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Description

The VMD User’s Guide describes how to run and use the molecular visualization and analysis
program VMD. This guide documents the user interfaces displaying and grapically manipulating
molecules, and describes how to use the scripting interfaces for analysis and to customize the
behavior of VMD.
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Chapter 1

Introduction

VMD [1] is a molecular graphics program designed for the interactive visualization and analysis
of biopolymers such as proteins, nucleic acids, lipids, and membranes. VMD runs on all major
Unix workstations, Apple MacOS X, and Microsoft Windows. Online information about VMD is
available from:
http://www.ks.uiuc.edu/Research/vmd/

List of key VMD features:

• General molecular visualization
At its heart, VMD is a general application for displaying molecules containing any number
of atoms and is similar to other molecular visualization programs in its basic capabilities.
VMD reads data files using an extensible plugin system, and supports Babel for conversion of
other formats. User-defined atom selections can be displayed in any of the standard molecular
representations. Displayed graphics can be exported to an image file, to a scene file usable
by ray tracing programs, or to a geometry description file suitable for use with 3-D printers.

• Visualization of dynamic molecular data
VMD can load atomic coordinate trajectories from AMBER, Charmm, DLPOLY, Gromacs,
MMTK, NAMD, X-PLOR, and many other simulation packages. The data can be used to
animate the molecule or to plot the change in molecular properties such as angles, dihedrals,
interatomic distances, or energies over time.

• Visualization of volumetric data
VMD can load, generate, and display, volumetric maps. Supported map formats include
CryoEM maps, electrostatic potential maps, electron density maps, and many other map file
formats.

• Interactive molecular dynamics simulations
VMD can be used as a graphical front-end to a live molecular dynamics program running on
a remote supercomputer or high-performance workstation. VMD can interactively apply and
visualize forces in an MD simulation as it runs.

• Molecular analysis commands
Many commands are provided for molecular analysis. These include commands to extract
information on sets of atoms and molecules, vector and matrix routines for coordinate ma-
nipulation, and functions for computing values such as center of mass and radius of gyration.
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• Tcl and Python scripting languages
VMD uses the freely available Python and Tcl scripting languages for processing text com-
mands. These popular languages which contain variables, loops, subroutines, and much more.
VMD also uses the Tk Toolkit - a simple user interface toolkit that interfaces with Tcl.

• Easy to extend
VMD is written in C and C++ and employs object-oriented design. VMD implements a
plugin interface for extending its file format support and for general purpose extensions in
functionality.

• Support for multimodal input and various display systems
A number of different visual display and control systems are supported in addition to the usual
monitor, keyboard, and mouse. The VRPN library is used to get position and orientation
information from a wide variety of spatial input devices, including magnetic trackers, haptic
(force feedback) devices, Spaceballs, etc. VMD works with WireGL and Chromium on tiled
display walls, and immersive VR environments via compiled-in CAVE and FreeVR support.

1.1 Contacting the authors

The current developer of VMD is John E. Stone. The list of individuals that made signficant
contributions to this version of VMD in the form of patches, bug fixes, and completely new plugins
includes Anton Arkhipov, Michael Bach, Robert Brunner, Jordi Cohen, Simon Cross, Markus
Dittrich, John Eargle, Peter Freddolino, Luis Gracia, Justin Gullingsrud, David Hardy, Konrad
Hinsen, James Gumbart, Robert Johnson, Axel Kohlmeyer, Michell Kuttel, John Mongan, Jim
Phillips, Elijah Roberts, Jan Saam, Alexander Spaar, Marcos Sotomayor, Leonardo Trabuco, Dan
Wright, and Kirby Vandivort.

We are very interested in and grateful for any user comments and reports of program bugs or
inaccuracies. If you have any suggestions, bug reports, or general comments about VMD, please
send them to us at vmd@ks.uiuc.edu.

1.2 Registering VMD

VMD is made available free of charge for all interested end-users of the software (but please see the
Copyright and Disclaimer notices). Please check the current VMD license agreement for details.
Registration is part of our software download procedure. Once you’ve filled out the forms on the
VMD download area and have read and agreed to the license, you are finished with the registration
process.

1.3 Citation Reference

The authors request that any published work or images created using VMD include the following
reference:

Humphrey, W., Dalke, A. and Schulten, K., “VMD - Visual Molecular Dynamics” J. Molec.
Graphics 1996, 14.1, 33-38.

12



VMD has been developed by the Theoretical and Computational Biophysics Group at the
Beckman Institute for Advanced Science and Technology of the University of Illinois at Urbana-
Champaign. This work is supported by the National Institutes of Health under grant numbers
NIH P41-GM104601.

1.4 Acknowledgments

The authors would particularly like to thank those individuals who have contributed suggestions and
improvements, particularly those contributing new features. Special thanks go to Joshua Anderson,
Anton Arkhipov, Andrew Dalke, Michael Bach, Alexander Balaeff, Ilya Balabin, Robert Brunner,
Eamon Caddigan, Jordi Cohen, Simon Cross, Markus Dittrich, John Eargle, Peter Freddolino,
Todd Furlong, Luis Gracia, Paul Grayson, Justin Gullingsrud, James Gumbart, David Hardy,
Konrad Hinsen, Barry Isralewitz, Sergei Izrailev, Robert Johnson, Axel Kohlmeyer, Michael Krone,
Michelle Kuttell, Benjamin Levine, John Mongan, Jim Phillips, Elijah Roberts, Jan Saam, Charles
Schwieters, Marcos Sotomayor, Alexander Spaar, John E. Stone, Johan Strumpfer, Alexey Titov,
Leonardo Trabuco, Dan Wright, and Kirby Vandivort. The entire VMD user community now
benefits from your contributions.

The authors would like to thank individuals who have indirectly helped with development by
making suggestions, pushing for new features, and trying out buggy code. Thanks go to Aleksei
Aksimentiev, Daniel Barsky, Axel Berg, Tom Bishop, Robert Brunner, Ivo Hofacker, Mu Gao,
James Gumbart, Xiche Hu, Tim Isgro, Dorina Kosztin, Ioan Kosztin, Joe Landman, Ilya Logunov,
Clare Macrae, Amy Shih, Lukasz Salwinski, Stephen Searle, Charles Schwieters, Ari Shinozaki,
Svilen Tzonev, Emad Tajkhorshid, Michael Tiemann, Elizabeth Villa, Raymond de Vries, Simon
Warfield, Willy Wriggers, Dong Xu, and Feng Zhou.

Many external libraries and packages are used in VMD, and the program would not be as capable
without them. The authors of VMDwish to thank the authors of FLTK; the authors of Tcl and Tk;
the authors of Python; the authors of VRPN; Jon Leech for uniform point distributions; Amitabh
Varshney for SURF; Dmitrij Frishman for developing STRIDE; Jack Lund for the url get perl
script; Brad Grantham for the ACTC triangle consolidation library; John E. Stone for the Tachyon
ray tracer, WorkForce threading and timer routines, hash table code, and Spaceball drivers; and
Ethan Merrit for one of the ribbon drawing algorithms.

1.5 Copyright and Disclaimer Notices

VMD is Copyright c© 1995-2018 Theoretical and Computational Biophysics Group and the
Board of Trustees of the University of Illinois

Portions of this code are copyright c© 1997-1998 Andrew Dalke.

The terms for using, copying, modifying, and distributing VMD are specified by the VMD
License. The license agreement is distributed with VMD in the file LICENSE. If for any reason
you do not have this file in your distribution, it can be downloaded from:
http://www.ks.uiuc.edu/Research/vmd/current/LICENSE.html

Some of the code and executables used by VMD have their own usage restrictions:

• ACTC
ACTC, the triangle consolidation library used in some versions of VMD, is Copyright (C)

2000, Brad Grantham and Applied Conjecture, all rights reserved.
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Redistribution and use in source and binary forms, with or without modification, are permit-
ted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.
3. All advertising materials mentioning features or use of this software must display the fol-
lowing acknowledgment: This product includes software developed by Brad Grantham and
Applied Conjecture.
4. Neither the name Brad Grantham nor Applied Conjecture may be used to endorse or
promote products derived from this software without specific prior written permission.
5. Notification must be made to Brad Grantham about inclusion of this software in a product
including the author of the product and the name and purpose of the product. Notification
can be made using email to Brad Grantham’s current address (grantham@plunk.org as of
September 20th, 2000) or current U.S. mail address.

• Python
Python is made available subject to the terms and conditions in CNRI’s License Agreement.
This Agreement together with Python may be obtained from a proxy server on the Internet
using the following URL: http://hdl.handle.net/1895.22/1012

• PCRE
The Perl Compatible Regular Expressions (PCRE) library used in VMD was written by

Philip Hazel and is Copyright (c) 1997-1999 University of Cambridge.
Permission is granted to anyone to use this software for any purpose on any computer system,
and to redistribute it freely, subject to the following restrictions:
1. This software is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE.
2. The origin of this software must not be misrepresented, either by explicit claim or by
omission.
3. Altered versions must be plainly marked as such, and must not be misrepresented as being
the original software.
4. If PCRE is embedded in any software that is released under the GNU General Purpose
License (GPL), then the terms of that license shall supersede any condition above with which
it is incompatible.

• STRIDE
STRIDE, the program used for secondary structure calculation, is free to both academic and
commercial sites provided that STRIDE will not be a part of a package sold for money. The use
of STRIDE in commercial packages is not allowed without a prior written commercial license
agreement. See http://www.embl-heidelberg.de/argos/stride/stride info.html

• SURF
The source code for SURF is copyrighted by the original author, Amitabh Varshney, and the
University of North Carolina at Chapel Hill. Permission to use, copy, modify, and distribute
this software and its documentation for educational, research, and non-profit purposes is
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hereby granted, provided this notice, all the source files, and the name(s) of the original
author(s) appear in all such copies.
BECAUSE THE CODE IS PROVIDED FREE OF CHARGE, IT IS PROVIDED ”AS IS”
AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED.
This software was developed and is made available for public use with the support of the
National Institutes of Health, National Center for Research Resources under grant RR02170.

• Tachyon
The Tachyon multiprocessor ray tracing system and derivative code built into VMD is Copy-
right (c) 1994-2018 by John E. Stone. See the Tachyon distribution for redistribution and
licensing information.

• Desmond and Maestro plugins by D. E. Shaw Research
Copyright 2009, D. E. Shaw Research, LLC All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permit-
ted provided that the following conditions are met:
Redistributions of source code must retain the above copyright notice, this list of conditions,
and the following disclaimer.
Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions, and the following disclaimer in the documentation and/or other materials provided
with the distribution.
Neither the name of D. E. Shaw Research, LLC nor the names of its contributors may be
used to endorse or promote products derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBU-
TORS ”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, IN-
DIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHER-
WISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.6 For information on our other software

VMD is part of a suite of tools developed by the Theoretical and Computational Biophysics group
at the University of Illinois.

• BioCoRE
BioCoRE is a web-based collaborative environment for structural biology which provides

tools to allow collaboration between researchers down the hall or around the world. Anyone
with access to the internet and a standard web browser can join BioCoRE and create or be
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added to research projects, and information about a particular project is shared among all
members of that project. More information is available at the BioCoRE home page1

• NAMD
A parallel, object-oriented molecular dynamics code designed for high-performance simula-

tion of large biomolecular systems. NAMD uses the CHARMM force field and file formats
compatible with both CHARMM and X-PLOR. NAMD supports both periodic and non-
periodic boundaries with efficient full electrostatics, multiple timestepping, constant pressure
and temperature ensemble simulation methods. More information is available at the NAMD
home page2

• MDTools
MDTools is a collection of programs, scripts, and utilities provided for researchers to make

various modeling and simulation tasks easier. More information is available at the MDTools
home page3

For more information on our software efforts, see the Theoretical and Computational Biophysics
Group home page4.

1http://www.ks.uiuc.edu/Research/biocore
2http://www.ks.uiuc.edu/Researach/namd
3http://www.ks.uiuc.edu/Development/MDTools
4http://www.ks.uiuc.edu/
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Chapter 2

Hardware and Software Requirements

2.1 Basic Hardware and Software Requirements

The basic hardware requirements for running VMD vary depending on how it was compiled and how
it will be used. VMD has two primary modes of operation, the typical full-featured graphics-enabled
mode, and a purely text-based mode of operation suited for remote analysis on supercomputers,
embedded use in other packages, and similar batch-oriented analytical uses.

The full-featured graphics-enabled mode of VMD is the most demanding, and requires an
OpenGL-capable graphics accelerator with up-to-date drivers. Some graphics chipsets or GPUs
come with drivers that are below-spec and will not be able to run VMD with full graphics ca-
pability. These will either automatically, or as the result of user-defined environment variables
(e.g. VMDSIMPLEGRAPHICS), use a reduced functionality graphics mode within VMD. Since
the choice of the GPU chipset or card has the biggest impact on the visualization capabilities and
performance of VMD, this is the hardware component that is worth spending money on if one’s
intended use of VMD is primarily focused on visualization related tasks. VMD implements a va-
riety of advanced rendering features that hinge upon the availability of GPU hardware and driver
support. When available, these features enable VMD to interactively display very large or complex
structures and support a variety of special stereoscopic 3-D displays [1, 2, 3, 4, 5, 6, 7]. As an added
bonus, recent GPUs are now also capable of accelerating some of the computationally demanding
tasks within VMD, discussed in more detail below.

Following the choice of graphics accelerator, the amount of available system memory tends
to have the next most significant impact on the performance and capability of VMD. The more
memory a machine has, the more frames can be loaded at once from large molecular dynamics
trajectory files. For batch-mode analysis tasks that consist primarily of scripting, system memory
is frequently the resource that limits feasability of many analysis tasks.

2.2 Multi-core CPUs and GPU Acceleration

VMD makes full use of multi-core processors and multiple GPUs for acceleration of the most
computationally demanding visualization and analysis tasks. Multi-core CPUs accelerate features
including interactive molecular dynamics [8, 9], bond determination, “within” atom selections and
derivatives, so-called streamline or field line visualizations [10], radial distribution functions [11],
and high quality renderings using the built-in Tachyon [12, 13, 14] and OSPRay [15] ray tracing
engines. VMD also supports GPU acceleration using CUDA, and takes advantage of both multi-
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core CPUs and GPUs for acceleration of electrostatics (i.e. “volmap coulomb”, and “volmap
coulombmsm”) [16, 17, 18, 19, 20, 21, 22, 23, 24, 25], implicit ligand sampling (i.e. “volmap ils”),
computation of radial distribution functions [11], quality-of-fit cross correlation calculation for
hybrid fitting methods [26, 27], trajectory clustering analyses [28], and computation and rendering
of molecular orbitals [29, 5, 30, 31, 32] and molecular surfaces [33, 34, 14, 35, 36], The latest
versions of VMD also incorporate a GPU-accelerated batch and interactive versions of the Tachyon
ray tracing engine [35, 36, 37, 38, 7] based on NVIDIA OptiX and CUDA [39].

2.3 Parallel Computing on Clusters and Supercomputers

VMD supports large scale batch mode parallel analysis and visualization on clusters and super-
computers when it has been compiled with MPI support [14, 35, 26, 40, 41, 36, 37, 38, 42]. When
running VMD on clusters and parallel computers it is possible to run one MPI rank per CPU
core, or more likely, one MPI rank for several CPU cores, or one MPI rank for an entire compute
node. If running more than one VMD instance per compute node, it is typically necessary to set
environment variables to limit which CPU cores and/or GPUs each VMD instance attempts to use
to prevent performance anomalies from arising due to resource contention [20].
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Chapter 3

Tutorials

3.1 Rapid Introduction to VMD

For those of you who don’t like reading manuals, here is a quick introduction to VMD. The molecules
and data files used in this tutorial can be downloaded from the VMD home page from the doc-
umentation area associated with this version and is clearly labeled as User’s Guide tutorial data.
The rest of this tutorial assumes that you have downloaded and unpacked this data set.

To start VMD type vmd on the command line of your shell (Unix), or start it by clicking the
VMD icon in your desktop or Start menu (Apple MacOS X and Microsoft Windows). VMD should
start up with a window titled vmd console, a display window entitled VMD OpenGL Display, and a
main menu entitled VMD. Text commands are typed in the console window, molecules are displayed
and manipulated in the graphics window, and other interfaces and extensions are available from
the menu interface. All of the windows can be closed or minimized, using your computer’s standard
windowing controls or the menu command [§9.3.19] in text console. Most functions can be performed
with both the menu interface and the text console, though some of the more sophisticated scripting
features are only available as text commands.

3.2 Viewing a molecule: Myoglobin

In our quick tour of VMD, we’ll start out by demonstrating a few of its visualization features. To
load a new molecule, select New Molecule. . . from the File menu in the Main window, this will open
the Files window [§5.4.4]. We will load a PDB (Protein Data Bank) file containing the coordinates
of the atoms in myoglobin (compliments of Joel Berendzen of Los Alamos National Laboratory).
Select the Browse. . . button in the files window to bring up a file browser. Go into the proteins/

directory of the tutorial data set that you have downloaded from the VMD web site. Once there,
select the file mbco.pdb in the file browser, and press the Load button in the molecule file browser.
button in the Files window. Figure 3.1 shows an example of VMD displaying this protein.

You can use the mouse to manipulate the structure in the display window. There are three
basic mouse modes [§5.1.1]: rotation, translation, and scaling. The mode can be changed from the
Mouse menu in the main window, or by pressing r, t, or s on the keyboard while the mouse is
in the graphics window. While experimenting, note how the cursor changes to indicate the mouse
mode. In rotation mode, the left mouse button controls rotation about axes parallel to the screen,
and the middle button controls rotation about the axis perpendicular to the screen. In translation
mode, the left mouse button controls translation parallel to the screen, while the middle button
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Figure 3.1: Sample VMD session displaying myoglobin.

controls translation in and out of the screen. Finally, in scaling mode, both the left and middle
buttons control global scaling when the mouse is moved left or right, but the middle button causes
larger changes.

By default molecules are displayed in a “lines” representation, colored by atom type. Suppose
you would like to view the myoglobin structure with its protein backbone represented as a tube,
the heme represented as licorice, the SO4 ion and CO molecule represented as van der Waals
spheres, and histidines 64 and 93 represented as CPK models. First, open the Graphics window
[§5.4.7] by selecting the Representations item in the the graphics menu of the VMD Main window.
Type backbone in the Selected Atoms text entry area and press ’enter’ to select the myoglobin
backbone. All of the protein except for the backbone will disappear. Choose NewCartoon in the
drawing method chooser to display the backbone as a tube, and choose Structure in the coloring
method chooser to color the tube with the predefined secondary structure color. Press the Create

Rep button. This creates a new representation in the browser, identical to the original one. The
new representation can be changed without affecting others, so clear the atom selection text area
and enter resname HEM to select the heme. At this point the heme isn’t visible because it cannot
be drawn as a cartoon, so choose the ‘Licorice’ drawing method to make it appear. Click on
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Create New again to make a new view, and enter resname SO4 CO to select the SO4 ion and the
CO molecule, and choose the drawing method ‘VDW’ to render them as Van der Waal spheres.
Once again, press the Create Rep button and enter resid 93 64 to select the two histidines, and
render them as ‘CPK’. If you followed all that, then congratulations, you have made a nice image
of myoglobin! With further experimentation you should be well on your way to learning how to
use VMD.

3.3 Rendering an Image

Find an interesting view of the molecule from the previous tutorial. Suppose you want to publish
this view in a journal and want a high quality image, or you want to make a large poster. Taking the
image from a screen capture often results in a rather grainy image as the size of the pixels becomes
apparent, so you want something with more resolution. There are several programs available which
can render a high-quality raster image, based on an input script. VMD has the option to create
input scripts for many of these image processing programs, which may then be processed to create
a higher quality image of the scene displayed by VMD at the time the script was created. See
Chapter 8 on rendering for a further description of how this works.

Open the Render window [§ 5.4.11] and select ‘Tachyon’ from the Render Using menu. Both
of the text boxes will be filled with default values which should not need to be changed for the
purposes of this tutorial. Press the Start Rendering button. After a few moments of processing, you
sould see the message

Info) Rendering complete.

in the VMD text console. If everything worked correctly, you will end up with an image file
named plot.dat.tga (on MacOS X or Unix) or plot.dat.bmp (on Windows) in your current working
directory. This image is in either Windows BMP or Targa graphics format, and can be read by
many programs (such as display, ipaste, xv, Gimp or Photoshop).

3.4 A Quick Animation

Another strength of VMD lies in its ability to playback trajectories resulting from molecular dynam-
ics simulations. A sample trajectory, alanin.dcd is provided in the proteins directory included
with VMD. To load it, open the molecule file browser as described previously. Next click on the
Browse button and select the alanin.psf file in the file browser. Once selected, press the Load

button to load the structure file. Next, select the alanin.dcd file and load it as well. This will
read the DCD trajectory frames into the same molecule with the previously loaded alanin.psf

file.
In the display window you should see a simulation of an alanin residue in vacuo. It isn’t

particularly informative, but you can easily see that the structure is quite unstable in an isolated
environment. After the DCD file has loaded, animation will stop. To see it again or to fine- tune
playback, use the animation controls [§5.4.3] found at the bottom of the main VMD window. Press
the button that looks like > to play the animation. Use the Speed slider at the bottom of the
window to change the speed of playback. By rotating the molecule around, etc. you should get an
idea about how the system destabilizes over the course of the simulation. The animation controls
are generally similar to what you’d find on a DVD or CD player.
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3.5 An Introduction to Atom Selection

In this section it is assumed that you have the myoglobin structure mbco.pdb loaded and the views
discussed in section 3.2 created. If this is not true, go back and repeat the process described there.

VMD has a powerful atom selection method which is very helpful when generating attractive,
informative, and complex graphics. In the previous section you used a few of these atom selection
tools. This tutorial assumes that you have already loaded the myoglobin molecule, but it isn’t
necessary to recreate all the graphical representations.

To change which atoms are used to display each representation of the molecule shown in the
display window, open the Graphics window [§ 5.4.7] and select the representation you want to change.
You can then either edit the different fields (selection, coloring method, or drawing method) or use
the Delete button to delete the view entirely. Try changing or deleting some of the views. When
finished, delete all representations for the myoglobin structure. To get the basic line drawing view
back, clear the atom selection text entry area, enter all and press the Create Rep button.

Atoms may be selected on the basis of a property, i.e. protein or not protein, water, or
nucleic backbone. They may also be selected by atom name, such as atom C, by residue name,
such as resname HEM, or by many other identifiers. Multiple atoms may be specified with one key-
word. For example, the selection name C CA N O will select the backbone atoms. (A similar effect
may be obtained with the command protein backbone.) VMD can handle regular expressions,
so that name "C.*" will select all atoms with names starting with C. VMD also understands the
boolean operators and, or, and not, so the selection resname HEM and not name "N.*" selects all
non-nitrogen atoms in the heme group of myoglobin.

Several more abstract selection criteria are available. For instance, the selection x > 5 finds
all atoms with an x coordinate greater than 5, while mass >12 and mass < 14 selects all atoms
with mass greater than 12 and less than 14 atomic mass units. Many math functions [§ 6.7] are
also provided, so the selection sqrt( sqr(x) + sqr(y) + sqr(z) ) < 10 will select atoms in
a spherical region of radius 10 Å centered about the origin of the coordinate space. You can pick
atoms nearby a selection with the phrase “within <distance> of <selection>” and all residues with
the same property as a given selection as “same <property> as <selection>”.

See section 6.3 for a full description of the selection command.

3.6 Comparing Two Structures

Let’s start from scratch by deleting everything: use the text console and tye the command mol

delete all and press enter. This deletes all loaded molecules and is often more convenient then
selecting them and deleting them all one by one. Alternatively, you could highlight each molecule
in the molecule browser, and use the Delete Molecule item in the Molecule menu to remove them
one by one.

Begin by loading the mbco.pdb structure with the Files window. Turn on just the heme, CO, and
histidines by using the selection commands resname HEM CO or resid 64 93. The dot (probably
green) in the middle is the iron and you can verify that by picking it with the mouse. Do this by
changing the “Object Mode” pull-down to “Pick”, and selecting “Atoms” for the pick mode in the
Mouse menu. The label HEM154:FE should appear both on the display and in the text console.

Change the pick mode in the Mouse menu to “Bonds”. To get the distance between the iron
and the oxygen of the CO, click with the left mouse button first on the iron and then on the
oxygen. The first click turned the FE label on and the second turned the O label on and drew
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a line between the two atoms with the distance drawn in the middle and a bit to the right. The
distance between the two atoms is 2.94 Å, as compared to 2.93 Å in the paper; not bad. However,
picking the distance between the FE and the C of the CO reveals a distance of 1.91 Å as compared
to 1.85 Å in the paper. The difference is that the structures in the VMD distribution are actually
preliminary structures obtained before the final coordinates were determined.

In order to experiment with more complex picking modes, consider the angle made by the O
of the CO with the FE of the heme and the NE2 of residue 93 (you can click on the atoms to find
which ones are which). Using the Mouse menu, change the pick mode to “Angles”. This should
cause the cursor to become a red crosshair. Click on each of the three atoms using the left mouse
button. After the third pick, a shallow angle will appear indicating an 8.71 degree angle between
the three atoms.

Now load the intermediate star.pdb file which can also be found in the proteins directory
of your distribution. Again use the Files window to do this. Both of the molecules will be loaded
side by side. Go to the Graphics window and change the selection so it the same as the first, i.e.
resname HEM CO or resid 64 93. The two molecules are almost atop each other, making it hard
to distinguish the two, so change the colors to simplify things.

First, in the Graphics window, change the Coloring method to ‘Molecule’. Use the Selected

Molecule chooser to change the mbco.pdb Coloring method to ‘Molecule’ as well. Open the Color

window [§5.4.9] and scroll the Category browser down until the line ‘Molecule’ is visible. Click on
it then click on the line which says mbco.pdb. (There may be two mbco lines if the file had been
loaded before in this session.) Scroll the Colors browser up to click on ‘blue’. This should change
one of the molecules in the display to blue.

Next, click on the last line in the Names chooser, which says star.pdb. This time, choose ‘red’
from the Colors chooser. The display should be much easier to understand. The myoglobin with
the bound CO is in blue and the intermediate state is in red. At this point it is easy to measure
the change in position between the two different states by using the middle mouse button to pick
the same atom in the two conformations.

Once that is done, it is easy to point out one interesting aspect of the way VMD handles the
graphics. Go to the main window, select one of the two molecules, and press Toggle Fixed. Enter
translation mode and move the other molecule around. Notice that the number which lists the
distance between the two atoms never changes. That’s because the mouse only affects the way the
coordinates are translated to the screen image. It does not affect the real coordinates at all. It is
possible to change the coordinates in a molecule using the text command interface, or by using the
atom move pick modes [§5.1.2]).

By the way, unfix the molecules and do a ‘Reset View’ from the Display menu to reset everything.
Load up the third structure, deoxy.pdb and give it the same selection as the other two molecules.
However, color this one green. Pull out Nature v. 371, Oct. 27, 1994 and turn to page 740. With
a bit of manipulation you should be able to recreate the image that appears there.

3.7 Some Nice Represenations

The following views are quite nice for displaying proteins and nucleic acids:

selection: all

drawing method: tube

coloring method: segname (or chain)

why? This show the backbone of the protein and nucleic acid strands
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selection: protein and (name CA or not backbone)

drawing method: lines

coloring method: segname (or chain)

why? shows where the side chains are located, but they are thin so the

backbone is still visible and the scene is quickly drawn

selection: (numbonds = 0) and not waters

drawing method: vdw

coloring method: name

why? shows ions. The "not waters" omits cases where a water’s oxygen is

known but not the hydrogen.

selection: not (waters or protein or nucleic)

drawing method: lines

coloring method: name

why? shows whatever is left; usually ligands and crystallizing agents

3.8 Saving your work

After creating a set of attractive and informative representations of your molecule, you may want
to save your work so that you can regenerate the scene later. There are two ways to do this in
VMD:

• In the main menu, press the Save State button found in the File menu; this will bring up a
browser window where you can enter a file name in which to save your work.

• In the text console, type save state filename, where filename is the name of the file in which
to save your work.

To restore your scene, you also have three choices:

• Use the Load State item in the File manu to select and load a previously saved VMD session.

• From the command line, start VMD with the options vmd -e filename, where filename was
the name of the file you saved before.

• After starting VMD, from the text console, type play filename.

The most common source of problems is when VMD can’t find the files you used to load the
molecule. If this happens, try changing to the directory you were in when you first loaded the
molecule, or edit the state file and use the full path names where you see mol new, mol addfile,
or mol load commands.

3.9 Tracking Script Command Versions of the GUI Actions

For most actions performed from the VMDGUI, there is an equivalent script command. VMDcan
print these commands to a log file or the console. This is a convenient way to automate file
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processing by first doing all steps interactively while logging to a file and then editing the logfile to
turn it into a Tcl script operating on multiple files. There are two ways to do this in VMD:

• In the main menu, press the Log TCL Commands to File button found in the File menu; this
will bring up a browser window where you can enter a file name in which you can save the
resulting script code.

• In the text console, type logfile filename, where filename is the name of the log file.

The resulting file will contain Tcl script code that can be executed from the VMDcommand
prompt. The Log TCL Commands to Console button or the command logfile console will print
the Tcl commands to the console window instead. This is most useful, if you just want to find out,
which VMDcommand is used to perform a specific action.

Finally, the logfile off command or clicking on the Turn Off Logging button will stop the log
and close the log file, if needed.
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Chapter 4

Loading A Molecule

The File menu is the primary means for loading molecules and other data into VMD. The built-in
file readers will load molecular structures from combinations of topology files, coordinate files, and
trajectory files. Readers are also included for data such as potential maps, electron density maps,
Grasp surface data, and arbitrary 3-D geometric data from Raster3D scene files. VMD can load
structures directly from Protein Data Bank over the internet, provided that a network connection
is present. Entering the four-character PDB accession code in the molecule file broswer form will
retrieve and load the structure over the network.

4.1 Notes on common molecular file formats

VMD natively understands several popular molecular data file formats: PDB coordinate files,
CHARMM, NAMD, and X-PLOR style PSF topology files, CHARMM, NAMD, and X-PLOR
style DCD trajectory files, NAMD binary restart (coordinate) files, AMBER structure (PARM)
and trajectory (CRD) files including both the old format and the new formats used by AMBER
7.0, and Gromacs (e.g. GRO, G96, XTC, TRR) structure and trajectory files. These files may
contain some redundant information and can be loaded in different combinations.

PDB files contains data about atoms, residues, segment names, occupancy and beta factor, and
one coordinate set. PSF and PARM files contain atoms, residues, segment names, residue types,
atomic mass and charge, and the bond connectivity. VMD supports four file formats used by
Gromacs: GRO, G96, TRR and XTC. GRO and G96 files contain structure information including
atoms, residue and segment data, and one coordinate set. CRD, DCD, TRR and XTC files contain
only coordinate data (frames ). It should be noted that while PDB, GRO and G96 files were
designed to contain only one coordinate set, multiple files can be concatenated into one larger file
to create a makeshift trajectory file which can be loaded by VMD.

When VMD loads a file it requires information about atom names and coordinates and tries to
fill in the rest. Since the PDB file contains all this information, it does not need to be loaded with
any other data files. However, the PDB file doesn’t contain the atom types, masses, and charges,
so these are guessed or assigned default values. In particular, charges will be assigned a value of
0.0 if the file does not contain explicit charge information.

A PSF file does not contain coordinate information so it must be loaded along with a PDB or
DCD file. If a PDB and PSF are given there is no missing data and VMD makes no assumptions.
If a PSF and DCD are given then only the chain identifier and occupancy and beta values are
missing so they are given a default value. A PARM file is similar to a PSF in that it too contains
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no coordinate information. It must be loaded along with a CRD trajectory file. If a PARM and
CRD file are loaded together, then only the segname and chain ID for the atoms are left blank. A
CRD or DCD file can be specified along with the PDB, in which case the PDB file will be read
as normal, and then coordinate sets are read from the DCD or CRD until the end of the file is
reached. Gromacs GRO and G96 files can be loaded on their own since they contain the necessary
atom data and coordinates. They can also be loaded along with TRR and XTC files to obtain
trajectory data. Additional coordinates from a PDB, CRD, or DCD file can be appended to the
current coordinate set using the Molecule File Browser form.

4.2 What happens when a file is loaded?

When a coordinate file is loaded by itself (i.e. just a PDB, no PSF), VMD uses heuristics to replace
missing values that would normally be provided by a structure file. If necessary, VMD does a
distance-based bond search to determine connectivity. A bond is formed whenever two atoms are
within (R1 +R2) ∗ 0.6 of each other, where R1 and R2 are the respective radii of candidate atoms.
If both structure and coordinate files are loaded, no approximations or guesses are made.

After the molecule is read in, new names are added to the coloring categories [§6.2.3], and
assigned colors. Next, bond connectivity is established and the molecule is analyzed to identify its
components, i.e., to determine which residues are protein, nucleic acids, and waters, etc. A search
is then made to connect these into larger fragments of the same type, and summary information is
printed to the screen. An example output for BPTI is:

Info 1) Analyzing structure ...

Info 1) Atoms: 898 Bonds: 909

Info 1) Backbone bonds: Protein: 231 DNA: 0

Info 1) Residues: 58

Info 1) Waters: 0

Info 1) Segments: 1

Info 1) Fragments: 1 Protein: 1 Nucleic: 0

There are several types of fragments. Protein and nucleic fragments are homogeneous; either
all proteins, or all nucleic acids. However, it is possible for a protein to be connected to a nucleic
acid or some other non-protein. When this occurs, a warning message is printed, as in:

Warning 1) Unusual bond between residues 1 and 2

These warnings will occur with terminal amino acids, zinc fingers, myristolated residues, and poorly
defined structures.

4.3 Babel interface

VMD can use the program Babel, if installed, to translate a wide variety of different molecular
data files into the PDB format. Not all of these have been tested for use with VMD, so your results
may vary. VMD only uses Babel to read files and does not allow the use of Babel to save files to
other formats. The VMDBABELBIN environment variable [§14.2] is used to specify the absolute path
to the the Babel executable (including the executable name). For more information about Babel,
see http://smog.com/chem/babel/. VMD currently supports version 1.6 of Babel.
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4.4 Raster3D file format

In addition to the molecular file formats, VMD can read the input file for Raster3D. (Raster3D
converts an input file into a shaded raster image for use in making high quality pictures. It is often
used with MolScript.) The ability to read Raster3D allows users to view MolScript files in 3D and
incorporate special images into the display without having to edit the VMD code. The file format,
which is part of the Raster3D documentation, describes a simple collection of triangles, spheres,
and cylinders with either flat or spherical ends. Each shape is colored by an RGB triplet.

Certain newer Raster3D objects are ignored, such as quadrics. Also, nearly all of the header
information is ignored—most notably, the viewing matrix. Raster3D uses many cylinders with
spherical (rounded) ends. VMD deliberately omits these rounded ends since the resultant image
would be very slow to render interactively. VMD uses a fixed size palette of colors, each triplet is
converted into its “nearest” indexed color. This may cause images to be colored slightly differently
than expected.
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Chapter 5

User Interface Components

VMD provides several methods for the user to control and interact with the molecular display. The
primary methods are by using the mouse, either in the graphics window or in the different graphical
user interface (GUI) forms provided by the program. In addition to the mouse, VMD also supports
a number of more advanced input devices such as the Spaceball, Magellan, and Phantom, which
provide the ability to manipulate molecules with six degrees of freedom. Some devices such as the
Phantom can also provide haptic (sense of touch) force feedback. VMD also provides a text console
interface for executing built-in commands or running scripts. This chapter describes how to use
the mouse-based user interfaces, and some of the advanced input devices supported in VMD. The
the text and scripting interface is described fully in chapter 9.

5.1 Using the Mouse in the Graphics Window

The graphics window is labeled VMD OpenGL Display and contains a view of the molecules and
other objects which make up the scene. When the mouse is in the graphics display window, it may
be used to perform the following actions such as:

• Rotate, translate, or scale the displayed molecules

• Select, or ‘pick’ atoms or other objects in order to move them, or label them

• Translate and rotate a set of atoms

• Apply a force (acceleration) to a set of atoms

• Move the lights

User-defined keyboard accelerators, or hot keys, are also available when the mouse is in the graphics
display window. These keys are bound to VMD text commands, which are executed when the key
is pressed. VMD has many built-in default hot key commands (see Tables 5.1, 5.2, 5.3 and 5.4).
Users can add new hot keys, overriding default settings if desired.

5.1.1 Mouse Modes

The mouse is in one of several modes at any time; the current mouse mode determines the effect of
pressing and releasing mouse buttons or the mouse wheel while the mouse is in the graphics window.
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Each mouse mode, except the lights mode (see below), sets the mouse cursor to a characteristic
shape. The mouse mode is selected via the Mouse menu.

The available mouse modes are as follows:

• Rotate Mode (hot key ’r’)
When the mouse is in rotate mode, holding the left mouse button down and moving the mouse
rotates the molecules about axes parallel to the screen, in a ‘virtual trackball’ behavior. To
get a rotation around the axes coming out of the screen (the ‘z’ axis), hold the middle button
down and move the mouse left or right.

You can leave molecules rotating without continuously moving the mouse. Start the molecule
moving with the mouse, as above, then release the mouse button before you stop moving the
mouse. With some practice it becomes easy to impart a slight spin on the molecule, or whirl
it about madly. To stop the rotation, either press and hold the left mouse button down until
the molecule stops moving, or select ‘Stop Rotation’ in the Mouse menu. Also, pressing the
rotation hot key r or any of the other mouse mode hot keys causes rotation to stop.

• Translate Mode (hot key ’t’)
When the mouse is in translate mode, holding the left button down allows you to move

the molecules parallel to the screen plane (left, right, up, and down). To move the molecule
towards or away from you, hold the middle button down and move the mouse right or left,
respectively.

• Scale Mode (hot key ’s’)
Pressing either the left or middle button down and moving to the right enlarges the molecules,
and moving the mouse left shrinks them. The difference is that the middle button scales faster
than the left button. Scaling can also be accomplished with the mouse wheel (irrespective of
the current mode setting) on computers equipped with an appropriate mouse.

• Move Light
VMD provides four directional lights to illuminate the molecular scene. The lights provide

diffuse lighting and specular highlights and help the user perceive surface shape in rendered
objects. You can use the mouse to rotate each of the light source directions to a new position.
If the light isn’t on, moving it will not affect the displayed image. To turn a light on or off,
use the Lights item within the Mouse menu.

• Add/Remove Bonds
When the mouse is in add/remove bonds mode, clicking on atoms in a molecule will add a

bond between those atoms if one is not already present, or remove the bond between those
atoms if there is already a bond. The two atoms must belong to the same molecule.

5.1.2 Pick Modes

Mouse picking can be used to turn on or off various types of labels, to query for information about
an object, or to move items around on the screen. You can label an atom (and display the atom
name), or you can label geometric values such as the distance between two atoms (a bond label), an
angle between three atoms (an angle label), or the dihedral angle formed by four atoms (a dihedral
label). This is done by setting the mouse into the proper picking mode and then selecting the
relevant atoms with the mouse. Picking modes are selected from the Mouse menu.

The available pick mode actions are:
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• Center (hot key ’c’)
This mode is used to change the point about which a molecule rotates when the molecule
is rotated. To cause a molecule to rotate about a specific atom, select this mode and then
click on that atom. The rotation point may be restored to its default position (the center of
volume of the molecule) by executing the ‘Reset View’ option from the Mouse menu.

