2.102)
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where f(to,t) is the solution of (2.100, 2.101) and where S[x.(t)] is de-
termined by solving first the Euler—Lagrange equations for the Lagrangian
(2.80) to obtain the classical path x.(t) with end points x.(tg) = o and
zq(ty) = xny and then evaluating (2.81) for this path. Note that the re-
quired solution x(t) involves a solution of the Euler-Lagrange equations for
boundary conditions which are different from those conventionally encoun-
tered in Classical Mechanics where usually a solution for initial conditions
xe(to) = mo and 4 (tg) = vo are determined.

2.6 Wave Packet Moving in Homogeneous Force
Field

We want to consider now the motion of a quantum mechanical particle,
decribed at time t = t, by a wave packet (2.48), in the presence of a ho-
mogeneous force due to a potential V(z) = — fx. As we have learnt from
the study of the time-development of (2.48) in case of free particles the wave
packet (2.48) corresponds to a classical particle with momentum p, and posi-
tion x, = 0. We expect then that the classical particle assumes the following
position and momentum at times ¢t > %,

Po 1 f 2

t = —(t—-t —— (-1 2.103

s = Dt + 5l -t (2:103)

p(t) = po + f(t —to) (2.104)
The Lagrangian for the present case is
1

L(x,2,t) = 5mg‘cZ + fx. (2.105)

This corresponds to the Lagrangian in (2.80) for c(t) = 0,e(t) = —f.

Accordingly, we can employ the expression (2.89, 2.90) for the propagator
where, in the present case, holds L'(y,y,t) = %mgﬁ such that ¢(0, x50, o)
is the free particle propagator (2.45). One can write then the propagator for
a particle moving subject to a homogeneous force

m

[m] oxp | 1 Slea ()] (2.106)

(Z)(xa t‘x()a tU) =

Here Sz (7)] is the action integral over the classical path with end points

za(te) = xo za(t) = x. (2.107)
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The classical path obeys
mig = f. (2.108)

The solution of (2.107, 2.108) is

T —x 1f 1f
ra(T) = 10 + (t—tOOQm(tto))T+2mT2 (2.109)
as can be readily verified. The velocity along this path is
. T — To 1 f f
= ——=—(t-t = 2.110
balr) = §0 =yt~ t) + L (2110)

and the Lagrangian along the path, considered as a function of 7, is

o(r) = smid(r) + fra(r)

2
1 T — To 1 f 2 T — T, 1f >
- 2m<t—to 5 m ¢ to)) +f(t—to 5t Tt )7
1f2 2 T — Zo 1f 1f2 2
+2m7+f%+f(t_%‘Qm“‘%07+2m7
1 T — T, 1f 2 T — X 1 f
= 5 - 5 — lo 2 - 5 — lo
2m<t—to 5 m ¢ ”) +f(t—to 5 m ¢ t))T
2
+ 72+ fa, (2.111)
m
One obtains for the action integral along the classical path
t
Slxq (1)) = thg(T)
1 T — x, 1f 2
= = — 2Lt =ty ) (t—t,
Qm(t—to 2m ! ))( )
T — T, 1 f 9
— =Lt —t) )t~ t
(3 - i) e -
+1f—2(t—t)3+xf(t to)
3m o o o
1 (:U—xo)2 1 1 f? 3
= §mﬁ+i(x—i-xo)f(t—to)—ﬂﬁ(t—%)

(2.112)
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and, finally, for the propagator

m 3
o(@,t|zo,t0) = [m] X (2.113)
. _ 2 . . 2
xexplgﬂg% + 2%(95 Foa) f(t—to) — i,‘if—m (t — to)3

The propagator (2.113) allows one to determine the time-evolution of
the initial state (2.48) using (2.5). Since the propagator depends only on
the time-difference t — t, we can assume, withoult loss of generality, ¢, = 0
and are lead to the integral

1 1
1 7 m 3 +oo
t = — —_— d 2.114
Y(@,?) [7752} {277@'7125] Loo o ( )
im (z —x9)? @3 i f2 o,
i Py + — Nt = gt
exp[% . 252—1—2 °x +2h($+x)f 51 m

Ey(zo,x) + E(x)

To evaluate the integral we adopt the same computational strategy as used
for (2.51) and divide the exponent in (2.114) as follows [c.f. (2.54)]

. 2
Eo(-Tny) = % ll’g (1 + an’j(;) - 2z, (l‘ - %t - ;;) + f(iL‘)]
(2.115)
. 2 243
Bx) = % 2 4 %x . f(x)] _ %J;_TZ (2.116)

One chooses then f(z) to complete, according to (2.52), the square in (2.115)

x_P_ot_f_tQ 2
flx) = (—) : (2.117)

This yields

— Doy f_t2 2
Ey(xo, ) Tor/1 . (2.118)
142

mo?2
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Following in the footsteps of the calculation on page 23 ff. one can state
again

1!)(%’,15) =

1 — it 1 i
md?2
exp | E(x 2.119
1 7’7:(2;2‘| lW52(1 7222%24)‘| p[ ()] ( )

and is lead to the exponential (2.116)

1 23 m
E() = — — S 2.120
(@) 24 hm T om(ltith) @) (2.120)
where
2
9 ht ft? kit Po ft?
s@ = @ (1eing) v el (ring) < (oo g

(2.121)
Inserting this into (2.120) yields
(o g1 £2)
E(z) = - i = (2.122)
262 (1 + i ;14
i i 9 f2t3 f2t3
oo + [l — o (pot+poft et

