
Solutions to Problem Set 4/Problem 5
Physics 480 / Fall 1999

Professor Klaus Schulten / Prepared by Guochun Shi

Problem 5: Algebraic Solutions for Stationary States of Morse Po-
tential [L. Infeld and T. E. Hull, The Factorization Method, Rev. Mod.
Phys. 23, 21–68 (1951)]

The following problem will demonstrate that the method of creation and anni-
hilation operators A±, introduced for the linear harmonic oscillator, can be gen-
eralized to other potentials. For this purpose we consider the one-dimensional
time-independent Schrödinger equation[

− h̄2

2m
d2

dy2
+ U(y)

]
φ(y) = E φ(y) (1)

for the so-called Morse potential often employed to model the interaction be-
tween atoms and molecules (D > 0)

U(y) = D [ e−2ay − 2 e−ay ] . (2)

We seek to determine the eigenvalues and wave functions of the bound states of
the Morse potential.

(a) Show

1. For the bound states holds E < 0. [Hint: Plot the potential (2).]

2. The lowest eigenvalue should be

Eo = −D + ah̄

√
D

2m
− ε, ε > 0 . (3)

[Hint: Compare the plot of the potential (2) with a plot of its quadratic
expansion at its minimum.]

3. Provide an estimate for the number of stationary bound states of the
Morse potential. Evaluate for this purpose the classical action integral∫
dy p(y) for motion at E = 0.

(b) Show that the stationary Schrödinger equation for the Morse potential
through the transformation of variables

x = −ay + ln

(√
8mD
ah̄

)
, (4)
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s+
1
2

=
√

2mD
ah̄

, (5)

t2 = −2mE
a2h̄2 > 0 (6)

yields

Hs φt(x) =
[
− d2

dx2
+

1
4
e2x −

(
s+

1
2

)
ex
]
φt(x) = −t2φt(x) (7)

where
Hs =

2m
a2h̄2 H , s defined through (5). (8)

Consider in the follwing s as a variable and t as a constant. Show that (7) is
equivalent to

A−s+1A
+
s+1 φ

(s)
t (x) = [(s+ 1)2 − t2]φ(s)

t (x) (9)

as well as to
A+
s A
−
s φ

(s)
t (x) = [ s2 − t2 ]φ(s)

t (x) (10)

where
A±s = ∓ d

dx
+

ex

2
− s . (11)

(c) Show that for fixed t the operators A+
s , A

−
s generate new solutions to

Eq. (7) according to the rule

A+
s+1 φ

(s)
t (x) = cs φ

(s+1)
t (x) , (12)

A−s φ
(s)
t (x) = ds φ

(s−1)
t (x) . (13)

For the normalization factor ds holds (as long as the functions φ
(s)
t (x) and

φ
(s−1)
t (x) are normalizable)

d2
s = s2 − t2 . (14)

Why should hold s > t?

(d) Equation (7) above can only have bound states, i.e., normalizable so-
lutions, for s > t. This implies that the sequence . . . A−s−2A

−
s−1A

−
s φ

(s)
t (x) for

s − n < 0 leads to a solution which is not admissable as a bound state. Hence,
the sequence must break up for some so, i.e., there must exist an so for which
holds

A−so φ
(so)
t (x) = 0 . (15)

Show that this property implies so = t and s = t, t+ 1, t+ 2 . . .
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(e) Argue under which condition the derivation in (d) yields the allowed
negative eigenvalues for the Morse potential

En = −D + ah̄

√
2D
m

(
n+

1
2

)
− a2h̄2

2m

(
n+

1
2

)2

,

n = 0, 1, 2, . . . ≤
√

2mD
ah̄

− 1
2
. (16)

Rationalize the upper bound for n in view of the derivations in (c), (d).

(f) Assume in the following D = a = 1 and
√

2m/h̄ = 3. Determine and
plot the wave function for n = 0. To normalize the wave function use

Γ(z) =
∫ ∞

0

dt tz−1 e−t (17)

where Γ(z) is the Gamma function.

(g) How can one obtain also the stationary states corresponding to the
energies (16) for n > 0. Determine and plot the wave functions of these states
using Mathematica.

Solution

(a) The potential depicted in Figure 1 has a shape which yields classical
bounded motion only for E < 0. In fact, for E ≥ 0 there are two classical
turning points, one at y < 0 and one at y → ∞.

To obtain an estimate for the lowest energy of the stationary states of the
system we expand the potential around its minimum

U(y) ≈ Uo(y) = U(ymin) +
1
2
d2U

dy2

∣∣∣∣
ymin

(y − ymin)2 . (18)

ymin can be determined from dU(ymin)/dy = 0 from which follows

−2Da
(
e−2aymin − e−aymin

)
= 0 (19)

, i.e., exp(−aymin) = 1, or
ymin = 0 . (20)

Using

U(ymin) = −D ,
d2U

dy2

∣∣∣∣
ymin

= 2Da2 (21)
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Figure 1: Comparision of Morse potential U(y) (2) and its quadratic approxi-
mation Uo(y) (22) for D = a = 1.

one obtains for the quadratic approximation (18)

Uo(y) = −D + Da2y2 . (22)

Stationary states exist for Uo(y) for the energies

E(o)
n = −D + h̄ a

√
2D
m

(n +
1
2

) , n = 0, 1, . . . ∞ (23)

In Figure 1 we compare the Morse potential (2) with its quadratic approximation
(18). Since the Morse potential U(y) is flatter than the harmonic potential Uo(y)
one expects that the energy values of the stationary states of U(y) are lower
than those of Uo(y). In particular, (3) should hold for the lowest energy bound
state.