• Query (hot key ’0’)
Clicking on an item will print out the name of the item (e.g. the atom name) to the text
console window.

• Label → Atom (hot key ’1’)
Clicking on an atom will toggle on/off a label for the atom.

• Label → Bond (hot key ’2’)
Clicking on two atoms in a row will toggle on/off a bond distance label between the two atoms
(a dotted line with the distance printed at the midpoint).

• Label → Angle (hot key ’3’)
Clicking on three atoms in a row will toggle on/off a label showing the angle formed by the
three atoms.

• Label → Dihedral (hot key ’4’)
Clicking on four atoms in a row toggles on/off a label showing the dihedral angle formed by
the four atoms.

• Move → Atom (hot key ’5’)
In this mode, the position of an atom can be changed by clicking on the desired atom,
and dragging with the mouse while the button is still pressed. This will change the atom
coordinates.

• Move → Residue (hot key ’6’)
This mode may be used to move all the atoms in a selected residue at the same time. Select
an atom in a residue, and move it to a new position while keeping the mouse button pressed.
All the atoms in the same residue as the selected one will be moved the same amount. Holding
down the ¡shift¿ key and the left mouse button while moving the mouse will rotate the atoms
in the residue about the selected atom. If the middle mouse button is held down instead, the
atoms in the residue will rotate about a line drawn through the picked atom and parallel to
a line coming directly out of the screen. This behavior is similar to the usual Rotate mode,
except that coordinates of atoms are changed.

• Move → Fragment (hot key ’7’)
A fragment is a set of atoms all connected by a series of covalent bonds. This mode acts just
like MoveResidue, except that the atoms which are moved are all in the selected fragment
rather than in the selected residue. This will change the atom coordinates. Holding down
the ¡shift¿ key and the left mouse button while moving the mouse will rotate the atoms in
the fragment about the selected atom. If the middle mouse button is held down instead, the
atoms in the fragment will rotate about a line drawn through the picked atom and parallel to
a line coming directly out of the screen. This behavior is similar to the usual Rotate mode,
except that coordinates of atoms are changed.
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• Move → Molecule (hot key ’8’)
This mode may be used to move all the atoms in a selected molecule at the same time.
Select an atom in a molecule, and move it to a new position while keeping the mouse button
pressed. All the atoms in the same molecule as the selected one will be moved the same
amount. Holding down the ¡shift¿ key and the left mouse button while moving the mouse
will rotate the atoms in the molecule about the selected atom. If the middle mouse button
is held down instead, the atoms in the molecule will rotate about a line drawn through the
picked atom and parallel to a line coming directly out of the screen. This behavior is similar
to the usual Rotate mode, except that coordinates of atoms are changed.

• Move → Rep (hot key ’9’)
This mode may be used to move all the atoms in a selected representation at the same time.
You select a representation by clicking on one of the reps in the browser window of the
Graphics window. In order to move the atoms in this rep, the atom you pick with the mouse
must be selected by that rep.

When you have clicked on an atom in the rep, move the mouse to a new position while keeping
the mouse button pressed. All the atoms selected by the highlighted rep will be moved the
same amount. Holding down the ¡shift¿ key and the left mouse button while moving the
mouse will rotate the atoms in the rep about the selected atom. If the middle mouse button
is held down instead, the atoms in the rep will rotate about a line drawn through the picked
atom and parallel to a line coming directly out of the screen. This behavior is similar to the
usual Rotate mode, except that coordinates of atoms are changed.

5.1.3 Hot Keys

When the mouse is in the graphics window, many commands are accessible via programmable hot
keys. Hot keys allow you to do things like change mouse modes or advance the animation by a
frame by simply pressing a key. There are a number of predefined hot keys, as listed in tables 5.1,
5.2, 5.3, and 5.4. They can be printed out with the command user print keys. The commands
listed are the text commands which are executed when the hot key is pressed; these text commands
are explained in section 9.3.

To add or modify a hot key, use the command user add key key command. The key parameter
must be a single character. If command contains more than one word, it must be enclosed in braces
so that the subsequent command words are not ignored. When that key is pressed while the mouse
cursor is in the graphics display window, the associated command will be executed. Once you
have a set of commands which are particularly useful and familiar for you, you will want these hot
key commands automatically available every time you run VMD. This can be done by placing the
commands to add these items in your .vmdrc file, which is a file containing VMD text commands
that is executed every time VMD starts up. The basic method for setting up this file is described
in section 14.3.3. Once you have such a file, put the user add commands in it.
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Hot Key Command Purpose

r, R mouse mode 0 0 enter rotate mode; stop rotation
t, T mouse mode 1 0 enter translate mode
s, S mouse mode 2 0 enter scaling mode
0 mouse mode 4 0 query item
c mouse mode 4 1 assign rotation center
1 mouse mode 4 2 pick atom
2 mouse mode 4 3 pick bond (2 atoms)
3 mouse mode 4 4 pick angle (3 atoms)
4 mouse mode 4 5 pick dihedral (4 atoms)
5 mouse mode 4 6 move atom
6 mouse mode 4 7 move residue
7 mouse mode 4 8 move fragment
8 mouse mode 4 9 move molecule
9 mouse mode 4 13 move highlighted rep
% mouse mode 4 10 apply force on atom
∧ mouse mode 4 11 apply force on residue
& mouse mode 4 12 apply force on fragment

Table 5.1: Mouse control hot keys.

5.2 Using the Spaceball in the Graphics Window

VMD provides optional support for SpaceNavigator, Magellan, and Spaceball six-degree-of-freedom
input devices. The Spaceball may be used to rotate, translate, and scale molecules, using up to
6 control axes simultaneously (3 axes in translation, 3 in rotation). The Spaceball can be used
independently and simultaneously with the mouse. With the spaceball in one hand and the mouse
in the other, a user can perform complex picking and identification operations more efficiently, since
the mouse can be left in pick mode (for example) while the Spaceball is used to perform rotations,
translations, and scaling operations with the other hand.

The Spaceball can be run in one of several modes within VMD. The Spaceball interface currently
provides two methods of rotation and translation, and a scaling mode. The Spaceball interface
currently uses Button 1 (known as Function 1 in the SpaceWare driver) to reset the view, and
Button 2 to cycle through the available Spaceball interface modes.

5.2.1 Spaceball Driver

VMD interfaces to the Spaceball in one of two ways; either by communicating directly with the
Spaceball using built-in serial interface software, or vendor provided drivers. Unix and Mac OS X
versions of VMD use the built-in serial Spaceball driver. At startup, VMD checks for the existence
of an environment variable VMDSPACEBALLPORT. This environment variable must be set to
the Unix device name of the serial port to which the Spaceball is attached. The serial port device
permissions must be set to allow the VMD user to open the device for reading and writing. In
typical usage, this usually requires performing a chmod 666 /dev/somettyname on the appropriate
device as root. One restriction with the use of the built-in Spaceball driver is that only one VMD
process may safely use the Spaceball at a time. If multiple VMD sessions are started on the same
machine and all are set to open the Spaceball, it will behave very erratically.
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Hot Key Command Purpose

x rock x by 1 -1 spin about x axis
X rock x by 1 70 rock about x axis
y rock y by 1 -1 spin about y axis
Y rock y by 1 70 rock about y axis
z rock z by 1 -1 spin about z axis
Z rock z by 1 70 rock about z axis

j, Cntl-n rotate x by 2 rotate 2◦ about x
k, Cntl-p rotate x by -2 rotate −2◦ about x
l, Cntl-f rotate y by 2 rotate 2◦ about y
h, Cntl-b rotate y by -2 rotate −2◦ about y

g rotate z by 2 rotate 2◦ about z
G rotate z by -2 rotate −2◦ about z

Cntl-a scale by 1.1 enlarge 10 percent
Cntl-z scale by 0.9 shrink 10 percent

Table 5.2: Rotation & scaling hot keys.

Hot Key Command Purpose

Alt-M menu main off;menu main on Show main menu
Alt-f menu files off;menu files on Show files menu
Alt-g menu graphics off;menu graphics on Show graphics menu
Alt-l menu labels off;menu labels on Show labels menu
Alt-r menu render off;menu render on Show render menu
Alt-d menu display off;menu display on Show display menu
Alt-c menu color off;menu color on Show color menu
Cntl-r display resetview Reset display
Alt-q quit confirm Quit VMD with confirmation
Alt-Q quit Quit VMD
Alt-h hyperref invert Invert hyper text mode (NOT help)

Table 5.3: Menu control hot keys.

The Linux and Windows version of VMD can use open source (e.g. spacenavd) or vendor-
provided (SpaceWare) driver to communicate with SpaceNavigator, Magellan, or Spaceball devices
via windowing system events. The window system drivers operate somewhat differently from the
serial driver built into VMD. The window system driver software runs as a separate process from
VMD and must be started and fully operational before VMD is run. At startup time VMD attempts
to open the windowing system driver interface, displaying the success or failure of initialization as
it occurs, with applicable diagnostic information. The windowing system driver provides detailed
control over the sensitivity and configuration of the Spaceball, Magellan, or SpaceNavigator device.
In order to use the Spaceball function keys with VMD the windowing system driver must be set
to send button events as Function 1 and Function 2 at a minimum. Once set, it should be possible
to cycle through the various VMD Spaceball operational modes as described below.
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Hot Key Command Purpose

+,f,F animate next move to next frame
-,b,B animate prev move to previous frame
.,> animate forward play animation forward
, animate reverse play animation reverse
< animate reverse play animation reverse

/, ? animate pause stop animation

Table 5.4: Animation hot keys.

5.3 Using the Joystick in the Graphics Window

The Windows version of VMD provides support for the Windows joystick driver, and will enumerate
all available joystick devices at startup time. The joystick interface employed in VMD is quite
simple, allowing the use of three control axes to translate, rotate, and scale the molecule. The
joystick interface assumes a device with at least two buttons. The first joystick button resets the
view in the display window, and the second button cycles through each of the available joystick
modes. When VMD first attaches to each of the joysticks, they are initially disabled so that
miscalibrated joysticks do not adversely affect the VMD session. Each joystick is initially enabled
by pressing its second button to switch modes. All joysticks are independently controlled such
that multiple joysticks can control different control axes, and multiple users could interact with the
program with separate controls.
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5.4 Description of each VMD window

VMD uses several different GUI windows, each designed to control a specific aspect of the molecular
display (e.g., to control the appearance of the graphics display window, or to change the colors of
displayed objects). The following sections give a brief description of the windows available in VMD;
the remaining chapters in this manual describe the actions which these windows make available in
greater detail.

5.4.1 Main Window

Figure 5.1: The Main window

The Main window is the main way to access other windows, load and save files, control trajectory
playback, change various global program settings, access help, and to quit the program. Many of
these actions can also be performed with the menu shortcut keys described in Table 5.3.

The Quit menu item exits VMD. This will bring up another window which verifies that you do
indeed wish to exit. Press Yes to quit, or No to return to VMD.

Help

The Help menu items each start a web browser to display on-line VMD help documents. The
browser is designated by the environment variable VMDHTMLVIEWER [§ 14.2]. Selecting a help item
multiple times may start multiple browsers. The default web browser is Mozilla for Unix systems,
and the built-in Explorer shell for Windows systems. The menu contains items for the VMD Quick
Help page, as well as the current User’s Guide, FAQ, and links to various helpful information and
programs.

5.4.2 Main Window Molecule List browser

The Main window shows the global status of the loaded molecules. Any number of molecules may
be displayed by VMD simultaneously. Each molecule can separately be hidden from view or fixed
in place (e.g., prevented from being affected by mouse rotation commands). The window contains
controls to change the status of the molecules individually or in groups.

The browser displays information about each molecule. A unique integer ID is assigned to each
molecule by VMD when it is loaded. The Molecule is the file name which contained the topology
information. Atoms shows the number of atoms in the molecule, and Frames gives the number of
frames associated with the file.
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Next to each molecule is a set of status flags, which indicate the current Status of each molecule.
Each molecule has the following characteristics, which can be on or off:

• Top (T)
Top indicates the default molecule used in the text commands when nothing is specified for the
mol text command. It is also used in some forms (like Graphics and Animate) to determine
certain values. There can be only one top molecule at a time.

• Active (A)
Several commands and actions in VMD operate on many molecules. These commands, unless
specifically specified otherwise, will do their action for all the active molecules. The primary
use for this control is to prevent some molecules from being animated. Inactive molecules will
not animate when the play button is pressed.

• Drawn (D)
If a molecule is Drawn then it is being displayed in the graphics display window. This is
useful for temporarily hiding a molecule from view without deleting it.

• Fixed (F)
Fixed molecules do not undergo rotation, translation, or scaling. Note that while it may seem
that one molecule has been moved relative to another, the difference is only apparent. The
internal coordinates do not change when a standard rotation is applied by using, for example,
the mouse. It is possible, however, to change the coordinates of atoms in a molecule, using
the text command interface, and by using the atom move picking modes.

Changing the Molecule’s Status

The status of a given molecule can be changed by selecting the molecule in the browser and double-
clicking the appropriate flag. Only one molecule can be top at any one time, so the previous top
molecule will change status when another is toggled.

Saving Trajectory Frames

Using the Save Coordinates. . . menu item, you can write trajectory frames to a file in one of several
file formats including PDB, DCD, Amber CRD, etc. This feature may be used to write out a new
trajectory in a single file after assembling many frames from different sources (such as PDB CRD,
DCD or Gromacs files, or even from a remote simulation). You can also use this, in combination
with the molecule file browser as a way to make PDB files from a DCD/CRD trajectory.

You can either save the entire stored trajectory, or a slice of the data by using the Amount

chooser [§ 5.4.4]. Then select the appropriate output file type in the File Type chooser, and press
the Save button in the bottom right corner. This brings up the file browser, which you can use
to enter the new filename. Once you press the Save button in the browser, the file will be written
without further confirmation. See the section on the atomselect writexxx [§ 9.3.2] command for
information on how to write atom coordinates for an atom selection in a PDB file.

Deleting Trajectory Frames

You can delete frames from memory through a dialog box. To bring it up, start by selecting a
molecule and choosing the Delete Frames. . . from the Molecule menu, or by double-clicking on the
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Frames column for that molecule in the Molecule Browser. On this is done, choose the range of
frames you wish to delete with the First and Last controls, and then press the Delete button. There
is no confirmation of deletions.

The Stride control allows you to keep some frames in the range using the specified interval. For
example, if your range contains 10 frames labeled 0 through 9, and you use a stride of 4, the frames
numbered 0, 4 and 8 will be kept. A stride of 0 (zero) implies that all frames will be deleted.

Deleting a Molecule

The Delete Molecule menu item deletes all the selected molecules. There is no prompt verifying the
deletion, so take some care. If a deleted molecule was the top molecule, a new top molecule will be
set from the remaining structures.

GUI Shortcuts

There are a few useful mouse-based shortcuts that can be used in the Molecule List browser. Here
is a list:

• Double-clicking on a molecule’s name brings up the Rename Molecule dialog box.

• Double-clicking on a molecule’s number of frames brings up the Delete Frames dialog box.

• Triple-clicking on the T (top) in front of a molecule focusses on that molecule by making it
the only molecule to be displayed (D) and active (A). Furthermore, the view is reset and the
molecule gets selected in the Representations window.

5.4.3 Main Window Animation Controls

Figure 5.2: The Main window animation controls

Each molecule in VMD can contain multiple sets of atomic coordinates, which may be animated
to show its motion over time. The coordinate sets can come from a molecular dynamics simulation,
or simply multiple versions of the same molecular structure. The Main window contains controls
for animated playback of these trajectories. The controls contains several buttons which act like
the buttons on a VCR or DVD player. The buttons provide a way to play the trajectory, step
forward, stop, go to a specific frame, and go to the beginning or end. The status and frame
counters shown in the animation control reflects the state of the top molecule. Commands entered
via this control, however, affect all active molecules [§5.4.2], not just the top molecule, allowing
concurrent animation of multiple molecules.

Animation Speed

The rate of playback can be controlled in two ways. The Step control changes the animation
step size. By default, the frame step is 1, so each step of the playback increases (or decreases) the
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animation frame number by one. If the frame step is 5 then the animation proceeds five times faster
because only a fifth of the frames are shown. The Speed slider at the bottom of the window also
affects the playback speed. Internally, this controls how many screen updates are needed between
each step. By default, the slider is at the far right indicating that one step is performed for each
screen redraw. Moving the slider to the left increases the minimum time required between updates.

Jumping to Specific Frames

The start and end buttons are used to simplify the comparison between the initial and final struc-
tures. The start button resets the current animation to the first frame, and end jumps to the last
frame. If you need to jump to a specific frame, enter the frame number in the frame counter text
area next to the start button and press enter. One thing to bear in mind is that the frame number
starts at 0, so to jump to the 5th frame, you must actually enter 4 here. The animation controls
are all relative to the top molecule [§5.4.2].

Looping Styles

When the animation is playing forward and reaches the end of the data available for the top
molecule, one of three possible actions takes place, as specified in the style chooser. The default
is ‘Loop’, which will reset the active molecules to the first frame and continue playing forward.
‘Once’ will stop the animation when it reaches the last frame, and ‘Rock’ reverses the direction of
animation. The actions are symmetrical when the animation is playing in reverse.

5.4.4 Molecule File Browser Window

Figure 5.3: The Molecule File Browser window

The Files window is used to load a file from disk into a new or existing VMD molecule. It can
be brought up by choosing New Molecule. . . from the File menu, or by hilighting a molecule in
the Main window5.4.1 and choosing the Load Data Into Molecule. . . menu item. Once the window
appears, select the file you want by using the file browser or by typing the filename into the text
entry area. By default VMD will try to guess the type of file you are loading by matching the
filename extension with one of the file reader plugins in the file type list (the available file types are
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described in Chapter 4). If VMD is unable to guess the appropriate file type or guesses incorrectly,
you must select it from the list manually.

You can control into which VMD molecule you want to load your data by selecting it from the
Load files for: popup menu at the top of the window. If the file being loaded is intended for a
new molecule, select New Molecule instead. If the file being loaded contains additional coordinate
frames, electron density map, or other ancillary data for an existing molecule, choose the appropriate
molecule from the selection list at the top of the window. If the file being loaded contains trajectory
frames , you have the option of loading a subset of the trajectory skipping ranges or strides of frames
rather than the whole thing. You can also select for VMD to load all frames before continuing on, or
to load them in the background so that you may continue to interact with the menus and windows
while it loads additional frames . If the file being loaded contains multiple volumetric data, you
may select which data sets you would like to load.

Once you have selected the file to be loaded, the appropriate file type, and the way it will be
loaded, press the Load button and VMD will being loading the selected file. Any informational
messages, errors or warnings which occur while loading the file will appear in the text window.

Reading Trajectory Frames

VMD can read in new coordinate sets from one of several file formats such as PDB, CRD, DCD,
or Gromacs files. The new coordinate sets are appended to the end of the stored frames for the
selected molecule. Loading coordinate data is like loading any other file, select it with the file
browser make sure the file type is set correctly for the file being loaded, and then press the Load

button.
By default, VMD will load all of the frames contained in a coordinate or trajectory file.
Sometimes you may not want to read in a whole coordinate or trajectory file. For example, you

may only want the last frame, or every tenth frame. You can do this by changing the options in
the Frames control of Files window. The Frames controls consist of three numeric input fields
labeled First, Last, and Stride. These make it possible to use a subset of the frames, starting at
frame First and selecting every Stride frames until the Last is reached. For instance, to select every
fifth frame between frames 14 and 98, set:

• First to 14

• Last to 98

• Stride to 5

(Remember that frame numbers in VMD start at 0, so frame 0 is the first frame.) The value
‘-1’ is a special number; setting First to -1 is the same as starting at the first frame, Last = -1 is
the same as ending at the last frame, and Stride = -1 is the same as taking one step.

5.4.5 Mouse Menu

The Mouse menu indicates and controls the behavior of the mouse when the mouse moves and
clicks within the graphics window. Mouse clicks and drags can affect VMD in one of two ways. It
can change the view of the scene, either by rotating, translating, or scaling. It can also pick objects
in the scene, causing some further action to be taken. These behaviors are all reflected in the state
of the Mouse menu.

Below, we describe the main parts of the Mouse menu.
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Mouse modes

The top three menu items select whether the mouse will rotate, translate, or scale the scene when
the user clicks and drags with the left mouse button.

Pick modes

These modes, located right below the mouse modes in the Mouse menu, control how the mouse
affects objects in the scene (as opposed to how the mouse changes the view of these objects). Note
that any time you choose a new pick mode, the current mouse mode changes to ”Rotate”.

• Center changes how VMD rotates and scales the scene. To get a feel for how this works,
select ”Center” from the Mouse menu, then click on an atom in the scene. If you now rotate
the scene by clicking and dragging with the left mouse button, the scene should rotate about
the picked atom. If you change the view mode to ”Scale” using the ”View Mode” pulldown
menu, the scene will expand while keeping the picked atom in view. The picked atom will
remain the center atom until a new atom is selected as ”Center”, the ”Reset View” button is
pressed, or a new molecule is loaded.

• Query prints information about the item (e.g. the atom name) on the text console window.

• Label adds labels to atoms in the scene. Labels include atoms, bonds, angles, and dihedrals.
These labels require, respectively, one, two, three, and four atoms to be picked. For the latter
three label types, the numerical value of the geometric label is displayed, along with a stippled
line connecting the picked atoms. The units for ”Bonds” corresponds to whatever units the
coordinate file is written in. ”Angles” and ”Dihedrals” are measure in degrees.

Labels can then be manipulated through the Labels window.

• Move changes the actual coordinates of atoms in the scene. Note that this is different from
simply changing the view. Clicking on one of the buttons in the Mode Mode menu selects
what group of atoms to move. ”Atom” moves only the selected atom. ”Residue” moves all
atoms in the same residue (e.g., amino acid or nucleotide) as the selected atom. ”Fragment”
moves all atoms connected by a bond to the picked atom. ”Molecule” moves every atom in
the molecular structure. ”Highlighted Rep” is the most flexible; it moves all atoms in the
highlighted representation in the browser window of the Graphics window.

Atoms are moved by clicking and dragging with the left mouse button. If the shift key is held
while the mouse is moved, the affected atoms are rotated about the selected atom. Rotating
atoms with the left button rotates about the x or y axis of the screen; rotating with the
middle or right button rotates about an axis perpendicular to the screen.

Note that there is currently no way to undo Move operations, so the atom coordinates should
first be saved to a file.

• Force applies a force to selected atoms in a running simualtion. These forces will be visible
only if an IMD connection has been established. Clicking and dragging with the left mouse
button will apply a force to the selected Atom, Residue, or Fragment, as in Move Mode.
Clicking with the middle or right button will cancel the force on the selected atoms.

• Move Light allows the lights to be positioned around the scene. Individual lights are turned
on or off in the Display window. Selecting one of the lights in the Move Light menu rotates
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the selected light about the origin. The Move Light Mode can also be cancelled by changing
into any other pick mode or mouse mode.

• Add/Remove Bonds adds a bond between two clicked atoms if there is not one present,
and removes the bond otherwise. Both atoms must belong to the same molecule.

5.4.6 Display Menu and Display Settings Window

Figure 5.4: The Display menu

The Display menu controls many of the characteristics of the graphics display window. The
characteristics which may be modified include:

• Reset View – This menu item can be used to force VMD to reset the scene back to the
default viewing orientation and scale as is done when a molecule is first loaded.

• Stop Rotation – This menu item stops autorotation of the scene. The scene can be au-
torotated by quickly dragging the mouse while briefly depressing and releaseing the mouse
button, leaving the scene spinning until it is stopped either by this menu item or by further
mouse interactions.

• Perspective – The view of the scene can be Perspective or Orthographic. In the perspec-
tive view (the default), objects which are far away are smaller than those near by. In the
orthographic view, both objects appear at the same scale. Note that several of the sup-
ported external rendering programs do not support orthographic rendering. As such, it may
be necessary to “fake it” by translating the scene far away from the camera, and apply a
zoom factor. This has the effect of significantly reducing the perspective, while not truly an
orthographic view.
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• Antialiasing – Turns antialiasing on or off. Antialiasing helps smooth out the jagged appear-
ance of displayed geometry resulting from the inherently discrete pixels on the display device.
The antialiasing feature is only available on platforms which support full-screen antialiasing,
sometimes known as “multisample antialiasing”. On platforms lacking the multisample capa-
bility, there may be alternate ways to perform full-screen antialiasing by selecting an option
in the display driver setup. Windows machines most commonly place these controls in the
display driver configuration panel.

• Depth Cueing – Turns depth cueing on or off. Depth cueing causes distant objects to blend
into the background color, in order to aid in 3-D depth perception. The depth cueing settings
controlled in the Display Settings window. The Cue Mode parameter controls which type
of fog equation is used. The Linear depth cueing mode provides a simple depth gradient
with a defined starting point and endpoint. The Exp and Exp2 depth cueing modes take a
density parameter, and generally blend into the background color much more sharply than
the linear depth cueing mode. Scaling up the molecule will increase the amount of depth
cueing effect that is visible, since it will occupy a larger depth range. Scaling the molecule
size down decreases the depth cueing effect. Translating the molecule into and out of the
screen will cause it to blend into and out of the background color.

• Culling – Turns backface culling on or off. This feature is primarily used to accelerate ren-
dering performance on software based implementations of OpenGL, such as Mesa. Backface
culling actually reduces performance on some hardware renderers, so you’ll have to use your
own best judgement on whether or not it is helpful to use on your specific computer system.

• FPS – This option enables or disables on-the-fly display of the achieved VMD rendering frame
rate. The frame rate is displayed in the upper right hand corner of the graphics window when
it is enabled.

• Lights – The graphics display window can use up to four separate light sources to add a
realistic effect to displayed graphical objects. The Lights On browser turns these light sources
on or off. If the number is highlighted, the light is on, and clicking on it turns the light off.
See section 5.1.1 for more discussion regarding lights.

• Axes – A set of XYZ axes may be displayed at any one of five places on the screen (each of
the corners or the center) or turned off. This is controlled by the Axes chooser.

• Background – The display background can either be set to a uniform color over the entire
scene, or a vertical gradient can be set with a linearly changing color from the top of the
viewport to the bottom.

• Stage – The Stage browser controls the stage, which is a checkerboard plane that can be
located in any one of six places or turned off.

• Stereo, Eye Sep, and Focal Length – These controls are found in the Display Settings

window. These controls set the stereo mode and parameters; stereo is discussed fully in
chapter 7. The Stereo chooser changes the stereo mode, while the Eye Sep and Focal Length

controls change the eye separation distance and the focal length, respectively. The Stereo Eye

Swap control optionally reverses the left/right eyes when displaying on projectors or other
devices that for one reason or another don’t preserve the correct left/right eye assignments.
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• Cachemode – The Cachemode toggle controls whether or not VMD uses a display list caching
mechanism to accelerate rendering of static geometry. This feature can be extremely beneficial
for achieving good interactive display performance on tiled display walls, and for remote
display over a network. Caching cannot be performed while animating trajectories, so the
performance benefit is only possible interactive rotation and zooming of static molecular
structures.

• Rendermode – The Rendermode chooser controls which low-level rendering method VMD
uses. The Normal rendering mode is the default VMD rendering algorithm based on standard
fixed-function OpenGL. The GLSL rendering mode uses OpenGL Programmable Shading
Language to implement real-time ray tracing of spheres, alpha-blended transparency, and
high-quality per-pixel lighting for all geometry. On machines with high performance graphics
boards supporting programmable shading, the GLSL rendering mode provides quality on par
with many of the external software renderers supported by VMD but at interactive display
rates.

• Clipping Planes (Near Clip and Far Clip) – These controls are found in the Display

Settings window. Only those parts of the scene between the near and far clipping planes are
drawn. The display clipping planes also set the depth cueing start and endpoints. Objects at
the near clipping plane are distinct and crisp, objects at the far clipping plane will be blended
into the background. Clipping planes positions are changed with the Near Clip and Far Clip

controls. It is not possible for the near clip to be farther away than the far clip. When using
stereo, it may be useful to set the near clip plane much lower than the default value. This
makes the geometry “pop out of the screen” a bit more, and can be used for greater dramatic
effect.

• Screen Height (Hgt) and Distance (Dist) – These controls are found in the Display

Settings window. The screen height, along with the screen distance, defines the geometry and
position of the display screen relative to the viewer. The screen height is the vertical size of
the display screen, in ‘world’ coordinates. Each molecule is initially scaled and translated to
fit within a 2 x 2 x 2 box centered at the origin; so the screen height helps determine how
large the molecule appears initially to the viewer.

The screen distance parameter determines the distance, in ‘world’ coordinates, from the origin
to the display screen. If this is zero, the origin of the coordinate system in which molecules
(and all other graphical objects) are drawn coincides with the center of the display. If distance
is negative the origin is located between the viewer and the screen, if it is positive, the screen
is closer to the viewer than the origin. A negative value puts any stereo image in front of the
screen, aiding the three-dimensional effect; a positive value results in a stereo image that is
behind the screen, a less dramatic effect (but easier to see, for some people) stereo effect.

Figure 5.5 describes the relationship between the screen height, the screen distance, and the
world coordinate space.

• Shadows – The shadows control enables and disables direct lighting shadowing when using
the built-in Tachyon CPU or GPU renderers or when exporting the VMD molecular scene to
external renderers that implement shadowing algorithms. The simple direct lighting model
implemented in most renderers yields shadows that are completely dark, producing a some-
what harsh lighting quality akin to what would be expected in a desert under full sunlight
with no clouds.
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Figure 5.5: Relationship between screen height (SCRHEIGHT), screen distance to origin
(SCRDIST), and the viewer

• Ambient Occlusion – The ambient occlusion (AO) lighting control enables the use of so-
called ambient occlusion indirect lighting when using the built-in Tachyon CPU or GPU
renderers, or external renderers that implement AO. Images with much higher quality shad-
ing can be produced by augmenting direct lighting with ambient occlusion or broad angle or
indirect lighting techniques. Ambient occlusion lighting emulates the broad lighting effects
similar to what would be experienced on a cloudy or overcast day with omnidirectional light
arriving on all surfaces. The AO ambient coefficient controls the strength of the omnidirec-
tional lighting components. The AO direct coefficient scales the direct lighting contribution
associated with the directional and positional lights.

• Depth of Field (DoF) – The depth of field (DoF) control enables or disables emulation of
depth of field focal blur effects associated with fast focal ratio camera optics and close focus
distances. The depth of field implementation provided by the built-in Tachyon ray tracer and
most other renderers yields a plane of perfect focus at a specified distance from the camera.
The degree of focal blurring with increasing distance from the plane of perfect focus depends
on both the simulated f/stop and the distance between the plane of perfect focus and the
camera.

5.4.7 Graphics Window

The Graphical Representations or “Graphics” window controls how molecules are drawn. Molecules
are represented by reps, which are defined by four main parameters: the selection [§ 6.3], the drawing
method [§ 6], the coloring method [§ 6.2], and the material [§ 6.2.5]. The selection determines
which part of the molecule is drawn, the drawing method defines which graphical representation is
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used, the coloring method gives the the color of each part of the representation, and the material
determines the effects of lighting, shading, and transparency on the representation.

Draw Style Tab

Figure 5.6: The Graphics window (in Draw Style mode)

Select a molecule for editing using the ‘Selected Molecule’ chooser at the top of the window.
The browser below this chooser lists the reps available for the molecule. Each line of the browser
summarizes information about the drawing method, the coloring method, and the selection. Below
this browser, choosers and a text input filed reflect the current state of the rep, and provide controls
for changing the properties of the rep. Each drawing method has specific controls which will appear
when it is selected. When the ‘ColorID’ coloring method is selected, a text entry box is shown
allowing you to specify the index of a color to use for the selection, which may be a number from
0 to 16.
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Changing a rep. To change a representation, select it in the representation browser. The atom
selection for that rep will appear in the Selected Atoms text area and the controls will update to
reflect the current settings. Changing the settings will immediately affect the displayed representa-
tion if the Apply Changes Automatically check box is selected. When it is disabled updates will only
occur when the Apply button is pressed. Changing the drawing method brings up method-specific
controls and defaults. If you go back to the previous draw style, VMD restores any changes that
you may have made to the settings. Pressing the Default button will restore the default settings.
The display will be updated after every change.

Adding a rep. To add a new representation of the molecule, enter the selection into the Atom

Selection text area (or keep what is there) and press Create Rep. This adds the representation to
the currently selected molecule.

Deleting a rep. To delete a representation, select the representation in the browser and press
the Delete button. Bear in mind that this does not delete the molecule, it only deletes one of its
graphical representations.

Hiding a rep. To hide a rep, double-click its entry in the browser. The text will turn pink to
indicate that the rep is hidden. Turn the rep back on by double-clicking again on the same line.
Hidden reps will not recalculate their geometry if the animation frame changes until the rep is
turned back on.

Selections Tab

The Selections tab provides access to browsers which display the lists of atom names, residue names,
and so forth for the selected molecule. When the Selections tab is pressed, several browsers appear
in place of the drawing and coloring method controls. These are used to list the available keywords,
macros, and values for use in selecting atoms for the associated representation. The top browser lists
singlewords and macros such as all, water, and hydrophobic. The botton left browser contains
a list of the keywords and functions understood by the selection command [§6.3]. If a keyword is
selected which can take on a value (for instance, name and index), then the possible names will be
displayed in the bottom-rightmost browser. The functions can be identified by the ( to the right
of the name. After selecting a keyword, the right browser will display all the names associated
with the keyword. For example, selecting resname in the left browser will show all the three-letter
residue names known for the selected molecule.

Clicking on a field in the value browser will add it to the selection text field. Double clicking a
keyword field adds the keyword to the text field. Press Apply to actually change the atom selection
for the current rep. Press Reset to restore the atom selection to its original value.

The Selections tab also shows the atom selection macros that have been defined. These macros
let you define a commonly used atom selection as a single word so that it can be inserted into a rep
more conveniently. Atom selection macros can currently be defined only through the Tcl [§9.3.2]
or Python [§10.3] text interfaces; see these sections for details.

Trajectory Tab

Selection and Color auto-update. When an atom selection such as water within 3 of

protein is made, the atoms in the selection are computed for the current animation frame. When
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Figure 5.7: The Graphics window (in Selections mode)

the animation frame changes, the selection is not normally recalculated; thus the displayed atoms
may not correspond to those that would be selected if the atom selection were performed for the
new animation frame. If the Update Selection Every Frame checkbox is highlighted by clicking on the
checkbox, then the atom selection for the current rep will be recalculated every time the animation
frame changes. Similarly, if the Update Color Every Frame checkbox is activated, the color will be
recalculated for every frame.

Color Scale Data Range. Several of the coloring methods available in Draw Style tab operate
over data fields that have no specifically implied range of values. It is often useful to highlight a
very specific range of data values, in order to accomplish this the color scale range can be manually
set to a specific starting and ending values, overriding the default behavior which is to autoscale
from the minimum value to the maximum value. This feature is particularly useful when displaying
trajectories, since the range of values of interest may be quite different from the autoscaled range
for a single frame or all frames.
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Draw Multiple Frames. Draw multiple trajectory frames or coordinate sets simultaneously.
This setting allows the user to select one or more ranges of frames to display simultaneously. The
frame specification takes one of the following forms now, frame number, start:end, or start:step:end.

Trajectory Smoothing. The Trajectory Smoothing Window Size is used to control the application
of a per-representation windowed-averaging smoothing function. This simple smoothing feature can
be used to eliminate much of the thermal noise inherent in a molecular dynamics trajectory so that
one can more easily see structural changes occuring over a wider time scale. The window size
parameter controls how many frames are averaged together to produce the coordinates which are
actually displayed. One important consideration when using the trajectory smoothing feature is
that VMD does not take periodic boundary conditions into consideration when smoothing trajectory
coordinates, so any atoms which wrap around within the span of the window will cause erratic
motions in the displayed representation. This can be avoided by unwrapping trajectory coordinates
prior to loading into VMD or by using atom selections to eliminate atoms which wrap around.

Periodic Tab

The Periodic tab controls the display of periodic images of a molecule. In order to display periodic
images, a molecule must have unit cell information set for a, b, c, alpha, beta, and gamma, which
are discussed in section 9.3.22. When the proper unit cell information is present, the periodic
display feature can show periodic images of the unit cell by transforming and rendering additional
copies of the structure. The current implementation of this feature doesn’t provide for complex
crystallographic symmetry operations. Unit cells that can be replicated by translation along the
three unit cell axes are the only ones supported presently. The periodic images to be drawn are
selected by enabling images in one or more of the six faces of the unit cell. The Self image selects
the untranslated unit cell itself, so that one my render a representation consisting of only replica
images. This feature allows the unit cell and its periodic images to be displayed using different
materials, for cases where it is desirable to draw more attention to the original unit cell or to one
ore more of the replicas. The Number of Images counter controls how many replicas are made in
each of the six directions. Some file formats read by VMD may not include unit cell information, in
such cases you can use the scripting interface to set the unit cell information manually. PDB files
containing CRYST1 records are an example of a file format that provides unit cell information.

5.4.8 Labels Window

The Labels window is used to manipulate the labels which may be placed on atoms, and the
geometry monitors which may be placed between atoms. Labels are selected with a mouse, as
discussed in section 5.1.2. Once selected, the Labels window can be used to turn different labels on
or off or to delete them entirely. Also, labels displaying geometrical data such as bond lengths may
be graphically displayed using this window.

Label categories

The Category chooser (in the upper left) is used to select which category of labels to manipulate.
The different label categories include:

• Atoms, which are shown as a text string next to the atom listing the name and residue of the
atom;
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Figure 5.8: The Labels window

• Bonds, which are shown as dotted lines between the atoms with the bond length displayed
at the bond midpoint;

• Angles, which are shown as dotted lines between the three atoms with the angle displayed at
the center of the defined triangle;

• Dihedrals, which are shown as dotted lines between the four atoms with the dihedral angle
(the angle between the planes formed by the first three atoms and the last three atoms) shown
at the midpoint of the torsional bond.

• Springs, which are shown as dotted lines between the atoms with the bond length displayed
at the bond midpoint;

All the labels for the selected category which have been previously added are displayed in the
browser in the center of the window. The line itself contains from 1 to 4 atom names, depending
on the category; the atom names have the form <residue name><residue id>:<atom name>

followed by either (on) or (off). The last word indicates if the label is turned on or off.

Modifying or deleting a label

A label can be turned on or off without deleting it, by selecting the label in the central browser and
pressing the Hide button. To turn it back on, select it again then press the Show button. Press the
Delete button to delete it. This browser allows multiple selections, which, for example, allows you
to delete several labels at once. To select everything in the current category, press Select All; to
unselect them, press Unselect All. If nothing is selected, the action is applied to everything. Thus,
one way to turn everything off is to press Unselect All then press Hide. (It may seem counterintuitive,
but it was done this way so all the labels could be deleted by just pressing Delete.)
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Pick information

The Picked Atom tab displays information about the last atom picked by the mouse. This informa-
tion is also echoed to the vmd console. The data in the will remain in until a new label is selected
by the mouse. Information about the following fields is identified:

• Molecule - the name of the molecule referenced

• XYZ - the position of the atom in 3D space

• Resname - the type of the amino or nucleic acid to which this atom belongs

• ResID - the internal VMD ID number of the entire residue to which the particular atom
belongs. E.g., ResId for an atom of a protein is the same as the residue number of that atom
as listed in its PDB file.

• Name - the name of the atom as it appeared in the coordinate file

• Type - the type of the atom, as determined by an internal VMD match-up of the given name
to a likely atom type associated with that name

• Chain - if the coordinate file contained data in the “Chain” field for this atom, then that data
is given here.

