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Prof. Klaus Schulten / Prepared by Pinaki Sengupta & Ioan Kosztin

Problem 1: Wave-Packet in 1-D Box
We start by defining suitable dimensionless parameters. We choose a =

1, ~ = 1, τ = 8mar2

π2
~

= 1 This implies m = π2/8 and En = n2. i) With the
above choice of parameters, the range of E is E = [2.5, 6.5] and σ is given
to be 0.5. We evaluate the wavefunction as a function of x for different
values of t. for this purpose we use Mathematica to evaluate eqn.(3.113)
of the lecture notes with ψ0(x0, t0) given by eqn.(3.115) of the notes. The
integrations are carried out numerically and 16 terms are retained in the
sum.

ii) For this part k0 = π with the present choice of units. σ is taken as
0.2.
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Figure 1: (i)
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Figure 2: (ii)

Problem 2: Particle in 2-dimensional box

The stationary states wave function are determined by the time-independent
Scrodinger equation.

− ~
2

2m
(∂2
x + ∂2

y)φE(x, y) = EφE(x, y)

Since the Hamiltonian is a sum of operators each dependent only on a
single variable (viz. x or y), one can express

φ(x, y) = φ1(x)φ2(y)

where,

− ~
2

2m
∂2
xφ

1(x) = E1φ
1(x)

− ~
2

2m
∂2
yφ

2(y) = E2φ
2(y)

with φ1(±a) = 0 = φ2(±a) and E1 + E2 = E

2



We note that the box is symmetric with respect to the origin. Hence, the
solutions obey this symmetry as well. Proceeding as in the one-dimensional
case we define two types of solutions for φ1(x), φ2(y):

the even solution φ
(e)
E1

(x) = A1 cos k1x φ
(e)
E2

(y) = A2 cos k2y

the odd solution φ
(o)
E1

(x) = A1 sin k1x φ
(o)
E2

(y) = A2 sin k2y
As derived in the lecture notes the boundary conditions imply that k1

and k2 can take only discrete set of values kn, nεN .
kn = nπ

2a , n = 1, 3, 5, ... for even solutions
and kn = nπ

2a , n = 2, 4, 6, ... for odd solutions
The corresponding energy values are given by En = ~

2π2

8ma2n
2, n = 1, 2, 3, ...

With this φ1(x), φ2(y) take the form

φ1(e)
n (x) = A1n cos

nπx

2a

φ2(e)
n (y) = A2n cos

nπy

2a

φ1(o)
n (x) = A1n sin

nπx

2a

φ2(o)
n (y) = A2n sin

nπy

2a

Normalisation of the wave functions implies A1n = A2n =
√

1
a Thus the

complete wave functions are give by

φn1,n2(x, y) =
1
a

{
cos n1πx

2a cos n2πy
2a for n1, n2 = 1, 3, 5...

sin n1πx
2a sin n2πy

2a for n1, n2 = 2, 4, 6...

with energy

En1,n2 =
~

2π2

8ma2
(n2

1 + n2
2) n1, n2 = 1, 2, 3...

Symmetries
A 2-d box containing a particle has the following symmetries:

1. Rotation by π about x and y axis. This has been exploited in deriving
the stationary states.

2. Since the sides are equal a rotation by π/2 also leaves the system
unaltered. This additional symmetry is reflected in the degeneracy of
the energy levels.
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n1, n2 E/hbar
2π2

8ma2 degeneracy
1,1 2 single
1,2 5 two-fold
2,2 8 single
1,3 10 two-fold
2,3 13 two-fold

Problem 3:Triangular Quantum Billiard

3a). Substituting the given wave functions in the Schrodinger equation
yeilds

− ~
2

2m
(∂2
x + ∂2

y)ψ(j)
m,n(x, y) = Em,nψ

(j)
m,n(x, y), for j = 1, 2

with Em,n = 4/3(m2 + n2 −mn)( 2π√
3L

)2

In terms of ρ2 and ρ3 the wavefunction ψ2
m,n(x, y) can be expressed as

ψ(2)
m,n(x, y) = sin[(2m− n)

2π
3
√

3L
(ρ2 − ρ3)] sin[n

2π√
3L

(ρ2 + ρ3)]

− sin[(2n−m)
2π

3
√

3L
(ρ2 − ρ3)] sin[m

2π√
3L

(ρ2 + ρ3)]

+ sin[−(m+ n)
2π

3
√

3L
(ρ2 − ρ3)]sin[(m− n)

2π√
3L

(ρ2 + ρ3)]

Putting ρ2 = 0 we get,

ψ(2)
m,n(x, y) = sin[(2m− n)

2π
3
√

3L
(−ρ3)] sin[n

2π√
3L

(ρ3)]

− sin[(2n−m)
2π

3
√

3L
(−ρ3)] sin[m

2π√
3L

(ρ3)]

+ sin[−(m+ n)
2π

3
√

3L
(−ρ3)]sin[(m− n)

2π√
3L

(ρ3)]

On simplification this gives 0. This implies that the wavefunction van-
ishes at the edge of the triangle defined by ρ2 = 0. Proceeding exactly
similarly it can be shown that both the wavefunctions vanish at all the sides
of the triangle.