The last term can be written

f2t3

. ) _ /Oth(po—l—fT)z. (2.123)

i 2
_ t t _
<po + poft® + ok

2mh

Altogether, (2.119, 2.122, 2.123) provide the state of the particle at time
t>0

1

|- i 1 o
Tridk] [

w('%t) =
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(x—%t—%f (1_Z, ht)

X €xp | — 052 <1+ thQ) )

m2§4

X exp

7 t 7_2
(po + ft)z —%/OdTM] (2.124)

2m

ol

The corresponding probablity distribution is

1 0 1)
P eres
(e, D) = [] exp | -  (2129)
w82 (1 + 722%4) 62 (1 + %{)

Comparision of Moving Wave Packet with Classical Motion

It is again [c.f. (1)] revealing to compare the probability distributions for
the initial state (2.48) and for the states at time ¢, i.e., (2.125). Both dis-
tributions are Gaussians. Distribution (2.125) moves along the z-axis with
distribution centers positioned at y(t) given by (2.103), i.e., as expected for a
classical particle. The states (2.124), in analogy to the states (2.71) for free
particles, exhibit a phase factor exp|ip(t)z/h], for which p(t) agrees with the
classical momentum (2.104). While these properties show a close correspon-
dence between classical and quantum mechanical behaviour, the distribution
shows also a pure quantum effect, in that it increases its width . This in-
crease, for the homogeneous force case, is identical to the increase (2.73)
determined for a free particle. Such increase of the width of a distribution
is not a necessity in quantum mechanics. In fact, in case of so-called bound
states, i.e., states in which the classical and quantum mechanical motion
is confined to a finite spatial volume, states can exist which do not alter
their spatial distribution in time. Such states are called stationary states.
In case of a harmonic potential there exists furthermore the possibility that
the center of a wave packet follows the classical behaviour and the width
remains constant in time. Such states are referred to as coherent states, or
Glauber states, and will be studied below. It should be pointed out that
in case of vanishing, linear and quadratic potentials quantum mechanical
wave packets exhibit a particularly simple evolution; in case of other type of
potential functions and, in particular, in case of higher-dimensional motion,
the quantum behaviour can show features which are much more distinctive
from classical behaviour, e.g., tunneling and interference effects.
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2.7 Propagator of a Harmonic Oscillator

In order to illustrate the evaluation of (2.102) we consider the case of a
harmonic oscillator. In this case holds for the coefficents in the Lagrangian
(2.80) ¢(t) = mw? and e(t) = 0, i.e., the Lagrangian is

1 1
L(z,%) = §m$2 — §mw2x2. (2.126)
.We determine first f(to,¢). In the present case holds
fr=—wf5 fltoto) =05 fltoto) =1. (2.127)

The solution which obeys the stated boundary conditions is

F(to,t) = Smw(ii_to) (2.128)

We determine now S|z (7)]. For this purpose we seek first the path
x(7) which obeys x.(tg) = xo and x4(t) = x and satisfies the Euler—
Lagrange equation for the harmonic oscillator

miaq + mw’ag = 0. (2.129)
This equation can be written
Py = —wlxy . (2.130)
the general solution of which is
rq(t") = Asinw(r —ty) + Bcosw(T —to) . (2.131)
The boundary conditions z(ty) = xo and x(t) = x are satisfied for

x — xocosw(t — to)

o ; sinw(t — to) ’ ( )

and the desired path is
zo(T) = wSiHW(T — to) + xocosw(T — to) (2.133)

S

where we introduced

¢ = cosw(t—t,), s = sinw(t—t,) (2.134)
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We want to determine now the action integral associated with the path
(2.133, 2.134)

Slea(r)] = [ dr

to

(Gmit(n) - gmatan)  (213)

For this purpose we assume presently t, = 0. From (2.133) follows for the
velocity along the classical path

Tr — XgcC

Tq(T) = w ———— CoOSWT — wxg sinwTt (2.136)
s
and for the kinetic energy
1 1 - 2
imx'zl(T) = imuﬂ w cos’wr
s
9 X — xTpC )
—Mw*x, ————— COSWT sinwT
s
1
+§mw2 x2 sin®wr (2.137)
Similarly, one obtains from (2.133) for the potential energy
1 (x — zpc)? .
2 2 _ 2 2
5w xy(t) = o 2 sin“wr
9 T — ITpC )
+mw L, ——— COSWT SINWT
s
1
+§mw2 x2 cos*wr (2.138)
Using
coswr = o5+ g cos2wT (2.139)
. 92 1 1
sin‘fwr = - — - cos2wr (2.140)
2 2
1
COSWT sinwtT = 5 sin2wTt (2.141)

the Lagrangian, considered as a function of 7, reads

g(1) = *migl(ﬂ - Qmwzﬂle(T) = —mnw 7Ccos2w7-

9 T — XpC
—Mmw r, ——— Sin2wT
s

- §mw2 22 cos2wr  (2.142)
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Evaluation of the action integral (2.135), i.e., of Slxy(7)] = fngg(T) re-
quires the integrals

t 1 1
/dTCOSQwT = —sin2wt = — sc (2.143)
0 2w w
t . ]. 1 2
/dem2w7' = — 1 — cos2wt] = — s (2.144)
0 2w w

where we employed the definition (2.134) Hence, (2.135) is, using s? + ¢ =
L,

1 — 2 — 1
Slza(r)] = 5w W sC — mwx, % s% — §mw2 2 sc
= % {(1:2 — 2zxoc + 22¢?) ¢ — 2r,xs® + 2x2cs® — 933520}
s
= Tg—: {(mQ +2d)c — 21‘056} (2.145)

and, with the definitions (2.134),

mw

Slrg(r)] = 2sinw(t — tg)