• Segname - the name of the segment to which this atom belongs

• Index - the internal VMD index used to identify the atom; this is useful for specifying selection
syntax to generate different representation styles for particular atoms. For PDB files Index
corresponds to the atom number listed in the file minus 1 (so that the index starts with 0).

• Value - the calculated length of bonds, angles, or geometric measurements performed by the
selected label

Plotting a label’s value

If the label has a numeric value (such as a bond length geometry monitor), it is easy to graph
the change of the value over time (for multiple frames in an animation). The Graph button calls a
Tcl script to plot the data for the selected labels. You can create your own script to handle label
plotting simply by creating a Tcl proc named vmd labelcb user. The proc should accept three
arguments. Have a look at the default scripts in the VMD scripts directory, found in the VMD
installation directory under scripts/vmd/graphlabels.tcl. If no supported graphing program is
available, a dialog box will be presented which will allow you to save the values of the labels to a
file.

5.4.9 Color Window

VMD maintains a database of the colors used for the molecules and the other graphical objects in
the display window. The database consists of several color categories; each color category contains
a list of names, and each name is assigned a color. The assignment of colors to names can be
changed with this window. There are 16 colors, as well as black (the VMD color map), and this
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Figure 5.9: The Color window

window can also be used to modify the definitions of these 17 colors. For more about colors, see
the chapter on Coloring [§6.2].

To see the names associated with a color category, click on the category in the Category browser
located on the left side of the window. Click on the name to see the color to which it is mapped. To
change the mapping, click on a new color in the browser to the right of the Category browser. For
instance, to change the background to white, pick ‘Display’ in the left browser and ‘Background’
in the center one. The right browser will indicate the current color (which is initially black for the
background). Scroll through the right browser and select white to change the background.

Changing the RGB Value of a Color

The Color Definitions tab at the bottom of the Color menu lets you change the RGB definition
of the 17 palette colors. Select a color to edit using the browser at the bottom left corner of the
menu, then slide the three sliders to set the amount of each red, green and blue component. Default

restores the original color definition, and Grayscale toggles whether or not the three sliders will
move together as a unit. Color definitions are immediately updated in the graphics window, so you
can see the result of your editing right away.

Color Scale

Several of the coloring methods in the graphics window (e.g., Beta, Index, Position) are used to
color a range of values, as opposed to a list of names. The actual coloring is determined by the
color scale [§6.2.4].

The color scale used to assign these colors is set in the Color Scale tab of the color menu. Choose
one of the ten color scales from the chooser, and adjust the Offset and Midpoint sliders until the
color scale shown at the bottom of the tab is as desired.
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Figure 5.10: The Material Window

5.4.10 Material Window

This window is used to create and modify material definitions. The material definitions created
here will show up in the pulldown menu in the Graphics window, allowing you to apply a material
to a given representation.

The upper left corner of the Materials window contains a browser listing all the currently defined
materials. Below this browser is a set of five sliders which indicate the current materials settings for
the material highlighted in the browser. Highlighting a different material in the browser by clicking
with the mouse will update the settings of the sliders. Conversely, moving the sliders will change
the definition of the the currently highlighted material in the browser. Pressing the ”Default”
button will restore either of the first two materials, ”Opaque” and ”Transparent”, to their original
settings.

To create a new material, press the ”Create New” button in the upper right corner of the
window. A new material with a default name will be created and displayed in the browser window.
This name can be changed at any time to something more descriptive by typing in the input box
to the right of the material browser and pressing ”enter” (note that the names of ”Opaque” and
”Transparent” cannot be changed). You can now edit the properties of this material using the
sliders at the bottom of the window. All materials in the materials browser, including those you
create, will appear in the Material pulldown menu in the Graphics window.

To experiment with the material settings, first create a new material so that you can edit its
values. Next, load any molecule, change its drawing method to VDW representation, and using
the Material pulldown menu in the Graphics window, change the representation’s material to the
material you just created. Now, go back to the Materials window, highlight the new material in
the browser, and change some of the values in the sliders. The effect of changing shininess should
be especially dramatic.

53



5.4.11 Render Window

The Render window is used to export the currently displayed graphics scene to an image file or to
a geometric scene description file suitable for use by one of several external renderers, which can
produce a final image. The supported rendering packages are listed in table 8.1. See Chapter 8 for
detailed information on how rendering is performed using external programs, as well as information
on 3-D printing and other uses of the exported scene description files.

Figure 5.11: The Render window

The rendering process works in two stages. The first stage exports the displayed VMD scene
to a text or image file in the selected format. The second (optional) stage renders the exported
file, potentially displaying the results when complete. The exported file is named in the Filename

field; a default name is given when a new format is selected, so it is best to hold off entering the
filename until after the file format is selected. Another way to select the filename is available by
pressing the Browse button, which opens up a file browser. Pressing the Start Rendering button
writes the data file. After that, the Render Command is executed. The default command should
start the appropriate rendering program if it is available.

Some of the rendering commands have been set to call a display program on the rendered image
when it is completed. VMD will wait for the display program to finish, which causes VMD to freeze
until the display program closes, so you may want to run the job in the background. This can be
done (on Unix) by enclosing the existing text with ()’s and putting an & at the end. For example,
the way to make the Raster3D render command run in the background is:

(render < %s -sgi %s.rgb; ipaste %s.rgb)&

5.4.12 Tool Window

The Tool window is used to set up external 3D pointers, buttons, force-feedback devices, and the
VMD “tools” that they control. VMD communicates with input devices through CAVElib, FreeVR,
or via Virtual Reality Peripheral Network (VRPN), or with direct operating system interfaces.
Since VRPN provides networked device abstraction, VMD doesn’t have to be running on the same
computer that VRPN devices are attached to. With VRPN, you may use buttons, trackers, and also
force-feedback (haptic) devices such as the PHANToM. In the CAVE or FreeVR, VMD recognizes
two types of devices: buttons and trackers. The built-in Spaceball driver can also be used to control
tools.
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Figure 5.12: The Tool window

Configuring input devices

To use input devices with VMD “tools”, you need a sensor configuration file, in your home
directory called .vmdsensors (see the VMD Installer Guide). In this file, any number of devices
can be specified, using a universal sensor locator (USL). The format for a USL is as follows:
USL – type://place/name:nums

• type – the type of sensor (vrpntracker, vrpnbuttons, vrpnfeedback, cavetracker, cavebuttons,
or sballtracker)

• place – the machine that controls it. Devices that cannot yet be used on arbitrary computers
over the network must have the keyword local here to be compatible with future versions.

• name – the name of the device within that machine. If multiple devices can’t currently exist,
such as with the CAVE, then a standard name should be used, such as cave, so that the
same USL will make sense in the future, when multiple devices are allowed.

• nums – a comma-separated list of numbers of devices belonging to that names (optional,
defaults to zero). Some devices demand only one number or a specific number but button
devices should work correctly now.

The lines of a sensor configuration file come in four flavors:

• Comments begin with # and are ignored.

• Empty lines are also ignored.

• Device lines have the form device name USL, where name is the name that VMD will use
to refer to the device, and USL is the device’s USL.

• Options tell VMD how to use the most recently listed device. Currently, there are four
supported options:
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– “scale x” scales the position of a tracker by a factor x.

– “offset x y z” adds a constant vector to the position of a tracker.

– “rot right—left A00 A01 . . . A33” multiplies the orientation matrix returned by a
tracker on either the right or the left by the matrix A.

– “forcescale x” multiplies the force applied to a force-feedback device by the amount x.

Here is a simple example, showing some of the things you can do with a sensor configuration
file, for a more complete example, please refer to the .vmdsensors file that came with your VMD
distribution:

### Sensable PHANTOM via VRPN

### http://www.sensable.com/

### The Phantom haptic device connected to the computer "odessa"

device phantomtracker vrpntracker://odessa/Phantom0

scale 10

rot left 0 0 -1 0 1 0 1 0 0

device phantombuttons vrpnbuttons://odessa/Phantom0

device phantomfeedback vrpnfeedback://odessa/Phantom0

Using Tools

There are several different “tools”, each of which can be used with any of the input devices1:

• The Grab Tool mimics a pair of tweezers, and can be used to move molecules around on
the screen without any keyboard or mouse commands. Pressing a button connects the 3d
cursor to the nearest molecule. Then, moving or rotating the tracker will cause the molecule
to move or rotate around on the screen.

• The Rotate Tool is a tool for precisely rotating molecules with haptic devices. When a
button is pressed and released, the cursor is again connected to the molecule. With this tool,
however, the center of the molecule is fixed, and the end of the haptic pointer is forced to
lie on the surface of a sphere about this center. Moving the device around the surface of
the sphere rotates the molecule, and another button click releases the molecule. There are
detentes — like the clicks commonly felt in a 2d dial — on the surface of the sphere, arranged
so that the user can rotate the molecule to precise 90-degree points. If the user holds down
the button for a while initially, he can feel the sphere and the detentes, but do not affect the
molecule. This “preview mode” allows the user to find a good point from which to start the
rotation.

• The Joystick Tool is the three-dimensional equivalent of a Joystick, for haptic devices.
Pressing the button creates a virtual “spring,” holding the device to its current location. If it
is pushed away from this point in some direction, the selected molecule starts sliding in that
direction, with a velocity that is proportional to the displacement of the device. The joystick
tool shows how a three dimensional input device can be used to supply relative (differential)
coordinates instead of absolute coordinates.

1The tools have been designed to allow VMD to use haptic devices. Most of the tools can give force-feedback to
the user, but none of them require haptic devices in order to operate.
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• The Tug Tool is a tool that allows interaction with running molecular dynamics simulations.
Pressing the button connects the device with a simulated spring to the nearest atom, and
pulling on it adds a force to the simulation. If a haptic device is being used, the user will feel
a force on his hand that is proportional to this force. In this way, the tug tool implements
something like the click-and-drag that is commonly used with windowing systems.

If an atom selection is assigned to the Tools, the the Tug Tool will apply a force to all the
atoms in the selection. The force applied will be proportional to the masses of the atoms in
the selection, so that all atoms experience the same acceleration. When a Tool Selection has
been assigned, the Tug Tool will always affect that selection, even if the button is pressed far
from any atoms in the selection; this is intended to make it easier for the user to apply forces
only on those atoms he/she intends to steer.

• The Spring Tool also allows interaction with running molecular dynamics simulations. It
works like the Tug Tool except that when the button on the tracker is released near an atom,
the simulated spring is connected to it. See section 5.4.8 for information on viewing and
modifying the list of active springs.

• The Pinch Tool is similar to the Tug Tool, except that force is applied only along the axis
defined by the orientation of the tracker.

• The Print Tool is meant to be used as a debugging aid when one first sets up VMD for
use with VRPN, the CAVE, or other 3-D input devices. When enabled, this tool prints text
messages to the VMD console indicating the current position of the tool in question. This
tool is useful when calibrating the various transformation matrices that operate on tracker
position and orientation data (whether in VMD or in VRPN, CAVElib, etc).

To add a new tool to a VMD session, open the Tool window and click the Create Tool button.
The tool’s number and type are displayed in the list to the left. Devices can be added to the tool by
selecting them from the Add Device menu, or removed with the Delete Device button. Some of
the options that can be specified in the sensor configuration file can be edited in using the controls
below, and the tool’s type can be changed with the Type menu.

5.4.13 IMD Connect Simulation Window

VMD has the ability to work with a molecular dynamics program running on another computer,
to interact with and display the results of a simulation as they are calculated. A major feature in
VMD is the ability to add perturbative steering forces to a running simulation, which are incor-
porated directly into the dynamics calculation; we refer to this capability as Interactive Molecular
Dynamics (IMD). In order to run and IMD simulation it is necessary to have a molecular dynam-
ics program that supports the IMD communication protocol. To date, two such programs exist;
NAMD, developed at University of Illinois, and Protomol, developed at Notre Dame. The rest
of the discussion in this chapter assumes you are using NAMD. See the NAMD home page2 for
information on obtaining NAMD.

Interactive Molecular Dynamics

IMD works by establishing a TCP connection between VMD and the molecular dynamics simu-
lation program. NAMD, or whichever MD program is being used, acts as the server. In order to

2http://www.ks.uiuc.edu/Research/namd/
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prepare NAMDto accept VMD’s IMD connection request, NAMDmust be configured to listen for
incoming connections on a network port. Once NAMD has started up, may wait for the user to
connect through that port. When VMDconnects to NAMDsuccesfully, the simulation commences.
Before connecting to the remote simulation, the VMDuser must first load a molecule corresponding
to the system being simulated. The structure file should correspond to the same structure file
used by NAMD. Once the molecule is loaded and NAMD has been started and is listening for a
connection, you are ready to connect to the simulation and start receiving coordinates. To establish
a connection, open the Simulation window, enter the hostname on which NAMD is running and
the port on which NAMD is listening for incoming connections, then press the Connect button to
establish the connection. If NAMD is running on several distributed nodes, VMD must connect to
the root node on which NAMD initially started out.

IMD Using the Simulation window

The Simulation window allows you to control the behavior of a molecular dynamics simulations
which has been previously connected to through use of the Remote window. This window contains
controls to change parameters for the simulation and to affect how VMD displays the results of
the simulation. The window also contains informative displays, which show the current status of
the simulation connection, and such things as the current energy, temperature, and timestep of the
molecular system being simulated.

At the top of the window are two entry fields and a button for establishing a connection to a
running MD simulation. Enter both the hostname on which the simulation is running, and the port
on which the simulation is listening, then press the Connect button to establish the connection.
See the text console for possible error messages and status updates. Below the connection display
is a browser used to set some connection parameters. These include:

• Transfer Rate: How often a timestep is transferred from the remote simulation program
to VMD. By default, this is 1, which means every calculated timestep is sent. If this is set
to some value N, then only every Nth step will send from the remote computer, thereby
decreasing the amount of network processing and rendering that needs to be done.

• Keep Rate: How often VMD saves the timestep in its animation list, instead of just dis-
carding it after displaying it. By default, this is 0, which means that VMD does not save
any timesteps. When this is 0, then when VMD receives a new timestep it replaces the last
timestep in the animation list with the new timestep, instead of appending it. When it is set
to some number N larger than 0, then every Nth timestep received from the remote simulation
will be appended to the molecule.

Parameters may be changed by entering text into the appropriate entry field and pressing
<return>. When a new value is entered, a command is sent to the remote simulation to change
it. There may be some delay between when the simulation gets commands, acts on them, and the
results propagate back to VMD. Connection state is shown in the center of the window. The simu-
lation status text area displays energy values for the system being simulated (kinetic, electrostatic,
etc.), as well as the current timestep and the temperature. It is updated each time a new coordinate
set (timestep) is received by VMD. The Stop Sim button will terminate the remote simulation, but
will not delete the molecule in VMD. The Detach Sim button will sever the connection between
VMD and NAMD, but will allow the simulation to continue running.
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5.4.14 Sequence Window

Figure 5.13: The Sequence window

The Sequence window is used to list the residue sequences of proteins and the base sequences of
nucleic acids, and to select residues/bases from the sequence list for highlighting in the 3-D structure
in the main VMD window. When residues are selected in the main VMD window, the corresponding
residue is highlighted in the sequence list in this window. Color-coded protein structure information
is displayed for amino-acid residues, and B-factor information is displayed for all residues. In this
section, “residues” refers both to amino acid residues in proteins, and to nucleotide bases with
associated backbone in DNA and RNA molecules.

Sequence information

The Sequence window contains a vertical listing of the residue sequence of a loaded molecule. The
Molecule pop-up menu control chooses which molecule to display the sequence of, the current ’top’
molecule is displayed the first time the Sequence window is opened. The name and molecule number
of the sequence displayed is shown in the title frame of the Sequence window.

For each residue displayed, the window lists: residue number, residue name/code, and chain
letter. If no chain is specified, chain letter is set to “X”. To the right of this are two color coded
columns, “B value” and “struct”. “B-value” shows the contents of the B-value (temperature factor)
field. The “struct” field shows protein secondary structure; select Help:Structure Codes from the
window menu, or see Table 5.5, for an explanation of the single letter codes in the color key.

Code Description

T Turn
E Extended conformation
B Isolated bridge
H Alpha helix
G 3-10 helix
I Pi-helix
C Coil

Table 5.5: Description of secondary structure codes in the Sequence window.
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Selecting residues from the Sequence window listing

Click anywhere in the vertical listing with the left mouse button to highlight one residue. Click and
drag with the left mouse button to highlight multiple residues, shift-click to add a single residue
to the current selection, shift-click and drag to add multiple residues to your selection, right-click
to de-select a residue. Highlights appear as thick yellow “Bonds” representations, these can be
changed or turned off[§ 5.4.14].

Selecting residues by clicking on the 3-D structure

Use the Mouse menu to enter “Pick Atom” mode (or press “1”, the standard keyboard shortcut).
Click on any protein atom or nucleic acid atom, and its residue will highlight, and the sequence list
will scroll to display this residue. Shift-click works the same way, but adds to the current selection.
Note that if the zoom factor is smaller than 1.0, the single-residue sequence highlight will be shorter
in height than a full line of text. Once the Sequence window has been opened, any “Pick” will
create or add to selections, until highlighting is turned off[§ 5.4.14].

Sequence Zooming

Larger molecules contain thousands of residues, too many to display in a linear text list all at once.
The sequence window can only list about 40 text lines; to work with a molecule of more than 40
residues use the scroll bars to scroll through the long list, or use the Zoom controls to fit the data
from a long list into a small space.

The Zoom slider, and the Fit all, Every Residue buttons, zoom in and out of a long sequence list
to allow viewing and selecting from the entire list all at once. To represent more than 40 residues
on the window, the text list seems to “skip” residues, but selections, highlights and color-coded
data are still active for all residues.

By setting the Zoom slider to a value smaller than 1.0, or by pressing the Fit all button, more
or all of the sequence information for a large molecule can be seen at once. To show a text line for
every residue in the sequence (zoom factor = 1.0), click on the Every Residue button. The Zoom

slider can be dragged with the left mouse button (to re-scale sequence smoothly) or it can jump to
a given value by clicking along the slider track with the middle button (this is useful to work more
quickly with very long sequences).

For a multi-thousand residue protein with Fit all selected, hundreds of residues can be selected
at once, and trends in B-value and structure across the entire protein sequence can be detected.
In the screen-shot above, a section of 70 residues with lower B-values than surrounding sequence
is selected, by dragging a rectangle around the green stretch in the B-value column.

Other controls include:

• Toggle display of 3-letter and 1-letter codes – Click on 1-letter code to switch from
3-letter to 1-letter amino acid codes. The same button then reads 3-letter code, click it to
switch back from 1-letter to 3-letter codes.

• Print contents of sequence window – Select File:Print to File to create a postscript file
containing the current sequence listing and highlighting.
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Turn off highlighting / Change highlight style

To clear all highlights, reselect the current molecule from the Molecule pop-up menu. To turn
the highlight representation off completely for a given molecule, find the representation in the
Graphics window which the Sequence window has created (appears with “Bonds ColorID 4”) and
set the style to “none”. To change highlighting style, set this same representation to your preferred
style and coloring. The selection for this representation will still change whenever the sequence
window selection changes. Example application: specify Multiple Frames in the Trajectory tab of
the highlight representation. This will display the trajectory motions of the residues clicked on in
the main VMD window, or in the Sequence window.

Caveats

• Pause on first use: Since the sequence window displays secondary structure of loaded molecules,
there may be a pause for structure calculation the first time the sequence for a protein is dis-
played.

• Selections by chain: When there are multiple segments in a chain, it is possible for several
residues to have the same residue number and chain name. These residues will be high-
lighted/selected/deselected together.

• B-values can be user assigned: To use the B-value column to view arbitrary data, use the
selection set beta commands to change B-values. To refresh the displayed B-value data,
re-select the currently displayed molecule from the Molecule pop-up menu.

5.4.15 RamaPlot

Figure 5.14: The RamaPlot Window
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The RamaPlot window displays a Ramachandran plot for a selected molecule. If you animate
your molecule over a range of frames , RamaPlot will update the Ramachandran plot automati-
cally. You can select a range of residues to be displayed in the plot. Clicking on a point in the
Ramachandran plot will show the trajectory of the selected residue in Ramachandran space over
all frames . Fields on the right of the window show the computed value of phi and psi for the most
recently selected residue. Finally, you can create a PostScript image of the current Ramachandran
plot. RamaPlot functionality is summarized in Fig. 5.14.

Using RamaPlot

Start RamaPlot by typing “ramaplot” in the VMD text console, or by selecting the ramaplot menu
item in the Extensions menu. The main window contains a Ramachandran graph, with phi and psi
running along the horizontal and vertical axis, respectively, from -180 to 180 degrees. The most
allowed region of Ramachandran space is colored blue; partially allowed regions are colored green.

After loading a molecule, using the pulldown menu in the upper right part of the window to
choose a molecule. Protein residues in the current molecule are mapped to the Ramachandran
diagram with yellow squares. Clicking on a square causes the square to turn red, displays residue
information in the fields on the right side of the window, and, if trajectory data is present, draws the
location of the selected residue in Ramachandran space for all frames in the trajectory as empty
black squares. Clicking one of the empty squares causes VMD to redraw the graphics display
window with coordinates from the timestep corresponding to that square. Clicking a second time
on a red highlighted residue switches off the trajectory information in the RamaPlot window.

When a protein contains many residues, it may be inconvenient to display all residues at once.
Enter an atom selection in the Selection input to choose which residues to display. Note that
the selection must contain the alpha carbons (name CA) of the residues you want to show. Note
also that, just like the Graphics window, the selection will not be recomputed if you change the
animation frame.

To print the contents of the white Ramachandran plot, select “Print to file...” from the RamaPlot
File pulldown menu. Enter a filename to save the contents of the window.
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Chapter 6

Molecular Drawing Methods

Each molecule in VMD is drawn as a collection of several representations, of the molecule. A repre-
sentation is just one particular way of drawing the molecule, and consists of several characteristics:

• An atom selection, which determines which of the atoms in the molecule will be included
in the view. This selection is entered in the text input field at the bottom of the Graphics
window. Atom selections don’t apply when drawing volumetric data such as an electron
density map, electrostatic potential map, etc. Section 6.3 describes the syntax used to select
atoms.

• A drawing method (representation style), which determines what shape to draw the atoms,
bonds, and other components of the molecule. Section 6.1 describes the rendering methods
available in VMD.

• A coloring method, which determines how to color each of the atoms and bonds included in
the view. The Graphics window contains controls to set the coloring method at the right of
the window. Section 6.2 describes VMD’s coloring methods.

• A material, which determines the shininess, opacity, and other lighting and shading charac-
teristics used when rendering the molecule.

A molecule can contain any number of different representations, and complex pictures of the
molecule can be generated by creating views with different selections, coloring schemes, and ren-
dering methods. For example, the protein backbone can be drawn as a smooth tube in one view,
and important residues in the protein can be drawn as spheres or licorice bonds in other views.
When a molecule is first loaded, it is given a ‘default’ view, which will draw all the atoms as lines
and points, coloring each atom by what kind of element it is.

6.1 Rendering methods

All of the different rendering methods have various parameters which determine how they are
drawn. For each method, there are controls in the Graphics window which modify the associated
parameters, such as the line width and sphere resolution (the graphical controls are described in
section 5.4.7). Table 6.1 lists the available rendering methods, and the following sections describe
these methods and the parameters which modify their appearance.
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Representation styles Description

Lines simple lines for bonds, points for atoms
Bonds lighted cylinders for bonds
DynamicBonds dynamically calculated distance-based bonds
HBonds display hydrogen bonds
Points just points for atoms, no bonds
VDW solid van der Waal spheres for atoms, no bonds
CPK scaled VDW spheres, with cylinders for bonds
Licorice spheres for atoms, cylinders for bonds, same radius
Polyhedra polyhedra connecting atoms within a cutoff radius
Trace connected cylindrical segments through Cα atoms
Tube smooth cylindrical tube through the Cα atoms
Ribbons flat ribbon through the Cα atoms
NewRibbons smooth ribbon through the Cα atoms
Cartoon cartoon diagram (cylinders and ribbons) based on secondary structure
NewCartoon smooth cartoon diagram (smooth ribbons) based on secondary structure
PaperChain display ring structures as polygons, colored by ring pucker
Twister flat ribbon tracing glycosidic bonds, with twists oriented by sugar residues
QuickSurf molecular surface (Gaussian density surface)
MSMS molecular surface calculated by the MSMS program
NanoShaper molecular surface calculated by the NanoShaper program
Surf molecular surface determined by the Surf program
VolumeSlice display a texture mapped slice from a volumetric data set
Isosurface display an isovalue surface from a volumetric data set
FieldLines field lines generated by integrating particles by volume gradient vectors
Orbital molecular orbital selected by wavefunction type, spin, excitation, and orbital ID
Beads per-residue approximate bounding spheres
Dotted dotted van der Waals spheres for atoms, no bonds
Solvent dotted representation of the solvent accessible surface

Table 6.1: Molecular view representation styles.

6.1.1 Lines

The default representation is ‘Lines’, which is also known as ‘wireframe’. It draws a line between
each atom and the atoms to which it is bonded. Both atoms have to be selected before the bond
will be drawn. The first half of each bond is colored appropriately for the first atom, while the color
of the final half corresponds to the second atom. The only parameter for the lines representation
is the line Thickness.

6.1.2 Bonds

Nearly everything about this option is the same as ‘Lines’ [§ 6.1.1] except that instead of drawing
a bond as a line between two atoms, a cylinder is drawn instead. To be more specific, it draws
an n-sided prism, where the number of sides is determined in the Graphics window [§5.4.7] by the
Bond Resolution control and the radius is given by the value of Bond Radius, in Angstroms. If the
radius or number of sides gets too small, the bonds are drawn as lines.
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In order to fine tune the bond representation, VMD does a small amount of trickery to the
prisms. That is, imagine two hollow cylinders coming together so that the center of the face of one
cylinder is in the same position as the center of the face of the other cylinder. Also suppose these
two cylinders come together at 90 degrees. Although most of these two cylinders will overlap, there
will appear to be a gap at their intersection.

To correct for this problem, VMD extends both cylinders somewhat so that the far ends touch.
If one looks closely, this produces more of an overlap, but it is much nicer looking than the gap.
When three or more bonds join at one atom, VMD chooses the lowest numbered bond and extends
all other bonds to meet with that one. It then extends that lowest numbered bond to meet with
the second lowest numbered one.

6.1.3 DynamicBonds

The ‘DynamicBonds’ representation will automatically perform a distanced-based bond search for
the active atom selection and active trajectory frame. This representation does not perform the
endpoint fixup procedure described above for the regular ‘Bonds’ [§ 6.1.2] representation. Instead,
it is intended to be used in concert with the ‘VDW’ [§ 6.1.6] representation to show bonds that are
being created and destroyed during the course of a trajectory. A bond is drawn if the atoms are
within Distance Cutoff of eachother.

6.1.4 HBonds

The ‘HBonds’ representation will draw a dotted line between two atoms if there is a possible
hydrogen bond between them. A possible hydrogen bond is defined by the following criteria:

Given an atom D with a hydrogen H bonded to it and an atom

A which is not bonded to D, a hydrogen bond exists between

A and H iff the distance ||D-A|| < dist and the angle D-H-A < ang,

where ang and dist are user defined.

Only the selected atoms are searched, so both the donor and acceptor must be selected for the
bond to be drawn. Also, you’ll note that the above doesn’t check the atom type of the donor or
acceptor; the only criterion is if it already has or doesn’t have a hydrogen.

One downfall of the current implementation is that it does an n2 search of the selected atoms
so you probably don’t want to show all the HBonds of a very large structure. Look for performance
improvements in future versions of VMD.

If you choose an HBonds representation but fail to see any hydrogen bonds, it may be because
the default Angle Cutoff and Distance Cutoff criterion in VMD are too small, so you might want to
try increasing the angle value from 20 to 30 degrees and the distance value from 3 to 4.

The HBonds are drawn as dotted lines of a given width. The default Line Thickness is 1 but
you should probably increase that to 2. On most SGIs you can’t make it any wider than that,
as described in the man page for linewidth. The bond is colored by the color associated with the
acceptor.

6.1.5 Points

‘Points’ draws each atom as a point, and does not draw any of the bonds. This option is useful
when rendering very large molecules containing millions of atoms, particularly for rendering water
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or other structures for which geometric detail may not be necessary. The Size of the points can
be changed. When the VMD rendering mode is set to GLSL, the Points representation will render
space filling spheres with a size proportional to the Size parameter, and with performance on par
with the non-shaded points drawn in other rendering modes.

6.1.6 VDW

‘VDW’ draws the atoms as spheres. The Sphere Scale used is the van der Waals radius multiplied
by a user-selectable scaling factor.

The Sphere Resolution determines how finely to tessellate the spheres that are drawn, when
using rendering modes and external rendering tools that can only draw polygonal geometry. The
performance of polygonal sphere rendering varies inversely with the number of triangles produced
by tessellation into triangles. The number of triangles per sphere varies proportionally with the
Sphere Resolution parameter value squared. For rendering modes such as GLSL, and for external
rendering tools that can directly represent spheres and other quadric surfaces, the Sphere Resolution

parameter has no effect.
Note: Due to variations in atom naming conventions, in rare instances VMD may improperly

assign VDW radii to specific atoms, since VMD determines each atom type based on the first letter
forming its name. For example, VMD would assume an atom named “HG” to be a hydrogen rather
than a mercury. If this happens, you are always free to redefine the radii, using a syntax much like
that below:

set sel [atomselect top ‘‘name HG’’]

$sel set radius 1.9

6.1.7 CPK

‘CPK’ is a combination of both ‘Bonds’[§ 6.1.2] and ‘VDW’[§ 6.1.6] in that it draws the atoms
as spheres and the bonds as cylinders. The resolution and radius can be modified independently.
The size of the sphere drawn in CPK mode is by default the scaled-down VDW radius, but this
scaling-factor can be changed by adjusting the Sphere Scale parameter. Since a sphere is drawn for
each atom, it will always be slower than the ‘VDW’ option. If the radii for a sphere or bond are
too small, they will not be drawn.

6.1.8 Licorice

‘Licorice’ draws the atoms as spheres and the bonds as cylinders. The difference between this and
‘CPK’ [§ 6.1.7] is that the sphere radius is not controllable; instead, it is made the same size as the
bond. This makes for a nice, smooth transition and is one of the most often used representations.
It can be rather slow for large molecules.

6.1.9 Polyhedra

‘Polyhedra’ draws a collection of triangles that connect all triplets of groups of atoms within a user-
defined radius. This is commonly used in conjunction with specific atom selections for visualization
of amorphous silicon nanodevice structures and the like. At present, a single atom selection is used
for all candidate atoms, and only the radius parameter can be modified.
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6.1.10 Trace

This representation applies much of the procedure used to construct the ‘Tube’ [§ 6.1.11]. In
the end, it connects the alpha-carbon atoms of successive residues by cylindrical segments with
adjustable width. In the case of nucleic acids, it is the P backbone atoms which are connected.
As always, the segment pieces are colored according to the atom they are associated with. If the
cylinder radius is made 0.00, then the cylinder segments are replaced with lines.

Note: the Trace option is useful for people doing threading or protein folding work who only
look at the Cα coordinates and residue names, for then they don’t have to build the sidechains
necessary to see their structure. Also, people working on polymers can fake their structure by
naming everything “CA.” in the PDB file and then using Trace.

6.1.11 Tube

There are two ways to draw a ‘Tube’ representation, one for proteins and the other for nucleic
acids. The protein tube is a smooth curve through the selected Cα positions, and the nucleic acid
tube is a smooth curve through the backbone phosphates.

The protein tube is a spline curve that passes through all the Cα atoms in a protein fragment.
Five evenly spaced interpolation points are found along the curve to break the curve connecting
the two Cα atoms into six line segments. If the first Cα is selected, the first three segments are
colored by the color assigned to that Cα. If the second Cα is selected, the last three segments are
colored by the color of the second Cα. The nucleic acid tube is constructed in the same manner
except that the phosphate atoms are used.

The two controls set the spline radius and resolution and have the same meaning as they did
in the ‘Bond’ [§ 6.1.2] control. However, if the bond’s Radius becomes 0 or Resolution is 2 or less
then the spline is drawn as a simple line. This make moving and rotation the image much faster.

It is possible to pick with the mouse the Cα which defines the tube by clicking near the middle
of the six tube segments which are associated with that atom.

6.1.12 Ribbons

The ‘Ribbons’ representation is similar to ‘Tube’ [§ 6.1.11] in that it follows the same spline curve
for both the protein and nucleic acids. However, it uses additional information (the O of the
protein backbone or some of the phosphate oxygens for nucleic acids) to find a normal for drawing
the oriented ribbon. (There may be some problems with the ribbon definition for nucleic acids as
it is possible for the nucleic acid detection routine to label a residue as a nucleic acid even though
it does not have phosphate oxygens.)

Given the coordinates of each atom and the offset vector for the ribbon vector, the drawing
code finds the spline curves for the top and bottom of the ribbon. The two splines are connected
by triangles and both splines are drawn as small tubes. As with the ‘Tube’ representation, the six
ribbon segments nearest the given atom are drawn with the color assigned to that atom and the
atom can be selected by clicking near the center of those six elements.

Bond Radius and Resolution modify the tubes that make up the top and bottom of the ribbon. If
the radius or resolution get too small, the tubes are not drawn (this speeds up drawing time by an
appreciable amount). The Width controls the width of the ribbon and make it look like everything
from vermicelli to lasagna. Additionally, the sugars are drawn filled in with triangles. This helps
highlight the pucker.

Thanks to Ethan Merrit for the ribbon drawing algorithm taken from Raster3D.
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6.1.13 NewRibbons

The ‘NewRibbons’ representation is similar to ‘Tube’ [§ 6.1.11] in that it follows the a spline curve
for both the protein and nucleic acids. However, it uses additional information (the O of the
protein backbone or some of the phosphate oxygens for nucleic acids) to find a normal for drawing
an oriented ribbon. (There may be some problems with the ribbon definition for nucleic acids as it
is possible for the nucleic acid detection routine to label a residue as a nucleic acid even though it
does not have phosphate oxygens.)

The NewRibbons representation uses the alpha Carbons as control points for a spline which
defines the ribbon backbone. The ribbon is drawn by extruding a two-dimensional cross section
along the length of the spline orienting it by referencing the positions of the Oxygens on the protein
backbone. As with the ‘Tube’ representation, the six ribbon segments nearest the given atom are
drawn with the color assigned to that atom and the atom can be selected by clicking near the center
of those six elements.

The Aspect Ratio parameter controls the width of the ribbon relative to the thickness value, as
a multiplicative factor. An aspect ratio of 1.0 yields a Tube-like representation. The Resolution

parameter controls the degree to which the ribbon surface is tesselated with triangles. Higher
settings yield nicer looking images at the expense of interactive rendering performance. Points can
be interpolated with either a Catmull Rom or B-Spline by changing the value of Spline Style. Note
that the B-Spline does not always pass through the Cα positions, as it is a smoother spline.

6.1.14 Cartoon

The ‘Cartoon’ option produces a simplified representation of a protein based on its secondary
structure. Helices are drawn as cylinders, beta sheets as solid ribbons, and all other structures
(coils and turns) as a tube. If the secondary structure has not yet been determined, it will be
calculated automatically by the program STRIDE.

A helix cylinder is constructed by finding the least squares linear fit along the coordinates
of the helix’s Cα atoms. If a given residue’s Cα is selected, the small cylinder (found by linear
interpolation along the line of best fit) is drawn with radius determined by the radius parameter.
Because this method computes a best fit, a helix must have at least 3 residues before it is drawn
(those helicies with one or two residues are drawn as a coil). It is possible to pick the Cα for
each cylinder segment, but they are at the location of the Cα, which is not near the axis cylinder.
Interesting results occur when the whole protein is defined to be a helix and drawn as a cartoon.

The solid beta ribbon is constructed by building a spline along the center points between each
beta sheet residue. Again, the spline is linearly interpolated to find the start and end points for each
residue. Those are extended to construct the corners for a ribbon with rectangular cross section
(the amount of extension is determined with the thickness parameter). A ribbon segment is used
if the corresponding Cα atom is selected. Note that since this method assumes the protein is in a
beta conformation, it draws a much smoother ribbon than the standard ‘Ribbons’ [§ 6.1.12] option,
which draw the ribbon with an oscillation along the sheet.

The other conformations are drawn as a tube. Since the endpoints of the helix cylinder and
cartoon sheet are not at the Cα coordinate, the tube method was slightly changed to make the
tube go to the new locations. This does not always work, resulting in a tube which does not quite
connect to a cylinder.
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6.1.15 NewCartoon

The ‘NewCartoon’ representation is a variation of the original ‘Cartoon’ combined with the ‘NewRib-
bons’ representation look and features. The main difference between the original ‘Cartoon’ repre-
sentation and ‘NewCartoon’ is that helices are left in a ribbon representation which follows curved
structures much more accurately than the straight cylinders used in the original ‘Cartoon’ did.

The Aspect Ratio parameter controls the width of the ribbon relative to the thickness value, as
a multiplicative factor. An aspect ratio of 1.0 yields a Tube-like representation. The Resolution

parameter controls the degree to which the ribbon surface is tesselated with triangles. Higher
settings yield nicer looking images at the expense of interactive rendering performance. Points can
be interpolated with either a Catmull Rom or B-Spline by changing the value of Spline Style. Note
that the B-Spline does not always pass through the Cα positions, as it is a smoother spline.

6.1.16 PaperChain

The ‘PaperChain’ representation finds all rings up to a user-defined maximum size by walking the
molecular topology, then proceeds to render each ring by fitting a polyhedron to the involved atoms
and the ring centroid. The rings are drawn as bipyramids with a user-controlled height. The rings
are colored by pucker, using the Cremer-Pople pucker amplitude, which is defined for all rings of
three atoms or greater.

6.1.17 Twister

The ‘Twister’ representation traces glycosidic bonds with a flat ribbon that twists according to
the relative orientation of successive sugar residues. The concept is similar to the familiar ribbon
representations VMD uses for proteins. The paths connecting oriented rings are connected by thin
ribbons with user-adjustable width and thickness, and with adjustable geometric resolution, and
the representation handles branched structures.

6.1.18 QuickSurf

The ‘QuickSurf’ representation computes an isosurface extracted from a volumetric Gaussian den-
sity map computed from atoms or particles in the neighborhood of each lattice point [33, 34, 14, 35,
43, 26, 36]. The density map generation algorithm accumulates Gaussian densities on a uniformly-
spaced 3-D lattice defined within a bounding box large enough to contain all of the atoms or
particles that are selected as part of the rendered surface; sufficient padding at the edges of the
volume ensures that the extracted surface is not clipped off. The density map generation algorithm
satisfies

ρ(~r; ~r1, ~r2, . . . , ~rN ) =
N∑

i=1

e
−|~r−~ri|

2

2α2 , (6.1)

where the density ρ is evaluated at a position ~r by summing over all N atoms. Each atom i is
located at position ~ri and has an associated weighting factor α which is determined by multiplying
its radius with user-defined weighting and scaling factors that customize the visualization to produce
a surface with an appropriate user-defined level of detail.

The QuickSurf representation includes several controls which modify the parameters of Eq. 6.1
to produce a surface that meets the required spatial fidelity and interactive rendering performance.
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• Resolution – An overall spatial resolution approximation slider, which automatically sets the
values of the detailed parameters below

• Radius Scale – A radius scaling factor applied to all atoms prior to computing their density
map contributions

• Density Isovalue – The density isovalue to use when extracting the generated isosurface

• Grid Spacing – The density map uniform lattice spacing parameter.

