
Problem Set 3
Physics 480 / Fall 1999
Professor Klaus Schulten

Problem 1: Wave Packet in 1-Dimensional Box

Using Mathematica evaluate the time-dependence of a Gaussian wave packet
moving in a 1-dimensional box as illustrated in class. Follow the computa-
tional procedure presented in class employing the propagator φ(x, t|xo, to).
Explore the behaviour of wave packets in two ways: (i) choose a wave
packet of widths half as wide as the box and vary its energy around the
value E2, i.e., choose k0 values ko =

√
2mE/h̄ varying E in the interval

[E2 − 1.5h̄2π2/8ma2, E2 + 2.5h̄2π2/8ma2]; (ii) choose ko =
√

2mE2/h̄ fixed
and decrease the width of the wave packet from a to a/10 in steps of a/10.
Monitor in each case the interference patterns apparent in plots of |ψ(x, t)|2
and describe them.

Problem 2: Particle in Two-Dimensional Box

A quantum mechanical particle of mass m moves in the (x, y)-plane in a
box centered around the origin with impenetrable walls at x = ±a and
y = ±a. Determine the wave functions and associated energies of the
stationary states. The wave functions should reflect the full symmetry of the
system and should be catagorized according to the complete set of symmetry
classes.

Problem 3: Triangular Quantum Billiard

A quantum mechanical particle moves in the (x, y)-plane in a triangular
billiard whose boundary forms an equilateral triangle with side length L.
The boundary of impenetrable walls is defined through the three vertices of
the triangle at points (0, 0), (L/2,

√
3L/2), and (−L/2,

√
3L/2).

(a) Show that the following two wave functions describe stationary states of
the billiard:
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For this purpose proceed as follows: (i) show that the solutions satisfy the
Schrödinger equation inside the billiard; (ii) define for the point P at (x, y)
new (overcomplete!) variables ρ1, ρ2, ρ3 that measure the distance of P to
the three sides of the triangle
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and express the wave functions in terms of functions of ρ1, ρ2, ρ3 to demon-
strate that the functions (1, 2) obey the proper boundary conditions.

(b) Plot the wave functions ψ(1)
mn(x, y), ψ(2)

mn(x, y) for representative choices
of n, m (i) along the sides of the billiard (to check the boundary condition)
and (ii) in the (x, y)-plane.

(c) Identify all symmetry relationships of the stationary states. Show that
all stationary states are described by

m = 1, 2, 3, · · · , n = 1, 2, 3, · · · , m ≥ 2n . (6)

(d) State the energies associated with the stationary states described above.

Problem 4: Tunneling Through a δ-Barrier

Consider the stationary states[
− h̄2

2m
d2

dx2
+ U(x) − h̄2k2

2m

]
φk(x) = 0 (7)

describing scattering of one-dimensional particles impinging from the left on
a potential U(x) = Uoδ(x), Uo > 0.

(a) Show that the derivative of the stationary states φk(x), i.e., φ′k(x), have
a discontinuity at x = 0. Determine the magnitude of the discontinuity,
i.e., determine limε→0(φ′k(ε) − φ′k(−ε) ).



(b) Determine the transmission coefficient T = |j>/jin| and the reflection
coefficient R = |j</jin| as a function of Uo and of the energy E of the
incoming particles.

(c) Carry out the same calculation (stationary states and transmission,
reflection coefficients for particles coming from x → −∞) for the potential
U(x) = Uoδ(x) + U0δ(x− a), Uo > 0.

(d) Plot the resulting transmission coefficient T as a function of energy for
various Uo

(e) Plot the stationary states determined in (c) for the energy of the first
two minima and maxima of T (E).

(f) Discuss the results in (d) and (e), in particular, relate the stationary
states corresponding to the maxima of T (E) to the stationary states of a
particle in a one-dimensional box of size a.

Problem 5: Scattering by a Square Barrel Potential

Consider the scattering of particles by a square barrel described by the
potential (U0 > 0, δ > 0)

U(x) =



0 x ≤ −a− δ
Uo −a− δ < x < −a
0 −a ≤ x ≤ a
Uo a < x < a+ δ
0 a+ δ ≤ x

(8)

Potentials of this type can be experimentally realized with high precision
in semiconductors. In the form of Quantum-Well Devices they have some
interesting applications in nano-technology, i.e., manufacturing of silicon
chips at 10Å resolution, due to electron tunneling and resonance effects at
such small length scales. As demonstrated below, the probability that an
incident electron will tunnel through a square barrel exhibits sharp reso-
nances as a function of the electron energy and the barrier parameters. In
this problem we will understand how these resonances can be explained in
terms of quasi-stationary states in the barrel1.
We will assume a barrel with dimensions close to the ones occurring in semi-
conductor devices., e.g., Uo = 0.5eV , a = 25 Å, δ = 20 Å. For the effective
electron mass we employ m = 9.1 × 10−32 kg. The effective electron mass
replaces the real mass of the electron to account for the proper relationship
between wave length and kinetic energy for an electron moving in a semi-
conductor. In the following calculations we suggest that you employ the