Furthermore, one expects that U(y) has only a finite number of stationary
bound states. The number of bound states can be estimated using the classical
action integral

S(E) =
2
h̄

∫ yr(E)

y`(E)

dy
√

2m [E − U(y)] (24)

where y`,r(E) are the left/right classical turning points at energy E. One expects
that the quantity s defined through

S(0) = ( s +
1
2

) 2π (25)
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provides an upper bound for the number of bound states. One obtains in the
present case for the left turning point y`(0) = − 1

a ln2 and yr(0) → ∞ and,
hence,

S(0) =
∫ ∞
− 1
a ln2

dy

√
8mD
h̄2 (2e−ay − e−2ay) . (26)

The change of variables y′ = 2 exp(ay) yields

S(0) =

√
32mD
h̄2a2

∫ ∞
1

dy′
√
y′ − 1
y′

. (27)

The integral on the r.h.s. has the value π/2 and, hence,

S(0) =
2π
h̄a

√
2mD (28)

Comparision with (25) yields

s +
1
2

=

√
2mD
h̄2a2

. (29)

The related integer [s] (n = [s] is defined to be the largest integer with the
property n ≤ s.) provides then a semiclassical estimate for the number of
bound states of the Morse potential.

(b) The suggested change of variables (4) is to be applied to the time-
independent Schrödinger equation (1). One obtains(

− d2

dx2
+

1
4
e2x −

√
2mD
h̄2a2

ex

)
φE(x) =

2mE
h̄2a2

φE(x) (30)

Employing (5,6) – note that according to (29) the quantity s introduced here
is an upper bound for the number of bound states of the potential – the time-
independent Schrödinger equation is(

− d2

dx2
+

1
4
e2x − (s+

1
2

) ex
)
φt(x) = −t2 φt(x) . (31)

The label ‘t’ denotes the energy of the respective states.
To demonstrate that (9) is equivalent to (31) we insert the definition (11)

into (9) and obtain

A−s+1A
+
s+1 φ

(s)
t (x)

=
(

d

dx
+

1
2
ex − (s+ 1)

) (
− d

dx
+

1
2
ex − (s+ 1)

)
φ

(s)
t (x)

=
(
− d2

dx2
+

1
4
e2x − (s+

1
2

) ex + (s+ 1)2

)
φ

(s)
t (x) (32)
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which is equivalent to (9). Hence, (9) states the time-dependent Schrödinger
equation for the bound states of a Morse potential characterized through its
s–value [see (5, 29)].

Similarly, one can demonstrate that (10) is equivalent to (31). Inserting (11)
into (10) one obtains

A+
s A
−
s φ

(s)
t (x) =

(
− d

dx
+

1
2
ex − s

) (
d

dx
+

1
2
ex − s

)
φ

(s)
t (x)

=
(
− d2

dx2
+

1
4
e2x − (s+

1
2

) ex + s2

)
φ

(s)
t (x) . (33)

(c) In order to prove property (12) we demonstrate that A+
s+1 φ

(s)
t (x) is

a solution of the time-dependent Schrödinger equation for a Morse potential
characterized through s+1. For this purpose we show that A+

s+1 φ
(s)
t (x) satisfies

(10) for s → s+ 1, i.e., we prove

A+
s+1A

−
s+1A

+
s+1 φ

(s)
t (x) = [ (s+ 1)2 − t2 ]A+

s+1 φ
(s)
t (x) . (34)

In fact, using (9) one can rewrite the l.h.s. of (34)

A+
s+1A

−
s+1A

+
s+1 φ

(s)
t (x) = A+

s+1 [ (s+ 1)2 − t2 ]φ(s)
t (x) . (35)

Similarly, to prove (12) we demonstrate that A−s φ
(s)
t (x) is a solution of the time-

dependent Schrödinger equation for a Morse potential characterized through
s− 1. For this purpose we show that A−s φ

(s)
t (x) satisfies (9) for s → s− 1, i.e.,

we prove
A−s A

+
s A
−
s φ

(s)
t (x) = [ s2 − t2 ]A−s φ

(s)
t (x) . (36)

This follows again readily noting that (10) allows one to rewrite the l.h.s. of (36)

A−s A
+
s A
−
s φ

(s)
t (x) = A−s [ s2 − t2 ]φ(s)

t (x) . (37)

We want to determine now the normalization constant ds defined through
(13). We assume that the states φ(s)

t (x) are normalized, i.e.,∫ +∞

−∞
dx |φ(s)

t (x)|2 =
∫ +∞

−∞
dx |φ(s−1)

t (x)|2 . (38)

We will exploit in our derivation that the operators A+
s and A−s are adjoint to

each other, i.e., it holds,∫ +∞

−∞
dx f(x)A+

s g(x) =
∫ +∞

−∞
dx g(x)A−s f(x) . (39)
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This property follows readily from the definition (11), integration by parts and
using that, for bounds states, f(x), g(x) must vanish at x → ±∞. It follows
then

|ds|2 =
∫ +∞

−∞
dxA−s φ

(s)
t (x)A−s φ

(s)
t (x) =

∫ +∞

−∞
dxφ

(s)
t (x)A+

s A
−
s φ

(s)
t (x) .