[(x% + 2?) cosw(t — to) — 2x0x} . (2.146)

For the propagator of the harmonic oscillator holds then

1
2
¢(z, t|xo, to) = [27rihsi:1nu(;)(t—to)} X
X exp { #(tw—to) (2% + 2%) cosw(t — tg) — 2z0z] } .(2.147)

Quantum Pendulum or Coherent States

As a demonstration of the application of the propagator (2.147) we use it
to describe the time development of the wave function for a particle in an
initial state

1
~ [mw]a mw(zo — by)? i
Y(zo,t0) = {Wﬁ] eXp( o + »PoTo | - (2.148)

The initial state is decribed by a Gaussian wave packet centered around the
position £ = b, and corresponds to a particle with initial momentum p,.
The latter property follows from the role of such factor for the initial state
(2.48) when applied to the case of a free particle [c.f. (2.71)] or to the case
of a particle moving in a homogeneous force [c.f. (2.124, 2.125)] and will
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be borne out of the following analysis; at present one may regard it as an
assumption.

If one identifies the center of the wave packet with a classical particle,
the following holds for the time development of the position (displacement),
momentum, and energy of the particle

b(t) = b, cosw(t —t,) + Po_ sinw(t — to) displacement
mw
p(t) = —mwb, sinw(t —t,) + p, cosw(t —t,) momentum (2.149)
2
€0 = ﬁ + 2mw?b? energy

We want to explore, using (2.5), how the probability distribution |t(x,t)|?
of the quantum particle propagates in time.
The wave function at times t > tg is

P(a,t) = /_Oo dzo ¢(z, |20, t0) (w0, to) - (2.150)

Expressing the exponent in (2.148)
imw

2hsinw(t — t,)

(2.147, 2.150, 2.151) can be written

2po .
(2o — bo)? sinw(t — t, =2 2 t—t, 2.151
{z(:r ) sinw( ) + - sinw( )| (2.151)

1
mw |2 m 2 [
t) = |— d E E 2.152
v(@,?) |:7TFL:| [27riwhsinw(t — to)] /_oo Toexp[Fo + E] )
where
) 2p,
Eo(zo,x) = z;;w [m?) 2z,x + zsa: — 2isxob, + a:Os + f(z)
s
(2.153)
MW [ o 9
E(z) = T {x c + isb; f(:c)} : (2.154)
¢ = cosw(t —t,), s = sinw(t —t,). (2.155)
Here f(x) is a function which is introduced to complete the square in (2.153)

for simplification of the Gaussian integral in zy. Since E(x) is independent
of z, (2.152) becomes

1

_ | 1 m 2 B [T
Yla,t) = [ Th ] {QWiwhsinw(t — to)} c /_oodaco exp [ Eo(@o, )]
(2.156)
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We want to determine now E,(z,,x) as given in (2.153). It holds

_ imw 2 iw(t—to) _ . Do 1
E, TR 2z,(x + isb, " s) + f(z) (2.157)

For f(z) to complete the square we choose

f(x) = (x + isb, — Po s)2ewli=to) | (2.158)

mw

One obtains for (2.157)

mw 2

2hs

Eo(zo,x) = exp [iw(t — tg)] {a:o — (z +isb, — Lo s)exp (—iw(t — t()):|
mw

(2.159)

To determine the integral in (2.156) we employ the integration formula

(2.247) and obtain

1
+m . . _ =
/ dag eFo@) — [ 2mihsinw(t - to) ]2 (2.160)
—oo mw expliw(t — to)]

Inserting this into (2.156) yields
1
mw1
Yz, t) = [—h} eP@) (2.161)
7r

For E(x) as defined in (2.154) one obtains, using exp[Liw(t — t,)] =
c s,

E(z) = 22’2;" [x2c + isb? — z%c + isx? — 2isxb,c — 25°xb,

272, -.3712 Po_ + Do 2
+s7boc — is°by + 205 xse + 2102 bysTe

2 2
—2i Lo gs? 4 2P p g — Lo, e 4 Boy 53}

mw m2w?
— [;UQ + 22 — 2xbye + 2ixsb, — ibZsc

2
Po Po Do 2 i Do
2.0 xs + 2 wbosc—f- 227 S 20 e xc

2
7 Po 2 y Po
20 L& bos” + 1 222 sc}

. _ mw

= (x — cb, — Lo 5)% + %(—mwbos + poc) x

2h mw

~ LB Imwh)se + %pobog (2.162)
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We note the following identities

t 2
4P (1)
to 2m
Loty 4+ L o el Ly e (2.163)
T T T S\ o 2 g YoPo '
/th mwaQ(T)
to 2

1 1 2 mwb? 1
= 5eo(t—to) ~ 3 (2200) = O> sc + ib(,pos2 (2.164)

where we employed b(7) and p(7) as defined in (2.149). From this follows,
using p(7) = mb(7) and the Lagrangian (2.126),

t 2 2
. P mwb
dr L[b(T),b = e - —2° — boPo 2.1
| dr Lip(r), () <2mw : ) Pos (2.165)

such that F(z) in (2.162) can be written, using again (2.149)),

B@) = ~ T2l b) + S p(t)w — igwli—t) — © tthL[b(T),b(T)]
’ (2.166)
Inserting this into (2.161) yields,
V(@ t) = [%} « exp{—”;—;”[x—b(t)ﬁ} y (2.167)
y exp{%p(t):n —igwliot) — ¢ tthL[b(T),b(T)]}

where b(t), p(t), and ¢, are the classical displacement, momentum and en-
ergy, respectively, defined in (2.149).