1For details see L. Esaki, The Evolution of Semiconductor Quantum Structures in
Reduced Dimensionality, Proc. 3rd Int. Symp. Foundations of Quantum Mechanics,
Tokyo, 1989, pp. 369-382)



following units: length / 10 Å, mass/9.1×10−32 kg, energy / 1 eV, and time
7.54× 10−16 s.. In these units holds h̄ = 0.87. Investigate the following to
square barrel potentials in the stated units:

1. a = 2, , δ = 0.3, , Uo = 2.5 (these parameters are not quite
realistic, but show certain effects better);

2. a = 2, , δ = 2.5, , Uo = 0.5 (these parameters correspond to
quantum well devices).

A Mathematica notebook will be provided which allows you to determine and
visualize the transmission coefficient and the stationary state wave functions
describing scattering impinging on the square barrel from the left. For op-
tional investigations a notebook will be provided also for scattering of wave
packets at a square barrel potential. This notebook demonstrates in how
far the stationary states studied in this problem set reflect the scattering
behaviour of wave packets as well. Since stationary states with infinite wave
trains are very idealistic, a demonstration of wave packet scattering, which
models the realistic motion of electrons much better, might be desirable to
you.

(a) Familiarize yourself with the notebook and state the steps involved in
determining the stationary states for potential (8).

(i) State the form of the wave function ψ(x, k) in each of the five regions
Ij I1 = {x, x ≤ −a − δ}, I2 = {x,−a − δ < x ≤ −a}, I3 = {x,−a < x ≤
a}, I4 = {x, a < x ≤ a + δ}, I5 = {x, x > a + δ}. Use the wave function in
the form close to that employed in the notebook.

(ii) State the continuity conditions at the boundaries between the different
regions Ij .

(iii) State the transmission coefficient T for the stationary states defined
through

T = |jtrans / jin| (9)

where jin is the flux of the right running wave to the left of the square barrel,
jrefl is the left running wave to the left of the square barrel, and jtrans is
the flux of the right running wave to the right of the square barrel.

(b1) Employ now the notebook to determine and plot the transmission co-
efficient as a function of the wave-vector k of the incoming wave. Plot also
the amplitude of the wave eikx in region I3.

(b2) Employ now the notebook to determine and plot the wave function
ψ(x; k) for k-values which correspond to all maxima and minima of the
transmission coefficient in the chosen range of k-values.



The following calculations are aimed at understanding two aspects of the
k-dependence of the transmission coeffcient: (1) the position of the maxima,
(2) the width of the ”resonances”.

(c) Determine the stationary state k-values and energies for the square barrel
potential in the limit d→∞. State the equations determining these values
and execute the note book to determine the respective value. Compare the
resulting k-values with the resonances shown by the transmission coefficient.

The problem set needs to be handed in by Thursday, October 7.
The web page of Physics 480 is at
http://www.ks.uiuc.edu/Services/Class/PHYS480/



Barrel Potential
Turn off warnings about spellings:

In[1]:= *)
Off[General::spell,General::spell1]
(*

Choice of parameters : here we employ the following units, chosen to
be numerically convenient in a range of parameters which correspond to
electronic qunatum well devices length in units of 10 Å mass in units of the
effective mass of an electron = 9.1 10( − 32) kg energy in units of 1 eV. In
these units the Planck constant is h̄ = 0.87. Here is a possible choice

In[2]:= a = 2; d = 0.3; U0 = 2.5; m = 1; hbar = 0.87;
k0 = Sqrt[2 m U0]/hbar;

Another interesting, and actually more realistic choice is a = 2, d =
2.5, U0 = 0.5, m=1. Please try this one as well. You can explore at your
pleasure.

Definition of the wave functions and statement of continuity conditions:

In[3]:= PhiI := Exp[I #2 #1] + r Exp[-I #2 #1] &;
PhiII := u1 Exp[I Sqrt[#2ˆ2-k0ˆ2] #1] +

v1 Exp[-I Sqrt[#2ˆ2-k0ˆ2] #1] &;
PhiIII:= u2 Exp[I #2 #1] + v2 Exp[-I #2 #1]

&;
PhiIV := u3 Exp[I Sqrt[#2ˆ2-k0ˆ2] #1] +

v3 Exp[-I Sqrt[#2ˆ2-k0ˆ2] #1] &;
PhiV := t Exp[I #2 #1] &;

coefficients[k_] := NSolve[{
PhiI[-a-d,k] == PhiII[-a-d,k],
PhiII[-a,k] == PhiIII[-a,k],
PhiIII[a,k] == PhiIV[a,k],
PhiIV[a+d,k] == PhiV[a+d,k],
D[PhiI[x,k],x] == D[PhiII[x,k],x] /. x->-a-d,
D[PhiII[x,k],x] == D[PhiIII[x,k],x] /. x->-a,
D[PhiIII[x,k],x] == D[PhiIV[x,k],x] /. x->a,
D[PhiIV[x,k],x] == D[PhiV[x,k],x] /. x->a+d },
{r,u1,u2,u3,v1,v2,v3,t}][[1]];