(40)
Using (10) yields

|ds|2 = s2 − t2 . (41)

Obviously, s > t must hold for the latter equation to be true.

(d) According to (14) the l.h.s. of (15) is proportional to s2
o − t2. This factor

vanishes for so = t. The solution of (15) is then the function φ
(so)
so (x). The

action of the operator A+
so+1 according to (12) yields the state φ(so+1)

so (x), the
operator A+

so+2 yields the function φ
(so+2)
so (x).

(e) We are actually interested in the eigenfunctions of a fixed Morse potential,
i.e., for fixed s. According to our construction we can state that the bound state
wave functions of the type

φ(s)
s (x), φ(s)

s−1(x), φ(s)
s−2(x), . . . , φ(s)

s−[s](x) (42)

exist. The energies of these states according to (5, 6, 7) are

En = − h̄
2a2

2m
( s − n )2

, n = 0, 1, . . . [s] , s =
√

2mD
h̄ a

− 1
2
. (43)

Note that in case s < 0 the Morse potential does not have any bound state.
One can express En as given in (43)

En = −D + h̄ a

√
2D
m

(
n +

1
2

)
− h̄2a2

2m

(
n +

1
2

)2

. (44)

which is identical to (16). The first two terms agree with the eigenvalues (23)
of the quadratic approximation (18, 22) of the Morse potential. The third term
is the non-harmonic correction.

(f) The wave function corresponding to E0, i.e., to n = 0 in (16, 43), is
defined through

A−s φ
(s)
s (x) = 0 . (45)

According to (11) this corresponds to the differential equation

d

dx
φ(s)
s (x) =

(
−1

2
ex + s

)
φ(s)
s (x) (46)
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or
d

dx
lnφ(s)

s (x) =
(
−1

2
ex + s

)
. (47)

The solution of this equation is

φ(s)
s (x) = C ′ exp

(
−1

2
ex + s x

)
. (48)

Using x = −a y + ln (2s+ 1), which follows from (4, 5), the function expressed
in terms of the original coordinate y is

φ(s)
s (x) = Cs exp

(
−(s+

1
2

)e−ay − s a y
)
. (49)

The normalization factor is determined through the condition

|Cs|2
∫ +∞

−∞
dy exp

(
−(2s+ 1)e−ay − 2 s a y

)
= 1 . (50)

This condition can be written

|Cs|2a−1

[ ∫ ∞
0

dy exp (−(2s+ 1)ey + 2 s y )

+
∫ ∞

0

dy exp
(
−(2s+ 1)e−y − 2 s y

) ]
= 1 . (51)

Introducing the variable t = ey in the first integral, t = e−y in the second
integral and combining the resulting expressions yields

|Cs|2a−1

∫ ∞
0

dt t2s−1 exp[−(2s+ 1)t]

= |Cs|2
1

(2s+ 1)2sa

∫ ∞
0

dt t2s−1 exp[−t] = 1 . (52)

Employing the definition (17) of the gamma function yields

Cs =

√
(2s+ 1)2sa

Γ(2s)
. (53)

The ground state wave function is then

φ(s)
s (y) =

√
(2s+ 1)2sa

Γ(2s)
exp

[
−(s+

1
2

) e−ay − s a y
]
. (54)

Figure 2 shows a plot of the wave function for s = 3.
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Figure 2: Ground state wave function φ
(s)
s (y), i.e., (54), for Morse potential

with D = a = 1 and s = 3.

(g) For s = 3 the Morse potential has three bound states, i.e., beside the state
(54), also the states φ(s)

s−1 and φ
(s)
s−2. These states can be determined from the

states φ(s−1)
s−1 and φ

(s−2)
s−2 , respectively. One applies for this purpose (12). The

constants cs, which appear in (12), are cs =
√

(s+ 1)2 − t2, an expression
which can be derived in an analogous way to expression (41). Hence,

φ
(s)
s−1(y) =

A+
s√

s2 − (s− 1)2
φ

(s−1)
s−1 (y) (55)

φ
(s)
s−2(y) =

A+
s A

+
s−1√

[s2 − (s− 2)2] [(s− 1)2 − (s− 2)2]
φ

(s−2)
s−2 (y) (56)

where
A+
s = − d

dy
+ s e−ay − s . (57)

It is of interest to compare these wave functions graphically to the corresponding
wave functions of the potential Uo(y), i.e., to the harmonic oscillator wqve
functions for n = 1, 2.
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