Comparision of Moving Wave Packet with Classical Motion
The probability distribution associated with (2.167)

(e, = {%] ep{ -0 - bR} (2169

is a Gaussian of time-independent width, the center of which moves as de-
scribed by b(t) given in (2.148) , i.e., the center follows the motion of a
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classical oscillator (pendulum) with initial position b, and initial momen-
tum p,. It is of interest to recall that propagating wave packets in the case
of vanishing [c.f. (2.72)] or linear [c.f. (2.125)] potentials exhibit an increase
of their width in time; in case of the quantum oscillator for the particular
width chosen for the initial state (2.148) the width, actually, is conserved.
One can explain this behaviour as arising from constructive interference due
to the restoring forces of the harmonic oscillator. We will show in Chapter 77
[c.f. (72, 7?) and Fig. 77] that an initial state of arbitrary width propagates
as a Gaussian with oscillating width.

In case of the free particle wave packet (2.48, 2.71) the factor exp(ip,x)
gives rise to the translational motion of the wave packet described by p,t/m,
i.e., p, also corresponds to initial classical momentum. In case of a homoge-
neous force field the phase factor exp(ip,z) for the initial state (2.48) gives
rise to a motion of the center of the propagating wave packet [c.f. (2.125)]
described by (p,/m)t + % ft? such that again p, corresponds to the classical
momentum. Similarly, one observes for all three cases (free particle, linear
and quadratic potential) a phase factor explip(t)x/h] for the propagating
wave packet where fp(t) corresponds to the initial classical momentum at
time t. Ome can, hence, summarize that for the three cases studied (free
particle, linear and quadratic potential) propagating wave packets show re-
markably close analogies to classical motion.

We like to consider finally the propagation of an initial state as in (2.148),
but with b, = 0 and p, = 0. Such state is given by the wave function

1 2 .
o mw | 4 _meCO . E
Y(zo,t0) = {—m} eXp( 5 5 t0> : (2.169)

where we added a phase factor exp(—iwt,/2). According to (2.167) the
state (2.169) reproduces itself at later times ¢ and the probablity distribution
remains at all times equal to

{%]% exp <— mawg ) , (2.170)

Th h

i.e., the state (2.169) is a stationary state of the system. The question arises
if the quantum oscillator posesses further stationary states. In fact, there
exist an infinite number of such states which will be determined now.
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2.8 Stationary States of the Harmonic Oscillator

In order to find the stationary states of the quantum oscillator we consider
the function

, , jwt
W(z,t) = exp<2,/mhwa:e_“”t — AWt _ %xQ - u;) . (2.171)

We want to demonstrate that w(x,t) is invariant in time, i.e., for the prop-
agator (2.147) of the harmonic oscillator holds

o
W(z,t) = ’ dzo p(z,t|T0,t0) W(To, o) - (2.172)
— o
We will demonstrate further below that (2.172) provides us in a nutshell
with all the stationary states of the harmonic oscillator, i.e., with all the
states with time-independent probability distribution.
In order to prove (2.172) we express the propagator, using (2.147) and
the notation T' = t — ¢,

1
- _ LT mw 2
oz, tlzo, to) = € 2™ [m(l——e—?cﬂ)] X
mw , o g 1 4 72T mw 2z x.e T
X exp [Qh(% ) T T T e 1= ezt (2173

One can write then the r.h.s. of (2.172)

1
CLiwt mw 2 oo
I = ek [m} [ dn,exp( Bufaea) + Bl@)] (2.174)
where
mw 1 _|_6—2in
Eo(wo,7) = =%~ [:1:3 (m +1> (2.175)

2ze~ T R,
+ 2z, (W + 2\/@ e mo) + f(x)]
mw o 1 e 2T 2h

B(z) = -7~ [az ot T %6_%”“ — f(x)] (2.176)

Following the by now familiar strategy one choses f(z) to complete the
square in (2.175), namely,

. 2
1 Y 2x€71wT [ iy
f(:L’) = 5 (1 — e 2wT) <1_€—2sz + 2\/%6 to) . (2.177)
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This choice of f(x) results in

mw 2
EO(LEO,:C) = - 2% [l‘o 1 — e—2iwT
2iwT iwT 2
1 — 2wl [ 9pe—iv Eo
n e ve™™ o [ et
2 1— e 2T mw
_ muw 9

for some constant z, € C. Using (2.247) one obtains

1
+o00 Bl — —2iwT | 2
dzy eZe(@o®) — lﬂ(—el (2.179)
NS mw
and, therefore, one obtains for (2.174)
I = ezt ¢Bl@) (2.180)
For E(z), as given in (2.176, 2.177), holds
E(x) _ _% ) 1_|_e—2in ﬂ ity 21,26—2in
N 2h 1 — e 2T mw 1 — e 2T
—4 i xefin — 9 (1 o 672in) i efinto
V mw mw
mw 2 [ T —iwt 20 giwt
= —— |2° — 44/ —1ze + —e
2h mw mw
- —”;—;’xQ +2 %xe—m — 2wt (2.181)

Altogether, one obtains for the r.h.s. of (2.172)

. : 1
I = exp<2,/%xe“"t — AWt %xz — 5iwt) . (2.182)

Comparision with (2.171) concludes the proof of (2.172).