Define a function equal to the transmission coefficient describing scat-
tering through the barrel:

In[4]:= T[k_]:=Abs[t/.coefficients[k]]ˆ2

Plot the transmission coefficient:

In[5]:= Timing[
Plot[T[k],{k,0.1,1.3 k0},

AxesLabel->{"k","T"},
PlotLabel->"Transmission Coefficient"]

]

Evaluate the amplitude of the wave function inside the barrel to see how
much of the barrel states couple to the incoming plane wave Exp[ I k x]:



In[6]:= III[k_]:=Abs[ u2/.coefficients[k]]ˆ2

Plot the magmitude of the barrel wave function as a function of k

In[7]:= Timing[
Plot[III[k],{k,0.1,1.3 k0},

AxesLabel->{"k","T"},
PlotLabel->"Density in Barrel"]

]

Define the wave function stretching over all five regions I - V for a spec-
ified k value. Look at the two figures above [of T[k] and III(k)] to decide
which k values might be particularly interesting. To determine k values in
the plots precisely click on the plots and then move the mouse to desired
places in the plots while holding down the command (on my NeXT, might
be slightly different on the machine of your choice) : watch the tow entries in
the bottom left corner of this notebook window; while you move the mouse
through the figure the two entries change.

In[8]:= k=1.2943;
cond=coefficients[k];
Phi[x_]:=Which[x<=-a-d,PhiI[x,k]/.cond,

x<=-a,PhiII[x,k]/.cond,
x<=a,PhiIII[x,k]/.cond,
x<a+d,PhiIV[x,k]/.cond,
True,PhiV[x,k]/.cond];

Plot of the probability density corresponding to Phi[x]:

In[9]:= Timing[
Plot[Abs[Phi[x]]ˆ2,{x,7/2*(-a-d),3/2*(a+d)},

PlotRange->All,
Ticks->{{{-a-d,"-a-d"},{-a,"-a"},{0,"0"},
{a,"a"},{a+d,"a+d"}},Automatic}]

]

The following statements carry out some calculations which identify the
maxima and the width of the resonances in T[k] and III[k] as defined above.
First we define some functions which are needed to construct stationary
states of the following systems

f0[k, n] used to determine the nth stationary state of a square well (a
barrel with d → infinity) f1[k, n] used to determine the maxima of the
resonances shown by T[k] and III[k] obtained by searching for solutions
of a square well particle with logarithmic derivative = - k at x= a + d
assuming a real and symmetric (even, odd) state f2[k,n] used to determine
the width of the maxima of the resonances shown by T[k] and III[k] obtained
by searching for solutions of a square well particle with derivatives = -0 at
x= a + d assuming a real and symmetric (even, odd) state



In[10]:= f0[k_,n_] := ArcTan[ Sqrt[(k0 a /k)ˆ2-1]] + n Pi
/ 2 - k;
f1[k_,n_] := (
kappa = Sqrt[(k0 a)ˆ2 - kˆ2];
kappad = kappa (d / a);
e1=Exp[kappad];
e2=1/e1;
ratio = (kappa + k)/(kappa - k);
ArcTan[ (kappa / k) (ratio e1 - e2)/(ratio e1 + e2)

] + n Pi / 2 - k
);
dka[k_]:= (
kappa = Sqrt[(k0 a)ˆ2 - kˆ2];
kappad = kappa (d / a);
Exp[-2 kappad]
);
f2[k_,n_] := ArcTan[ Tanh[(d/a) Sqrt[(k0 a)ˆ2 - kˆ2]]Sqrt[(k0

a/k)ˆ2-1] ] + n Pi / 2 - k;

Evaluate and print now the k-values and energies corresponding to the
stationary states of a square well with the three different boundary condi-
tions mentioend above. The statements below carry oit a Do-loop to evaluate
stationary states for as energy are expected to fall below the barrier of the
square barrel potential.

In[11]:= n0 = N[Floor[2 k0 a/ Pi]];
Do [(
kstart = 0.5;
ka = k/. FindRoot[ f0[k,n] == 0, {k, kstart}];
e = hbarˆ2 kaˆ2/ ( 2 m aˆ2);
Print[{n, ka/a, e}, " pure square well case"];
kass = k/. FindRoot[ f1[k,n] == 0, {k, kstart}];
ess = hbarˆ2 kassˆ2/ ( 2 m aˆ2);
Print[{n, kass/a, ess}, " square well with deriv =

-k at x=a+d"];
kas = k/. FindRoot[ f2[k,n] == 0, {k, kstart}];
es = hbarˆ2 kasˆ2/ ( 2 m aˆ2);
Print[{n, kas/a, es}, " square well with deriv =

0 at x=a+d"]
), {n, 0, n0-1, 1}]