• Surface Quality – The maximum cutoff distance to use when gathering Gaussian density
contributions from atoms or particles in the neighborhood of each lattice point

Several factors influence the interactive calculation and display performance of the QuickSurf
representation. The CPU version of the QuickSurf algorithm is multithreaded, but due to the
potential for significant memory usage associated with CPU core, the number of CPU cores used
by the algorithm may be clamped to a maximum of eight, and for density map volumes approaching
1 GB in size, or larger, the algorithm may reduce the number of CPU cores used to four or less to
prevent out-of-memory conditions from occuring at runtime.

On machines equipped with appropriate GPU hardware, the QuickSurf representation will use
a GPU-accelerated implementation that runs one to two orders of magnitude faster than the CPU
version. The speed of the GPU algorithm is somewhat dependent on the memory capacity of the
target GPUs, since density maps larger than the capacity of the GPU must be computed in multiple
passes.

6.1.19 Surf

This option uses the molecular surface solver written by Amitabh Varshney when he was at the
University of North Carolina. When this option is used, the radii and coordinates are written to
a temporary file and the ‘surf’ executable is run with the Probe Radius as a parameter. When
finished, the output is written to another temporary file which is then read by VMD and colored
and displayed. The value of the probe radius is controlled by the sphere radius, and this is identical
to the probe size in Å.

• Probe Radius – Probe radius used to construct the molecular surface

• Representation Method – The surface can optionally be drawn using lines rather than solid
triangles

This surface is rather slow in both generation and display for systems over several hundred
atoms. The SURF calculation is quite exact and will show complete detail even when it isn’t
needed. The use of disk space as an interprocess communications medium takes up about half of
the run time.

There is an environment variable [§ 14.2] which can affect the Surf display option:

• SURF BIN – location of the SURF binary (defaults to SURF $ARCH as defined in the vmd startup
script)
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A helpful trick when constructing surfaces is to use the Apply Changes Automatically toggle
button on the graphics window wisely. That is, since surfaces often take a long time to build,
changing viewing parameters such as the probe radius can cause long delays. By default, each time
you hit the probe radius button, VMD rebuilds the surface. If you want to reduce or enlarge the
probe radius by several increments, then you would end up rebuilding the surface multiple times.
By toggling the afore-mentioned button, you can force VMD to update on your command only.
This trick is sometimes helpful with other representations as well.

For faster and more robust surface rendering methods, see the descriptions of ‘QuickSurf’
[§ 6.1.18], ‘NanoShaper’ [§ 6.1.21], and ‘MSMS’ [§ 6.1.20].

6.1.20 MSMS

Another molecular surface tool supported by VMD is ‘MSMS’, a program written by Michael Sanner
of Olsen’s lab at Scripps. This program is much faster than Surf, and can be a better choice depend-
ing on how it is used. See the web page http://www.scripps.edu/pub/olson-web/people/sanner/html/msms home.html

for more details. Available options include

• Which Atoms – should the surface be of the selection (0) or of the contribution of this selection
to the surface of all the atoms? (1)

• Sample Density – triangle density on the surface (typical values are 1.0 for molecules with
more than one thousand atoms and 3.0 for smaller molecules)

• Probe Radius – Probe radius used to construct the molecular surface

• Representation Method – The surface can optionally be drawn using lines rather than solid
triangles

There is an environment variable [§ 14.2] which can affect the MSMS display option:

• MSMSSERVER – location of the MSMS binary (defaults to msms which is assumed to be in the
user’s path) On Windows machines, sets this as a systemwide environment variable in the
environment variables window found in the system properties control panel.

6.1.21 NanoShaper

A recent addition to VMD’s molecular surface representations is support for NanoShaper, a molecu-
lar surface engine that uses a ray casting and grid-based method to find molecular surfaces, pockets,
and cavities, on multi-core CPUs [44]. NanoShaper can successfully compute molecular surfaces in
many cases that cause problems for both Surf and MSMS, and without being limited to the Gaus-
sian surfaces of QuickSurf. The key limitation for NanoShaper, similar to QuickSurf, relates to
memory use which grows with the volume of the bounding box containing the molecular structure
of interest.

See the web page https://www.electrostaticszone.eu/ for more details. Available options
include

• Surface Type – SES, Skin, or Blobby for molecules with more than one thousand atoms and
3.0 for smaller molecules)

• Representation Method – The surface can optionally be drawn using lines rather than solid
triangles
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• SES Probe Radius – Probe radius used to construct the solvent-excluded molecular surface

• Skin Parameter – Parameter used to construct the molecular skin surface

• Blob Parameter – Gaussian exponent scaling factor used to construct the Gaussian (Blobby)
surface

6.1.22 VolumeSlice

The ‘VolumeSlice’ representation draws a texture mapped two-dimensional slice from a volumetric
data set already loaded into VMD using the mol volume [§ 9.3.20] text command, or by other
means. The colors span the scalar value range of the data set, with red indicating low values and
blue indicating high values in the data. The slice is drawn as a plane perpendicular to the X, Y,
or Z axis, and can be positioned anywhere within the coordinate system of the volumetric data
set. This feature is currently only available on machines that have full support for hardware 3-D
texture mapping. On machines lacking 3-D texturing, nothing will be displayed. Future versions
of VMD will greatly enhance the user interfaces and capabilities of this feature.

The following selectors control the VolumeSlice representation:

• Data Set – This controls which volume data set is referenced in the representation, since
multiple volumetric data sets can be loaded for a single molecule.

• Slice Offset – The slice setting indicates the position of the volume slice along the chosen axis,
in the coordinate system of the volumetric data, range 0 to 1.

• Slice Axis – The orthogonal axis along which the slice plane moves, can be X, Y, or Z.

• Render Quality – The quality can be set to either Low, or Medium. The Low setting causes
the slice texture map to be rendered using the color nearest the sample point. A quality level
of Medium indicates that the slice texture map will be rendered using bilinear interpolation.

6.1.23 Isosurface

The ‘Isosurface’ representation computes and draws a surface within a volumetric data field, on a
3-D surface corresponding to points with a single scalar value.

There are several settings which control how the isosurface is displayed.

• Data Set – This control selects which volume dataset is used for the isosurface calculation,
since a given molecule can contain multiple volumetric data sets.

• Isovalue – The Isovalue control selects the value for which the isosurface will be computed. In
the GUI, when dragging the isovalue slider, the drawn isosurfaces are temporarily calculated
at a lower resolution to improve interactivity; to prevent this behavior, you can use the middle
or right button (or the control/shift/alt modifier keys) while dragging the slider.

• Draw – This can be set to Points, Shaded Points, Wireframe, or Solid Surface. The default
drawing mode is Points. When viewing very dense isosurfaces of huge volumetric maps, the
Shaded Points drawing method can be an excellent compromise between the speed of the
Points method and the quality of the Solid Surface method.
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• Boundary – Setting the boundary to Box causes the volume data bounding box and coordinate
axes to be drawn rather than the isosurface for the data. This is often useful when first working
with volumetric data, and checking that the coordinate systems of the volume data and the
molecule match.

• Step – This setting can be used to greatly reduce the resolution of the generated isosurface,
by skipping voxels.

• Size – This sets the thickness of the point and line based isosurface representations.

This and other volumetric display features will be greatly expanded in forthcoming releases of
VMD.

6.1.24 FieldLines

The ‘FieldLines’ representation computes lines that trace the result of integrating the motions
of massless particles advected by the volume gradient vectors associated with each location in
a volumetric dataset. VMD computes the volume gradient map when a volumetric dataset is
initially loaded, and the particle advection routines use a simple trilinear interpolation of the
volume gradients are along with a fast (but simple) application of Euler’s method to advect the
particles at each integration step. The user-adjustable gradient magnitude control affects which
points within the volumetric dataset are considered candidates for field line seeds. The resulting
set of seed points are the initial points from which particles begin advection/integration. The min
and max length controls affect the minimum and maximum length of the resulting field lines that
will be selected for display. Field lines shorter than the minimum or longer than the maximum are
not displayed. Similarly, field lines that collide with a critical point in the dataset early in their
integration are discarded.

6.1.25 Orbital

The ‘Orbital’ representation draws a molecular orbital isosurface corresponding to a user-defined
wavefunction amplitude computed on a regularly spaced grid, resulting from the selected wavefunc-
tion type, spin, excitation, and orbital index [29, 30]. The size parameter controls the thickness of
points and line isosurface representations, and the grid spacing parameter controls the density of
the regular grid upon which the wavefunction amplitude is computed.

6.1.26 Beads

A bounding sphere is drawn in place of each residue in the atom selection. This representation can
be used as a crude means of drawing very large structures in a space filling representation and can
be particularly useful for animating trajectories.

6.1.27 Dotted

Same as ‘VDW’ [§ 6.1.6] except that the spheres are drawn dotted instead of solid. That is, a dot is
placed at each of the vertices of the triangle making up each sphere. This can be used, for instance,
to imitate a surface representation.
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6.1.28 Solvent

This method is similar in spirit to the ‘Dotted’ [§ 6.1.27] representation in that it gives a quick
estimate of the molecular surface with a collection of dots. However, it goes above and beyond the
Dotted option by giving a more uniform coverage of the surface. The method that VMD uses to
check for overlaps isn’t technically correct, but it is fast and works quite well. A technical descrip-
tion of the algorithm is as follows:

For each point of the surface distribution (of radius r = atom radius + probe radius) of atom
i, check each of the atoms j to which it is covalently bound. If the point is too close to j, don’t
display it. Also, if the point is too close to any neighbor k of j (k 6= i) then don’t draw it. This
is fast since there aren’t that many neighbors to check, but it doesn’t omit parts of the surface in
contact with atoms which aren’t one or two bonds away. This can be considered a good thing since
you might get a better idea of the contact surface.

There are three parameters for this option. One is the Probe Radius, which was mentioned
in the description. If the probe radius is too large, the problem of over-lapping surfaces between
non-connected atoms becomes more apparent. The second is Detail Level, which should probably be
renamed ”Density” as it determines the surface density of the distributions. The higher the detail,
the higher the density. The final option is the Representation Method. By default the surface is
drawn as a collection of points, but a point is a pixel in size regardless of the scale of the molecule,
so when scaled small the surface density appears high, and when scaled large, the density appears
low. Method 2 draws little plus signs instead of points, which does scale better so the density
appears more contant. Method 3 draw lines between the surface points that are on the same atom,
but makes no attempt to connect the two spheres.

Thanks to Jan Hermans for implementation pointers and thanks again to Jon Leech for the code
to compute the uniform point distributions. That code was included as part of the 1.x distribution.

6.2 Coloring Methods

VMD maintains a database of the colors used for the molecules and other graphical objects which
are visible in the display window. It keeps track of

• color name definitions - its RGB value;

• mappings from a color category to color name - so residue name MET is colored yellow

• the current color scale - red to white to blue, and several related parameters

There are 1057 colors available in VMD, with color ids ranging from 0 to 1056. The first 33 are,
in order: blue, red, gray, orange, yellow, tan, silver, green, white, pink, cyan, purple, lime, mauve,
ochre, iceblue, black, yellow2, yellow3, green2, green3, cyan2, cyan3, blue2, blue3, violet, violet2,
magenta, magenta2, red2, red3, orange2, and orange3.

The next group of 1024 colors (from 33 to 1056) are colors used in the color map, These can be
set to one of several ranges with the Color window or the color text command: red→green→blue,
red→white→blue, or black→white, etc. There are no names for the specific colors. The color map
will be discussed in more detail in a section to follow.
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6.2.1 Color categories

VMD maintains a database of the colors used for the molecules and the other graphical objects in
the display window. The database consists of several color categories; each color category contains
a list of names, and each name is assigned a color. For example, there is a Resname color category,
and within this category there are many names; one for each of the available residue names. Some
of these are ALA, CYS, and PRO. Each name can be assigned a color from a list of 33 available colors
called the color map. The RGB value of each color can be modified directly in the Color window
[§5.4.9]. To color items in a gradation manner, there are additional 1024 colors used in the color
scale [§6.2.4].

The different color categories in VMD are listed in table 6.2. The Color window can be used to
change the assignment of colors to the names in each of these categories. For example, to change
the color used to draw Arginine residues when molecules are colored by residue, you would use the
Color window, select the ‘Resname’ category, select the ‘Arg’ name there, and then pick the color
to use for Arginine’s from the list of colors next to the names.

Category Contents

Display Color of background, gradient, depth cueing, text
Axes The components of the axes
Name The available atom names (color by Name)
Type The available atom types (color by Type)
Element Atomic elements (color by Element), with ”X” for unknown
Resname The residue names (color by ResName)
Restype The residue types (color by ResType)
Chain The one-character chain identifier.
Segname The segment names (color by SegName)
Conformation The available conformation codes (color by Conformation)
Molecule The names assigned to each molecule (color by Molecule)
Highlight The protein, nucleic, and non-backbone colors
Structure The secondary structure type (helix, sheet, coil) (color by Structure)
Surface The surface types
Labels The different labels (atoms, bonds, etc.)
Stage The colors for the checkboard stage

Table 6.2: Color categories used in VMD.

6.2.2 Coloring Methods

As described in chapter 6, each representation for a molecule has a specific coloring method. The
coloring method determines how the color for each atom in the representation (view) is determined.
These different methods use the colors assigned to the names in the categories listed above, and use
those names to color the atoms. Molecular drawing methods which also draw the bonds between
atoms will always color each half of the bond separately, using the color of the nearest atom for
each half. Table 6.3 lists the different coloring methods available. The description for each method
explains the source of the information used to determine the color.
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Method Description

Name Atom name, using the Name category
Type Atom type, using the Type category
Element Atomic element, using the Element category
ResName Residue name, using the Resname category
ResType Residue type, using the Restype category
ResID Residue identifier, using the resid mod 16 for the color
Chain The one-character chain identifier, using the Chain category
SegName Segment name, using the Segname category
Conformation Conformation, e.g. PDB alternate location identifier
Molecule Molecule all one color, using the Molecule category
Structure Helix, sheet, and coils are colored differently
ColorID Use a user-specified color index (from 0 to 15)
Beta Color scale based on beta value of the PDB file
Occupancy Color scale based on the occupancy field of the PDB file
Mass Color scale based on the atomic mass
Charge Color scale based on the atomic charge
Pos Color scale based on radial distance from the molecule center
PosX, PosY, PosZ Color scale based on axial distance from the molecule center
User, User2, User3, User4 Color scale assigned by per-atom values for each timestep
PhysicalTime, Timestep Color scale based on the physical (simulation) time or

timestep index associated with the displayed trajectory frame
Velocity Color scale based on the per-atom velocity value

associated with the displayed trajectory frame
Fragment Color scale based on the VMD fragment index
Index Color scale based on the VMD atom index
Backbone Backbone atoms green, everything else is blue
Throb Color scale animated by the current wall clock time
Volume Surfaces are colored by the linked volumetric data set

Table 6.3: Molecular coloring methods.

6.2.3 Coloring by color categories

The default method is to color by the atom name. The way it works is that there is a color category
called ‘Name’ which contains a list of all the atom names (e.g., CA, N, O5’, and H) that have been
loaded into VMD. Each name is assigned one of the 16 main colors (e.g., cyan, blue, red, and white).
When the drawing representation needs a color for a specific atom, it looks in the appropriate color
category and finds that CA is colored cyan, N is blue, and so on.

Most of the coloring methods are based on color categories, so coloring by ‘ResName’ colors
each residue name differently, ‘SegName’ colors each segment differently, and so on. The mapping
between a given item in a color category and a color can be changed using the Color window [§5.4.9].
This allows users to make atoms with the name CA be black and the residue CYS be yellow. Some

attention was given to making the colors reasonable, so that oxygens are red, nitrogens blue, sulphur
and cysteines yellow, etc.
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6.2.4 Color scale

Several of the coloring methods, including ‘Beta’, ‘Charge’, and ‘Occupancy’, describe a range of
floating point values rather than a set of names. These are colored via the color scale, which is
a list of 1024 smoothly changing colors. There are many color gradations available. All of them
consist of transformations of three colors. For instance, “RGB” colors the smallest value red, values
near the middle of the scale are green, and the largest values are blue. Colors in-between are linear
mixes of the two colors. The list of available gradations is given below.

Method Description

RWB small=red, middle=white, large=blue
BWR small=blue, middle=white, large=red
RGryB small=red, middle=gray, large=blue
BGryR small=blue, middle=gray, large=red
RGB small=red, middle=green, large=blue
BGR small=blue, middle=green, large=red
RWG small=red, middle=white, large=green
GWR small=green, middle=white, large=red
GWB small=green, middle=white, large=blue
BWG small=blue, middle=white, large=green
BlkW small=black, large=white
WBlk small=white, large=black

Table 6.4: Available Color Scale Gradations.

The minimum of the range of values is linearly scaled and shifted to start at 0 and end at 1.
Assume the color scale is RGB. For a given value of x in the scale range [0..1], the RGB value is
found first from a linear scaling based on the midpoint. If x = 0, R is 1 (for maximum red). This
continues linearly until x = midpoint, at which point, R is 0 and stays 0. The green component is
0 at both x = 0 and x = 1 and is 1 at the midpoint. Linear scaling occurs in between. The blue
component is 0 for x <= midpoint, and 1 for x = 1.

An additional term, “min”, is added to each of the component terms before they are merged.
This shifts the final colors more towards white or black. Min can take on values from -1 to 1.

There is only one color scale used at a time so it is impossible to display objects colored by
multiple different color scales.

6.2.5 Materials

VMD allows users to apply a materials property to the molecular models they create. The material
determines such things as how transparent an object is, or how shiny, or how large the specular
reflections are. Making objects semi-transparent is a potentially powerful means of viewing multiple
layers of the molecule simultaneously. Imagine a protein on the surface of, and extending part way
into, a membrane. One way to visualize the extent of the penetration is to represent the lipids as
‘Bonds’ and make them transparent. That will show the membrane without completely obstructing
the view of the protein.

VMD maintains a database of materials which can be applied to any representation in the
system, much like the database for colors. There are two default materials, ”Opaque” and ”Trans-
parent”, which cannot be modified. Each material is defined by five settings, as follows:
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Figure 6.1: Example showing red/green/blue gradients summed to produce the color scale.

Figure 6.2: The shift to the red component of the RGB scale caused by the value of “min”.

• Ambient: The ambient coefficient describes how strongly the material reflects ambient light.
Ambient light provides a uniform illumination of objects with a background lighting of the
object color. The ambient light factor is generally used to moderate the effects of shadows
from direct lighting, making shadows less dark than they otherwise would be.

• Diffuse: Diffuse reflections are independent of the viewing direction, but depend on the
direction of the light source with respect to the surface of the displayed object.

• Specular: The specular coefficient describes the intensity of specular highlights. The higher
the specular value, the brighter the resulting highlights.

• Shininess: The shininess coefficient describes the breadth of the angle of specular reflection.
The smaller the number the broader the angle and the rougher objects appear. The larger
the value of shininess, the narrower the angle of specular reflection, and the smoother the
surface. Default corresponds to a Phong exponent of 40.

• Mirror: The mirror coefficient describes the mirror reflectivity of a surface. When the scene
is rendered using ray tracing, surfaces with mirror reflectivity will show reflections much like
a mirror-polished metal surface.

• Opacity: The opacity coefficient describes how opaque the surface is; 1 is solid, 0 is transpar-
ent. By default, transparent objects are drawn with Opacity set to 0.3.
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• Outline: The outline coefficient controls shading of sillhouette edges, darkening the visible
edges of surfaces where they are nearly perpendicular to the camera view direction. The
outline parameter scales the degree of edge shading (darkening).

• OutlineWidth: The outlinewidth coefficient controls the angular width of nearly perpendicu-
lar sillhouette edge that is shaded.

For details regarding these material properties, consult an elementary graphics book such as Foley
& Van Dam (Computer Graphics).

6.3 Selection Methods

VMD has a rather powerful atom selection language available. It is based around the assumption
that every atom has a set of associated with it values which can be accessed through keywords.
These values could be boolean (is this a protein atom?), numeric (as in the atom index or atomic
mass), or string (the atom name). The values can even be referenced via a Tcl array.

To start off, here are some examples of valid selection commands in VMD. Following these will
be a more in depth description of how selections work.

name CA

resid 35

name CA and resname ALA

backbone

not protein

protein (backbone or name H)

name ’A 1’

name ’A *’

name "C.*"

mass < 5

numbonds = 2

abs(charge) > 1

x < 6 and x > 3

sqr(x-5)+sqr(y+4)+sqr(z) > sqr(5)

within 5 of name FE

exwithin 3 of protein

protein within 5 of nucleic

same resname as (protein within 5 of nucleic)

protein sequence "C..C"

name eq $atomname

There are two types of selection modes. The first is a keyword followed by a list of either values
or a range of values. For example,

name CA

selects all atoms with the name CA (which could be a Cα or a calcium);

resname ALA PHE ASP
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selects all atoms in either alanine, phenylalanine, or asparagine;

index 5

selects the 6th atom (in the internal VMD numbering scheme).
VMD can also do range selections, similar to X-PLOR’s ‘:’ notation:

mass 5 to 11.5

selects atoms with mass between 5 and 11.5 inclusive,

resname ALA to CYS TYR

selects atoms in alanine, arginine, asparagine, aspartic acid, cystine, and also tyrosine.
The keyword selection works by checking each term on the list following the keyword. The term

is either a single word (eg, name CA) or a range (eg resid 35 to 90).
The method for determining the range checking is determined from the keyword data type;

numeric comparisons are different than string comparisons. The comparison should work as ex-
pected so that “8” is between “1” and “11” in a numeric context but not in a string one. This
may lead to some peculiar problems. Some keywords, such as segname, can take on string values
but can also be used by some people as a number field. Suppose someone labeled the segname

field with the numbers 1 through 12 on the assumption that they are numbers. That person would
be rather confused to find that segname 1 to 11 only returns two segments. Also, strings will be
converted (via atof()) to a number so if the string isn’t a number, it will be given the value of 0.
It is possible to force a search to be done in either a string or numeric context using the relational
operator discussed in §6.3.6

Selections can be combined with the boolean operators and and or, collected inside of paren-
thesis, and modified by not, as in

(name CA or name CB) and mass 12 to 17

which selects all atoms name CA or CB and have masses between 12 and 17 amu (this could be used
to distinguish a C-alpha from a calcium). VMD has operator precedence similar to C so leaving
the parentheis out of the previous expression, as in:

name CA or name CB and mass 12 to 17

actually selects all atoms named CA or those that are named CB and have the appropriate mass.

6.3.1 Definition of Keywords and Functions

The keywords available for selecting atoms in VMD are listed in tables 6.5 and 6.6 at the end of
this chapter. If a keyword definition is followed by bool, it is either on or off. If followed by str it
takes a value in the string context. If followed by num it takes a value in the number context.
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Table 6.7 lists the built-in functions which may be used in atom selection expressions with
keywords which take on a numeric value.

Table 6.8 lists the built-in atom selection keywords which may be used in atom selection ex-
pressions to query the values of an underlying volumetric map in the same molecule. These are
read-only.

6.3.2 Boolean Keywords

Some selections take no values. For example, backbone selects the backbone atoms of the protein
and nucleic acids and protein selects protein atoms. Giving options to these selections is an error.
The selections can be used in the same way as other selections, as in:

protein and backbone

nucleic or protein

In addition, if neither and nor or are located after a boolean keyword, then an implicit and is
inserted, so that the following are valid:

protein name CA (same as: protein and name CA)

nucleic backbone

6.3.3 Short Circuiting

The boolean logic in VMD does short circuit evaluation on an element-wise basis. For instance,
given one atom, if X is true then X or Y will be true regradless of the value of Y, so there is no
need to evaluate it. Similarly, if X is false, then X and Y will also be false, so Y again need not be
evaluated.

Knowing how short circuit selections work can speed up several types of selections. Consider a
system with a large number of waters and a protein. The expression protein and segname < 10

is faster than segname < 10 and protein since in the first selection only the atoms which are
proteins have the segname converted to a number, while in the second selection, all the segment
names are converted.

The within selection has its own form of short circuiting. The command can be interpreted as
“find the atoms of A which are withing a given distance from B,” and if A isn’t given, search all
the atoms. The search done in VMD takes a time roughly proportional to the number of atoms
in A multiplied by the number of atoms in B, so reducing the number of atoms in A (i.e., by not
testing every atoms) make the search faster.

Using the system with a lot of water and a protein, compare the selection
protein within 5 of resid 1

to (within 5 of resid 1) and protein.
The first is very fast as it does a distance search between all the protein atoms and all the atoms
in resid 1. However, the second selection searches through all the atoms for those which are within
5 Å of resid and then finds which of those are protein atoms.

6.3.4 Quoting with Single Quotes

VMD allows two types of quoting mechanisms, single and double quotes. Single quotes are used
to include spaces and other non-alphanumeric characters. Believe it or not, there are some residue
names with a space in them, so they can be referenced as, for example,
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resname ’A 1’

More importantly, ribose atoms can be given names like C5’ or C5* (depending on the age of
the PDB record). The lexer in VMD has been modified so that C5’, O", and N’’ can be used
without quotes, but it cannot handle an unquoted asterisk (* conflicts with multiplication and the
parser is not able to resolve the difference). Some examples are:

name ’O5*’

segname ’A *’

name O5’

Quotes may also be used to get around a reserved selection word, like x. The selection command
segname x will give an error because x is another keyword. Instead, use segname ’x’. There is an
escape mechanism for including single quotes inside a single quoted string which uses a backslash
(’\’) before the single quote. This allows unusual names like C ’ to be quoted as ’C \’’.

segname x <---- error; conflicts with the ’x’ keyword

segname ’x’

name ’O5\’’

Also, double quotes (discussed in the next section) can be used, as in "C ’" or "C \*".

6.3.5 Double Quotes and Regular Expressions

Double quotes around a string are used to specify a regular expression search (compatible with Perl
5.005, using the Perl-compatible regular expressions library written by Philip Hazel). If you don’t
know how to use them, try consulting the man pages for ed, egrep, vi, or regex. If not, read the
Perl docs, or get any one of a number of books including the O’Reilly and Associates Sed and Awk
book. The following examples show just a few ways that regular expressions can be used within
VMD.
Selection of all atoms with a name starting with C:

name "C.*"

Segment names containing a number:

segname ".*[0-9]+.*"

Multiple terms can be provided on the list of matching keywords. This example selects residues
starting with an A, the glycine residues, and residues ending with a T. As with a string, a regular
expression in a numeric context gets converted to an integer, which will always be zero:

resname "A.*" GLY ".*T"

Selections containing special characters such as +, −, or ∗, must be escaped with the \ character.
In order to select atoms named Na+, one would use the selection:

name "Na\+"
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In brief, a regular selection allows matching to multiple possibilities, instead of just one char-
acter. Table 6.9 shows some of the methods that can be used.

There are many ways to do some selections. For example, choosing atoms with a name of either
CA or CB can be done in the following ways:

name CA CB

name "CA|CB"

name "C[AB]"

name "C(A|B)"

Several caveats for those who already understand regular expressions. VMD automatically
prepends “^(” and appends “)$” to the selection string. This makes the selection O match only
O and not OG or PRO. On the other hand, putting ^ and $ into the command won’t really affect
anything, selections that match on a substring must be preceded and followed by “.*”, as in .*O.*,
and some illegal selections could be accepted as correct, but strange, as in C)|(O , which gets
converted to ^(C)|(O)$ and matches anything starting with a C or ending with an O.

A regular expression is similar to wildcard matching in X-PLOR. Table 6.10 is a list of conver-
sions from X-PLOR style wildcards to the matching regular expression.

6.3.6 Comparison selections

Comparisons can be used in VMD to do atom selections like mass < 5, which selects atoms with
mass less than 5 amu, and name eq CA, which is another way of choosing the CA atoms. The
underlying idea for the comparison selection is also based on the concept that every atom has a
property as specified by a keyword. When the keyword is given in the expression, the array (or
vector) of the corresponding values is constructed, and the size of the array is the same as the
number of atoms in the molecule. (If a single number or string is given instead of a keyword, the
array consists of copies of that given value.) The operations, like addition, multiplication, string
matching, and comparison, are then applied element-wise along the array. This type of selection is
similar to the vector statement in X-PLOR.

Take the example mass < 5 when applied on water, which has an oxygen of mass 15.9994 and
two hydrogens of mass 1.008. VMD sees the keyword mass and constructs the array [15.9994,
1.008, 1.008], then sees the “5” and makes the array [5, 5, 5]. It then compares each term of the
array and returns with the boolean array [False, True, True] (since 15.9994 is not less than 5, but
1.008 is). This final boolean array is then used to determine which atoms are selected; in this case,
the hydrogens.

More complicated comparison selections can be constructed, either from arithmetic operations
or by using some of the standard math functions (the functions are listed in Table 6.7). Probably
the most often used function will be sqr, which squares each element of the array. Thus, the
command to select all atoms within 5 Å of a point (x,y,z) = (3,4,-5) in space is:

sqr(x-3)+sqr(y-4)+sqr(z+5) <= sqr(5)

6.3.7 Comparison Operators

There are two types of comparison operators — numeric and string — which allow the user to
specify the appropriate comparison function. Suppose the segment name, which takes on a string
value, contains the names ‘11’, and ‘8’. VMD cannot figure out if ‘8’ should be less than ‘11’ (in
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the numeric sense) or greater than ‘11’ (in the lexographical sense). Instead of trying to resolve
this problem through some sort of internal heuristics, VMD leaves it up to the user so that 8 < 11

but 11 lt 8. (Perl users should recognize this solution.)
The numeric comparisons are the standard ones: <, <=, = or ==, >=, >, and !=. The corresponding

string comparisons are: lt, le, eq, ge, gt, and ne. As in perl there is a “match” operator, =~, so
that

’CA’ =~ "C.*"

segname =~ "VP[1-4]" (matches VP1, VP2, VP3, and VP4, present in some

virus structures)

are valid. No distinction is made between single and double quotes.

6.3.8 Other selections

sequence

VMD supports selection based on the one-letter amino acid sequence with the sequence selection
keyword. This allows selections of the form

sequence APD

sequence "C..C" (might be used to pick out zinc fingers)

sequence AATCGGAT

Unlike the other string selection commands which take one of three types of strings, all the
strings for sequence are taken as regular expressions (though strings with non-alphanumerics must
still be quoted to get past the input parser). The method works by taking each of the protein
and nucleic acid fragments (pfrag and nfrag) in turn and constructing the one-letter amino acid
sequence. If a regular expression matches any of the sequence, the atoms in the matching residues
are selected. Multiple matches are allowed, though they cannot overlap. As is usual with regular
expressions, the largest possible match is made, so take care with expressions like C.*C.

within and same

Two useful types of selection mechanisms available in VMDare: within <number> of <selection>

and same <keyword> as <selection>. The first selects all atoms within the specified distance (in
Å) from a selection, including the selection itself. Therefore, the command:

within 5 of name FE

selects all atoms within 5 Å of atoms named FE. One common use for this command is to limit the
region of atoms shown on the screen. Another is to find atoms that may be involved in interactions.
For instance:

protein within 5 of nucleic

finds the protein atoms that are nearby nucleic acids. Some selections may be sped up by short
circuiting [§6.3.3].

A related atom selection construct is exwithin, short for ’exclusive within’. The atom selection
(within 3 of protein) and not protein is equivalent to exwithin 3 of protein.

The same <keyword> as <selection> finds all the atoms which have the same ‘keyword’ as
the atoms in the selection. This can be used for selections like
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same fragment as resid 35

which finds all the atoms attached to residue id 35. Any keyword can be used, so selections like

same resname as (protein within 5 of nucleic)

are fine, although weird. The perhaps the most useful keyword for this command is residue, so
you can say same residue as ....

Finding contact residues

Suppose you want to view the atoms in “A” which are in contact with “B”. Use the within

<distance> of <selection> selection command. For purposes of demonstration, let A be protein,
B be nucleic, and define contact as an atom in A which is within 2 Å of an atom in B. Then the
selection command is

protein within 2 of nucleic

If you want to see all the residues of A which have at least one atom in contact with B, use

same residue as (protein within 2 of nucleic)
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Keyword Arg Description

all bool everything
none bool nothing
name str atom name
type str atom type
index num the atom number, starting at 0
serial num the atom number, starting at 1
atomicnumber num atomic number (0 if undefined)
element str atomic element symbol string (’X’ if undefined)
altloc str alternate location/conformation identifier
chain str the one-character chain identifier
residue num a set of connected atoms with the same residue number
protein bool a residue with atoms named C, N, CA, and O

nucleic bool a residue with atoms named P, O1P, O2P and either
O3’, C3’, C4’, C5’, O5’ or O3*, C3*, C4*, C5*, O5*.
This definition assumes that the base is phosphorylated,
an assumption which will be corrected in the future.

backbone bool the C, N, CA, and O atoms of a protein
and the equivalent atoms in a nucleic acid.

sidechain bool non-backbone atoms and bonds
water, bool all atoms with the resname H2O, HH0, OHH, HOH,

waters OH2, SOL, WAT, TIP, TIP2, TIP3 or TIP4
fragment num a set of connected residues
pfrag num a set of connected protein residues
nfrag num a set of connected nucleic residues
sequence str a sequence given by one letter names
numbonds num number of bonds
resname str residue name
resid num residue id
segname str segment name
x, y, z float x, y, or z coordinates
radius float atomic radius
mass float atomic mass
charge float atomic charge
beta float temperature factor
occupancy float occupancy
user float time-varying user-specified value
at bool residues named ADA A THY T

acidic bool residues named ASP GLU

acyclic bool “protein and not cyclic”
aliphatic bool residues named ALA GLY ILE LEU VAL

alpha bool atom’s residue is an alpha helix
amino bool a residue with atoms named C, N, CA, and O

aromatic bool residues named HIS PHE TRP TYR

basic bool residues named ARG HIS LYS

bonded bool atoms for which numbonds > 0
buried bool residues named ALA LEU VAL ILE PHE CYS MET TRP

cg bool residues named CYT C GUA G

charged bool “basic or acidic”
cyclic bool residues named HIS PHE PRO TRP TYR

Table 6.5: Atom selection keywords.
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Keyword Arg Description

hetero bool “not (protein or nucleic)”
hydrogen bool name ”[0-9]?H.*”
large bool “protein and not (small or medium)”
medium bool residues named VAL THR ASP ASN PRO CYS

ASX PCA HYP

neutral bool residues named VAL PHE GLN TYR HIS CYS

MET TRP ASX GLX PCA HYP

polar bool “protein and not hydrophobic”
purine bool residues named ADE A GUA G

pyrimidine bool residues named CYT C THY T URI U

small bool residues named ALA GLY SER

surface bool “protein and not buried”
rasmol str translates Rasmol selection string to VMD
alpha helix bool atom’s residue is in an alpha helix
pi helix bool atom’s residue is in a pi helix
helix 3 10 bool atom’s residue is in a 3-10 helix
helix bool atom’s residue is in an alpha or pi or 3-10 helix
extended beta bool atom’s residue is a beta sheet
bridge beta bool atom’s residue is a beta sheet
sheet bool atom’s residue is a beta sheet
turn bool atom’s residue is in a turn conformation
coil bool atom’s residue is in a coil conformation
structure str single letter name for the secondary structure
phi, psi float backbone conformational angles
within str selects atoms within a specified distance of

a selection (i.e within 5 of name FE).
exwithin str exclusive within, equivalent to (within 3 of X) and not X.
same str selects atoms which have the same keyword as

the atoms in a given selection (i.e. same segname as resid 35)
ufx, ufy, ufz num force to apply in the x, y, or z coordinates

Table 6.6: Atom selection keywords (continued).
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Function Description

sqr(x) square of x
sqrt(x) square root of x
abs(x) absolute value of x
floor(x) largest integer not greater than x
ceil(x) smallest integer not less than x
sin(x) sine of x
cos(x) cosine of x
tan(x) tangent of x
atan(x) arctangent of x
asin(x) arcsin of x
acos(x) arccos of x
sinh(x) hyperbolic sine of x
cosh(x) hyperbolic cosine of x
tanh(x) hyperbolic tangent of x
exp(x) “e to the power x”
log(x) natural log of x
log10(x) log base 10 of x

Table 6.7: Atom selection functions.

Function Arg Description

volN float value of the voxel of the volumetric data of ID N
nearest to the atom

interpvolN float interpolated value of the voxels of the volumetric
data of ID N around the atom

Table 6.8: Read-only atom selection keywords which may be used to query the values of an under-
lying volumetric map in the same molecule. The value of N , which can be 0 to 7 inclusively, refers
to the volID of the underlying volumetric data (e.g., you could type interpvol2).
Read-only atom selection keywords for querying volumetric data

Symbol Example Definition

. . , A.C match any character
[] [ABCabc] , [A-Ca-c] match any char in the list
[~] [~Z] , [~XYZ] , [^x-z] match all except the chars in the list
^ ^C , ^A.* next token must be the first part of string
$ [CO]G$ prev token must be the last part of string
* C* , [ab]* match 0 or more copies of prev char or

regular expression token
+ C+ , [ab]+ match 1 or more copies of the prev token
\| C\|O match either the 1st token or the 2nd

\(\) \(CA\)+ combines multiple tokens into one

Table 6.9: Regular expression methods.
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X-PLOR Wildcard Description Regular Expression

* matches any string .*
% matches a single character .
+ matches any digit [0-9]
# matches any number [0-9]+

Table 6.10: Regular expression conversions.

89



Chapter 7

Viewing Modes

There are many different viewing modes available. These show the scene in orthographic or per-
spective views, and in several mono- and stereo- graphic displays. The stereo mode can be changed
using the stereo entry in the Display menu or the text command display stereo mode.

7.1 Perspective/Orthographic views

In the perspective view (the default), objects which are far away are smaller than those nearby.
In the orthographic view, all objects appear at the same scale. Since some prefer one over the
other, both options are available. Perspective viewpoints give more information about depth and
are often easier to view because you use perspective views in real life. Orthographic viewpoints
make it much easier to compare two parts of the molecule, as there is no question about how the
viewpoint may affect the perception of distance.

7.2 Monoscopic Modes

When you normally look at objects, your two eyes see slightly different images (because they are
located at different viewpoints). Your brain puts the images together to generate a stereoscopic
viewpoint. When generating a single image for the computer display, the default calculations (mode
Stereo Off) assume there is one eye centered between where two eyes would be. For stereo, the left
and right eye views need to be generated independently. Choosing mode Left produces the left eye
viewpoint, while Right produces the right eye viewpoint. The left and right monoscopic modes are
most useful when exporting scenes to external ray tracers.

7.3 Stereoscopic Modes

Molecules may be rendered in stereo, which can greatly enhance the appearance and visual content
of the displayed systems. There are several stereo formats available:

1. Quad-buffered stereo, (aka CrystalEyes in older versions), which requires a stereo-capable
monitor, quad-buffered stereo video board or GPU, stereo emitters and stereo glasses equipped
with liquid crystal or polarized lenses.

2. Above/Below stereo;
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3. Side-by-side stereo for paper-printed images;

4. HDTV Side-by-side stereo for stereo flat panel displays and TVs

5. Anaglyph stereo (requires stereo-capable monitor, quad-buffered stereo video board, and red-
blue horror-movie-style stereo glasses).