We want to inspect the consequences of the invariance property (2.171,
2.172). We note that the factor exp(2+/mw/h xe ™™ — e=2%t) in (2.171) can
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be expanded in terms of e~ n =1,2,.... Accoordingly, one can expand
(2.171)
o
Wat) = 3 exp[—iw(n + 1) ] du(2) (2.183)
9 - . n' p 2 n .
n=

where the expansion coefficients are functions of z, but not of £. Noting
that the propagator (2.147) in (2.172) is a function of ¢t — t, and defining
accordingly

O(z,x0it —to) = d(x,t|x0,t0) (2.184)

we express (2.172) in the form

o)

3 % expl—iw(n + 1) t] ¢n(x)

n=0 """

00 +o0 1 B
-y / dzo (2,203t — 1) — exp[—iw(m + 1) to] G (e(.185)
m=0" ~x® m

Replacing t — t + t, yields

o0

1 . ~
Z o exp[—iw(n + 1) (t +t,)] Pn(z)
n=0 """
oo +00 1 N
S / Ao (@, 205 ) — exp[—ico(m + 1) to] dun(2,) (2:186)
m=0" " ’
Fourier transform, i.e., [72°dt, expliw(n + 1) t,] -+, results in

% exp[—iw(n + 1) t] on(2)

+oo 1 -~
= dao ®(x, x5t — t5) = On (o) (2.187)
oo n!

or

expl—iw(n + 1)1] du(a)
+0o0 ~
= dzo ¢(x,t|T0,t0) exp[—iw(n + 1) to] dn(zo) . (2.188)
—00
Equation (2.188) identifies the functions ty, (z,t) = exp[—iw(n+1)t] ¢n(z)
as invariants under the action of the propagator ¢(z,t|z,,t,). In contrast to
W (z,t), which also exhibits such invariance, the functions 1, (x,t) are as-
sociated with a time-independent probablity density [ty (z,t)[> = |¢,(x)[?.
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Actually, we have identified then, through the expansion coefficients ¢y, ()
n (2.183), stationary wave functions vy, (x,t) of the quantum mechanical
harmonic oscillator

Un(a,t) = exp[—iw(n+ 1) t] N, do(z), n =0,1,2,... (2.189)

Here N,, are constants which normalize ¢, (z,t) such that

+o0

dxh/;(x t)| N2/ dz 2 (z) = (2.190)

is obeyed. In the following we will characterize the functions q@n(:c) and
determine the normalization constants N,. We will also argue that the
functions 1, (x,t) provide all stationary states of the quantum mechanical
harmonic oscillator.

The Hermite Polynomials

The function (2.171), through expansion (2.183), characterizes the wave
functions ¢,(x). To obtain closed expressions for ¢,(x) we simplify the
expansion (2.183). For this purpose we introduce first the new variables

y = ,/%x (2.191)

z = et (2.192)
and write (2.171)
W(xz,t) = 22e Y’/ w(y, z) (2.193)
where
w(y,z) = exp(2yz — 2%) . (2.194)

Expansion (2.183) reads then

w(y,z)z2e V2 = 22 i_o: (y) (2.195)

Z"
n!
or

S 2 H) (2.196)
n=0 """

where

Hu(y) = e dny) . (2.197)
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The expansion coefficients H,,(y) in (2.197) are called Hermite polyno-
mials which are polynomials of degree n which will be evaluated below.
Expression (2.194) plays a central role for the Hermite polynomials since it
contains, according to (2.194), in a ‘nutshell’ all information on the Hermite
polynomials. This follows from

871

pyel ) T Hp(y) (2.198)
which is a direct consequence of (2.196). One calls w(y, z) the generating
function for the Hermite polynomials. As will become evident in the present
case generating functions provide an extremely elegant access to the special
functions of Mathematical Physics®. We will employ (2.194, 2.196) to derive,
among other properties, closed expressions for H,,(y), normalization factors
for ¢(y), and recursion equations for the efficient evaluation of H, (y).

The identity (2.198) for the Hermite polynomials can be expressed in a
more convenient form employing definition (2.196)

2 0"

" _ o 2y z— 22 Yy —(y—=2)?
82’" w(y’ Z) 2=0 - 82” € 2=0 € 82” € 2=0
8” 2 2 an 2
— (=1 L v2) — (=) ¥ eV (2,199
(-1) G L (-1) G ( )

Comparision with (2.196) results in the so-called Rodrigues formula for the
Hermite polynomials
2 an 2
H,(y) = (-1)" €Y o e V. (2.200)
One can deduce from this expression the polynomial character of H,(y), i.e.,
that H,(y) is a polynomial of degree n. (2.200) yields for the first Hermite
polynomials

HO(y) = 1) Hl(y) = 23/7 HQ(y) = 4y2 _2’ H3(y) = 8y3 - 12ya
(2.201)

We want to derive now explicit expressions for the Hermite polynomials.
For this purpose we expand the generating function (2.194) in a Taylor

3 generatingfunctionology by H.S.Wilf (Academic Press, Inc., Boston, 1990) is a useful
introduction to this tool as is a chapter in the eminently useful Concrete Mathematics
by R.L.Graham, D.E.Knuth, and O.Patashnik (Addison-Wesley, Reading, Massachusetts,
1989).