3b.). The plots for ψ(1)
2,1(x, y) and ψ

(2)
3,1(x, y) are shown below.
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Figure 3: ψ(1)
2,1(x, y)
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Figure 4: ψ(2)
3,1(x, y)
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3c.).Symmetries: ψ(1)
m,n(x, y) is symmetric under reflection about the x-

axis while ψ(2)
m,n(x, y) is antisymmetric. Both the wavefunctions remain un-

changed under rotation by 2π/3 around the origin.
The path of a particle in an equilateral triangle can be considered to be

lying in a 3D domain of phase space whose co-ordinates are the position
q→ = (x, y) and the path direction θ. The path lies in a sequence of replicas
of the tiangle ( sheets) situated at different values of θ. The sheets are
obtained by the reflection of the triangle along its edges. Reflection at a
boundary corresponds to jumoing between 2 sheets in q→, θ space. The six
sheets form a hexagon. A path in this triangle is represented in thia hexagon
as a straight line with constant direction. The actions corresponding to the
three paths parallel to the 3sides of triangle are

I1 = −3px
4π

+
√

3py
4π

I2 =
3px
4π

+
√

3py
4π

I3 =
√

3py
2π

Quantization of the actions give the integers m and n. 3d). As we found in
part (a) the stationary states energies are given by

Em,n = ~
2π2

2m 4/3(m2 + n2 −mn)( 2π√
3L

)2

Problem 4:Tunnelling through a delta barrier

4a). The Schrodinger eqn. is given by

− ~
2

2m
d2φk(x)
dx2

+ U(x)φk(x) = Ekφk(x)

where U(x) = U0∂(x) and Ek = ~
2k2

2m
Integrating the solution from −ε to +ε, we get

− ~
2

2m
[φ
′
k(ε)− φ

′
k(−ε)] + U0φk(0) = Ek

∫ ε

−ε
φk(x)dx

∼= 2εEkφk(0)

Taking the limit ε→ 0, we have
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− ~
2

2m
lim
ε→ 0 [φ

′
k(ε)− φ

′
k(−ε)] + U0φk(0) = 0

lim
ε→ 0 [φ

′
k(ε)− φ

′
k(−ε)] =

2mU0

~
2

φk(0)

4b. The wave-function of particles impinging from the left is given by
φk(x) = Aeikx, k2 = 2mE

~
2

After incidence on the potential, the transmitted and reflected waves are
given by

φk(x) = Aeikx +Be−ikxfor(x < 0)

φk(x) = Ceikxfor(x > 0)

Continuity of the wavefunction and discontinuity of the derivative of the
wavefunction at x = 0 give

A+B = C

ik(C −A+B) = fC

f =
2m
~

2
U0

This gives,

B = − f

f − 2ik
A

C = − 2ik
f − 2ik

A

B
The transmission coefficient is given by

T = | j>
jin
|

=
|φtransk |2

|φink |2

=
~

4k2

m2U2
0 + ~

4k2

=
~

2E

~
2E + mU0

2
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4c.) For a double delta function potential at x = 0 and x = a, the
wavefunctions in the three regions are given by

ΨI = Aeikx +Be−ikx x < 0

ΨII = Ceikx +De−ikx 0 < x < a

ΨIII = Eeikx x > a

The boundary conditions at X = 0 and X = a give

A+B = C +D

ik(C −D −A+B) = f(C +D)

Ceika +De−ika = Eeika

ik[Eeika − Ceika +De−ika] = fEeika

Solving the above equations we get for B,

B = −−f
2 + f2e2ika + 2ikf + 2ikfe2ika

−f2 + 4k2 + +4ikf + f2e2ika
A

The transmission coefficient is given by

T = 1− |B|
2

|A|2

= 16k4/{16k4 + 8k2f2 + 8k2f2cos(2ka) + 2f4 − 2f4cos(2ka) + 8kf3sin(2ka)}
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4d.)
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Figure 5: T vs. k

4e). The wavefunction in the region 0 < x < a for the first 2 maxima of
T is shown below.
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Figure 6: E = E1
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Figure 7: E = E2

4f.) The wavefunctions in the region 0 < x < a corresponding to the first
two maximas of T corresponds to the levels n = 1 and n = 2 of a particle
in a box.
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