6. Checkerboard, also known as line blanking stereo, works with compatible shutter glasses and
DLP projectors.

7. Column-interleaved, works with compatible shutter glasses and LCD panel displays.

8. Row-interleaved, also known as line blanking stereo, works with compatible shutter glasses
and LCD panel displays.

7.3.1 Quad-buffered Stereo

Quad-buffered (aka CrystalEyes) stereo is the name used within VMD for the quad-buffered frame-
sequential stereo display mode found on professional graphics workstations. Quad-buffered stereo
generally yields the highest quality output, and is therefore the most desirable stereo mode to
use when available. Since quad-buffered stereo requires more video memory, and special display
synchronization circuitry, this mode is usually only available on professional-grade GPUs such as
AMD FireGL, NVidia Quadro, and similar products. Typically this mode is used to drive LCD
shutter glasses with a CRT display, 120Hz LCD panels, or various high-end stereo-capable projection
systems.

Quad-buffered stereo mode provides separate left and right eye frame buffers. It allows the a
window display in stereo, while all other windows appear as normal. The display must be set in a
stereo-capable mode before starting VMD, using the appropriate operating system-specific utilities
to set the video mode prior to launching VMD.

Once set in the proper display mode, start VMD as normal, and select ‘QuadBuffered stereo’
from the Display menu. The image should switch to two images nearly superimposed, but slightly
offset.

7.3.2 Side-By-Side and Cross-Eyed Stereo

Side-by-side stereo means that the normal display is divided into two halves, a left view and a
right view, each occupying one-half of the original display area. Each view displays the current
molecules from a slightly different perspective, corresponding to the left and right eye of the viewer.
The images are separated, however, so to actually see a 3D object you must direct your eyes until
the two images are on top of each other, and then focus on the resulting image until you can see it
as three-dimensional.

There are two ways of placing the images. In wall-eyed stereo, the left eye’s image is located on
the left side of the display, and the right eye’s image is on the right. This is the standard method
for displaying stereo images in publications as it works well when the display (in this case, the piece
of paper) is close to the eyes. It is called wall-eyed because your eyes are directed the same way
they would be if looking at a distant wall. In VMD, this method is referred to as “SideBySide”
stereo.

In cross-eyed stereo, the left eye’s image is located on the right side of the display, and the right
eye’s image is on the left, and hence the name cross-eyed. This is mostly used for distant displays
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(such as overhead projections) as it is much easier to cross eyes at that range than use the wall-eyed
method – you are already looking at the wall. In VMD, this method is referred to as “CrossEyes”
stereo. This mode is supported by all GPUs.

7.3.3 HDTV Side-by-side Stereo

This stereo mode is the same as the regular side-by-side stereo mode except that the aspect ratio
of the displayed image is adjusted to work correctly on HDTVs and stereo flat panel displays such
as DTI autostereoscopic LCD displays. This mode is supported by all GPUs.

7.3.4 Checkerboard Stereo

Checkerboard stereo works by interleaving the left and right eye views on every other pixel in the
display, in a checkerboard pattern. This type of stereoscopic display mode is compatible with a range
of DLP projectors and TV’s, in combination with shutter glasses. The only special requirements for
the graphics accelerator are that it provide a stencil buffer which is used to generate the alternating
columns in the final image. This mode is generally supported by low-cost gaming GPUs.

7.3.5 Column Interleaved Stereo

Column-interleaved stereo works by interleaving the left and right eye views on every other vertical
column in the display. The stereo hardware either separates them into two separate displays or
blanks the even or odd columns in sync with shutter glasses, or otherwise makes them visible only
to one or the other eye, in the case of autostereoscopic displays. The only special requirements for
the graphics accelerator are that it provide a stencil buffer which is used to generate the alternating
columns in the final image. This mode is generally supported by low-cost gaming GPUs.

7.3.6 Row Interleaved Stereo

Row-interleaved stereo, also referred to as scanline-interleaved, or line blanking stereo, works by
interleaving the left and right eye views every other scanline in the display. The stereo hardware
then decodes the interlaced signal and either separates them into two separate displays or blanks the
even or odd scanlines to display only the left or right eye image at the same time that shutter glasses
are polarized in the appropriate way. The only special requirements for the graphics accelerator
are that it provide a stencil buffer which is used to generate the alternating scanlines in the final
image. This mode is generally supported by low-cost gaming GPUs.

7.3.7 Anaglyph Stereo

Anaglyph stereo refers to the use of colors to separate the left and right eye views from each other.
The user must wear glasses with colored lenses, such as the red-blue glasses one finds at some
sci-fi and horror movie showings. Anaglyph stereo has one major disadvantage when compared
with quad-buffered stereo, which is that its color rendition is severely constrained. This is an
unavoidable limitation of anaglyph stereo, and it is up to the user to use color schemes for their
molecules that still look visually pleasing in this mode. This mode is supported by all GPUs.
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7.3.8 Stereo Parameters

A stereo image is generated by drawing two images from two different perspectives, one from the
left eye and one from the right. The images are made by finding the view that would be seen
by someone located inside the scene. The method uses two parameters to find the view; the eye
separation and the focal length. The first defines the distance between the eyes and gives the
parallax effect. Setting the separation to 0 will result in a flat 2D image, while setting it too large
will give most people a headache.

The graphics model used by VMD assumes the eyes looking in front of the viewer and focusing
at the same point the focal length away. If the focal length is 0, the viewer’s eyes are crossed and
looking at each other. A larger focal length will often help in creating a viewable image.

The two parameters can be changed with the text commands display focallength and
display eyesep, or using the Display Settings window [§5.4.6].

In general, try to make the eye separation as large as possible without giving the viewer a
migrane, and try to vary the focal length to cut down on double images. It may often help to
translate the molecule forward or backward and also adjust the scaling, since there is typically an
optimum position for a molecule for a given set of stereo parameters.
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Chapter 8

Scene Export and Rendering

One of the most common tasks performed by users of VMD is producing images which can be
loaded into other programs or used in printed documents, posters, slides, and transparencies. The
Render window provides a simple mechanism for generating image files from snapshots of the VMD
graphics window and through the use of external rendering and ray tracing programs.

8.1 Screen Capture Using Snapshot

The simplest way to produce raster image files in VMD is to use the “Snapshot” feature. The
snapshot feature captures the contents of the VMD graphics window, and saves them to a raster
image file. On Unix systems, the captured image is written to a 24-bit color Truevision “Targa”
file. On Windows systems, the captured image is written to a 24-bit color Windows Bitmap, or
“BMP” file. To use the snapshot feature, simply open the Render[§ 5.4.11] window and choose
the snapshot option. VMD will capture the contents of the graphics window, and attempt to save
the resulting image to the filename given in the Render window. You may find that it is important
not to have other windows or cursors in front of the VMD graphics display when using snapshot,
since the resulting images may include obscuring windows or cursors. This is a platform-dependent
behavior, so you will need to determine if your system does this or not.

8.2 Higher Quality Rendering

Sometimes images produced by screen capture aren’t good enough; you may want a very large,
high quality picture, or a picture with shadows, reflections, or high quality rendering of transpar-
ent surfaces. While VMD generally produces nice looking images in its graphics window, it was
designed to generate its images very rapidly to maximize interactivity, which precludes the use of
photorealistic rendering techniques that would slow down the operation of whole program. Instead
of producing high quality images directly, VMD writes scene description files which can be used as
input to several popular scanline rendering and ray tracing programs. Tables 8.1 lists the currently
supported output formats, and where appropriate rendering software may be obtained.

Making a raster image is usually a two step process, e.g. with the exception of the built-
in renderers such as TachyonInternal, TachyonLOptiXInternal, and TachyonLOSPRayInternal, or
their respective interactive variants. First you must make a scene description file suitable for the
chosen rendering program, and then execute the program using the new file as input to produce
the raster image output. The external rendering programs typically support different output file
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formats, which may need to be converted to something more appropriate for you. It is impossible
to predict what that might be, so we’ll describe how to convert the different file types to Targa
and let you use the tools listed in Table 8.1 to get what you need. Raster3D, Tachyon, and
POV-Ray can produce Targa files, so you don’t need to do anything but specify this output format.
Rayshade creates RLE image files, which can be converted using ImageMagick. Radiance generates
an .oct file, which can be converted with the rview and rpict commands included in the Radiance
distribution.

The free program display from ImageMagick – see http://www.imagemagick.org/ – should
be able to read and convert between all of these formats.

We suggest using Tachyon or Raster3D as they are generally the fastest programs. These
programs are easy to understand, and are fast even when rendering very complex molecules.

The generated scene files are plain text so they are very easy to modify. This is most often
done to create a larger raster file, though some have other global options which you may wish to
change. For instance, by default the Raster3D file turns shadows on. We suggest you consult the
relevant renderer’s documentation to determine what can be modified in the file.

To actually render the current image into an output file, first set up the graphics in VMD just
as you wish the output to appear. Then, either use the Render window [§ 5.4.11], or the following
text command, to create the input file and start the rendering program going:

render method filename [render command]

method is one of the names listed in the first column of table 8.1, and filename is the name of the
file which will contain the resulting image processing program script. Any text following this will
be used as a command to be run to process the file. If %s appear in the command string, they will
be replaced with the name of the script file.

8.3 Caveats

When VMD creates the output file it will try to match the current view and screen size. For the
most part it does a good a job but there can be some problems. The colors in the final raster image
can sometimes look different from what is seen in the VMD graphics window. This is because the
external rendering programs use different shading equations and algorithms from what VMD uses.
Potential rendering discrepencies include:

• Geometry may look slightly different; in VMD curved surfaces are polygonalized and drawn
using a number of polygonal facets, curved surfaces may be rendered entirely smoothly in the
final output (which is generally looked upon as an improvement!)

• The rendered object colors or intensities may be slightly different due to different colormaps,
gamma values, or lighting models; This is particularly true with the material properties used
for performing complex shading. VMD’s real-time rendering of these material properties
is often simplistic or limited compared to full-fledged photorealistic renderers, so there can
potentially be big differences between implementations of transparency, specular highlights,
etc.

• Many of the external renderers do not support true orthographic rendering. This can be
“faked” by translating the camera very far away from the molecule, followed by zooming
the camera so that the image size is acceptable again. This will significantly decrease the
perspective effect, but is not a true orthographic projection.
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• The rendering commands do not currently support stereo output, so even if the display is
currently in stereo mode, a non-stereo perspective will be used for the rendering program
input script; Rendering in stereo is accomplished by setting the display mode to “left”, then
rendering an image, followed by “right”, and rendering again. This will yield a stereo pair to
the best of VMD’s ability with the external rendering program.

• The near and far clipping planes are ignored by all external renderers;

• Text is generally not available as a graphics primitive in the renderer scene languages, so label
text will not appear, although the lines of bond, angle, etc. labels will be drawn. The only
exception is in Postscript output, which supports text output.

• Dotted spheres are not drawn with dots.

• The background color may be black, as not all output formats support a background color
other than black;

8.4 One Step Printing

A frequently asked question is “How can I quickly get a printout of the VMD Display?” There are
several one step solutions to this problem, a few are listed below:

• Choose the snapshot option and convert the resulting image to your desired image format
using ImageMagick or similar tools.

• Choose the TachyonInternal option and convert the resulting image to your desired image
format using ImageMagick or similar tools.

8.5 Making Stereo Images

Stereoscopic images can be rendered with a simple sequence of text commands, cycling between
the left and right monoscopic stereo modes and exporting one scene for each eye:

display stereo left

render TachyonInternal left.tga

display stereo right

render TachyonInternal right.tga

External renderers don’t always support the ability to draw stereo images. In principle, it is
possible to write the scene to the file twice with the appropriate transformations applied to make
the view correct for each eye, but then the shadows would be incorrect. Instead, we suggest making
one image of the current scene, then shift the molecules to the left (or right) to make the other
image. The text commands for this are something like:

display stereo off

render Raster3D left.r3d

trans by -.1 0 0

render Raster3D right.r3d
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The two files must then be rendered to produce the rgb file. As it turns out, this method makes
it easy to produce stereo images of ordinary Raster3D files. Since VMD can read the Raster3D
format, all you have to do is read the file and then execute the commands listed above. The text
commands for generating left or right views also have equivalents in the GUI under the Stereo

option of the Display window.

8.6 Making a Movie

It is possible to make movies with VMD, through the use of Tcl or Python scripts, or with the
“vmdmovie” extension included with VMD. Several movie making scripts are provided in the VMD
script library on the VMD home page. These scripts can be used as-is, or they can be customized to
perform complex animation tasks beyond the scope of this user guide. In general, movies are created
by driving render commands with a script, producing a sequence of individual image files. When
the script has completed rendering all of the individual frames, the images are ready for import
into an animation package, or can be converted to one of several popular compressed movie formats
by further processing. The “vmdmovie” extension provided with VMD completely automates the
movie creation process, though it requires a number of software packages be installed in order to
do the job. Please see the separate documentation on the movie scripts and “vmdmovie” in the
VMD script library.
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Name Description

ART1 Simple VORT ray tracer
Gelato NVIDIA Gelato PYG Format
PostScript Simple Vector PostScript Output
POV32 POV-Ray 3.x ray tracer
Radiance3 Radiosity ray tracer
Raster3D4 Fast raster file generator
Rayshade5 Rayshade ray tracer
RenderMan PIXAR RenderMan RIB Format, render with Aqsis,

Pixie, PRMan, RenderDotC
STL Stereolithography format, triangles only
Tachyon6 High quality parallel ray tracer
TachyonInternal6 Fast, built-in Tachyon engine that generates images directly

from VMD internal data structures with no intermediate step
TachyonLOptiXInternal Fast, built-in GPU-accelerated Tachyon

for NVIDIA GPUs (available on supported platforms)
TachyonLOptiXInteractive Interactive, built-in, GPU-accelerated version of Tachyon

for NVIDIA GPUs (available on supported platforms)
TachyonLOSPRayInternal Fast, built-in OSPRay ray tracer

for Intel CPUs (available on supported platforms)
TachyonLOSPRayInteractive Interactive, built-in, OSPRay ray tracer

for Intel CPUs (available on supported platforms)
VRML-1 Virtual Reality Markup Language V1.0
VRML-2 Virtual Reality Markup Language V2.0
Wavefront Wavefront .OBJ/.MTL scene format, loads into 3DS Max,

Blender, Maya, and others
X3D7 X3D declarative scene format
X3DOM8 Open source HTML5-based X3D viewing system

1Available from http://bund.com.au/~dgh/eric/ along with the rest of VORT package
2See http://www.povray.org/
3See http://radsite.lbl.gov/radiance/HOME.html
4See http://www.bmsc.washington.edu/raster3d/
5See http://graphics.stanford.edu/~cek/rayshade/rayshade.html
6See http://www.photonlimited.com/~johns/tachyon/
7See http://www.web3d.org/x3d/
8See http://www.x3dom.org/

Table 8.1: Miscellaneous Rendering Options

98



Chapter 9

Tcl Text Interface

The Tcl text interface provides complete access to all the VMD commands. Anything that can be
done from the menus can be done with VMD text commands.

9.1 Using text commands

Text commands can be entered into VMD in several ways:

• Commands can be entered by typing them at the VMD prompt in the text console window.
This window normally contains the prompt vmd > . When other text (e.g., from a mouse
pick) is displayed to the screen, it will scroll the screen up so the prompt is not at the last
line of the screen. To make it reappear, press enter. When entering multi-line commands,
an alternate prompt appears, ? , and will not disappear until the command is finished.
Sometimes it is waiting for a close to a double quote, open brace, or open bracket, while at
other times it is waiting for a line that doesn’t end in a backslash.

• Since you may not want to retype all the data in every time, there are two ways to read the
data in from a text file. One is the play command. This reads a line from the file, executes
it, then updates the screen and checks for any changes in the mouse or window input, so that
VMD stays interactive during execution of the script. The second way is the Tcl command
source. This reads the whole file before allowing the mouse and windows to respond to new
input. This is often more efficient when your script contains many lines.

• On Unix/Linux platforms, if the file .vmdrc (see section 14.3.3) exists in your home directory,
it is played at VMD startup. If you don’t have a .vmdrc file, VMD uses a default script in
the VMD installation directory. Similarly, at startup the -e command line flag can be used
to specify an input file to be played after reading the .vmdrc file. The Windows version of
VMD works similarly, though the startup file is named vmd.rc.

A good use of the .vmdrc file is to specify which VMD menus you would like to have open
when you start VMD and where they should be placed; see section 9.3.19) for information on
usage.
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9.2 Tcl/Tk

The standard distribution is compiled with Tcl, which add a complete scripting language including
variables, loops, and conditionals along with a standard method for communicating with other
programs via standard TCP/IP sockets. Versions 1.2 and later also include the Tk toolkit, for
creating menus with buttons bound to one’s favorite actions.

Tcl (short for Tool Command Language, developed by John Ousterhout) is an embeddable and
extensible scripting language. In other words, Tcl sits inside VMD as a language interpreter where
it can execute its standard language commands or the various VMD specific extensions.

VMD uses Tcl and Tk version 8.4.1. We refer you to http://www.tcl.tk/ for more information
about Tcl.

9.3 Tcl Text Commands

All Tcl commands in VMD are composed of one or more words or phrases separated by white
space, and terminated by a newline. In Tcl, a “phrase” is text surrounded by double quotes or by
a matching set of open and close braces. The first word of each command indicates the general
purpose for the command, and the following words specify the exact type of command to execute.
Table 9.1 summarizes the text commands in VMD by listing the first words, and describing the
general purpose for commands starting with those words.

The commands described in the following sections are listed by name, and followed by a list of
the available arguments. If an argument is optional, it is enclosed in []s. If only one of a list of
arguments is needed, the list is enclosed in <>s and the items are separated by |. Words in italics
indicate a string or value to be specified by the user.

9.3.1 animate

These commands control the animation of a molecular trajectory and are used to read and write
animation frames to/from a file or Play/Pause/Rewind a molecular trajectory.

• dup [ frame frame number ] molId: Duplicate the given frame (default “now”) of molecule
molId and add the new frame to this molecule.

• forward: Play animation forward.

• for: Same as forward.

• reverse: Play animation backward.

• rev: Same as reverse.

• pause: Pause animation.

• prev: Go to previous frame.

• next: Go to next frame.

• skip n: Set stride to n+1 frames.

• delete all: Delete all frames from memory.
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First Word Description

animate Play/Pause/Rewind a molecular trajectory.
atomselect Create atom selection objects for analysis.
axes Position a set of XYZ axes on the screen.
color Change the color assigned to molecules, or edit the colormap.
colorinfo (Tcl) Obtain color properties for various objects
display Change various aspects of the graphical display window.
exit, quit Quit VMD.
gettimestep Retrieve a timestep as a binary Tcl array (use for plugins)
help Display an on-line help file with an HTML viewer.
imd Control the connection to a remote simulation.
label Turn on/off labels for atoms, bonds, angles, dihedral angles, or springs.
light Control the light sources used to illuminate graphical objects.
logfile Turn on/off logging a VMD session to a file or the console.
material Create new material definitions and modify their settings.
mdffi MDFF density map synthesis and cross correlation commands
measure Measure properties of moleculear structures.
menu Control or query the on-screen GUI windows.
molecule or mol Load, modify, or delete a molecule.
molinfo Get information about a molecule or loaded file.
mouse Change the current state (mode) of the mouse.
parallel Execute commands in parallel on clusters or supercomputers.
play Start executing text commands from a specified file.
render Output the currently displayed image (scene) to a file.
rock Rotate the current scene continually at a specified rate.
rotate Rotate the current scene around a given axis by a certain angle.
scale Scale the current scene up or down.
stage Position a checkerboard stage on the screen.
tool Initialize and control external spatial tracking devices.
translate Translate the objects in the current scene.
user Add new keyboard commands.
vmdinfo (Tcl) Get information about this version of VMD
volmap Create volumetric data based on molecular information
voltool Volumetric data (density map) manipulation tools and rigid body fitting.
wait Wait a number of seconds before reading another command. Animation continues.
sleep Sleep a number of seconds before reading another command. Animation is frozen.

Table 9.1: Summary of core text commands in VMD.
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• speed n: Set animation speed to n.

• style once: Set to play animation once.

• style loop: Set to loop through animation continuously.

• style rock: Set to play animation forward and back continuously.

• styles: Return a list of the available styles.

• goto start: Go to first frame.

• goto end: Go to last frame.

• goto n: Go to frame n.

• read file type filename [beg nb] [end ne ] [skip ns] [waitfor nw] [molecule number]:

Read data for molecule number from filename of type file type, beginning with frame nb,
ending with frame ne, with a stride of ns. Return the number of frames read from this
file; if the file contains more than this number, the remaining frames will be loaded during
subsequent VMD display updates. By default, one frame will be loaded before the command
returns. The waitfor option allows you to specify how many frames to load before returning.
The waitfor parameter nw can be any integer, or all; choosing nw less than zero is the same
as choosing all. If frames from other files are still being loaded when the animate command
is issued, these frames will be loaded first.

• write file type filename [beg nb] [end ne ] [skip ns] [waitfor nw] [sel selection]
[molecule number]: Write data from molecule number to filename of type file type, beginning
with frame nb, ending with frame ne, with a stride of ns. Return the number of frames written
to this file; if more frames have been specified than this number, the remaining frames will
be written during subsequent VMD display updates. By default, one frame will be written
before the command returns. The waitfor option allows you to specify how many frames to
write before returning. The waitfor parameter nw can be any integer, or all; choosing nw
less than zero is the same as choosing all. Pass the name of an atom selection as selection
to write only the selected atoms to the file.

• delete [beg nb] [end ne] [skip ns] [molecule number]: Delete data for molecule number,
beginning with frame nb, ending with frame ne, and keep frames with a stride of ns (a stride
of -1 implies to keep all frames).

9.3.2 atomselect

Atom selection is the primary method to access information about the atoms in a molecule. It
works in two steps. The first step is to create a selection given the selection text, molecule id, and
optional frame number. This is done by a function called atomselect, which returns the name of
the new atom selection. the second step is to use the created selection to access the information
about the atoms in the selections.

• list: Return a list of all undeleted atom selections.
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• keywords: Return a list of all recognized keywords in an atom selection text.

• macro name selection: Create a new singleword atom selection out of existing atom selections.
name must be a single word starting with a non-numeric character and contain no spaces or
special characters. selection can be any valid atom selection, and can even contain other
macros. You should ensure that your macros do not contain themselves, either directly or
through a chain of other macros. If VMD detects this situation, it will abort the evaluation
of the atom selection.

If no selection is given, the macro for the given name is returned.

If no name is given, a list of all macro names is returned.

If a macro already exists for the given name, the old selection will be replaced with the new
selection. Singlewords that are not defined as macros, like protein and water, cannot be
redefined with the macro command.

• delmacro name: Delete the macro corresponding to name. Singlewords that are not defined
as macros cannot be deleted.

• molecule id selection text [frame frame number] Creates a new atom selection and returns
its name. The returned name can be used as a Tcl proc in order to access the atom selection.
The selection text is the same language used in the Graphics window [§ 5.4.7] and described in
Chapter 6.3. It is used to pick a given subset of the atom. The text cannot be changed once
a selection is made. Some of the terms in the selection depend on data that change during
a trajectory (so far only the keywords ’x’, ’y’, and ’z’ can change over time). For these, the
optional ’frame value’ is used to determine which specific frame to use. The frame number
can be a non-negative integer, the word now (the current frame), the word first (for frame
0) and last (for the last frame).

Some examples are:

vmd> atomselect top "name CA"

atomselect0

vmd> atomselect 3 "resid 25" frame last

atomselect1

vmd> atomselect top "within 5 of resname LYR" frame 23

atomselect2

The newly created atom selection is a Tcl proc, which takes the following options:

– num: Return the number of atoms in the selection.

– list: Return a list of the atom indices in the selection (BTW, this is the same as get

index).

– text: Return the text used to create this selection.

– molid: Returns the molecule id used to create this selection.

– frame: Returns the animation frame associated with this selection. The result will be
either now, last, or an integer corresponding to the frame. When the frame is now,
the atom selection will use atomic coordinates from the current frame for its associated
molecule. If the frame is last, the atom selection will always use coordinates from the
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last frame. If the frame is a specific integer, the selection will always use coordinates
from that frame, even if the current animation frame changes. Note that if a nonexistent
frame is specified, the atomic coordinates will reference the last frame.

– frame frame: Set the frame for the selection. frame should be either now, last, or an
integer.

– delete: Delete this object (removes the function).

– global: Moves the object into the global namespace. Atom selections created within a
Tcl proc that are not made global are deleted when the proc exits.

– uplevel level: Moves the object to a new level in the namespace stack. Works the same
as the Tcl function uplevel.

– get attribute list: Given an attribute or a list of attributes, returns the attribute values.
If only a single attribute is given, a list of corresponding attributes values will be re-
turned. If a list of attributes is given, then a list of sublists will be returned; each sublist
will contain the values for the corresponding attributes. See Tables 6.5, 6.6, and 6.8 for
the recognized attribute keywords.

– set attribute list values lists: Set the attributes in the attribute list with the values gven
in the values lists. If there is only one attribute, then values lists can be either a single
value or a list of values, one for each selected atom. If there is more than one attribute,
then values lists must be a list of sublists; the number of sublists must equal the number
of selected atoms, and the number of items in each sublist must equal the number of
attributes.

Example:

set sel [atomselect top all]

set mass [$sel get mass]

set xyz [$sel get {x y z}]

$sel set beta 0 # all values are set to zero

$sel set beta $mass # copy mass to beta

# set occupancy to x, mass to y, beta to z

$sel set {occupancy mass beta} $xyz

It is an error to set integer or floating point keywords using non-numeric values. If
floating point values are passed to integer keywords, they will be converted to integers,
and vice versa.

The set command immediately updates all representations of the selected molecule. If
speed is an issue, delete all representations of the molecule before setting the values.

– getbonds: returns a list of bondlists; each bondlist contains the id’s of the atoms bonded
to the corresponding atom in the selection.

– setbonds: Set the bonds for the atoms in the selection; the second argument should be
a list of bondlists, one bondlist for each selected atom.

– move 4x4 matrix: Applies the given transformation matrix to the coordinates of each
atom in the selection.

– moveby offset: move all the atoms by a given offset.

– lmoveby offset list: move each atom by an offset given in the list.
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– moveto position: move all the atoms to a given location.

– lmoveto position list: move each atom to a point given by the appropriate list element.

– writeXXX filename: write the selected atoms to a file of type XXX; e.g., pdb, dcd.
New in VMD 1.8: writepdb requires a filename; omitting the filename no longer
returns the PDB data as a string. To get the PDB data as a string, first write to a file,
then enter the following commands: set fd [open filename r]; set s [read $fd];

close $fd. The text will be contained in the variable s.

– update: Update the atom selection based on the frame for the selection (the frame can
be specified using the frame option as described above).

See section 12.2 for more on using atom selections for fun and profit, as well as issues relating
to speed of analysis scripts.

9.3.3 axes

The axes (orthogonal vectors pointing along the x, y, and z directions) can be placed in any of 5
locations on the screen, or turned off.

• locations: Return a list of possible locations.

• location: Get the current location.

• location < off | origin | lowerleft | lowerright | upperleft | upperright >: Position
axes.

Also, though this may seem like a likely command for changing the color of the axes, this
function can only be performed from the Colors window or by the color command (see below).
Future implementations of VMD may change this.

9.3.4 color

Change the color assigned to molecules, or edit the color scale. All color values are in the range
0 . . . 1. Please see the section on coloring [§ 6.2] for a full description of the various options.

• category name color: Set the color of the object specified by category and name to color.

• category name: Get the color of the object specified by category and name.

• scale method < scale name >: Set type of scale to use for coloring objects by values. They
are:

– RGB – Red to green to blue.

– BGR – Blue to green to red.

– RWB – Red to white to blue.

– BWR – Blue to white to red.

– RWG – Red to white to green.

– GWR – Green to white to red.
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– GWB – Green to white to blue.

– BWG – Blue to white to green.

– BlkW – Black to white.

– WBlk – White to black.

• scale midpoint x: Set midpoint of color scale to x, in the range 0 . . . 1.

• scale min x: Set minimum of color scale to x, in the range 0 . . . 1.

• scale max x: Set maximum of color scale to x, in the range 0 . . . 1.

• change rgb color: Reset rgb of color to default value.

• change rgb color r g b: Set the RGB of color to r g b.

• restype resname [ restype ]: Set the residue type for resname to restype. If the restype
parameter is omitted, the current residue type is returned.

• add item category name colorname: Adds colors for the named color category, item name,
using the colorname color.

See the colorinfo § 9.3.5 command for additional ways to query VMD’s color settings. See the
graphics § 9.3.9 command for how to change color of a user-defined graphics object.

9.3.5 colorinfo

(Tcl) This command provides access to the color definitions. For information on the color properties
see the chapter on Coloring [§6.2].

• colorinfo categories: returns a list of available categories

• colorinfo category category: returns a list of names for the given category

• colorinfo num: returns the number of base solid colors (33)

• colorinfo max: returns the total number of colors available (1057)

• colorinfo colors: returns a list of the named solid colors

• colorinfo [ index | rgb ] < name | value > : returns the index or rgb of the given name
or color id.

• colorinfo scale < method | methods | midpoint | min | max >: returns the information
about the color scales

Examples:

# find out what color corresponds to which id:

set i 0

foreach color [colorinfo colors] {

puts "$i $color"
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incr i

}

# also get a list of RGB values

set i 0

foreach color [colorinfo colors] {

lassign [colorinfo rgb $color] r g b

puts "$i $color \{$r $g $b\}"

incr i

}

9.3.6 display

Change various aspects of the graphical display window. For information about the options, see
the section describing the Display window [§5.4.6].

• get < backgroundgradient | eyesep | focallength | height | distance | antialias |

depthcue | culling | rendermode | size | stereo | projection | nearclip | farclip |

cuestart | cueend | cuedensity | cuemode shadows | ambientocclusion | aoambi-
ent | aodirect | dof | dof fnumber | dof focaldist | backgroundgradient >: Return
the current value of the requested option.

• get < rendermodes | stereomodes | projections |: Return a list of the available values
for the given options. (See section 5.4.6 and chapter 7 for more information.)

• antialias < on | off >: Turn antialiasing on or off.

• ambientocclusion < on | off >: Turn ambient occlusion lighting on or off. This only
affects renderers that support ambient occlusion lighting. It will have no visible effect on the
interactive VMD display or on renderers that don’t support it. At present, only the Tachyon
and TachyonInternal renderers are capable of ambient occlusion lighting.

• aoambient value: Set ambient occlusion lighting factor to value. Useful values tend to range
from 0.7 to 1.0. At present, only the Tachyon and TachyonInternal renderers are capable of
ambient occlusion lighting.

• aodirect value: Set ambient occlusion direct lighting rescaling factor to value. Useful values
tend to range from 0.0 to 0.4. At present, only the Tachyon and TachyonInternal renderers
are capable of ambient occlusion lighting.

• dof < on | off >: Turn depth of field focal blur on or off. This only affects renderers that
support depth of field. It will have no visible effect on the interactive VMD display or on
renderers that don’t support it. At present, only the various Tachyon and POV-Ray renderers
are capable of depth of field.

• dof fnumber value: Set depth of field aperture f/stop number to value. Useful values fall
over a broad range from f/30 to f/1000 due to the reciprocal relationship between the f/stop
number and the resulting the size of the blur aperture. The blur aperture relates directly to
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the size of out of focus bokeh effects in the final rendered image. At present, only the various
Tachyon and POV-Ray renderers are capable of depth of field.

• dof focaldist value: Set depth of field focal plane distance to value. Useful values fall over
a broad range from f/30 to f/1000. At present, only the various Tachyon and POV-Ray
renderers are capable of depth of field.

• backgroundgradient < on | off >: Enable or disable the gradient background.

• culling < on | off >: Turn backface culling on or off.

• depthcue < on | off >: Turn depth cueing on or off.

• eyesep value: Set the eye separation to value.

• fps < on | off >: Turn frames-per-second indicator on or off.

• focallength value: Set the focal length to value.

• height value: Set the screen height to value.

• distance value: Set the screen distance to value.

• nearclip < set | add > value: Add or set near clipping plane position to it value.

• farclip < set | add > value: Add or set far clipping plane position to value.

• projection < perspective | orthographic >: Set the projection mode to mode.

• rendermode < Normal | GLSL | Acrobat3D >: Set the rendering mode to mode.
This parameter allows the use of various OpenGL extensions to implement alpha-blended
transparency, or programmable shading for higher quality molecular graphics. The default
rendering mode does not enable these features since they significantly alter the rendering and
performance characteristics of VMD when they are enabled. The Acrobat3D mode is used to
allow successful capture of molecular geometry into Acrobat3D.

• resetview: Reset the view.

• resize valueX valueY: Set the size of the display window to valueX × valueY.

• reposition valueX valueY: Set the position of the upper-left corner of the display window to
valueX × valueY pixels from the lower-left corner of the screen.

• shadows < on | off >: Turn shadow rendering on or off. This only affects renderers that
support control of shadow rendering. It will have no visible effect on the interactive VMD dis-
play or on renderers that don’t support it. At present, only the Tachyon and TachyonInternal
renderers are capable of controlling the shadow rendering mode.

• stereo mode: Set the stereo mode to mode.

• update: Force a display update. Used if the display update is off or to force a redraw. This
does not necessarily take care of resizing the display window or using the GUI while the
display update is turned off.
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• update on: Turn display update on.

• update off: Turn display update off. By default VMD does the display updates constantly.
Sometimes it is beneficial to turn the turn the display updates off. This prevents VMD from
redrawing the scene as a response to every change, thus saving time while doing changes of
representations. See the VMD script library for examples of use.

• update status: Return the display update status (on or off).

• update ui: Similar to display update, but also forces updates of the GUI windows. The
windowed interface is subject to the following behavior: if the display update is set to off and
actions (such as, e.g., iconify/deiconify) have been performed to the windows, the windows
do not get updated by just display update command, whereas display update ui forces
both updates to happen. Tk does not seem to have this problem, so this option will become
obsolete after switching to Tk graphics user interface.

9.3.7 draw

VMD offers a way to display user-defined objects built from graphics primitives such as points,
lines, cylinders, cones, spheres, triangles, and text. Since these are displayed in the scene just like
all other graphics, they can also be exported to the various ray tracing formats, 3-D printers, etc.
User-defined graphics can be used to draw a box around a molecule, draw an arrow between two
atoms, place a text label somewhere in space, or to test a new method for visualizing a molecule.

The draw command is a straight Tcl function which is meant to simplify the interface to the
graphics command as well as provide a base for extensions to the standard graphics primitives.
The format of the draw command is:

• draw command [arguments]

The draw command is equivalent (in most cases) to graphics top command [arguments], in that
it simply adds graphics primitives to the top molecule, saving you the trouble of typing an extra
argument. However, draw extends graphics in two ways. First, if no molecule exists, draw creates
one for you automatically. Second, draw can be extended with user-defined drawing commands.
This is done by defining for a function of the form vmd draw $command. If the function exists, it
is called with the first parameter as the molecule index and the rest as the arguments from the
original draw call. Here’s an example which extends the draw command to include an “arrow”
primitive.

proc vmd_draw_arrow {mol start end} {

# an arrow is made of a cylinder and a cone

set middle [vecadd $start [vecscale 0.9 [vecsub $end $start]]]

graphics $mol cylinder $start $middle radius 0.15

graphics $mol cone $middle $end radius 0.25

}

After entering this command into VMD, you can use a command such as draw arrow {0 0 0} {1 1 1}

to draw an arrow. In addition to defining new commands, user-defined drawing commands can
also be used to override existing commands. For example, if you define vmd draw sphere, then
draw sphere {0 0 0} will call your sphere routine, not the one from graphics.
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Here’s a quick way to add your own label to an atom selection [§6.3]. This function take the
selection text and the labels that atom (in the top molecule) with the given string. It returns with
an error if more anything other than one atom is selected.

proc label_atom {selection_string label_string} {

set sel [atomselect top $selection_string]

if {[$sel num] != 1} {

error "label_atom: ’$selection_string’ must select 1 atom"

}

# get the coordinates of the atom

lassign [$sel get {x y z}] coord

# and draw the text

draw text $coord $label_string

}

9.3.8 exit

Quit VMD.

9.3.9 graphics

The graphics command draws low-level graphics primitives. These primitives can be used to draw
a box around a molecule, or an arrow between two atoms, or place a text label somewhere in space.
The command syntax is graphics <molid> <cmd>, where <molid> is a valid molecule id and <cmd>

is one of the commands listed below. To create a “blank” molecule, use the Tcl command mol new.
See the draw [§ 9.3.7] command for a possibly more convenient interface. Also refer to the VMD

script library1 for some examples of user-defined graphics scripts.
As graphical primitives are added to the list they are assigned a unique, increasing id. The

first object added is assigned 0, the second is assigned 1, etc. The commands which add an item
return its value.

• point {x y z}: Draws a point at the given position.

• line {x1 y1 z1} {x2 y2 z2} [width w] [style <solid|dashed>] :

Draws either a solid or dashed line of the given width from the first point to the second. By
default, this is a solid line of width 1.

• cylinder {x1 y1 z1} {x2 y2 z2} [radius r] [resolution n] [filled <yes|no>]:

Draws a cylinder of the given radius (default r=1) from the first point to the second. The
cylinder is actually drawn as an n sided polygon. If the filled option is true, the ends are
capped with flat disks, otherwise the cylinder is hollow (default). width of the base. The
resolution parameter (default n=6) determines the number of polygons used in the approxi-
mation.

• cone {basex basey basez} {tipz tipy tipz} [radius r] [resolution n]:

1http://www.ks.uiuc.edu/Research/vmd/script library
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Draw a cone with the center of the base at the first point and the tip at the second. The
radius(default r=1) determines the width of the base. As with cylinder, the resolution
(default n=6) determines the number of polygons used in the approximation.

• triangle {x1 y1 z1} {x2 y2 z3} {x3 y3 z3}:

Draws a triangle with endpoints at each of the three vertices

• trinorm {x1 y1 z1} {x2 y2 z3} {x3 y3 z3} {nx1 y1 z1} {nx2 ny2 nz3} {nx3 ny3 nz3}:

Draws a triangle with endpoints at each of the first three points. The second group of three
values specify the normals for the three points. This is used for making a smooth shading
across the triangle. The normals must be normalized to unit-length for proper display.

• tricolor {x1 y1 z1} {x2 y2 z3} {x3 y3 z3} {nx1 y1 z1} {nx2 ny2 nz3} {nx3 ny3 nz3} c1
c2 c3:

Draws a triangle with endpoints at each of the first three points. The second group of three
values specify the normals for the three points. The last three integers indicate the colors
to apply to each vertex. This is used for making a smooth shading across the triangle. The
normals must be normalized to unit-length for proper display.

• sphere {x y z} [radius r] [resolution n]:

Draws a sphere of the given radius (default r=1) centered at the vertex. The resolution
(default n=6) determines how many polygons are used in the approximation of a sphere.

• text {x y z} “text string” [size s] [thickness t]:

Displays the text string with the bottom left of the string starting at the given coordinates,
with the font size scaled by the optional size parameter, and drawn with line thickness deter-
mined by the optional thickness parameter.

• color colorId

• color name

• color trans name: Each of the above geometrical objects are drawn using the current color.
Initially, that color is blue, which has the colorid of 0. The color command changes the
current color, and stays info effect until the next color command. Thus, to draw a red
cylinder then a red sphere, first use the command color red command to change the color,
then use the cylinder and sphere commands.

• materials <on|off>: Material properties are used to make the graphical objects (lines,
cylinders, etc.) be affected by the light sources. These make the objects look more realistic,
but are slower on machines which don’t implement materials in hardware (see chapter 6.2
and sections on color [§ 9.3.4] and colorinfo [§ 9.3.5] commands for the information on how
to turn off material characteristics for all objects in VMD). One surprising effect of material
characteristics is that lines are affected. In some lighting situations, the lines can even appear
to disappear. Thus, you may want to turn off materials before drawing lines.