48 Quantum Mechanical Path Integral
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Figure 2.1: Schematic representation of change of summation variables v and
pwton = v+ pand m = v — p. The diagrams illustrate that a summation
over all points in a v, p lattice (left diagram) corresponds to a summation
over only every other point in an n, m lattice (right diagram). The diagrams
also identify the areas over which the summation is to be carried out.

series in terms of y” z¢ and identify the corresponding coefficient c,, with
the coefficient of the p—th power of y in H,(y). We start from

ot LS5 (2 apre

v=0 p=0 vl ®
o v 1

=22, ( . ) (=DH(2g) 2t (2.202)
v=0 p=0 v H

and introduce now new summation variables
n=v+u, m=v—u 0<n<oo,0<m<n. (2.203)

The old summation variables v, u expressend in terms of n, m are

n -+ m n—m
= = . 2.204
v 5 M 5 ( )

Since v, u are integers the summation over n,m must be restricted such
that either both n and m are even or both n and m are odd. The lattices
representing the summation terms are shown in Fig. 7?. With this restriction
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in mind one can express (2.202)

<n '
€2yz — 22 Z Z n

m>0

2

(2y)™ . (2.205)

Since (n —m)/2 is an integer we can introduce now the summation variable
k= (n—-m)/2,0 <k < [n/2] where [z] denotes the largest integer p, p <
z. One can write then using m = n — 2k

o [n/2] | 1)k

Qyz—z — Z n‘ Z k‘

n=0

2y)"_2k : (2.206)

= Hn(y)

From this expansion we can identify H,, (y)

G VL —
Haly) = X 4 (n ok 2 (2.207)
2k .

This expression yields for the first four Hermite polynomials

HO(y) = 1, Hl(y) = 2y, HQ(y) = 4y2 -2, H3(y) = 8y3 —12y,...
(2.208)
which agrees with the expressions in (2.201).
From (2.207) one can deduce that H,(y), in fact, is a polynomial of
degree n. In case of even n , the sum in (2.207) contains only even powers,
otherwise, i.e., for odd n, it contains only odd powers. Hence, it holds

Hy(—y) = (=1)" Ha(y) - (2.209)

This property follows also from the generating function. According to (2.194)
holds w(—y, z) = w(y, —z) and, hence, according to 2.197)

i) =Y ) = Y Dy 2210)
n=0 n=0 : n=0 :

from which one can conclude the property (2.209).

The generating function allows one to determine the values of H,(y) at
y = 0. For this purpose one considers w(0,z) = exp(—z%) and carries out
the Taylor expansion on both sides of this expression resulting in

oo (_1)m 2m

>

m=0

Z H,( (2.211)
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Comparing terms on both sides of the equation yields

2 (0) = (-1

. Honp1(0) =0, n=01,2.. (2212

This implies that stationary states of the harmonic oscillator ¢o,11(z), as
defined through (2.188, 2.197) above and given by (2.233) below, have a node
at y = 0, a property which is consistent with (2.209) since odd functions
have a node at the origin.

Recursion Relationships

A useful set of properties for special functions are the so-called recursion
relationships. For Hermite polynomials holds, for example,

Hpi1(y) — 2yHp(y) + 2nHp—1(y) = 0, n=1,2,... (2.213)

which allow one to evaluate Hy,(y) from Hy(y) and Hi(y) given by (2.208).
Another relationship is

d
g HnW) = 2 Hoa(y), no= 1.2, (2.214)
y

We want to derive (?7?) using the generating function. Starting point of the
derivation is the property of w(y, z)

D wy,z) — 2y - 22)uly,2) = 0 (2215)

which can be readily verified using (2.194). Substituting expansion (2.196)
into the differential equation (2.215) yields

i —2yz H

Combining the sums and collecting terms with identical powers of z

n_

) = 0. (2.216)

nfl

N

Z [ Haa) — 20 Hay) + 20Ho1(9)] + Hily) — 2uHo(y) = 0
i (2.217)

3
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The reader should recognize the connection between the pattern of the dif-
ferential equation (??) and the pattern of the recursion equation (??): a
differential operator d/dz increases the order n of H, by one, a factor z
reduces the order of H,, by one and introduces also a factor n. One can then
readily state which differential equation of w(y, z) should be equivalent to
the relationship (??), namely, dw/dy — 2zw = 0. The reader may verify
that w(y, z), as given in (2.194), indeed satisfies the latter relationship.

Integral Representation of Hermite Polynomials

An integral representation of the Hermite polynomials can be derived starting
from the integral

400 . 9
I(y) = / dt e2Wt=t (2.219)
—00
which can be written
+00 . too
I(y) = eV’ dte (=) = v dze . (2.220)
— 50 —o0

Using (2.247) for a = i one obtains

I(y) = vae ¥ (2.221)

and, acording to the definition (2.226a),

1 reo
eV = 7 / dt 2t =1 (2.222)
™ J—00

Employing this expression now on the r.h.s. of the Rodrigues formula (2.200)
yields

= ey2 +Oodt ﬁ e?iyt—t2 _
VT o dy"

Hn(y) = (2.223)

The identity

A iyt _ (g G2yt -t (2.224)
dy™

results, finally, in the integral representation of the Hermite polynomials

A (—i)"ey2 +oo

LT dtthei=t = 0,1,2,...  (2.225)
ﬁ oo ) 9 9 9

Hy(y) =
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Orthonormality Properties

We want to derive from the generating function (2.194, 2.196) the orthogo-
nality properties of the Hermite polynomials. For this purpose we consider
the integral

/7 JFOO ! !
[IZ dyw(y, 2)w(y,2) eV = 62”/ dye~ =27 = /me?ss

—00
n /n

= r Z (2.226)

