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1 1
L(z,z,7) = §mz'2 — EmwQCEZ + xF(7) (1)
The classical equation of motion is given by the Euler-Lagrange equation
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(b) The function £ = & + iwz obeys the following differential equation
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with the general solution
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Now
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z(r) = —Im{&} W asinwr + beoswr + — dsF(s)sinw(t —s), (5)
w mw Jy,

where the constants a and b are related to £ and can be determined by using
the boundary conditions x(7 = tg) = z¢ and z(7 = ¢) = 2. One obtains
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Thus, the corresponding classical path is given by
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The first term on the RHS in (7) corresponds to the classical path of the har-
monic oscillator in the absence of the driven force F, i.e.,
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The last two terms on the RHS in (7) can be transformed as follows
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X[sinw(r — tg) sinw(t — s) — sinw(t — to) sinw(r — 5)] =
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where we have used the identity
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Finally
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(¢) Our Lagrangian (1) coincides with the one given by Eq.(128) in the lecture
notes provided that we take c(t) = mw? and e(t) = —F(t). Therefore, we can use
directly the result obtained in the lecture notes for the propagator ¢(x, t|zo, %),
ie.,

m

otwtiroto) = | g ] oo Esteate ] (12)

where f(t,t0) is the solution of the following problem (see Eqgs. (148)-(149) in
the lecture notes)
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d’f _ _e®) p_ 2
a2 — f = —w f )
{ ﬁtovto) =0 and  f'(to,t0) =1. (18)

Hence 1
fto,t) = » sinw(t — o) . (14)

Pluging (14) into Eq.(12) one obtains the desired result. Note that the effect of
the external force F' shows up only in S[x.(7)] but not in the function f(to,t)
which has the same expression as that corresponding to the unperturbed har-
monic oscillator.
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Above, firstly we partially integrated mgil, and secondly, we expressed % in
terms of the equation of motion (2). On the other hand, Eqgs.(11) and (12) yield

. x — xpcosw(t — to) 1 / .
alto) = — dsF t—s),
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Inserting now Eqs.(16) and (10) in (15), after some simple algebra, one obtains
the desired result

Sl = e
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(e) Inserting F(1) = Fof(7) (0(7) is the step function, i.e., 8(t) =1 for 7 > 0
and 6(7) = 0 for 7 < 0) into Eq.(17) and carrying out the integrals one finds
that
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This, with Fy = mw?a, yields
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Q.E.D.

The harmonic oscillator driven by the constant external force Fy is equivalent
with a free but displaced harmonic oscillator. The displacement of the oscillator
is a, i.e., the classical equilibrium position is * = a and not x = 0.
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The integral in (19) is Gaussian and can be easily evaluated by making use of
the formula
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The result of the integral is
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Inserting (21) into (19) and keeping in mind that
t iwt
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one obtains the desired result, namely

mw\ i iwt mwa? mw 9
U(z,t) = (ﬁ) exp [—7 (1 - ﬂ exp{—ﬁ(x— a)—
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(g) In (22) we can switch to the new units by setting w = 27 and i = mw; the
result is

1 .
U(z,t) = i exp[—int(1 — a?)] exp{—i(ac —a)? —a(xr —a)e "4
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Thus

P(x,t) = |V(z,t)]* = U (2, 1)U (z,t) = T2 exp[—(z —a)? — a®+

1
+a? sin? 27t — 2a(x — a) cos 2mt] = — exp [—(z — a+acos2mt)?] (24)

\/E
Q.E.D.

(h) By following the procedure described at part (b), we obtain the following
classical law of motion for a harmonic oscillator driven by the force F'(t) = Fy0(t)

Fi
2 (t) = Asinwt + B coswt + m—22(1 — coswt) . (25)

The integration constants A and B can be determined from the initial conditions
2(0) =0 and 4 (0) = 0. The result is A = B =0. Thus

Fy

za(t) = W(l — coswt) = a(l — coswt) , (26)

where a = Fy/mw?. By comparing (24) and (26) one can infer that

1
P(et) = - exp {— [z — xcl(t)]Q} . (27)
This last equation tells us that the probability of finding the oscillator in the
spatial interval (z,z+dx) at the instant of time ¢ is maximum for z = x;(¢). In
other words, the maximum of the probability density (24)-(27) evolves in time
according to the classical law of motion (26).

(i) The potential energy V(z) can be rewritten as

1 1 F
V(_’I;) = 5’[’)’],(4)21‘2 — Fol‘ = Em(UQ(x - a/)2 - %a 5 (28)

where a = Fy/mw?. By making the change of variable y = x — a, the Hamilto-

nian becomes s )
. e d mw Fya
H=——— 2. 2
oma 2 VT 2 (29)

The lowest eigenvalue of H (i.e., the ground state energy) is given by

pr v _Fa _hog mw,
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or, by employing the new length and time units (L = \/h/mw and T = 27 /w),
Ef =hr(1-d°) . (31)

The corresponding stationary wave function reads

1 .
U (x,t) = rd exp <2y2) emint(1-a?) , (32)
where y = x — a. This is evidently the ground state wave function of a dis-
placed harmonic oscillator. & = a gives the classical equilibrium position of the
oscillator.

(j) One has
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X
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™
a2 a2
= exp(—a® cos? 27t) - exp (a cos? 2t — ?> = exp <—?) . (33)

(k) Since the Hamiltonian (29) is that corresponding to a displaced harmonic
oscillator, one can write down imediately the corresponding eigenfunctions

_ 1 g2
me T Hy(y) , (34)
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\115(1', t) =

and energy eigenvalues

hw Foa

EF = (2n+1) - n=0,1,2,... (35)

(1) By definition
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The integral in Eq.(36) can be evaluated as follows. First, change the integration
variable: y = z — a. Then, by setting z = —%6_2”, one has
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Since 300 L1 = €2, it follows that
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(m) The required plots are given in Figure.l and Figure.2, respectively. From
these plots one can infer

(i) For a given a, if a < 1, P, is a monotonically decreasing function of n
whilst, if @ > 1, P, first increases to a maximum value and then goes
rapidly to zero.

(ii) For n = 0, Py(a) decreases exponentially from P,(0) = 1 to zero as a
goes to infinity whilst, for n > 1, P,(a) first increases from P,(0) = 0
to its maximum value (which ca be determined by solving the equation
dP,(a)/da = 0) and then decays exponentially to zero.

(n) Those values of a for which the chance to find the oscillator, at ¢ > 0, in its
second excited state (i.e., that corresponding to n = 2) will be larger than the
probability to find the oscillator in any other state can be obtained by imposing
the condition P;(a) < Py(a) < P3(a). After some algebra one finds 2 < a < /6,
and consequently Fy € (2mw?, v/6mw?).
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Figure 1: P, as function of n for a € {0.5,1.0,1.5,2.0} and n < 5.
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Figure 2: Py, P1, P, and P5 as a function of a € [0, 5].