• material <name>: Sets the material to use for the corresponding graphics molecule. name
must be a valid material name, as displayed in the Materials menu.
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• delete id: Deletes the graphics primitive with the given id.

• delete all: Deletes all graphics primitives.

• replace id: Causes the next graphics primitive to replace the one with the given id. Subse-
quent graphics primitives will be added to the end of the list as usual.

• exists id: Returns whether the primitive with the given id exists.

• list: Returns a list of valid graphics id’s.

• info id: Returns the text of a Tcl command which will recreate the graphics primitive with
the given id.

9.3.10 gettimestep

Retrieve the specified molecule’s timestep as a Tcl byte array which can be used for high-efficiency
analysis calculations by compiled Tcl plugins.

• < molid> < timestep >: retrieve timestep as a Tcl byte array for use in compiled analysis
plugins.

9.3.11 help

Display the on-line help file with an HTML viewer. See Chapter 14 for information on how to
change the default viewer (which is Netscape).

• [ subject]: Jump to help corresponding to subject.

Presently, “subject” can be any one of the following words, which launches the associated URL.
To guarantee that the help system will work correctly, you will probably want to start up your
web browser before choosing one of these options. After you do this, VMD will properly direct the
browser to the pages mentioned below.

9.3.12 imd

Controls the connection to a remote simulation.

• connect host port: connect to an MD simulation running on the machine named host and
listening on port port. This command will fail if a previously-established connection has not
yet been disconnected.

• detach: Disconnect from the simulation; the simulation will continue to run.

• kill: Disconnect from the simulation and also cause it to halt.

• pause < on | off | toggle >: Pause, unpause or toggle the paused state of the remote
simulation.

• transfer rate: Set the rate at which new coordinates are sent by the remote simulation to
VMD to the specified value.

112



Source Associated URL

raster3d http://www.bmsc.washington.edu/raster3d/
msms http://www.scripps.edu/pub/olson-web/people/sanner/html/msms home.html
faq http://www.ks.uiuc.edu/Research/vmd/allversions/vmd faq.html
biocore http://www.ks.uiuc.edu/Research/biocore/
tachyon http://www.photonlimited.com/~johns/tachyon/
babel http://www.eyesopen.com/babel/
homepage http://www.ks.uiuc.edu/Research/vmd/
quickhelp http://www.ks.uiuc.edu/Research/vmd/vmd help.html
radiance http://radsite.lbl.gov/radiance/HOME.html
maillist http://www.ks.uiuc.edu/Research/vmd/mailing list/
scripts http://www.ks.uiuc.edu/Research/vmd/script library/
namd http://www.ks.uiuc.edu/Research/namd/
vrml http://www.web3d.org/
rayshade http://www-graphics.stanford.edu/~cek/rayshade/rayshade.html
povray http://www.povray.org/
plugins http://www.ks.uiuc.edu/Research/vmd/plugins/
python http://www.python.org/
software http://www.ks.uiuc.edu/Research/vmd/allversions/related programs.html
tcl http://www.tcl.tk/
userguide http://www.ks.uiuc.edu/Research/vmd/vmd-1.8.1/ug/ug.html

Table 9.2: On-line Help Sources

• keep rate: Set the keep rate, i.e. the frequency at which VMD saves simulation frames to
memory, to the specified value.

• copyunitcell < on | off >: Enable or disable copying unit cell information from the pre-
vious frame when updating or saving frames through IMD. This can be useful when using
periodic display with IMD since the IMD protocol currently doesn’t support communicating
the unitcell information, or when using a IMD client that does not provide this information
after the protocol has been extended.
WARNING: when using imd copyunitcell on with simulations in NPT ensemble, the
resulting unit cell information will be incorrect.
The default setting is off.

9.3.13 label

Turn on or off labels for the four categories: atoms, bonds, angles, or dihedral angles; create and
destroy simulated springs. Once a label is created (given the list of associated atoms) it can be
turned on or off until it is deleted. Also, the value of the label over the trajectory can be saved to
a file and viewed with an external program such as xmgrace. In the following, category implies one
of [Atoms—Bonds—Angles—Dihedrals].

• list: Return a list of available categories.

• list category: List all labels in the given category.
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• add category molID1/atomID1 [ molID2/atomID2... ]: Add a label involving the atom(s)
atomID of the molecule molID to the given category.

• show category < all | label number >: Turn on labels in the given category.

• hide category < all | label number >: Turn off labels in the given category.

• delete category < all |label number>: Delete labels in the given category.

• graph category label number [filename]: Retrieve the values of the labels for all timesteps.
If the optional filename is given, the data will be written to that file; otherwise it will be
returned as a list. You can use the Tcl exec command to launch an external graphing program
to plot the data if you wish.

• addspring molID1 atomID1 atomID2 k: Add a spring connecting the atom(s) atomID and
atomID2 of the molecule molID. The spring will have spring constant k.

• textsize [newsize]: Get/set the text size for all labels, which is 1.0 by default. newsize should
be a decimal value greater than zero.

• textthickness [newthickness]: Get/set the text line thickness for all labels, which is 1.0 by
default. newthickness should be a decimal value greater than zero.

9.3.14 light

There are four light sources, numbered 0 to 3, which are used to illuminate graphical objects. They
are point sources located at infinity, so setting their positions places them along a ray from the
origin through the given point.

• num: Return the number of lights available.

• light number on: Turn a light on.

• light number off: Turn a light off.

• light number status: Return the pair on/off highlight/unhighlight

• light number rot < x | y | z > angle: Rotate a light (at infinity) angle degrees about a given
axis.

• light numer pos: Return current position.

• light numer pos default: Return default position.

• light numer pos { x y z}: Set light position.
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9.3.15 logfile

Turn on/off logging a VMD session to a log file. This will create a log file with commands for
all the actions taken during the session. The log file may be played back later by using the ‘play’
command or the Tcl ‘source’ command. The only actions recorded are those which change the state
of the VMD display, so straight Tcl commands are not saved. All of the core VMD commands will
write to the log.

• filename: Turn on logging to filename.

• console: Turn on logging and direct it to the VMD text console window.

• off: Turn off logging.

To write log information to the file ‘off’, use the file name ‘./off’.

9.3.16 material

This set of commands is used to create new material definitions and modify existing ones.

• list: Return a list of the available materials

• settings name: Return a list of the five material settings for the material of the given name.
These settings take on floating point values between 0 and 1. The values are returned in the
following order: ambient, specular, diffuse, shininess, mirror, opacity. If the specified material
has not been defined, nothing is returned.

• add name: create a new material with the given name. The new material will start with the
settings for Opaque. If the name already exists, no new material is created.

• add copy name: create a new material copied from the selected material name.

• rename oldname newname: rename the given material. The command will fail if the name
is already used.

• change property name value: Change a material property of the material named name to
the value value. property must be one of the following:

– ambient

– specular

– diffuse

– shininess

– mirror

– opacity

• delete name: Delete the given material.
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9.3.17 mdffi

The mdffi command provides fast internal implementations of key cross correlation and density map
synthesis algorithms used for molecular dynamics flexible fitting (MDFF) simulation, analysis, and
visualization [26].

• cc selection [–allframes] [-i input density map] [-mol molid | -vol volume ID] [-thresholddensity
threshold value] : Computes the MDFF cross correlation between an selection from an all-
atom molecular structure, and a density map.

• sim selection [-o output density map] [-res target resolution in Å] [-spacing grid spacing] :
Compute a simulated density map from an atom selection on an all-atom molecular structure.

9.3.18 measure

The measure command supplies several algorithms for analyzing molecular structures. In the
following options, selection refers to an atom selection, as returned by the atomselect command
described in section 9.3.2. The optional weight must be either none, an atom selection keyword
such as mass, or a list of values, one for each atom in the selection, to be used as weights. If weight
is missing or is none, then all weights are taken to be 1. When an atom selection keyword is used,
the weights are taken from selection1.

• avpos selection [first first] [last last] [step step]: Returns the average position of each of
the selected atoms, for the selected frames. If no first, last, or step values are provided the
calculation will be done for all frames.

• center selection [weight weight]: Returns the geometric center of atoms in selection using
the given weight.

• cluster selection [num numclusters] [distfunc flag] [cutoff cutoff] [first first] [last last]
[step step] [selupdate bool] [weight weight]: Performs a cluster analysis (find clusters of
timesteps that are similar with respect to a given distance function) for the atoms in selection
using the given weight. The implementation is most directly related to Daura’s clustering
algorithm [45], which is related to but not identical to the quality threshold (QT) algorithm
by Heyer et al. [46]. See Cluster Analysis on Wikipedia for more details on these algorithms.
Typically, only a small number of the largest clusters are of interest. This implementation
takes this into account and trades low memory consumption on data sets with many frames
for fast determination of multiple clusters. Use the num keyword to adjust how many clusters
to determine (default is 5). The distfunc flag selects the “distance function”; available
options are ’rmsd’ (root mean squared atom–to–atom distance), ’fitrmsd’ (root mean squared
atom–to–atom distance after alignment), and ’rgyrd’ (difference in radius of gyration). The
cutoff flag defines the maximal distance value between two frames that are considered similar
(default value is 1.0). The weight flag allows to use an atom property, e.g. mass or radius,
to be used as weighting factor (default is no weighting). The command returns a list of
numcluster + 1 lists, each containing the list of trajectory frame indices belonging to a
cluster of decreasing size. The last list contains the remaining, yet unclustered frame indices.

• contacts cutoff selection1 [selection2]: Find all atoms in selection1 that are within cutoff of
any atom in selection2 and not bonded to it. If selection2 is omitted, it is taken to be the
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same as selection1. selection2 and selection1 can either be from the same of from different
molecules. Returns two lists of atom indices, the first containing the first index of each pair
(taken from selection1) and the second containing the second index (taken from selection2).
Note that the index is the global index of the atom with respect to its parent molecule, as
opposed to the index within the given atom selection that contains it.

• dipole selection [-elementary—-debye] [-geocenter—-masscenter—-origincenter]: Com-
pute the dipole moment vector of the atoms in selection from their respective positions and
charge values. The result by default assumes charges given in units of an elementary charge
and distances in angstrom. By default the result is given in the same units (same as using
the -elementary flag), setting the -debye flag will convert the output to units of Debye. For
selections that have a residual charge after summing up all individual charges, the resulting
dipole vector depends on the choice of center of the charge distribution. By default, the center
will be the geometrical center of the selection (sames as using the -geocenter flag), but using
the selection’s center of mass through the -masscenter flag is available, as well as using the
origin via the -origincenter flag. Using -masscenter is recommended, but not made default as
it depends on the mass value to be correctly set for all atoms.

• fit selection1 selection2 [weight weight] [order index list]: Returns a 4x4 transformation
matrix which, when applied to the atoms in selection1, minimizes the weighted RMSD between
selection1 and selection2. See section 12.4.2 for more on RMSD alignment. The optional flag
order takes as argument a list of 0-based indices specifying how to reorder the atoms in
selection2 (Example: To reverse the order of atoms in a selection containing 10 atoms one
would use order {9 8 7 6 5 4 3 2 1 0}).

• gofr selection1 selection2 [delta value] [rmax value] [usepbc boolean] [selupdate boolean]
[first first] [last last] [step step]: Calculates the atomic radial pair distribution function
g(r) and the number integral

∫ r
0 ρg(r)r

2dr for all pairs of atoms in the two selections. Both
selections have to reference the same molecule and may be identical. In case one of the
selections resolves to an empty list for a given time step, and empty array is added to the
histograms. The command returns a list of five lists containing r, g(r),

∫ r
0 ρg(r)r

2dr, the
unnormalized histogram, and a list of frame counters containing currently 3 elements: total
number of frames processed, the number of skipped frames and the number of frames handled
with the orthogonal cell algorithm (Further algorithm and corresponding list entris will be
added in the future). With the optional arguments delta (default 0.1) and rmax (default
10.0) one can set the resolution and the maximum r value. With the usepbc flag processing
of periodic boundary conditions can be turned on. With the selupdate flag enabled, both
atom selections are updated as each frame is processed, allowing productive use of ”within”
selections. The size of the unitcell has to be stored in the trajectory file or has to be set
manually for all frames with the molinfo command. The command uses by default only the
current active frame for both selections. Using an explicite frame range via first, last, and
step is recommended for most cases.

• hbonds cutoff angle selection1 [selection2]: Find all hydrogen bonds in the given selection(s),
using simple geometric criteria. Donor and acceptor must be within the cutoff distance, and
the angle formed by the donor, hydrogen, and acceptor must be less than angle from 180
degrees. Only non-hydrogen atoms are considered in either selection. If both selection1 and
selection2 are given, the selection1 is considered the donor and selection2 is considered the
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acceptor. If only one selection is given, all non-hydrogen atoms in the selection are considered
as both donors and acceptors. The two selections must be from the same molecule. The
function returns three lists; each element in each list corresponds to one hydrogen bond. The
first list contains the indices of the donors, the second contains the indices of the acceptors,
and the third contains the index of the hydrogen atom in the hydrogen bond.

Known Issue: The output of hbonds cannot be considered 100% accurate if the donor and
acceptor selection share a common set of atoms.

• inverse matrix: Returns the inverse of the given 4x4 matrix.

• minmax selection: Returns two vectors, the first containing the minimum x, y, and z coor-
dinates of all atoms in selection, and the second containing the corresponding maxima.

• rgyr selection [weight weights]: Returns the radius of gyration of atoms in selection using
the given weight. The radius of gyration is computed as

r2gyr =

(
n∑

i=1

w(i)(r(i) − r̄)2

)
/

(
n∑

i=1

w(i)

)
(9.1)

where r(i) is the position of the ith atom and r̄ is the weighted center as computer by measure

center.

• rmsd selection1 selection2 [weight weights]: Returns the root mean square distance between
corresponding atoms in the two selections, weighted by the given weight. selection1 and
selection2 must contain the same number of atoms (the selections may be from different
molecules that have different numbers of atoms).

• rmsf selection [first first] [last last] [step step]: Returns the root mean square position
fluctuation for each selected atom in the selected frames. If no first, last, or step values are
provided the calculation will be done for all frames.

• sasa srad selection [-points varname] [-restrict restrictedsel] [-samples numsamples]: Re-
turns the solvent-accessible surface area of atoms in the selection using the assigned radius
for each atom, extending each radius by srad to find the points on a sphere that are exposed
to solvent. If the restrictedsel selection is used, only solvent-accessible points near that selec-
tion will be considered. The restrict option can be used to prevent internal protein voids or
pockets from affecting the surface area results. The points option can be used to see where
the area contributions are coming from, and then the restrict flag can be used to eliminate
any unwanted contributions after visualizing them. The varname parameter can be used to
collect the points which are determined to be solvent-accessible.

• sumweights selection weight weights: Returns the sum of the list of weights (or data field
to use for the weights) for all of the atoms in the selection.

• bond atom list [options]: Returns the distance of the two specified atoms. The atoms are
specified in form of a list of atom indexes. Unless you specify a certain molecule through
’molid molecule number’ these indices refer to the current top molecule. If the atoms are in
different molecules you can use the form {{atomid1 [molid1]} {atomid2 [molid2]} ... } where
you can set the molecule ID for the individual atoms. Note that measure bond does not care
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about the bond that are specified in a psf file or that are drawn in VMD it just returns the
distance! Similar things are true for measure angle, dihed and imprp.
The following options can be specified:

– molid <default molid>: The default molecule to which an atom belongs unless a
molecule number was explicitely specified for this atom in the atom list. Further, all
frame specifications refer to this molecule. (Default is the current top molecule.)

– frame <frame>: By default the value for the current frame will be returned but a
specific frame can be chosen through this option. One can also specify all or last instead
of a frame number in order to get a list of values for all frames or just the last frame
respectively.

– first <frame>: Use this option to specify the first frame of a frame range. (Default is
the current frame.)

– last <frame>: Use this option to specify the last frame of a frame range. (Default is
the last frame of the molecule).

In case you specified the molecule IDs in the atom list then all frames specifications will refer
to the current top molecule unless a default molecule was set using the ’molid’ option. Since
the top molecule can be different from the molecules involved in the selected atoms, it is
generally a good idea to specify a default molecule.

Here are a few examples of usage:
measure bond {3 5} – Returns the distance between atoms 3 and 5 of the current frame of
the top molecule˙ measure bond {3 5} molid 1 frame all – Returns the distance between
atoms 3 and 5 of molecule 1 for all frames.
measure bond {3 {5 1}} molid 0 first 7 – Returns the distance between atoms 3 of
molecule 0 and atom 5 of molecule 1. The value is computed for all frames between the
seventh and the last frame of molecule 0.

• angle atom list [options]: Returns the angle spanned by three atoms. Same input format as
the measure bond command.

• dihed atom list [options]: Returns the dihedral angle defined by four atoms. Same input
format as the measure bond command.

• imprp atom list [options]: Returns the improper dihedral angle defined by four atoms. Same
input format as the measure bond command.

• energy energy term atom list [parameters] [options]: Returns the specified energy term for
a given set of atoms. The energy term must be one of bond, angle, dihed, imprp, vdw
or elect where vdw stands for ’van der Waals’ and elect for electrostatic energy. The energy
is computed based on the CHARMM force field functions, the given parameters and the
current coordinates. All options for the measure bond command work for measure energy,
too. Thus, you can for instance request energies for a range of frames of a trajectory. Also
the format of the atom list is the same. The following parameters can be specified:

– k <value>: force constant for bond, angle, dihed and imprp energies in kcal/mol/A2 or
kcal/mol/rad2 respectively.
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– x0 <value>: equilibrium value for bond length, angle, dihedral angles and improper
dihedrals in Angstrom or degree.

– kub <value>: Urey-Bradley force constant for angles in kcal/mol/A2 .

– s0 <value>: Urey-Bradley equilibrium distance for angles in Angstrom.

– n <value>: dihedral periodicity.

– delta <value>: dihedral phase shift in degree (usually 0.0 or 180.0).

– rmin1 <value>: VDW equilibrium distance for atom 1 in Angstrom.

– rmin2 <value>: VDW equilibrium distance for atom 2 in Angstrom.

– eps1 <value>: VDW energy well depth (epsilon) for atom 1 in kcal/mol.

– eps2 <value>: VDW energy well depth (epsilon) for atom 2 in kcal/mol.

– q1 <value>: charge for atom 1.

– q2 <value>: charge for atom 2.

– cutoff <value>: nonbonded cutoff distance.

– switchdist <value>: nonbonded switching distance.

For all omitted parameters a default value of 0.0 is assumed. For the electrostatic energy the
default charges are taken from the according atom based field of the molecule. If the cutoff
is not set or zero then no cutoff function will be used.

• surface selection gridsize radius depth: Returns a list of atom indices comprising the surface
of the selected atoms. The method for determining the surface is to construct a grid with a
spacing approximately equal to gridsize, where each grid point is either marked full or empty,
depending on whether any atoms from the selection are within radius distance of the grid
point. If the periodic cell parameters are defined in VMD, the molecule is considered periodic
and the grid reflects the coordinates of periodic images of the selection. The grid size may be
modified from that passed to the routine so that an integer grid dimension fits the dimensions
of the box containing the molecule. Finally, each atom that falls within depth distance of an
empty grid point is considered a surface atom, and the command returns a list of atom indices
for all such atoms.

• pbc2onc center [frame frame|last]: Computes the transformation matrix that transforms
coordinates from an arbitrary PBC cell into an orthonormal unitcell. Since the cell center is
not stored by VMD you have to specify it.

Here is a 2D example of a nonorthogonal PBC cell: A and B are the are the displacement
vectors which are needed to create the neighboring images. The parallelogram denotes the
PBC cell with the origin O at its center. The square to the right indicates the orthonormal
unit cell i.e. the area into which the atoms will be wrapped by transformation T.
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+ B
/ + B’

_________/________ |
/ / / +---|---+

/ / / T | | |
/ O--------/-------> A ====> | O---|--> A’

/ / | |
/_________________/ +-------+

A = displacement vector along X-axis with length a
B = displacement vector in XY-plane with length b
A’ = displacement vector along X-axis with length 1
B’ = displacement vector along Y-axis with length 1
O = origin of the PBC cell

• pbcneighbors center cutoff [options]: Returns all image atoms that are within cutoff Å of
the PBC unitcell in form of two lists. The first list holds the atom coordinates while the
second one is an indexlist mapping the image atoms to the atoms in the unitcell. Since the
PBC cell center is not stored in DCDs and cannot be set in VMD it must be provided by the
user as the first argument.

The second argument (cutoff) is the maximum distance (in Å) from the PBC unit cell for
atoms to be considered. In other words the cutoff vector defines the region surrounding the
pbc cell for which image atoms shall be constructed (i.e. {6 8 0} means 6 Å for the direction
of A, 8 Å for B and no images in the C-direction).

The following options can be specified:

– molid <molecule number>: The default molecule to which an atom belongs unless a
molecule number was explicitely specified for this atom in the atom list. Further, all
frame specifications refer to this molecule. (Default is the current top molecule.)

– frame <frame>: By default the value for the current frame will be returned but a
specific frame can be chosen through this option. One can also specify all or last instead
of a frame number in order to get a list of values for all frames or just the last frame
respectively.

– sel <selection>: If an atomselection is provided then only those image atoms are
returned that are within cutoff of the selected atoms of the main cell. In case cutoff is
a vector the largest value will be used.

– align <matrix>: In case the molecule was aligned you can supply the alignment matrix
which is then used to correct for the rotation and shift of the pbc cell.

– boundingbox PBC|{<mincoord> <maxcoord>}: With this option the atoms are wrapped
into a rectangular bounding box. If you provide ”PBC” as an argument then the bound-
ing box encloses the PBC box but then the cutoff is added to the bounding box. Negative
values for the cutoff dimensions are allowed and lead to a smaller box. Instead you can
also provide a custom bounding box in form of the minmax coordinates (list contain-
ing two coordinate vectors such as returned by the measure minmax command). Here,
again, the cutoff is added to the bounding box.

• inertia selection [moments] [eigenvals]: Returns the center of mass and the principles axes
of inertia for the selected atoms. If moments is set then the moments of inertia tensor are
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also returned. With option eigenvals the corresponding eigenvalues will be returned, too.
If both flags are set then the eigenvalues will be listed after the moments.

• symmetry selection [plane|I|Cn|Sn [vector]] [tol value] [nobonds] [verbose level]: This
function evaluates the molecular symmetry of an atom selection. The underlying algorithm
finds the symmetry elements such as inversion center, mirror planes, rotary axes and rotary
reflections. Based on the found symmetry elements it guesses the underlying point group. The
guess is fairly robust and can handle molecules whose coordinates deviate to a certain extent
from the ideal symmetry. The closest match with the highest symmetry will be returned.

Options:

– tol <value>: Allows one to control tolerance of the algorithm when considering wether
something is symmetric or not. A smaller value signifies a lower tolerance, the default
is 0.1.

– nobonds: If this flag is set then the bond order and orientation are not considered when
comparing structures.

– verbose <level>: Controls the amount of console output. A level of 0 means no output,
1 gives some statistics at the end of the search (default). Level 2 gives additional info
about each stage, and 2, 3, 4 yield even more info for each iteration.

– idealsel <selection>: The symmetry search will be performed on the regular selection
but then the found symmetry elements will be imposed on the selection given with this
option an the search is repeated with this second selection. This method allows, for
example, to perform the symmetry guess on a selection without hydrogens (which might
point in random directions for rotable groups) but still get the ideal coordinates and
unique atoms for the entire structure. The selection specified here must be a superset
of the selection used for the symmetry search.

– I: Instead of guessing the symmetry pointgroup of the selection determine if the se-
lection’s center off mass represents an inversion center. The returned value is a score
between 0 and 1 where 1 denotes a perfect match.

– plane <vector>: Instead of guessing the symmetry pointgroup of the selection deter-
mine if the plane with the defined by its normal vector is a mirror plane of the selection.
The returned value is a score between 0 and 1 where 1 denotes a perfect match.

– Cn|Sn <vector>: Instead of guessing the symmetry pointgroup of the selection deter-
mine if the rotation or rotary reflection axis Cn/Sn with order n defined by vector exists
for the selection. E.g., if you want to query wether the Y-axis has a C3 rotational sym-
metry you specify C3 {0 1 0}. The returned value is a score between 0 and 1 where 1
denotes a perfect match.

– imposeinversion: Impose an inversion center on the structure.

– imposeplanes {<vector> [<vector> ...]}: Impose the planes given by a list of nor-
mal vectors on the structure.

– imposeaxes|imposerotref {<vector> order [<vector> order ...]}:
Impose rotary axes or rotary reflections on the structure specified by a list of pairs of a
vector and an integer. Each pair defines an axis and its order.
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The scores for the individual symmetry elements depend on the specified tolerance. Imposing
symmetry elements on a structure will wrap the atoms around these elements and average the
coordinates of the atoms and its images. Atoms for which no image is found (with respect
to that transformation) will not be wrapped. I.e. if you, for instance, impose an axis on
a molecule that has no such rotary symmetry within the given tolerance then nothing will
happen.

Result:

The return value is a TCL list of pairs consisting of a label string and a value or list. For
each label the data following it are described below:

pointgroup The guessed point group. For point groups that have an order associated with
it, like C3v or D2, the order is replaced by ’n’ and we have Cnv or Dn. The order is
given separately (see below).

order Point group order, i.e. order of highest axis (0 if not applicable).

elements Summary of found symmetry elements, i.e. inversion center, rotary axes, rotary
reflections, mirror planes. Example: “(i) (C3) 3*(C2) (S6) 3*(sigma)” for point group
D3d.

missing Elements missing with respect to ideal set of elements (same format as above). If
this is not an empty list then something has gone awfully wrong with the symmetry
finding algorithm.

additional Additional elements that would not be expected for this point group (same format
as above). If this is not an empty list then something has gone awfully wrong with the
symmetry finding algorithm.

com Center of mass of the selection based on the idealized coordinates (see ’ideal’ below).

inertia List of the three axes of inertia, the eigenvalues of the moments of inertia tensor and
a list of three 0/1 flags specifying for each axis wether it is unique or not.

inversion Flag 0/1 signifying if there is an inversion center.

axes Normalized vectors defining rotary axes

rotreflect Normalized vectors defining rotary reflections

planes Normalized vectors defining mirror planes.

ideal Idealized symmetric coordinates for all atoms of the selection. The coordinates are
listed in the order of increasing atom indices (same order asa returned by the atomselect
command “get x y z”). Thus you can use the list to set the atoms of your selection to
the ideal coordinates (see example below).

unique Index list defining a set of atoms with unique coordinates.

orient Matrix that aligns molecule with GAMESS standard orientation.

If a certain item is not present (e.g. no planes or no axes) then the corresponding value is an
empty list. The pair format allows to use the result as a TCL array for convenient access of
the different return items.

Example:
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set sel [atomselect top all]

# Determine the symmetry

set result [measure symmetry $sel]

# Create array ’symm’ containing the results

array set symm $result

# Print selected elements of the array

puts $symm(pointgroup)

puts $symm(order)

puts $symm(elements)

puts $symm(axes)

# Set atoms of selection to ideally symmetric coordinates

$sel set {x y z} $symm(ideal)

• volinterior selection [-probmap fuzzy boundary detection?] [-nrays value] [-spacing value,
Å] [-res value, Å] [-isovalue value] [-mol molid] [-vol volid] [-discretize value] [-verbose
verbose output?] [-overwrite volid]

Classify the space surrounding a molecule as interior or exterior. For structures not rep-
resenting a closed container, or in applications where interior and exterior boundaries are
ill-defined such as surface cleft identification, fuzzy boundary detection should be enabled
with the -probmap flag.

When measure volinterior is invoked, a QuickSurf density of the atom selection is first com-
puted; the -res and -isovalue parameters correspond to QuickSurf parameters used in gen-
erating the molecular density. For each voxel not corresponding to molecular density (i.e.,
selection voxels), rays are cast in parallel. In the default, fixed boundary implementation:
if a ray strikes the system boundary before selection voxels, then that voxel is considered
exterior and is marked accordingly and ignored for the remainder of the calculation. A Tcl
list is returned with four entries: total voxel count, exterior voxel count, interior voxel count,
and selection voxel count. The resulting volume loaded into -mol molid is a discrete 3D grid,
where each voxel is classified as interior, exterior, or selection.

For the fuzzy boundary implementation, i.e. the -probmap flag is given, all N rays are cast
and the number of rays striking selection voxels before the system boundary is stored for
each voxel. The continuous grid output by the fuzzy boundary implementation is normalized
against N rays such that all entries vary continuously on [0, 1]. The directions of rays are
randomly chosen and are uniformly distributed on the surface of the unit sphere following
a Poisson disk sampling procedure, although uniformity of ray directions below -nrays 32
cannot be guaranteed. Thus, values passed to -nrays of at least 32 are recommended if the
-probmap flag is given. In addition to the continuous 3D grid loaded into -mol molid, a Tcl
list is returned containing ten entries, where each entry is the number of voxels in the grid at
percentiles ranging from 10-99th. Optionally, the -discretize flag will process the continuous
grid into a discrete grid, equivalent to that output by the fixed boundary implementation,
according to the user-specified cutoff value. If -discretize is given, then a Tcl list of total,
exterior, interior and selection voxel counts is returned.

For more information, please refer to the publication [47]:
https://doi.org/10.1021/acs.jcim.9b00324
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Options:

– nrays <value> The number of rays to cast from each voxel. A minimum of six rays is
required.

– spacing <value> Grid spacing parameter, in units of Å. This parameter impacts perfor-
mance, but must also be considered when converting voxel counts into physical volumes.

– res <value> QuickSurf resolution, in units of Å. Default value is RadScale/0.2, where
RadScale corresponds to the radius scale value used when generating the QuickSurf
density.

– isovalue <value> Isovalue to use when creating the QuickSurf density.

– mol <molid> Molecule into which the resulting volumetric data are loaded. If this flag
is not set, voxel counts are returned but no volumetric data are loaded.

– vol <volid> Specify an existing target volume by its volume ID.

– probmap Enable fuzzy boundary detection. This is necessary if the molecule does not
represent a closed container with a continuous surface, or a closed container but with a
porous surface. If this flag is enabled, the resulting volume grid stores entries varying
continuously on [0, 1], where a value of 1.0 corresponds to 100% probability of that voxel
being interior. A Tcl list of 10 values is also returned, with voxel counts given for each
percentile ranging from 10th to 99th percentile.

– discretize <cutoff> Create a discrete grid from the continuous probability grid using
the specified cutoff and load it into molecule molid. This option is valid only if -probmap
has been specified. The cutoff value must be between 0 and 1.0, and is used to generate a
discrete volume grid equivalent to that output from the fixed boundary, implementation.
With this flag set, voxel counts are returned in the same manner as the fixed-boundary
implementation, i.e. as a Tcl list of four values: total voxel count, interior voxel count,
exterior voxel count, selection voxel count.

– verbose Enable verbose printing.

– overwrite <volid> Overwrite volume volid already loaded into molecule molid. If no
volume is loaded corresponding to volid, an error is thrown.

Fixed boundary example:

set id [mol new myMolecule.pdb]

set sel [atomselect $id "noh protein"]

set result [measure volinterior $sel -nrays 12 \

-isovalue 1.0 -spacing 1.0 -res [expr 1.2/0.2] \

-mol $id -verbose]

set totalVoxels [lindex $result 0]

set exteriorVoxels [lindex $result 1]

set interiorVoxels [lindex $result 2]

set selectionVoxels [lindex $result 3]

# Use output volume grid to make a selection
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set watersInterior [atomselect $id "water and vol0 < 1 and vol0 > -1"]

Fuzzy boundary example:

set id [mol new myMolecule.pdb]

set sel [atomselect $id "noh protein"]

# Continuous grid output

set resultC [measure volinterior $sel -nrays 64 \

-isovalue 0.8 -spacing 1.0 -res [expr 1.0/0.2] \

-mol $id -verbose -probmap]

set 50th_percentile [lindex $resultC 4]

set 60th_percentile [lindex $resultC 5]

# Use output to select waters in regions above 85% likelihood of being interior

set watersInterior [atomselect $id "water and vol0 > 0.85"]

# Discrete grid output

set resultD [measure volinterior $sel -nrays 64 \

-isovalue 0.8 -spacing 1.0 -res [expr 1.0/0.2] \

-mol $id -verbose -probmap -discretize 0.85]

set totalVoxels [lindex $resultD 0]

set exteriorVoxels [lindex $resultD 1]

set interiorVoxels [lindex $resultD 2]

set selectionVoxels [lindex $resultD 3]

# Use discretized grid to select interior waters,

# equivalent to above selection on continuous grid.

## Note that we now use vol1, because we did not choose to overwrite the

## previous volume (vol0).

set watersInterior2 [atomselect $id "water and vol1 < 1 and vol1 > -1"]

9.3.19 menu

The menu command controls or queries the on-screen GUI windows.

• list: Return a list of the available menus

• menu name on: Turn a menu on.

• menu name off: Turn a menu off.

• menu name status: Return on if on, off if off.

126



• menu name loc: Return the x y location.

• menu name move x y: Move a menu to the given (x, y) location

The parameter menu name is one of the following menu names: color, display, files, graphics, labels,
main, material, ramaplot. render, save, sequence, simulation, or tool.

9.3.20 mol

Load, modify, or delete a molecule in VMD. In the following, molecule number is a string describing
which molecules are to be affected by the command. It is one of the following: all, top, active,
inactive, displayed, on, off, fixed, free, or one of the unique integer ID codes assigned to
the molecules when they are loaded (starting with 0). The codes (molIDs) are not reused after a
molecule is deleted, so if you, for example, have three molecules loaded (numbered 0, 1, 2), delete
molecule with molID equal to 0, and then load another molecule, the new molecule will have molID
3. Thus, the list of available molecule IDs becomes (1 2 3). The index of the molecule on this
list is, among many other things, accessible through the molinfo command [§9.3.22]. In the above
case, for example, molecule that was loaded the last has molID equal to 3, however, it is the third
on the list of molecules, so it has the index equal to 2 (since we start countin from 0).

The molecule representations (views) are assigned integer number (starting with 0 for each
molecule), which appear in the list on the Graphics window [§5.4.7]. The representations can be
added, deleted or changed with the mol command. See also sections on molinfo command [§ 9.3.22]
for more ways of retrieving information about the representations.

• new [ filename ] [ options ]:

• addfile < filename > [ options ]:

mol new is used to create a new molecule from a file; if the optional filename parameter
is omitted, a plain, “blank” molecule is created with no atoms (this can be used to create
a canvas for drawing user-defined geometry). mol addfile is like mol new except that the
structure and coordinate data are loaded into the top molecule (whichever molecule was loaded
last) instead of creating a new one. Both mol new and mol addfile accept the following set
of options:

– type <type>: Specifies the file type (psf, pdb, etc.) If this option is omitted, the filename
extension is used to guess the filetype; otherwise, it overrides what would be guessed
from the filename.

– first <frame>:

– last <frame>:

– step <frame>: For files containing coordinate frames , specifies which frames to load.
Frames are indexed starting at 0. A step of 1 means all frames in the range will be
loaded; a step of 2 means load every other frame.

– waitfor <frames>: For files containing coordinate frames , specifies how many frames
to load before returning; the default is 1. If frames is less than the number of frames
in the file, the rest of the frames will be loaded in the background on subsequent VMD
display updates. If frames is -1 or all, then all frames in all files still in progress
will be loaded at once before the command returns. Frames loaded this way will load
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faster than if they are loaded in the background. If files are still being loaded in the
background when the addfile command is issued, frames from the files in progress will
be loaded first.

– volsets <set ids>: For files containing volumetric data, specifies which data sets to
load. <set ids> should be a list of zero-based indices.

– autobonds <on|off>: Turn automatic bond calculation on/off. This can be useful for
loading unusual non-molecular coordinates for which VMD’s bond-finding algorithm is
too slow (e.g., if the point density is very high). Default is on.

– molid: For addfile only. The molecule id of the molecule into which the file should be
loaded may be specified. It must be the last option specified. If omitted, the default is
the top molecule.

• load structure file type structure file [coordinate file type coordinate file] : Load a new molecule
from filename(s) using the given format. If an additional coordinate file is specified, load this
file as well. New in VMD 1.8: All frames from the coordinate file will be loaded before
the command returns. If this is not desirable, use the animate read command for more fine-
grained control over how coordinate files are loaded. Previous version of VMD loaded only
one frame before returning. The function will return the id of the newly created molecule, or
return an error if unsuccessful.

• urlload <file type> <URL>: Load a molecule of file type from a given URL address. Return
the id of the newly created molecule, or an error if unsuccessful.

• pdbload <four letter accession id>: Retrieve the PDB file with the specified accession
code from the RCSB web site. Returns the id of the newly created molecule, or an error if
unsuccessful.

• list: Print a one-line status summary for each molecule.

• list molecule number: Print a one-line status summary for each molecule matching the
molecule number. If only one molecule matches the molecule number, also print the rep-
resentation status for this molecule, i.e., number of representations as well as the representa-
tion number, coloring method , representation style and the selection string for each of the
representations.

• color coloring method: Change the default atom coloring method setting.

• material material name: Change the default material setting.

• representation rep style: Change the default rendering method setting.

• selection select method: Change the default atom selection setting.

• clipplane center clipplane id rep number molecule number [ vector ]

• clipplane color clipplane id rep number molecule number [ vector ]

• clipplane normal clipplane id rep number molecule number [ vector ]

• clipplane status clipplane id rep number molecule number [ boolean ]
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• modcolor rep number molecule number coloring method: Change the current coloring method
for the given representation in the specified molecule.

• modmaterial rep number molecule number material name: Change the current material for
the given representation in the specified molecule.

• modstyle rep number molecule number rep style: Change the current rendering method
(style) for the given representation in the specified molecule.

• modselect rep number molecule number select method: Change the current selection for the
given representation in the specified molecule.

• addrep molecule number: Using the current default settings for the atom selection, coloring,
and rendering methods, add a new representation to the specified molecule.

• default category value: Set the default settings for color, style, selection, or material to the
supplied value.

• delrep rep number molecule number: Deletes the given representation from the specified
molecule.

• modrep rep number molecule number: Using the current default settings for the atom se-
lection, coloring, and rendering methods, changes the given representation to the current
defaults.

• delete molecule number: Delete molecule(s).

• active molecule number: Make molecule(s) active.

• inactive molecule number: Make molecule(s) inactive.

• on molecule number: Turn molecule(s) on (make drawn).

• off molecule number : Turn molecule(s) off (hide).

• fix molecule number: Fix molecule(s).

• free molecule number: Unfix molecule(s).

• top molecule number: Set the top molecule.

• cancel molecule number: Cancel loading trajectories.

• reanalyze molecule number: Re-analyze structure after bonding and atom name changes.

• bondsrecalc molecule number: Recalculate bonds from distances for current timestep.

• ssrecalc molecule number: Recalculate secondary structure.

• rename molecule number newname: Rename the specified molecule.

• repname molecule number rep number: Returns the name of the given rep. This name is
guaranteed to be unique for all reps in the molecule, and will stay with the rep even if the
rep number changes.
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• repindex molecule number name: Return the rep number for the rep with the given name,
or -1 if no rep with that name exists in that molecule.

• selupdate rep number molecule number [onoff]: Update the selection for the specified rep
each time the molecule’s timestep changes. If onoff is not specified, returns the current update
state.

• colupdate rep number molecule number [onoff]: Update the calculated color for the specified
rep each time the molecule’s timestep changes. If onoff is not specified, returns the current
update state.