Expressing the 1.h.s. through a double series over Hermite polynomials using
(2.194, 2.196) yields

Z/ dy Hy (y H()y”Z Zz”

I'n
n,n'=0 n:

(2.227)

Comparing the terms of the expansions allows one to conclude the orthonor-
mality conditions

“+00
/ dy Ho(y) Ho(y) e = 270l /T S - (2.228)

—00

Normalized Stationary States

The orthonormality conditions (2.228) allow us to construct normalized sta-
tionary states of the harmonic oscillator. According to (2.197) holds

only) = eV /2 Hu(y). (2.229)
The normalized states are [c.f. (2.189, 2.190)]
Snly) = Nue 2 Hy(y) . (2.230)

and for the normalization constants N,, follows from (2.228)
+oo 9
N? / dye™¥ H2(y) = N22"n!y7m = 1 (2.231)
—00

We conclude
N, = —— (2.232)
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and can finally state the explicit form of the normalized stationary states

bnly) = ——— VP H,(y) | (2.233)

2nnl\/m

The stationary states (2.233) are presented forn = 0,1,2,3,4 in Fig. 77.
One can recognize, in agreement with our above discussions, that the wave
functions are even for n = 0,2,4 and odd for n = 1,3. One can also
recognize that n is equal to the number of nodes of the wave function. Fur-
thermore, the value of the wave function at y = 0 is positive for n = 0,4,
negative for n = 2 and vanishes for n = 1,3, in harmony with (77?).

The normalization condition (2.231) of the wave functions differs from
that postulated in (2.189) by the Jacobian dz/dy, i.e., by

dz

dy

- {%F . (2.234)

The explicit form of the stationary states of the harmonic oscillator in terms
of the position variable z is then, using (2.233) and (2.189)

1
1 mwld _ mwe? [mw

Completeness of the Hermite Polynomials

The Hermite polynomials are the first members of a large class of special
functions which one encounters in the course of describing stationary quan-
tum states for various potentials and in spaces of different dimensions. The
Hermite polynomials are so-called orthonogal polynomials since they obey
the conditions (2.228). The various orthonogal polynomials differ in the
spaces 1 C R over which they are defined and differ in a weight function
w(y) which enter in their orthonogality conditions. The latter are written
for polynomials p,(z) in the general form

Q
where w(z) is a so-called weight function with the property

w(z) > 0, w(z) = 0 only at a discrete set of points x, € Q  (2.237)
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and where I,, denotes some constants. Comparision with (2.228) shows that
the orthonogality condition of the Hermite polynomials is in complience with
(2.236 , 2.237) for Q = R, w(z) = exp(—2?), and I, = 2"n!\/7.

Other examples of orthogonal polynomials are the Legendre and Jacobi
polynomials which arise in solving three-dimensional stationary Schrodinger
equations, the ultra-spherical harmonics which arise in n—dimensional Schro-
dinger equations and the associated Laguerre polynomials which arise for
the stationary quantum states of particles moving in a Coulomb potential.
In case of the Legendre polynomials, denoted by Pj(x) and introduced in
Sect. ?? below [c.f. (77, 2?7, 72, 27| holds Q@ = [-1,1], w(z) = 1, and
Iy = 2/(2¢+1). In case of the associated Laguerre polynomials, denoted by
L%‘” () and encountered in case of the stationary states of the non-relativistic
[see Sect. 777 and eq. 77?] and relativistic [see Sect. ?? and eq. (?7?] hydrogen
atom, holds Q@ = [0, +oo[, w(z) = z%*, I, = I'(n+a+1)/n! where I'(2)
is the so-called Gamma function.

The orthogonal polynomials p,, mentioned above have the important
property that they form a complete basis in the space F of normalizable
functions, i.e., of functions which obey

/de fAz) wlz) =< oo, (2.238)

where the space is endowed with the scalar product

(flg) = [ do f@)gla) w(@) =<0, fig e F. (2.239)
As a result holds for any f € F

f(x) =" cnpnlx) (2.240)

where
Cn = % /Qda? w(z) f(z) pn(z) . (2.241)

The latter identity follows from (2.236). If one replaces for all f € F:
flx) — w(x) f(x) and, in particular, p,(z) — +/w(z)py(x) the scalar
product (2.239) becomes the conventional scalar product of quantum me-
chanics

(flo) = [ do @) g(@). (2.242)
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Let us assume now the case of a function space governed by the norm
(2.242) and the existence of a normalizable state 1(y, t) which is stationary
under the action of the harmonic oscillator propagator (2.147), i.e., a state
for which (2.172) holds. Since the Hermite polynomials form a complete
basis for such states we can expand

bt = 3 ealt) 2 Holy) (2.243)
n=0

To be consistent with(2.188, 2.197) it must hold ¢, (t) = d,, exp[—iw(n+3)¢]
and, hence, the stationary state ¥ (y,t) is

> 1
W(y1) = 3 dn expl—iw(n + 3)i] e V12 Hy(y) . (2.244)
n=0
For the state to be stationary |¢(x,t)[?, i.e.,
N did expliw(m —n)t] eV Hy(y)Hin(y) | (2.245)
n,m=0

must be time-independent. The only possibility for this to be true is d,, = 0,
except for a single n = n,, i.e., ¥(y,t) must be identical to one of the
stationary states (2.233). Therefore, the states (2.233) exhaust all stationary
states of the harmonic oscillator.

Appendix: Exponential Integral

We want to prove

+00 400 ( )n
I = [dy ... [dy, e2iwtiomm — 1T 2.246
/y1 /yn c det(a) ’ ( )
—00 —0o0
for det(a) # 0 and real, symmetric a, i.e. a’ = a. In case of n = 1 this
reads
+oo . 1
/ dreio® = (/T (2.247)
oo a

which holds for a € C as long as a # 0.
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The proof of (2.246) exploits that for any real, symmetric matrix exists
a similarity transformation such that

ain 0 0
0 dyp ... 0

Slas = a = . , : (2.248)
0 0 ... G

where S can be chosen as an orthonormal transformation, i.e.,
s’Ss =1 o S=S". (2.249)

The agp are the eigenvalues of a and are real. This property allows one
to simplify the bilinear form »77; y;ja;ryx by introducing new integration

variables
n

gio= > (S wk = > Skl - (2.250)
k ;

The bilinear form in (2.246) reads then in terms of g;

n n
Shevianye = > 90500k SkmUm
7,k fm
n n
= > 5(ST)ejajkSkmm
7.k fm
n
= > Giajin (2.251)
j?k
where, according to (2.248, 2.249)
n
ajr = Z(ST)jlalmSmk . (2.252)
Lm
For the determinant of a holds
n
det(a) = [] ay; (2.253)
j=1

as well as

det(a) = det(S™'aS) = det(S7')det(a) ,det(S)
= (det(S))7! det(a) det(S) = det(a) . (2.254)
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One can conclude

det(a) = ] aj; - (2.255)
j=1
We have assumed det(a) # 0. Accordingly, holds
ITaj; #0 (2.256)
j=1

such that none of the eigenvalues of a vanishes, i.e.,
aj; #0, forj=1,2,...,n (2.257)

Substitution of the integration variables (2.250) allows one to express
(2.250)

+o00 400
I = /dgjl... /dgjn

where we introduced the Jacobian matrix

ayla"wgn)

det (‘M)' e 2k BRI (2.258)

8(y17 v 7yn)
J= "= 2.259
8(917-.-7%1) ( )
with elements 5
Jjs = agi . (2.260)
According to (2.250) holds
J =5 (2.261)
and, hence,
3(3/1, ) yn)
det(——=——==) = det(S) . 2.262
Gty — der(s) (2.262)
From (2.249) follows
I = det(S7S) = (detS)’ (2.263)

such that one can conclude

detS = +1 (2.264)
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One can right then (2.258)
+oo +00
I = /dgl /dgn et 2ok kT
—0o0 —00
+oo +oo n +oo
= / djy eI / e | | / dij "R (2.265)
—00 —0o0 k=1 _"0o
which leaves us to determine integrals of the type
+o0o
/ dzr e’ (2.266)
—0oQ

where, according to (2.257) holds ¢ # 0.

We consider first the case ¢ > 0 and discuss the case ¢ < 0 further below.
One can relate integral (2.266) to the well-known Gaussian integral

400
/dw e = \/§ ,e>0 . (2.267)

by considering the contour integral

J = fdz e = (2.268)
vy

along the path v = v1 4+ 72 + 73 + 74 displayed in Figure ?7. The con-
tour integral (2.268) vanishes, since ¢i* is a holomorphic function, i.e., the
integrand does not exhibit any singularities anywhere in C. The contour
intergral (2.268) can be written as the sum of the following path integrals

J = J1 + Jo+ J3 + Jy; Jp = j{dz eiCZQ (2.269)
Tk

The contributions J; can be expressed through integrals along a real co-
ordinate axis by realizing that the paths 7, can be parametrized by real
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coordinates x

p L,
Yiz=1x Ji= [ dx e
P
Yoiz=1T+Dp Jo = [idx e limtp)
0
—V2p -
v3:iz=Vizx J3= [ Vidx eic(Viz)?
Vap (2.270)
V2p
= Vi [ dx e—ce?
. —V2p
Y42 =1x — P Jy= [idx eiciz—p)? ,
—p
for x,p € R.

Substituting —x for z into integral J4 one obtains

0
Jy = [(—i) dx eie(—iz+p)®

i da e’ =, (2.271)

Il
St — —

We will now show that the two integrals Jo and Jy vanish for p — +4oc0.
This follows from the following calculation

P
lim |Jaora] = lim |/z dx eic(im+p)2|
p—+00 p—+00
0

IN

p—Foo

p

lim / li| da "W =7)| |e=2erp| | (2.272)
0

It holds \eic(p2_x2)| = 1 since the exponent of e is purely imaginary. Hence,

p
lm |Jaor4] < lim /dm |e_2‘3xp]
p—-+00 p——+00

0

= lim — = 0. (2.273)
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Figure 2.3: Contour path v in the complex plain.



62 Quantum Mechanical Path Integral

Ja and Jy do not contribute then to integral (2.268) for p = 4+00. One can
state accordingly

[e.9] oo
= /dx et — i /d:c e = 0 . (2.274)
—00 —00
Using 2.267) one has shown then
oo .
/ dz e = (/T . (2.275)

One can derive the same result for ¢ < 0, if one chooses the same contour
integral as (2.268), but with a path ~ that is reflected at the real axis. This
leads to

/dx e 4 /< /d:c e =0 (2.276)

7(11‘ e’ \/> \/7 (2.277)

We apply the above results (2.275, 2.277) to (2.265). It holds

J = 2.278
ks \/H —10jj ( )

Noting (2.255) this result can be expressed in terms of the matrix a

and (¢ < 0)

(im)"
det(a)

I = (2.279)

which concludes our proof.
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