• drawframes molecule number rep number [frame specification]: Draw multiple trajectory
frames or coordinate sets simultaneously. This setting allows the user to select one or more
ranges of frames to display simultaneously. The frame specification takes one of the follow-
ing forms now, frame number, start:end, or start:step:end. If the frame specification is not
specified, the command returns the currently active frame selection text.

• smoothrep molecule number rep number [n]: Get/set the window size for on-the-fly smooth-
ing of trajectories. Instead of drawing the specified rep from the current coordinates, VMD
will calculate the average of the coordinates from the n previous and subsequent timesteps. If
n is zero then no smoothing is performed. Note that this smoothing does not affect any label
measurements, and does not change the values of the coordinates returned by atom selections
or written to files; it only affects how the rep is drawn. Smoothing can be especially useful
in visualizing rapidly fluctuating molecules or making movies.

• scaleminmax molecule number rep number [min max | auto]: Get/set the color scale range
for this rep. Normally the color scale is automatically scaled to the minimum and maximum
of the corresponding range of data. This command overrides the autoscaled values with the
values you specify. Omit the min and max arguments to get the current values. Use “auto”
instead of a min and max to rescale the color scale to the maximum range again.

• showrep molecule number rep number [on | off]: Get/set whether the given rep is shown or
hidden. Hidden reps cannot be picked and do not show any graphics.

• volume molecule number <volumeset name> <Origin> <a> <b> <c> #a #b #c <Data> Add
a volumetric data set to the current molecule. Origin, a, b, and c are vectors setting the origin
and the three cell vectors. #a, #b, and #c are the number of grid points in the respective cell
vector directions and finally the data has to be provided as one list with the data following
the grid points along the c-axis fastest, then the b-axis and finally the a-axis.

9.3.21 molecule

Same as mol.

9.3.22 molinfo

The molinfo command is used to get information about a molecule (or loaded file) including the
number of loaded atoms, the filename, the graphics selections, and the viewing matrices. It can
also be used to return information about the list of loaded molecules.
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Keyword Aliases Arg Set Description

id int N molecular id
index int N index on the molecule list
numatoms int N number of atoms
name str N the name of the molecule (usually the name of the file)
filename str N list of filenames for all files loaded for this molecule
filetype str N list of file types for this molecule
database str N list of databases for this molecule
accession str N list of database accession codes for this molecule
remarks str N list of freeform remarks for this molecule
active bool Y is/make the molecule active
drawn displayed bool Y is/make the molecule drawn
fixed bool Y is/make the molecule fixed
top bool Y is/make the molecule top
center vector Y get/set the coordinate used as the center
center matrix matrix Y get/set the centering matrix
rotate matrix matrix Y get/set the rotation matrix
scale matrix matrix Y get/set the scaling matrix
global matrix matrix Y get/set the global (rotation/scaling) matrix
view matrix matrix N get/set the overall viewing matrix
numreps int N the number of representations
selection i string N the string for the i’th selection
rep i string N the string for the i’th representation
color i colour string N the string for the i’th coloring method
numframes int N number of animation frames
numvolumedata int N number of volumetric data sets
frame int Y current frame number
timesteps int Y number of elapsed timesteps in an interactive simulation
angles list Y topology angle types and definitions {type a1 a2 a3}
dihedrals list Y topology dihedral types and definitions {type a1 a2 a3 a4}
impropers list Y topology improper types and definitions {type a1 a2 a3 a4}
bond float N the bond energy (for the current frame)
angle float N the angle energy
dihedral float N the dihedral energy
improper float N the improper energy
vdw float N the van der Waal energy
electrostatic elec float N the electrostatic energy
hbond float N the hydrogen bond energy
kinetic float N the total kinetic energy
potential float N the total potential energy
energy float N the total energy
temperature temp float N the overall temperature
pressure float Y the simulation pressure
volume float Y the simulation volume
efield float Y efield
alpha float Y unit cell angle alpha in degrees (for the current frame)
beta float Y unit cell angle beta in degrees (for the current frame)
gamma float Y unit cell angle gamma in degrees (for the current frame)
a float Y unit cell length a in Angstroms (for the current frame)
b float Y unit cell length b in Angstroms (for the current frame)
c float Y unit cell length c in Angstroms (for the current frame)

Table 9.3: molinfo set/get keywords
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Each molecule has a unique id, which is assigned to it when it is first loaded. These start at
zero and increase by 1 for each new molecule. When a molecule is deleted, the number is not used
again. There is one unique molecule, called the top molecule [§5.4.2], which is used to determine
some parameters, such as the center of view, the data in the animation controls, etc.

• list: Returns a list of all current molecule id’s.

• num: Returns the number of loaded molecules.

• top: Returns the id of the top molecule.

• index n: Returns the id of the n’th molecule.

• molecule id get {list of keywords}

• molecule id set {list of keywords} {list of values} Access and, in some cases, modify informa-
tion about a given molecule. The list of recognized keywords is given in Table 9.3.

Examples:

vmd > molinfo top get numatoms

568

molinfo 0 get {filetype filename}

pdb /home/dalke/pdb/bpti.pdb

vmd > molinfo 0 get { {rep 0} {color 0} {rep 1} {color 1} }

{VDW 1.000000 8.000000} {ColorID 5} Lines 1.0000 SegName

9.3.23 mouse

Change the current state (mode) of the mouse, optionally active TCL callbacks.

• mode 0: Set mouse mode to rotation.

• mode 1: Set mouse mode to translation.

• mode 2: Set mouse mode to scaling.

• mode 3 N: Set mouse mode to rotate light N.

• mode 4 N: Set mouse mode to picking mode N, where N is one of the following:

– 0: query item

– 1: pick center

– 2: pick atom

– 3: pick bond

– 4: pick angle

– 5: pick dihedral

– 6: move atom

– 7: move residue
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– 8: move fragment

– 9: move molecule

– 10: force on atom

– 11: force on residue

– 12: force on fragment

• callback on/off: Turn the callbacks on or off. To use the callbacks, trace the variable
vmd_pick_atom_silent. See below for information on tracing.

• rocking on/off: Enable/disable persistent rotation of the scene with the mouse.

• stoprotation: Stop any mouse-initiated scene rotation as well as any rocking initiated with
the ”rock” command.

9.3.24 parallel

The parallel command enables large scale parallel scripting when VMD has been compiled with
MPI support. In absence of MPI support, the parallel command is still available, but it operates
the same way it would if an MPI-enabled VMD would when run on only a single node. The parallel
command enables large analysis scripts to be easily adapted for execution on large clusters and
supercomputers to support simulation, analysis, and visualization operations that would otherwise
be too computationally demanding for conventional workstations [14, 35, 26, 40].

• nodename: Return the hostname of the current compute node.

• noderank: Return the MPI rank of the current compute node.

• nodecount: Return the total number of MPI ranks in the currently running VMD job.

• allgather object: Perform a parallel allgather operation across all MPI ranks, taking the user
defined object as input to each caller. All VMD MPI ranks must participate in the allgather
operation.

• allreduce user reduction procedure object: Perform a parallel reduction across all MPI ranks
by calling the user-supplied reduction procedure, passing in a user defined object. All VMD
MPI ranks must participate in the allreduce operation.

• barrier: Perform a barrier synchronization across all MPI ranks in the running VMD job.

• for startcount endcount user worker procedure object: Invoke VMD parallel work scheduler to
run a computation over all MPI ranks. The VMD work scheduler uses dynamic load balancing
to assign work indices to workers, calling the user-defined worker callback procedure for each
work item.

133



9.3.25 play

Start executing text commands from a specified file, instead of from the console. When the end of
the file is reached, VMD will resume reading commands from the previous source. This command
may be nested, so commands being read from one file can include commands to read other files.

• filename: Execute commands from filename.

9.3.26 quit

Same as exit.

9.3.27 render

Output the currently displayed image (scene) to a file using the global VMD display settings and
any renderer-specific settings.

• list: List the available rendering methods.

• hasaa method: Query whether or not a renderer has controllable antialiasing feature.

• aasamples method samples: Query or set the number of antialiasing samples to be used by
this renderer, if supported.

• aosamples method samples: Query or set the number of ambient occlusion lighting samples
to be used by this renderer, if supported.

• formats method: List a renderer’s available image output formats/modes.

• format method format: Set a renderer’s active image output format/mode.

• method filename: Render the global scene to filename using method and execute the default
command, where method can be one of the following:

– ART

– Gelato

– POV3

– PostScript

– Radiance

– Raster3D

– Rayshade

– Renderman

– snapshot

– STL

– Tachyon

– TachyonInternal

– VRML-1
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– VRML-2

– Wavefront

• method filename command: Render the global scene to filename, then execute ‘command’.
Any %s in ‘command’ are replaced by the filename (up to 5).

• options method: Get the default command string.

• options method command: Set new default command.

• default method: Get the original default command.

9.3.28 rock

Rotate the current scene continually at a specified rate.

• off: Stops rocking.

• < x | y | z > by step: Rock around the given axis at a rate of step degrees per redraw.

• < x | y | z > by step n: Rock around the given axis at a rate of step degrees per redraw for
n steps, reverse, and repeat.

9.3.29 rotate

Rotate the current scene around a given axis by a certain angle. This does not change atom
coordinates.

• stop: Stop all rotation, similar to rock off, but it also stops mouse rotations as well.

• < x | y | z > by angle: Rotate around the given axis angle degrees.

• < x | y | z > to angle: Rotate the given axis to the absolute position angle.

• < x | y | z > < by | to > angle step: Rotate at a rate of step degrees per redraw.

9.3.30 scale

Scale the current scene up or down. This does not change atom coordinates.

• by f: Multiply scene scaling factor by f.

• to f: Set scene scaling factor to f.
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9.3.31 stage

Position a checkerboard stage on the screen.

• location < off | origin | bottom | top | left | right | behind >: Set the location.

• location: Get the current location.

• locations: Get a list of possible locations.

• panels n: Set number of panels in stage, up to 30.

• panels: Get the number of panels in use

9.3.32 tool

Initialize and control the tools that are controlled by external tracking devices.

• create: Create a new tool

• change type [ toolid ]: Change the type of a tool.

• scale scale [ toolid ]: Change the scale of the coordinates reported by a tool.

• scaleforce scale [ toolid ]: Increase or decrease the force on a force-feedback device.

• offset x y z [ toolid ]: Add a vector to a tool’s position.

• delete [ toolid ]: Remove a tool.

• rep molid repid : Choose only a single representation for tugging or SMD.

• adddevice name [ toolid ] : Add a device to a tool, using a name found in the sensor
configuration file.

• removedevice name [ toolid ] : Remove a device from a tool, using a name found in the
sensor configuration file.

• callback on/off : Enable callbacks for the tools.

9.3.33 translate

Translate the objects in the current scene. This does not change the atom coordinates.

• by x y z: Translate by vector (x, y, z) in screen units (note, that this does not change the
atom coordinates).

• to x y z: Translate to the absolute position (x, y, z) in screen units.
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9.3.34 user

Add user-customized commands.

• add key key command: Assign the given text command to the hot key key. When key is
pressed while the mouse is in the display window, the specified command will be executed.

• print keys : Print out the current definition of the hot keys.

See section 5.1.3 for examples of the use of the user command.

9.3.35 vmdinfo

(Tcl) Returns information about this version of VMD.

• version: Returns the version number;

• versionmsg: Full information about this version;

• authors: List of authors;

• arch: architecture type (in case you couldn’t tell);

• options: options used to compile VMD;

• www: VMD home page;

• wwwhelp: VMD help page.

This function is available without Tcl and the information is displayed to the screen.

9.3.36 volmap

The volmap command creates volumetric maps (3D grids containing a value at each grid point)
based on the molecular data, which can then be visualized in VMD using the Isosurface and
VolumeSlice representations or using the Volume coloring mode. Also note that the VolMap plugin,
accessible from the VMD Extension menu, provides a graphical front-end to many of the volmap

command’s capabilities.
To create a volumetric map, the volmap command is run in the following way, where the atom

selection specifies the atoms and molecule to include in the calculation, and where the maptype
specifies the type of volumetric data to create:

volmap <maptype> <atom selection> [optional arguments]

For example, to create a mass density map with a cell side of 0.5 Å, averaged over all frames of
the top molecule, and add the volumetric data to the top molecule, on would use:

volmap density [atomselect top "all"] -res 0.5 -weight mass -allframes \

-combine avg -mol top

The various volumetric data map types currently supported by volmap are listed as follows.
Please note that when a map type description refers to an atoms radius or beta field, etc., that
these values will be read directly from VMD’s associated fields for that atom. In certain cases, you
may want to adjust the atom selections fields (such as radius, beta, etc.) before performing the
volmap analysis.
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• density: creates a map of the weighted atomic density at each gridpoint. This is done
by replacing each atom in the selection with a normalized gaussian distribution of width
(standard deviation) equal to its atomic radius. The gaussian distribution for each atom is
then weighted using an optional weight (see the -weight argument), and defaults to a weight
of one (i.e, the number density). The various gaussians are then additively distributed on a
grid.

• interp: creates a map with the atomic weights interpolated onto a grid. For each atom, its
weight is distributed to the 8 nearest voxels via a trilinear interpolation. The optional weight
(see the -weight argument) defaults to a weight of one.

• distance: creates a map for which each gridpoint contains the distance between that point
and the edge of the nearest atom. In other words, each gridpoint specifies the maximum
radius of a sphere cnetered at that point which does not intersect with the spheres of any
other atoms. All atoms are treated as spheres using the atoms’ VMD radii.

• coulomb, coulombmsm: Creates a map of the electrostatic field of the atom selection,
made by computing the non-bonded Coulomb potential from each atom in the selection (in
units of kBT/e). The coulomb map generation is optimized to take advantage of multi-core
CPUs and programmable GPUs if they are available [16, 17, 18, 19, 20, 21, 22, 23, 24].

• ils: Creates a free energy map of the distribution of a weakly-interacting monoatomic or di-
atomic gas ligand throughout the system using the Implicit Ligand Sampling (ILS) technique.
See additional information about ILS below.

• mask: Creates a map which is set to 0 or 1 depending on whether they are within a specified
cutoff distance (use the -cutoff argument) of any atoms in the selection. The mask map is
typically used in combination with other maps in order to hide/mask data that is far from a
region of interest.

• occupancy: Each grid point is set to either 0 or 1, depending on whether it contains onbe
or more atoms or not. When averaged over many frames, this will provide the fractional
occupancy of that grid point. By default, atoms are treated as spheres using the atomic radii
and a gridpoint is considered to be ”occupied” if it lies inside that sphere. Use the -points

argument to treat atoms as points (a grid point is ”occupied” if its grid cube contains an
atom’s center).

The following optional arguments are universally understood by every volmap map types:

• -allframes: Use every frame in the molecule instead of just the current one to compute the
volumetric map. The method used to combine the various trajectory frame maps can be
specified using the -combine argument. By default, volmap only uses the current frame.

• -combine < avg | max | min | stdev | pmf >: Specifies the rule to use to combine
frames when using the -allframes argument. These correspond to keeping the average,
maximum or minimum values from the range of calculated frames. stdev will return the
standard deviation for each point over the range of frames, and pmf uses a thermal average
− ln

∑N
i e−valuei/N for each point. The default is avg except for ligand maps where the

default is pmf.
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• -res resolution: Sets the resolution of the map. This means that the volume will be subdivided
into many small cubes whose side have a length of resolution.

• -minmax {{xmin ymin zmin} {xmax ymax zmax}}: Allows the user to specify the min-max
boundaries of the grid in which the volumetric map will be computed. The argument to
-minmax is a list of two 3-vectors specifying the minimum and maximum coordinates of the
desired volumetric data grid.

• -checkpoint frequency: For the analysis of long trajectories, it can be desirable to have
intermediate outputs of the volmap computation. The checkpoint option forces the volmap
computation to output a map of what has been computed so far, at every frequency frames.
The default frequency is 500; setting the frequency to zero disables the checkpointing feature.

• -mol < molid | top >: Exports the final volumetric data into the VMD molecule specified
by molid. By default, all maps are exported to a file or name maptype out.dx; using the -mol
option overrides this.

• -o filename: Exports the final volumetric data into a DX file (.dx extension is added if
missing). By default, all maps are exported to a file or name maptype out.dx.

The following optional arguments are special arguments understood only by some volmap map
types. Some arguments may only apply to certain map types or may have different meaning for
different map types:

• -cutoff cutoff: Specifies a cutoff distance. For the distance maps, specifies the largest distance
that will be considered (large number is better but slower). For the mask maps, specifies the
distance from each atom which will be considered part of the mask.

• -points: For the occupancy map type. Treat atoms as point particles instead of as spheres.

• -radscale factor: For the density map type. Sets a multiplication factor that multiplies all
the VMD atomic radii for the purpose of the calculation.

• -weight < field name | value list >: For the density map type. Sets a per-atom weight to be
used when computing the density. This can be the name of any VMD numerical atomic field
(such as mass, charge, beta, occupancy, user, radius, etc.) or else a Tcl list of numbers of the
same length as the number of atoms.

Implicit Ligand Sampling (volmap ils command)

This command computes a map of the estimated potential of mean force (in units of kBT at 300 K)
of placing a weakly-interacting gas monoatomic or multiatomic ligand at every gridpoint. These
results will only be valid when averaging over a large set of frames. Note that if you have a CUDA
enabled GPU then your ILS calculation will run about 20 times faster than on a CPU.

Please refer to and cite:
Cohen, J., A. Arkhipov, R. Braun and K. Schulten, ”Imaging the migration pathways for O2, CO,
NO, and Xe inside myoglobin”, Biophysical Journal 91, 1844–1857, 2006.

The command syntax differs from the other volmap commands and it has its own set of options:
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volmap ils molid < minmax | pbcbox > [options]

Here minmax denotes the boundaries of the grid in which the volumetric map will be computed.
It is given as a list of two 3-vectors specifying the minimum and maximum coordinates of the desired
volumetric data grid {{xmin ymin zmin} {xmax ymax zmax}}. If you provide the keyword pbcbox
instead of the minmax coordinates then the target grid will be set to the rectangular box that
encloses the PBC cell. A typical choice for the minmax parameters would be the minmax box of a
subset of your system (for instance the just protein) as returned by the measure minmax command.

Based on the grid dimensions a selection that includes all atoms within the interaction cutoff
distance (specified by -cutoff) is automatically chosen for the computation of the interactions.

In case your minmax box exceeds the periodic bounday box the non-overlapping parts of your
map will be ill defined and a warning is printed. In this case you should consider wrapping the
coordinates so that the requested grid lies in the center of the box. You can use the pbc wrap

command from the PBCtool plugin for this.
In case the nonbonded interaction margin exceeds the periodic boundaries regions of your map

will be based on incomplete interactions and a warning is printed. If this happens you should use
the -pbc flag which automatically takes atoms of the neighboring cells into account.

Before starting the computation, the atomic radii of each atom in the molecule should be set to
the corresponding CHARMM Lennard-Jones Rmin/2 parameter (in Ångström), and the beta value
of each atom should be set to the CHARMM Lennard-Jones ǫ (energy well depth in kcal/mol)
parameter. This can be done using VMD’s VolMap plugin. Simply call in succession the following
commands within the VMD console environment to use default CHARMM values for the various
atoms of a molecule:

package require ilstools

ILStools::readcharmmparams [list of CHARMM parameter files]

ILStools::assigncharmmparams <molid>

The following optional arguments are understood:

• -first frame: First frame to process. (default: frame 0)

• -last frame: Last frame to process. (default: last frame of molecule)

• -o filename: Exports the final volumetric data into a DX file (.dx extension is added if
missing). By default, all maps are exported to a file or name maptype out.dx.

• -res resolution: Sets the resolution of the final map. This means that the volume will be
subdivided into many small cubes whose side have a length of resolution. The computa-
tion should be performed on a finer grid (see -subres option) but at the end the map is
downsampled to this resolution. A good choice for the grid resolution 1 Å (argument -res).
Lower resolutions make it difficult to see features, higher ones will be very costly in terms of
computation time. Also, since the fluctuation of the protein backbone is on the order of 1-2
Angstrom a higher grid resolution doesn’t make much sense.

• -subres num: Number of points in each dimension of the subsampling grid, e.g. 2 for a
2x2x2 subgrid or 3 for a 3x3x3 subgrid. A value of 1 means is no subsampling, the default is
(-subres 3). Without subsampling the probe is placed at each grid cell center (for diatomic
probes in numconf different random orientations, see argument -orient). This position is
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assumed to be representative for the interaction of the probe in this voxel with the system.
However, for a typical voxel size of 1x1x1 Å the energy value can differ significantly within
the voxel and the value at the center might not be close to the average. Subsampling averages
over the interaction on a regular subgrid in each voxel thus producing a more accurate free
energy value for placing the probe into each voxel. Even though this severely increases the
computational cost it is highly recommended that you use subsampling! A 3x3x3 subgrid for
a 1 Å resolution map is a good choice.

• -T temperature: The temperature in Kelvin at which the MD simulation was performed.
(default: 300)

• -probesel selection: Atom selection that defines the probe molecule. The radius and occu-
pancy fields should be populated with the VDW radii and VDW epsilon parameters from the
force field (see option -probevdw). Alternatively, you can specify the probe coordinates and
VDW parameters probe atoms directly using the -probecoor and -probevdw options.

• -probecoor atomcoords: Set the coordinates of the probe atoms in form of a list of triples
{{x0 y0 z0} . . . {xN yN zN}}.

• -probevdw parameterlist: Set the tuple of van der Waals parameters for each probe atom
in the form {{ǫ0 Rmin,0/2} . . . {ǫN Rmin,N/2}}. They define the nonbonded interactions of
the probe evaluated by the Lennard-Jones potential

UVDW =
∑

atoms i,j

ǫij

((
Rij

rij

)12

− 2

(
Rij

rij

)6
)

(9.2)

where Rij = (Rmin,i + Rmin,j)/2 and ǫij =
√
ǫi · ǫj. (That’s the same form as in CHARMM

and AMBER parameter files). Units of ǫ are kcal/mol, and of Rmin/2 are Ångström.

• -orient n: Control the number of samples of different probe orientations for multiatom probes
at each grid point. The number n determines the angular spacing of probe orientation vectors
and of the rotations around each of these vectors.

n = 1: use 1 orientation only
n = 2: use 6 orientations (vertices of a octahedron)
n = 3: use 8 orientations (vertices of a hexahedron)
n = 4: use 12 orientations (faces of a dodecahedron)
n = 5: use 20 orientations (vertices of a dodecahedron)
n = 6: use 32 orientations (faces+vertices of a dodecahedron)
n > 6: geodesic subdivisions of icosahedral faces with frequency 1, 2, ... n− 6

For each orientation a number of rotamers will be generated. The angular spacing of the
rotations around the orientation vectors is chosen to be about the same as the angular spacing
of the orientation vector itself. If the probe has at least one symmetry axis then the rotations
around the orientation vectors are reduced accordingly. If there is an infinite oder axis (linear
molecule) the rotation will be omitted. In case there is an additional perpendicular C2 axis
the half of the orientations will be ignored so that there are no antiparallel pairs.

Probes with tetrahedral symmetry:
Here n denotes the number of rotamers for each of the 8 orientations defined by the vertices
of the tetrahedron and its dual tetrahedron.
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• -cutoff cutoff: Set the CHARMM van der Waals cutoff beyond which the interaction between
the probe and protein atoms is set to zero.

• -maxenergy energy: Cutoff energy above which the occupancy of a grid cell is regarded zero.
For GPUs energies of more than 87 always correspond to floating point values of zero for the
occupancy. Hence there is no point going higher than that. For CPUs that number is higher,
however, the lower the occupancy the more severely these points will be undersampled and
the according error will be very high. Thus, in the final map it probably does not make sense
to look at values higher than 10kT which not a big loss since the low energy regions are the
ones we are interested in. So you probably want to set this to a value between 10 and 87 (we
are in thye process of testing this but I suppose 20 kT would be a safe number).

• -alignsel selection: Use the provided selection to align all trajectory frames to the first frame.
If you don’t use this option you should make sure that you aligned all frames yourself before
running volmap ils.

• -transform matrix: Suppose you want to align your trajectory to a reference frame from
a different molecule. In this case you should align the first frame of your trajectory to the
reference and provide the according alignment matrix as returned by ”measure fit”) using
the -transform option. volmap ils will take care of the rest.

• -pbc: This flag signals that you want a periodic boundary aware ILS calculation. Depending
on the desired target grid size image atoms from neighboring PBC cells are taken into account
for the computation. The atoms used for the calculation are chosen from a box that exceeds
the target grid size by the interaction cutoff in each direction.
Note: If your molecule rotated or drifted from the PBC center during your MD simulation
then the structure alignment will rotate or shift the PBC cell so that your map might not lie
entirely inside the PBC cell anymore. This will lead to ill-defined fringes of the map and you
might want to consider rewrapping the coordinates. Rewrapping cannot undo the rotation
but unless you have a very oblonged PBC cell removing the shift by rewrapping will in most
cases yield a map without or with little boundary effects. See the pbc wrap command from
the PBCtool plugin.
Warning: If you use -pbc DO NOT ALIGN the frames of the structure yourself prior to the
calculation! It will totally mess up the definition of your PBC cells. Instead you should use
the -alignsel option and let volmap handle the alignment. However, you CAN align the
sturcture globally (i.e. align all frames using the SAME transformation matrix) to a reference
frame. In this case you have to provide the transformation matrix you used via -transform.

• -pbccenter vector: Since the PBC cell origin is stored neither in DCD files nor in VMD you
have to specify it in case it is different than the default {0 0 0}.

• -maskonly: This flag requests to compute only a mask map telling for which gridpoints we
expect valid energies, i.e. the points for which the maps overlap for all frames will contain 1,
all other points will be 0. This is useful if you don’t use periodic boundary conditions where
it can happen that due to the choice of the grid and/or the rotation of the protein the box
including your grid plus the interaction cutoff will lie partially outside your system which
means you would miss some of the interactions. The map produced by the -maskonly mode
will tell where are these ill defined regions.
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9.3.37 voltool

The voltool command provides utilities to facilitate the manipulation and analysis of 3D volumetric
data (density maps). All commands have the option to load the density map file from disk (-i
filename) or work on maps which have already been loaded into VMD (-mol molid with optional
-vol volume id which defaults to 0) to avoid unnecessary file i/o.

The input map format can be any that VMD reads (e.g., .ccp4, .mrc, .situs, .dx), while the
output format (-o filename) must currently be in .dx.

map operations using an atomic structure:

• fit selection -res resolution [-i input density map] [-mol molid] [ -vol volume ID] [-thresholddensity
threshold value] :
Performs rigid body fitting of an atom selection to the given density map. First, the center of
mass of the selection is moved to the center of mass of the density, followed by a brute-force
rotational search. Structures are ranked according to their cross-correlation score.

• cc selection [–allframes] [-i input density map] [-mol molid ] [ -vol volume ID] [-thresholddensity
threshold value] :
Computes the MDFF cross correlation between a selection from an all-atom molecular struc-
ture, and a density map. This command uses multi-core CPU and GPU-accelerated algo-
rithms for fast computation, as described in: http://dx.doi.org/DOI:10.1039/C4FD00005F
The -thresholddensity option ignores voxels with values below x threshold in the simulated
density map. This option is used to ignore density which is further away from the atom se-
lection, which can often be noise.

• sim selection [-o output density map] [-res target resolution in Å] [-spacing grid spacing] :
Compute a simulated density map from an atom selection on an all-atom molecular structure.

• mask selection [-res resolution of map in Å] [-cutoff cutoff distance in Å] [-i input density
map] [-mol molid ] [ -vol volume ID] [-thresholddensity threshold value] :
Creates a binary mask around the atom selection by simulating a map of given resolution,
then removing all voxels from the input map that do not fall within the mask and the given
cutoff.

operations on one map

• write [-i input density map] [-mol molid ] [ -vol volume ID] [-o output file] : Write
volumetric data to a file (currently .dx is only supported output format).

• com [-i input density map] [-mol molid ] [ -vol volume ID] : get center of mass of density

• moveto -pos {x y z} coordinates [-i input density map] [-mol molid ] [ -vol volume ID] [-o
output file]: move density center of mass to a specified coordinate

• move -mat 4x4 transform matrix [-i input density map] [-mol molid ] [ -vol volume ID]
[-o output file]: apply specified 4x4 transformation matrix to density

• trim -amt {x1 x2 y1 y2 z1 z2} amount to trim on each axis [-i input density map] [-mol
molid ] [ -vol volume ID] [-o output file]: trim edges of a density
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• crop -amt {minx miny minz maxx maxy maxz} min/max coordinates [-i input density map]
[-mol molid ] [ -vol volume ID] [-o output file]: crop density to values given in coordinate
space

• clamp [-min min value] [-max max value] [-i input density map] [-mol molid ] [ -vol
volume ID] [-o output file]: clamp out of range voxel values

• smult -amt scalar [-i input density map] [-mol molid ] [ -vol volume ID] [-o output file]:
multiply every voxel by a scaling factor

• sadd -amt scalar [-i input density map] [-mol molid ] [ -vol volume ID] [-o output file]:
add a scaling factor to every voxel

• range -minmax {min max} min/max values [-i input density map] [-mol molid ] [ -vol
volume ID] [-o output file]: rescale voxel values to a given range

• downsample [-i input density map] [-mol molid ] [ -vol volume ID] [-o output file]: down-
sample by x2 (x8 total reduction)

• supersample [-i input density map] [-mol molid ] [ -vol volume ID] [-o output file]: su-
persample by x2 (x8 total increase)

• sigma [-i input density map] [-mol molid ] [ -vol volume ID] [-o output file]: transform
map to sigma scale

• binmask [-threshold threshold value] [-i input density map] [-mol molid ] [ -vol volume
ID] [-o output file]: make a binary mask of the map

• smooth -sigma radius [-i input density map] [-mol molid ] [ -vol volume ID] [-o output
file]: multiply every voxel by a scaling factor

• pot [-threshold threshold value] [-i input density map] [-mol molid ] [ -vol volume ID] [-o
output file]: convert a density map to an MDFF potential

• hist [-nbins number of histogram bins] [-i input density map] [-mol molid ] [ -vol volume
ID]: Calculates a histogram of the density map and returns a list of frequencies and bin
midpoints.

• info origin — cellaxes — cellvolume — xsize — ysize — zsize — minmax — mean — sigma
— integral [-i input density map] [-mol molid ] [ -vol volume ID]: Gets information about
the density map specified by the first argument:
origin: x,y,z coordinates of the map’s origin.
cellaxes: the axes of one individual cell/voxel as a list of lists.
cellvolume: the volume of one individual cell/voxel.
xsize/ysize/zsize: length (number of voxels) of the axis in the given direction.
minmax: list containing the minimum and maximum voxel values.
mean, sigma: mean and standard deviation of the voxel values.
integral: integral of the map (product of the mean and the volume of all cells).
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operations on two maps These commands, except for correlate, have the default behavior
of computing the result with the intersection of the two maps and interpolating the values from
them. The -union option can be used to instad use the union of the two input maps, and -nointerp

can be used to turn off interpolation.

• add [-i1 input density map] [-mol1 molid ] [ -vol1 volume ID] [-i2 input density map]
[-mol2 molid ] [ -vol2 volume ID] [ -union] [ -nointerp ] [-o output file]:
add two maps together

• diff [-i1 input density map] [-mol1 molid ] [ -vol1 volume ID] [-i2 input density map]
[-mol2 molid ] [ -vol2 volume ID] [ -union] [ -nointerp ] [-o output file]:
subtract map2 from map1

• mult [-i1 input density map] [-mol1 molid ] [ -vol1 volume ID] [-i2 input density map]
[-mol2 molid ] [ -vol2 volume ID] [ -union] [ -nointerp ] [-o output file]:
multiply map1 and map2

• avg [-i1 input density map] [-mol1 molid ] [ -vol1 volume ID] [-i2 input density map]
[-mol2 molid ] [ -vol2 volume ID] [ -union] [ -nointerp ] [-o output file]:
average two input maps into one

• correlate [-i1 input density map] [-mol1 molid ] [ -vol1 volume ID] [-i2 input density map]
[-mol2 molid ] [ -vol2 volume ID]:
calculates the cross-correlation coefficient between two maps

9.3.38 wait

Specify a number of seconds to wait before reading another command. Animation continues during
this time. The wait command will not behave as expected if called within a complex Tcl proc or
loop structures. The wait command doesn’t actually run until the next complete Tcl code block
due to the way VMD processes its commands.

• time: wait time seconds.

9.3.39 sleep

Specify a number of seconds to sleep before reading another command. Animation stops during
this time.

• time: sleep time seconds.

9.4 Tcl callbacks

When certain events occur, VMD notifies the Tcl interpreter by setting certain Tcl variables to
new values. You can use this feature to customize VMD, for instance, by causing new graphics to
appear when the user picks an atom, or recalculating secondary structure on the fly.

To make these new feature happen at the right time, you need to write a script that takes a
certain set of arguments, and register this script with the variable you are interested. Registering
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scripts is done with the built-in Tcl command trace; see http://www.tcl.tk/man/tcl8.4/TclCmd/trace.htm
for documentation on how to use this command. The idea is that after you register your callback,
when VMD changes the value of the variable, your script will immediately be called with the new
value of the variable as arguments. Table 9.4 summarizes the callback variables available in VMD.

In the VMD script library at http://www.ks.uiuc.edu/Research/vmd/script_library/, you
can find a number of scripts that take advantage of Tcl variable tracing. Below, we give a simple
example. The following procedure takes the picked atom and finds the molecular weight of residue
it is on.

proc mol_weight {args} {

# use the picked atom’s index and molecule id

global vmd_pick_atom vmd_pick_mol

set sel [atomselect $vmd_pick_mol "same residue as index $vmd_pick_atom"]

set mass 0

foreach m [$sel get mass] {

set mass [expr $mass + $m]

}

# get residue name and id

set atom [atomselect $vmd_pick_mol "index $vmd_pick_atom"]

lassign [$atom get {resname resid}] resname resid

# print the result

puts "Mass of $resname $resid = $mass"

}

Once an atom has been picked, run the command mol weight to get output like:

Mass of ALA 7 : 67.047

Since VMD sets the vmd pick event, it can be traced. The trace function is registered as:

trace add variable ::vmd_pick_event write mol_weight

And now the residue masses will be printed automatically when an atom is picked. Make sure
to turn off the trace when you are done with it (e.g. your plugin’s window gets closed):

trace remove variable ::vmd_pick_event write mol_weight
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Table 9.4: Description of Tcl callback variables in VMD.
When called Name Description

Molecule molid was deleted vmd molecule(molid) 0

Molecule molid was created
(data may not have been
loaded yet)

vmd molecule(molid) 1

Molecule molid was renamed vmd molecule(molid) 2

Structure file loaded vmd initialize structure(molid) 1

Coordinate file loaded vmd trajectory read(molid) name of coordinate file

Molecule molid changed ani-
mation frames

vmd frame(molid) new animation frame

Any VMD command executed vmd logfile Tcl text equivalent of com-
mand

An atom has been picked using
the ”Pick” mouse mode

vmd pick event When receiving this event, the
following global variables are
also set: vmd pick atom (id
of picked atom), vmd pick mol
(id of picked molecule)

Pointer moved. vmd pick client name of pointer

Pointer moved. vmd pick mol silent id of nearby mol

Pointer moved. vmd pick atom silent id of nearby atom

Atom picked vmd pick shift state 1 if shift key down during pick,
0 otherwise

IMD coordinate set received vmd timestep(molid) frame containing new coordi-
nates

Set of labels to be graphed
vmd graph label {labeltype labelid} {labeltype

labelid} ...

Tcl interpreter is shutting
down

vmd quit 1
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Chapter 10

Python Text Interface

VMD 1.6 and later contain an embedded, fully-functional Python interpreter. The interpreter acts
just like the Python command line: you can import your own modules and run them from with the
text console of VMD. In addition, VMD provides a number of modules for loading molecules and
controlling their display.

Pre-compiled VMD binaries currently use Python version 2.5. The current VMD source code
has been tested to compile with Python versions 2.4 to 2.6 on a few platforms. User contributed
VMD rpm or deb packages can be thus be compiled against any of those versions.

10.1 Using the Python interpreter within VMD

When you start VMD, the VMD text console normally uses the Tcl command interpreter to process
what you type. In order to use the Python interpreter, you have to tell VMD to switch to ’Python
mode’. There are three ways to do this: (1) Type gopython in the console window; (2) pass
-python as a command line option; or (3) put gopython on the last line of your .vmdrc file. If
VMD prints an error message reporting that the Python interpreter is not available, your version
of VMD was not compiled with Python support; contact the VMD developers for help. If all goes
well, you should see Python command prompt ’>>> ’ in the console window. To switch back to
the Tcl interpreter, press Ctrl-D as though you were exiting Python. Switching back and forth
between Python and Tcl does not destroy any of your work; all variables and modules will still be
defined until you exit VMD.

Typing ’gopython <filename>’, where <filename> is the name of a file containing Python code
will cause VMD to switch to Python mode, process the file, then switch back to Tcl. In this way,
you can embed Python functions inside your Tcl scripts!

You can also type ’gopython -command ”your code here” to run an arbitrary line of python
code.

10.2 Python modules within VMD

Once you enter the VMD Python environment, you will find a module called “VMD” already
loaded. This module contains all the other built-in modules for writing VMD Python scripts.

VMD is not distributed with an entire Python environment. In order to use the set of libraries
that normally come with a Python distribution, you must tell Python where to find the libraries.
There are two primary means of doing this. The PYTHONHOME environment variable points to
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the location where Python is installed; the version installed at this point must match VMD’s
version (2.5). Thus if you have Python libraries in /usr/local/lib/python2.5, adding the line set

env(PYTHONHOME) /usr/local to your startup script or .vmdrc file will do the trick.
If you have additional modules that you want to use within VMD, use the PYTHONPATH environ-

ment variable to tell Python where to find them. Please note that any of these modules have to be
compiled against matching versions of the Python package and its subpackages that are distributed
with the pre-compiled VMD binaries. If you want to use the native Python and its packages, you
will have to compile VMD from source code or install a user contributed package that matches
your OS. See any Python book and the instructions for compiling VMD from source code for more
information.

if the Tkinter module is found in the Python installation, VMD will load it at Python startup
in order to make Tkinter windows work in harmony with windows created from within Tk. In
addition, if you have Numeric Python installed in your system, a submodule called vmdnumpy will
become available within the VMD module; see below for details.

10.3 Atom selections in Python

10.3.1 The built-in atomsel type

NEW IN VMD 1.8.6: The AtomSel class has been deprecated, in favor of a new built-in type
called atomsel. The atomsel type functions much the same way as the old AtomSel class, but also
provides methods similar to the Tcl interface for returning RMS fit matrices and applying those
transformations to coordinates.

The new atomsel type is found in a new built-in module, also called atomsel. Use help(atomsel)
to get the complete documentation, in addition to what is presented here. Largely, the methods
duplicate what is available within the measure command within the Tcl interface.

A short example is given below:

>>> from atomsel import *

>>> s1 = atomsel(’residue 1 to 10 and backbone’)

>>> s1.get(’resid’)

>>> s1.set(’beta’, 5’) # set B value to 5 for atoms in s1

>>> # Mass-weighted RMS alignment:

>>> mass = s1.get(’mass’)

>>> s2 = atomsel(’residue 21 to 30 and backbone’)

>>> mat = s1.fit(s2, mass)

>>> s1.move(mat)

>>> print s1.rmsd(s2)

• atomsel(selection, molid = top, frame = now): Creates a new atom selection object.

>>> sel = atomsel(’name CA’) # Selects the alpha carbons of the top molecule at the current
active frame.

• get(attribute): Get an attribute from an existing atomsel object.

>>> sel.get(”beta”) # Returns a list containing the beta value for the selected atoms.
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• set(attribute, value): Set an attribute for an existing atomsel object, using either a
single value, or a sequence of values with a length equal to the number of atoms in the
selection.

>>> sel.set(”beta”, 1) # Set the beta for all atoms in the atomsel object to 1.

• frame: Change or access the frame. Note that this does not update the selected atoms
within this selection object.

>>> sel.frame = 0 # Set the frame references by the selection to the first frame.

>>> print sel.frame # Access the current frame referenced by the selection object.

• update(): Updates the selected atoms within the selection, such as in response to changing
the frame.

>>> sel = atomsel("within 3 of resid 1")

>>> for f in range(molecule.numframes()):

>>> sel.frame = f

>>> sel.update()

>>> print sel.center()

• write(filetype, filename): Writes the atoms selected to a file, using an explicit file
type.

>>> sel.write("pdb", "correctpdb.pdb") # This will write a pdb.

>>> sel.write("namdbin", "notapdb.pdb") # This will write a namd binary

>>> #coordinate file, not a pdb like the extension might suggest.

>>> sel.write("psf", "correctpsf.psf") # You can also write a psf!

• bonds(): Get the bonds that are only within the selection, returned as a list of lists.

#Print all bonds within a selection.

idxs = sel.get("index")

bonds = sel.bonds()

for bidx in range(len(bonds)):

for b in bonds[bidx]:

# These are the atoms that are bonded together.

print idxs[bidx], b

• minmax(): Get bounding values for the selection.

>>> mintup, maxtup = sel.minmax()

• center(weight=None): Get center of the selection, optionally weighted by the given weight.

• centerperresidue(weight=None): Return a list where each element has a 3-list corre-
sponding to the center of each residue in the selection.

• rmsf(first=0, last=-1, step=1): Get root mean square fluctuation over the loaded
trajectory from the first to last frames, keeping every step’th frame.
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• rmsfperresidue(weight=None): Measures the RMSF along a trajectory per residue, re-
turning a list with one element per residue in the selection.

• rmsd(ref, weight=None): Measures the RMSD of a selection relative to a reference selec-
tion. Requires alignment with fit.

• rmsdQCP(ref, weight=None): Measures the RMSD of a selection relative to a reference
selection after optimal rotation. Does not require alignment.

• rmsdperresidue(ref, weight=None): Measures the RMSD of a selection relative to a
reference selection. Requires alignment with fit, and returns a list with one measurement per
residue within the selection.

• fit(ref, weight=None): Compute and return the transformation matrix for the RMS
alignment of the selection to sel. The format of the matrix is a 16-element tuple suitable for
passing to the move() method (Column major/fortran ordering).

import numpy as np

ref = atomsel("name CA", frame=0)

sel = atomsel("name CA")

fitmatrix = np.asarray(sel.fit(ref), order=’F’)

fitmatrix.shape = (4,4)

#Only when the fitmatrix uses fortran ordering does it look correct.

print fitmatrix

#The QCP variant does not need prior alignment to correctly compute the RMSD.

print sel.rmsdQCP(ref)

print sel.rmsd(ref)

sel.move(sel.fit(ref))

#The typical RMSD calculation needs to be aligned first.

print sel.rmsd(ref)

• rgyr(weight=None): Returns the radius of gyration of the selection. >>> rval = sel.rgyr()

• move(matrix): Moves the selection by multiplying the coordinates by the 16-element trans-
formation matrix provided.

• moveby(vec): Moves the selection by the vector.

• contacts(sel, cutoff): Return two lists, whose corresponding elements contain atom
indices in selection that are within cutoff of sel, but not directly bonded.

• hbond(cutoff, maxangle): Return three lists, whose corresponding elements contain atom
indices in selection that form a hydrogen bond (acceptor, donor, and proton).

• sasa(srad, samples=500, points=None, restrict=None): Returns solvent accessible
surface area of the restrict selection if given. Otherwise, returns the solvent accessible surface
area of the whole selection.

• mdffsim(res=10, spacing=computed): Computes a density map with a given resolution
and spacing, analogous to the mdffsim command in Tcl. This procedure returns a list with
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4 elements. 1.) A 1-D list of the values at each point. 2.) 3 elements describing the x, y, z
lengths. 3.) 3 elements describing the position of the origin. 4.) 9 elements describing the
deltas for each axis (x, y, and z).

Example useage for export to numpy:

data, shape, origin, delta = asel.mdffsim(10,3)

data = np.array(data)

shape = np.array(shape)

data = data.reshape(shape, order=’F’)

delta = np.array(delta).reshape(3,3)

delta /= shape-1;

• mdffcc(volid, res=10, spacing=computed): Computes the crosscorrelation coefficient
between a given volumetric map (volid), and a synthetic map computed from the selection.

• len(): Returns the number of atoms in the selection.

10.3.2 The AtomSel class (DEPRECATED)

VMD provides an atom selection class for use in the Python interpreter. Instances of this class
correspond to a set of atom indices in a particular molecule for a particular coordinate set. Once
an atom selection is made, you can query the properties of the selected atoms, such as their names,
residue ids, or coordinates. In a similar fashion, you can set the values of these properties. You
can also perform logical operations on atom selections, including finding the intersection or union
of two atom selections or finding the inverse of the set. Finally, you can perform tuple operations
on the atom selection object to query the indices of the atoms in the selection.

Atom selection macros can be defined using the macro method of the AtomSel module. The syn-
tax is just as in the corresponding atomselect macro and atomselect delmacro Tcl commands;
see section 9.3.2 for details.

Below we summarize the methods available from the AtomSel class.

• AtomSel(selection = ’all’, molid = 0, frame = 0): Creates a new atom selection
object.

>>> sel = AtomSel(’name CA’, 1) # Selects the alpha carbons of molecule 1

• select(selection): Change the selected atoms.

>>> sel.select(’resid 5’)

• list(): Return a copy of the selected atom indices.

• frame(value = -1): Set/get the coordinate frame for the selection. Nonpositive values will
return the current value of the frame without changing it.

>>> sel.frame(5)

>>> sel.frame()

5
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• get(attr1, attr2, ...): Takes any number of string arguments, which should correspond
to a valid atom property such as ”name”, ”x”, or ”water”. Returns a list of the value of the
property for each atom in the selection. For boolean properties such as ”water”, the returned
value will be 1 if true and 0 if false.

>>> x, y, z = sel.get(’x’, ’y’, ’z’)

• set(attr, val): Set the atom property corresponding to attr using the values in val. The
number of elements in val should be either 1 or the number in the atom selection.

>>> len(sel)

12

>>> sel.set(’beta’,3)

>>> sel.set(’beta’,(1,2,3,4,5,6,7,8,9,10,11,12))

• write(filename, filetype=None): Write the atoms in the selection to filename. Filetype
is guessed from the filename, or can be specified with filetype.

• sel1 & sel2: Create a new atom selection using the atoms found in both sel1 and sel2.

• sel1 | sel2: Create a new atom selection using the atoms found in either sel1 or sel2.

• -sel: Create a new atom selection using the atoms not found in sel.

• len(sel): Returns the number of atoms in the selection.

• sel[0], sel[0:3]: Index and slice operations return the corresponding atoms in the selec-
tion.

• center(weight=None): Return the center of the selected atoms, possibly weighted by
weight, which must be a sequence.

• sasa(srad, samples=-1, points=None, restrict=None): Returns the solvent-accessible
surface area (SASA) of atoms in the selection using the assigned radius for each atom, ex-
tending each radius by srad to find the points on a sphere that are exposed to solvent. If
a restrict selection is given, only solvent-accessible points near that selection bill be consid-
ered. The points parameter can be used to collect the points which are determined to be
solvent-accessible; this must be a list variable.

• getbonds(): Returns a list of the atoms bonded to each atom in the selection.

• setbonds(bonds): Set the bonds for the atoms in the selection. bonds must be a list of
the same length as the selection; each element in the list must be a sequence containing the
indices of the atoms to which the atom has a bond.

• minmax(): Returns the minimum and maximum coordinates of the atoms in the selection
as a tuple of the form (xmin, ymin, zmin), (xmax, ymax, zmax).

• rmsd(sel, frame=None, weight=None): Returns the root-mean-square distance of the
atoms in sel from the selection. If frame is given, the coordinates from the corresponding
frame will be used (see the example). If weight is given, the computed RMSD will be weighted
using the values in weight.
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• align(ref=None, move=None, frame=None, weight=None): Finds the transformation
that aligns the atoms in the selection with the atoms in ref, with optional weights weight,
and applies this transformation to the atoms in move. The following default values for all
arguments are provided:

– ref: Same molecule and atoms as selection, but always using the

– align(ref=None, move=None, frame=None, weight=None):

Finds the transformation that aligns the atoms in the selection with the atoms in ref,
with optional weights weight, and applies this transformation to the atoms in move.
The following default values for all arguments are provided:

∗ ref: Same molecule and atoms as selection, but always using the first timestep in
the molecule.

∗ move: All atoms in the selection molecule.

∗ frame: overrides both the selection’s frame and the move frame, but does not affect
the ref frame.

∗ weight: Defaults to uniform weights on all atoms in selection.

first timestep in the molecule.

– move: All atoms in the selection molecule.

– frame: overrides both the selection’s frame and the move frame, but does not affect the
ref frame.

– weight: Defaults to uniform weights on all atoms in selection.

• contacts(cutoff, sel=None): Returns pairs of of atoms within cutoff of each other.
If sel is None, atoms in the pairs must be in the selection; otherwise, the first atom in each
pair will be from the selection, and the second will be from sel.

10.3.3 An atom selection example

In the first example, we load the molecule alanin.pdb, and create an atom selection consisting
of the alpha carbons. Note that AtomSel is the name of the class which generates atom selection
instances. We show the string representation of the object by entering its name and pressing return;
this shows the text used in the selection.

Next we demenstrate how atom selections act like tuples: we can get their length using the built-
in len() command,and return a copy of the selected atoms in a tuple by using the slice operator
[:].

Finally, we demonstrate the get and set operations. The get() operation takes any number of
string arguments; for each argument, it returns a Python list of values corresponding to that string.
The set() operation allows only one property to be changed at a time. However, you can pass in
either a single value, which will be applied to all atoms in the selection, or a tuple or list of the same
size as the atom selection, in which case values in the list will be assigned to the corresponding
atom in the selection. We take advantage of this behavior in the following example by first saving
the current value of beta for the selection, then setting the value of beta to 5 for all selected atoms,
and finally resetting the original values using the results of the get().

>>> from molecule import *

>>> from AtomSel import AtomSel
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>>> load(’alanin.pdb’)

>>> CA = AtomSel(’name CA’)

>>> CA

name CA

>>> len(CA)

12

>>> CA[:]

(0, 5, 11, 17, 23, 29, 35, 41, 47, 53, 59, 65)

>>> resname, resid = CA.get(’resname’, ’resid’)

>>> resname

[’ACE’, ’ALA’, ’ALA’, ’ALA’, ’ALA’, ’ALA’, ’ALA’, ’ALA’, ’ALA’, ’ALA’, ’ALA’, ’C

BX’]

>>> resid

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

>>> x,y,z=CA.get(’x’,’y’,’z’)

>>> x

[-2.1840000152587891, 1.4500000476837158, 1.9809999465942383, 0.54100000858306885,

2.8090000152587891, 5.9079999923706055, 5.0440001487731934, 4.5659999847412109,

7.9340000152587891, 9.7329998016357422, 8.1689996719360352, 9.2229995727539062]

>>> y

[0.5910000205039978, 0.0, 3.6429998874664307, 4.8410000801086426, 2.5559999942779541,

3.7860000133514404, 7.4190001487731934, 6.7989997863769531, 5.0819997787475586,

7.9559998512268066, 10.515999794006348, 8.5710000991821289]

>>> z

[0.9100000262260437, 0.0, -0.9089999794960022, 2.3880000114440918, 4.3920001983642578,

2.5859999656677246, 3.244999885559082, 6.9559998512268066, 7.2639999389648438,

5.5669999122619629, 7.8870000839233398, 11.013999938964844]

>>> beta = CA.get(’beta’)

>>> CA.set(’beta’,5)

>>> CA.set(’beta’,beta)

>>>

10.3.4 Changing the selection and the frame

When molecule in VMD contains multiple coordinate sets (frames), atom selections must know
which frame they are referring to, especially when you make distance-based atom selections or
request time-varying properties like the x, y, or z coordinates. By default, atom selections in
Python use frame 0, i.e. the first coordinate set. You can specify the frame either when you create
the atom selection, or by using the frame() method. Passing no arguments to frame() returns the
current value of the frame.

>>> load(’psf’,’alanin.psf’,’dcd’,’alanin.dcd’)

>>> resid5 = AtomSel(’resid 5’, frame=50)
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>>> resid5.frame()

50

>>> resid5.frame(22)

>>> resid5.frame()

22

In a similar way, you can change the selected atoms of an atom selection object using the select()
operation. Continuing with the previous example:

>>> resid5

resid 5

>>> resid5.select(’resid 7’)

>>> resid5

resid 7

>>>

10.3.5 Combining atom selections

Once you’ve created one or more atom selections, you can combine them to create new ones.

>>> CA = AtomSel(’name CA’)

>>> resid5 = AtomSel(’resid 5’)

>>> CA

name CA

>>> resid5

resid 5

>>> ANDsel = CA & resid5

>>> ORsel = CA | resid5

>>> NOTsel = -CA

>>> ANDsel

(name CA) and (resid 5)

>>> ORsel

(name CA) or (resid 5)

>>> NOTsel

not (name CA)

>>>

When the combined atom selections are from different molecules or have different frame num-
bers, the molecule and frame from the first atom selection are used.

10.3.6 RMS example

Example: find the mass-weighted RMS distance from the initial frame. This assumes a molecule
and its timesteps have already been loaded (see the description of the Molecule class).

from AtomSel import AtomSel

from Molecule import *

156



# Get a reference to the first molecule.

m=moleculeList()[0]

# Select all atoms.

sel=AtomSel()

# We are comparing to the first frame.

sel.frame(0)

# Get the mass weights.

mass = sel.get(’mass’)

Here’s another RMSD example that uses the {\tt align} method:

\begin{verbatim}

from AtomSel import AtomSel

from Molecule import Molecule

mol1=Molecule()

mol1.load(’proteins/alanin.psf’)

mol1.load(’proteins/alanin.dcd’)

n = mol1.numFrames()

sel=AtomSel(’backbone’)

# align all frames with the first frame, using the backbone atoms

for i in range(1,n):

sel.align(frame=i)

# align all frames with frame 10.

for i in range(1,n):

sel.align(ref=sel.frame(10), frame=i)

# Align residues 1-3 from frame 10 with frame 20, but use all backbone atoms

# to perform the fit.

resid123=AtomSel(’resid 1 to 3’)

sel.align(ref=sel.frame(20), frame=10, move=resid123)

# GOTCHA ALERT: sel.frame(10).align(ref=sel.frame(20)) does not work!!

# That’s because sel.frame(10) overrides frame 20 in this case since they

# are applied to the same AtomSel instance. Either use the frame argument,

# as illustrated here, or create a new AtomSel instance for the reference.

# Perform a mass-weighted RMSD alignment and compute the mass-weighted

# RMS distance from the first frame.

w=sel.get(’mass’)

rms=[]
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ref=AtomSel(’backbone’,frame=0)

for i in range(n):

rms.append(sel.frame(i).align(ref=ref, weight=w).rmsd(ref, weight=w))

# Initialize result list.

rms=[]

# Go!

for i in range(m.numFrames()):

rms.append(sel.rmsd(sel, frame=i, weight=mass))

Here’s another RMSD example that uses the align method:

from AtomSel import AtomSel

from Molecule import Molecule

mol1=Molecule()

mol1.load(’proteins/alanin.psf’)

mol1.load(’proteins/alanin.dcd’)

n = mol1.numFrames()

sel=AtomSel(’backbone’)

# align all frames with the first frame, using the backbone atoms

for i in range(1,n):

sel.align(frame=i)

# align all frames with frame 10.

for i in range(1,n):

sel.align(ref=sel.frame(10), frame=i)

# Align residues 1-3 from frame 10 with frame 20, but use all backbone atoms

# to perform the fit.

resid123=AtomSel(’resid 1 to 3’)

sel.align(ref=sel.frame(20), frame=10, move=resid123)

# GOTCHA ALERT: sel.frame(10).align(ref=sel.frame(20)) does not work!!

# That’s because sel.frame(10) overrides frame 20 in this case since they

# are applied to the same AtomSel instance. Either use the frame argument,

# as illustrated here, or create a new AtomSel instance for the reference.

# Perform a mass-weighted RMSD alignment and compute the mass-weighted

# RMS distance from the first frame.

w=sel.get(’mass’)

rms=[]

ref=AtomSel(’backbone’,frame=0)

for i in range(n):

rms.append(sel.frame(i).align(ref=ref, weight=w).rmsd(ref, weight=w))
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10.4 Python callbacks

Some of your Python scripts may wish to be informed when various events in VMD occur. The
mechanism for expressing this interest is to register a callback function with a special module
supplied by VMD. When the event of interest occurs, all registered will functions will be called;
VMD will pass the functions information specific to the event. The set of callbacks events is listed
in Table 10.4.

Table 10.1: Description of callbacks available to Python scripts running in VMD.
Name When called Function arguments

display update Screen redraw none
frame Molecule changes coordinate frame (molid, frame)
help User pushes help button on Main window (name of topic)
initialize structure Molecule created or deleted (molid, 1 or 0)
pick atom Atom picked in graphics window (molid, atomid,

key shift state (1 if shift pressed, 0 otherwise) )
pick value Bond, angle, or dihedral label created (value)
timestep New IMD coordinate frame received (molid, frame)
trajectory Completion of coordinate file read/write (molid, filename)

All callback functions must take two arguments. The first argument will be an object given
at the time the function is registered; VMD makes no use of this object, it simply saves it and
passes it to the callback when the callback function is called. The second argument to the callback
function will be a tuple containing 0 or more elements, depending on the type of callback. The
type of information for each callback is listed in the third column of Table 10.4.

Callbacks are registered/deregistered using the add callback/del callback methods of the VMD.vmdcallbacks
module. The syntax for these methods is:

def add_callback(name, func, userdata = None):

def del_callback(name, func, userdata = None):

name should be one of the callback names in Table 10.4. func is the function object. userdata

is any object; if no object is supplied, None will be passed as the first argument to the callback
function. To unregister a callback, use the same name, func, and userdata as were used when the
callback was registered. The same function may be registered multiple times with different userdata
objects.

10.4.1 Using Tkinter menus in VMD

The object-oriented interface to Tk known as Tkinter is included with the embedded Python
interpreter. You can create Tkinter GUI’s in the usual way, with one caveat: the Tkinter.mainloop()
method should never be called, as it will interfere with VMD’s own event loop. VMD will take care
of updating your GUI windows for you.
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10.5 Controlling VMD from Python

Commands for controlling VMD from Python are organized into modules which roughly correspond
to Tcl commands. Importing all the commands in a module is not recommended as some of the
functions (e.g., listall()) overlap. All commands are listed below, with the name of the module
given by the section heading.

10.5.1 animate

Python operations available from the animate module, used to control which coordinate frames are
displayed.

• forward():

• reverse(): forward() and reverse() causes VMD to start animating frames automatically
in order of increasing or decreasing frame number, respectively.

• once():

• rock():

• loop(): once(), rock(), and loop() control how frames are cycled when VMD is animating
a series of frames. once() causes VMD to stop when it reaches the first or last frame. rock()
causes VMD to reverse direction each time it gets to the beginning or end. loop() causes
VMD to continue from the beginning when reaches the last frame, or from the last frame if
it gets to the beginning.

• style(): Returns either ’Once’, ’Rock’, or ’Loop’, corresponding to the animation mode
VMD is currently in.

• goto(frame): Set the animation to the given frame, and pause the animation.

• prev(): Step to the next-lowest frame, then pause.

• next(): Step to the next-highest frame, then pause.

• pause(): Stop animating frames.

• speed(value): Get/set the relative rate at which VMD animates frames. value should lie
between 0 and 1. If a value less than 0 is given, then the speed will not be changed. The new
value of the speed is always returned.

• skip(value): Get/set the number of frames to skip when animating. A value of 1 means
every frame is shown; 2 means every other frame is shown; etc. If value is 0 or less, no change
is made. The new value of the speed is always returned.

• is active(molid): Returns whether the molecule with the given id is active; that is;
whether it responds to animation or not.

• activate(molid, trueorfalse): Make the molecule with the given id active or not. Active
molecules update their coordinate frames during animation; inactive molecules do not.
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10.5.2 axes

Python operations available from the axes module, used to change where the axes are displayed in
the graphics window.

• OFF, ORIGIN, LOWERLEFT, LOWERRIGHT, UPPERLEFT, UPPERRIGHT: String constants de-
fined in the axes module for setting the location of the axes.

• get location(): Returns a string object corresonding the current location of the axes.

• set location(location): Set the location of the axes, using one of constants defined in
the module.

10.5.3 color

Python operations available from the color module, used to change the color definitions, color maps,
or edit the color scale. All rgb and color scale values should be in the range 0 to 1.

• categories(): Returns a list of available color categories.

• get colormap(name): Returns a dictionary of name/color pairs for the given color cate-
gory.

• set colormap(name, dict): Change the color definitions for the colors in the given color
category. The keys in dict must come from the keys listed by get colormap for that color
category, though not all keys need be listed. The values must be legal color names.

• get colors(): Returns a dictionary whose keys are all the legal color names and whose
corresponding values are the RGB values of the color, represented as a 3-tuple.

• set colors(dict): Changes RGB values for colors in VMD. Keys must be chosen from the
keys returned by get colors(). Values must be 3-tuples of floats.

• scale method(): Returns the current color scale method.

• scale methods(): Returns a list of all available color scale methods.

• scale midpoint(): Returns the current color scale midpoint.

• scale min(): Returns the current color scale minimum.

• scale max(): Returns the current color scale maximum.

• set scale(method, midpoint, min, max): Change the color scale method, midpoint, min-
imum, or maximum. All properties may be set using keyword arguments.

10.5.4 display

Python operations available from the display module, used to control the VMD camera as well as
screen updates.

• update(): Force a display update, without checking the VMD FLTK menus
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• update ui(): Update the display as well as any other user interfaces.

• update on(): Tell VMD to regularly update the display and the FLTK menus

• update off(): Tell VMD not to regularly update the display. The display will be updated
only when display.update() is called.

• stereomodes(): Returns a list of the available stereo modes.

• PROJ PERSP, PROJ ORTHO: String constants defined in the display module for setting the
projection keyword in the set method.

• set(**keywordlist):

• get(key): set() and get() control various display properties. The following keywords ac-
cept/return floating-point values: eyesep, focallength, height, distance, nearclip,

farclip. The following keywords accept boolean values for on or off, respectively: antialias,
depthcue, culling. stereo should be one of the values returned by stereomodes().
projection should be one of the PROJ constants defined in this module. size should
be a list of two integers corresponding to the width and height of the display in pixels.

10.5.5 evaltcl

The evaltcl method provides access to the main VMD Tcl interpreter from Python. It takes a string
with Tcl commands as an argument and evaluates it. Its main purpose is to provide the Python
interpreter with access to functionality that is only available from Tcl and for which no equivalent
implementation yet exists in Python, for example the Tcl based plugins. Usage Examples:

from VMD import evaltcl

versionid=evaltcl(’vmdinfo version’)

evaltcl(’play somescript.tcl’)

10.5.6 graphics

Python operations available from the graphics module, used to create custom 3-D objects from
graphics primitives. The first argument to all operations is the id of a Graphics molecule. Graphics
molecules are created using the load() command in the molecule module: load(’graphics’,

’test’) creates a Graphics molecule named ’test’. For vertices and normals, a tuple with three
float items is required.

• triangle(id, v1, v2, v3): Draw a triangle with the given vertices.

• trinorm(id, v1, v2, v3, n1, n2, n3): Draw a triangle with the given vertices and
vertex normals.

• cylinder(id, v1, v2, radius=1.0, resolution=6, filled=0): Draw a cylinder with
endpoints specified by the given points. Radius, resolution, and filled (whether the ends
should be capped or not) may be optionally specified with keyword arguments.

• point(id, v): Draw a point at the given coordinates.
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• line(id, v1, v2, style=’solid’, width=1): Draw a line between the given vertices.
Optionally, the line style may be specified as either ’solid’ or ’dashed’, and width may be any
positive integer.

• materials(id, onoff): Turns materials on/off for subsequent graphics primitives. Primi-
tives lying earlier in the stack are not affected. onoff should be either 0 (off) or 1 (on).

• material(id, name): Sets the material for all graphics primitives in this molecule. name

should be one of the material names returned by material.listall().

• color(id, color): Set the color for subsequent graphics primitives. color may be (1)
a tuple containing three floats specifying the RGB value, (2) an integer corresponding to a
color index, or (3) a string corresponding to a color name.

• cone(id, v1, v2, radius=1.0, resolution=6): Draw a cone with base at v1 and point
at v2. radius and resolution may optionally be specified with keyword arguments.

• sphere(id, center=(0.0, 0.0, 0.0), radius=1.0, resolution=6): Draw a sphere.
The sphere center, radius, and resolution may optionally be specied with keyword argu-
ments.

• text(id, pos, text, size=1.0): Draw text at the given position (specified by a tuple
of three floats, using the string text. Size may optionally be specified using keyword argu-
ments.

• delete(id, index): Deletes the graphics primitive with the given index. Alternatively, if
the string ’all’ is passed as the index, all graphics primitives will be deleted.

• replace(id, index): Deletes the graphics primitive with the given index. The next graph-
ics primitive added will go in the newly vacated position. Subsequent graphics primitives will
resume at the end of the list.

• info(ind, index): Returns a string describing the graphics primitive with the given index.
If the index is invalid, an IndexError exception is raised.

• listall(ind): Returns the indices of the valid graphics primitives in a list.

10.5.7 imd

Python operations available from the imd module, used to display and interact with a molecule in
a molecular dynamics simulation.

• connect(host, port): Connect to a simulation running on host host and listening for
incoming connections on port port.

• pause(): If connected, cause the simulation to pause.

• detach(): If connected, detach from the simulation. The simulation will continue to run,
but no more frames will be received until a connection is re-established.

• kill(): If connected, terminate the simulation. The connection will also be abolished.
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• transfer(rate): Set/get how often the remote simulation sends coordinate frames to VMD.
If rate is omitted or is negative, no action is taken and the current value is returned. A value
of 1 corresponds to every frame being sent; a value of 2 corresponds to every other frame,
etc.

• keep(rate): Set/get how often received coordinates frames are kept by VMD as part of
an animation. If rate is omitted or is negative, no action is taken and the current value is
returned. A value of 0 means no frames are saved. A value of 1 corresponds to every frame
being saved; a value of 2 corresponds to every other frame, etc.

• copyunitcell(True/False): Control how unitcell information is passed to the new frame
that recieved via IMD. If set to False (the default) unit cell information would be taken from
the IMD connection. Since the IMD protocol currently has no provisions for communicating
the unit cell information, the unit cell dimensions are set to zero. If set to True the cell
information is copied from the previous frame.
WARNING: when using imd.copyunitcell(True) with simulations in the NPT ensemble,
the resulting unitcell information will be incorrect.

10.5.8 label

Python operations available from the label module, used to create, show/hide, and delete labels for
atoms, bonds, angles, or dihedrals.

• ATOM, BOND, ANGLE, DIHEDRAL: Label types defined by the label module, for use as the first
argument to the add, listall, show, hide, and delete methods.

• add(type, molids, atomids): Create a label of the given type. molids and atomids must
be tuples containing 1, 2, 3, or 4 integers for ATOM, BOND, ANGLE, or DIHEDRAL labels,
respectively. If the label already exists, no action is performed. Returns a dict corresponding
to the referenced label that can be used in the show(), hide(), delete(), and getvalues()
methods.

• listall(type): Returns a list of labels of the given type. The elements of the list are
python dictionary objects, with the following keys: molid, atomid, value, on. The values
for molid and atomid are tuples containing the molecule id and atom id for the label. value
is the numerical value of the geometry label, or zero for ATOM labels. on is 1 if the label is
shown, and 0 if the label is hidden.

• show(type, label): Turn the given label on. label must be a dictionary containing molid

and atomid keys whose values are tuples. If the tuples match the molecule ids and atom ids
of the atoms in an existing label, the label will be turned on. Raises ValueError if the label
does not exist.

• hide(type, label): Turn the given label off. label must be a dictionary containing molid

and atomid keys whose values are tuples. If the tuples match the molecule ids and atom ids
of the atoms in an existing label, the label will be turned off. Raises ValueError if the label
does not exist.

• delete(type, label): Delete the given label. label must be a dictionary containing molid

and atomid keys whose values are tuples. If the tuples match the molecule ids and atom ids
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of the atoms in an existing label, the label will be deleted. Raises ValueError if the label does
not exist.

• getvalues(type, label): Returns a list of values of the given label for each coordinate
frame in the label. If the atoms in the label belong to different molecules, only the coordinates
of the first molecule will be cycled. If the labels don’t have values (like atom labels), None is
returned.

10.5.9 material

Python operations available from the material module, used to create and modify material prop-
erties of molecular representations.

• listall(): Returns a Python list of the names of all available materials.

• settings(name): Returns a Python dictionary of the material settings for material with
the given name.

• add(name=None, copy=None): Create a new material with the given name. Optionally,
copy the properties from material copy into the new material. If no name is given, a new one
will be provided.

• delete(name): Delete the material with the given name.

• rename(oldname, newname): Rename the material with the given name. The new name
must not yet be used.

• change(name, ambient, specular, diffuse, shininess, mirror, opacity): Change
one or more of the material settings for the material with the given name. Keyword arguments
may be used to specify each property.

10.5.10 measure

Python operations available from the measure module, used to measure specific geometric quantities
over time.

• bond(atom1, atom2, molid1=top, molid2=molid1, frame=now, first=now, last=now):
Returns a list of the distances between atom1 and atom2 for all frames from first to last,
or alternatively at a specific frame.

• angle(atom1, atom2, atom3, molid1=top, molid2=molid1, molid3=molid1, frame=now,

first=now, last=now): Returns a list of the angle formed between atoms 1-2-3 for all
frames from first to last, or alternatively at a specific frame.

• dihedral(atom1, atom2, atom3, atom4, molid1=top, molid2=molid1, molid3=molid1,

molid4=molid1, frame=now, first=now, last=now): Returns a list of the dihedral formed
between atoms 1-2-3-4 for all frames from first to last, or alternatively at a specific frame.
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10.5.11 molecule

Python operations available from the molecule module, used to load molecules and change their
representations.

• num(): Returns the number of loaded molecules.

• listall(): Returns the molid’s of the all the loaded molecules.

• exists(molid): Returns true if the molid corresponds to an existing molecule.

• new(name): Creates a new empty molecule with the given name and returns its id.

• load(structure, sfname, coor, cfname): Load a molecule with structure type structure
and filename sfname. Additionally, a separate coordinate file may be provided, of type coor
and name cfname. New in VMD 1.8: All frames from cfname will be processed before the
function returns. If successful, the function will return the id of the new molecule.

>>> load(’pdb’,’alanin.’pdb’)

>>> load(’psf’,’alanin.psf’,’dcd’,’alanin.dcd’)

• cancel(molid): Cancel loading of coordinates file for the given molecule.

• delete(molid): Delete the specified molecule.

• read(molid, type, filename, beg = 0, end = -1, skip = 1, waitfor = 1, volsets

= [1]):

• write(molid, type, filename, beg = 0, end = -1, skip = 1, waitfor = 1): Read
or write a file to/from the specified molecule. For reading, if molid is -1, a new molecule
will be created. Optional arguments beg, end, and skip may be specified with keywords;
the default is to load/save all coordinate frames. New in VMD 1.8: The waitfor option
will cause VMD to process the specified number of frames before returning. If waitfor is
negative, all frames from the file will be processed before the function returns. For reading
files containing volumetric datasets, set the volsets parameter to a list of set id’s, starting
from 0, to specify which datasets to load.

• add volumetric(molid, name, origin, xaxis, yaxis, zaxis, xsize, ysize, zsize, data):
Add a volumetric data set to the given molecule. origin, xaxis, yaxis, and zaxis must be
3-tuples specifying the center and scale of the data. xsize, ysize and zsize give the number
of elements along each dimension. data must be a Python list of the correct size as indicated
by the three sizes.

• get filenames(molid): Returns a list of filenames that have been loaded into this molecule.

• get filetypes(molid): Returns a list of filetypes corresponding to get filenames.

• get databases(molid): Returns a list of databases corresponding to get filenames.

• get accessions(molid): Returns a list of accessiosn corresponding to get filenames.

• get remarks(molid): Returns a list of remarks corresponding to get filenames.
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• delframe(molid, beg=0, end=-1, skip=1): Delete frames from the specified molecule.
Optional arguments beg, end, and skip may be specified with keywords; the default is to
delete all coordinate frames.

• dupframe(molid, frame): Copy the coordinates from the given frame and append them as
a new frame.

• numframes(molid): Return the number of coordinate frames in the specified molecule.

• get frame(molid): Return the current coordinate frame for the specified molecule.

• set frame(molid, frame): Set the current coordinate frames in the specified molecule.

• numatoms(molid): Returns the number of atoms in the specified molecule.

• ssrecalc(molid): Recalculate the secondary structure for the given molecule, using the
current set of coordinates.

• name(molid): Returns the name of the given molecule.

• rename(molid,newname): Rename the given molecule.

• get top(molid):

• set top(molid): Get/set the molid of the top molecule.

• get periodic(molid, frame=-1):

• set periodic(molid, frame=-1, a, b, c, alpha, beta, gamma): Get/set periodic im-
age settings for the given molecule and timestep (frame). get periodic returns a dictionary
whose keys are a, b, c, alpha, beta, gamma. set periodic sets the corresponding val-
ues; negative values will be ignored.

10.5.12 molrep

Python operations available from the molrep module, used to add and modify representation of
molecules.

• num(molid): Returns the number of representations in the given molecule.

• addrep(molid, style=None, color=None, selection=None, material=None): Add a
representation to the specified molecule. If any of the optional keywords are specified as well,
the new rep will have the specified properties. Note that these properties become the default
for future calls to addrep, so that addrep(0, style=’VDW’); addrep(0, color=’Name’)

will create two reps, each with a style of ’VDW’.

• delrep(molid, rep): Delete the specified rep from the given molecule.

• modrep(molid, rep, style, sel, color, material): Modify the style, atom selection,
color, and/or material for the specified molecule and representation. Any combination of
the last four arguments may be specified, using positional or keyword arguments. Returns
success.
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>>> modrep(0,0,color=’name’) # Color the first rep of molecule 0 by name.

>>> modrep(0,2, selection=’name CA’, material=’Transparent’) # For the third represen-
tation of molecule 0, change the atom selection to ”name CA” and the material to ”Trans-
parent”

• get style(molid, rep):

• get selection(molid, rep):

• get color(molid, rep):

• get material(molid, rep): Returns the representation style, selection, color, or material,
respectively, for the given representation of the given molecule.

• get repname(molid, rep):

• repindex(molid, name): These two commands let you assign names to reps and access
them by that name. The name returned by get repname is guaranteed to be unique for all
reps in the molecule, and will stay with the rep it was assigned to even when the order of the
reps changes. Use repindex to find the repid of the rep with the given name; -1 is returned
if no rep with that name exists.

• get autoupdate(molid, rep):

• set autoupdate(molid, rep, onoff): These two commands let you turn on/off automatic
updating of the atom selection for a given rep. Automatic updating means the atom selection
for the rep will be recalculated every time the coordinate frame of the molecule changes.

• get colorupdate(molid, rep):

• set colorupdate(molid, rep, onoff): These two commands let you turn on/off auto-
matic updating of the color for a given rep. Automatic updating means the color for the rep
will be recalculated every time the coordinate frame of the molecule changes; this is useful
for coloring by Position or User.

• get smoothing(molid, rep):

• set smoothing(molid, rep, n): These two commands let you get/set on-the-fly smooth-
ing of molecular representations. Atom coordinates used to draw the given rep will be
smoothed with a moving average window size of 2n− 1.

• get scaleminmax(molid, rep):

• set scaleminmax(molid, rep, min, max):

• reset scaleminmax(molid, rep): Get/set the color scale range for this rep. Normally the
color scale is automatically scaled to the minimum and maximum of the corresponding range
of data. This command overrides the autoscaled values with the values you specify. Omit
the min and max arguments to get the current values. Use reset scaleminax to rescale the
color scale to the maximum range again.

• get visible(molid, rep):
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• set visible(molid, rep, onoff): These two commands let you show or hide a selected
molecular representation, and retrieve the visibility status of a given rep.

10.5.13 render

Python operations available from the render module, used to export the scene to a file that can be
read by external rendering programs.

• listall(): Return a Python list of the names of all supported rendering methods. One of
these should be the first argument to the render() operation below.

• render(method, filename): Using the the given rendering method, export the current
scene to the file filename. method should be one of the values returned by listall().

10.5.14 topology

Python operations available from the topology module, used to query and set topological relations
(bonds, angles, etc.) between atoms in a molecule. For large-scale regeneration of angles and
dihedrals given a bonded topology, use topotools via evaltcl, as shown below in an example script.

import topology

from VMD import evaltcl

#Load molecule here... (not shown)

#Delete existing angles and dihedrals

topology.delallangles()

topology.delalldihedrals()

topology.delallimpropers()

evaltcl("package require topotools; topo guessangles")

evaltcl("topo guessdihedrals; topo guessimpropers")

• bonds(molid=top, type=0): Returns all unique bonds within the structure of the specified
molid. Each bond will be its own 2-element list within the list. Optionally, the bond type
and order can be returned by modifying the type parameter. 0=bond indexes only, 1 adds
bond type information, 2 adds bond order, and 3 adds both.

• angles(molid=top, type=0): Returns all unique angles within the structure of the specified
molid. Each angle will be its own 3-element list within the list. Optionally, the angle type
can be returned by modifying the type parameter. 0=angle indexes only, 1 adds angle type
information.

• dihedrals(molid=top, type=0): Returns all unique dihedrals within the structure of the
specified molid. Each dihedral will be its own 4-element list within the list. Optionally, the
dihedral type can be returned by modifying the type parameter. 0=dihedral indexes only, 1
adds dihedral type information.

• impropers(molid=top, type=0): Returns all unique impropers within the structure of the
specified molid. Each improper will be its own 4-element list within the list. Optionally, the
improper type can be returned by modifying the type parameter. 0=improper indexes only,
1 adds improper type information.
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• impropers(molid=top, type=0): Returns all unique impropers within the structure of the
specified molid. Each improper will be its own 4-element list within the list. Optionally, the
improper type can be returned by modifying the type parameter. 0=improper indexes only,
1 adds improper type information.

• addbond(i, j, molid=top, order=1.0, type=None): Adds one bond between the atoms
at index i and j of the molecule given by molid, with bondorder order and bondtype type.
Bonds cannot be added twice, and will be ignored if present. Returns 0 on success, -1 on
failure.

• addangle(i, j, k, molid=top, type=None): Adds one angle between the atoms at index
i, j and k of the molecule given by molid, with angletype type. Duplicates are not checked!!!
Will return the index of the added angle.

• adddihedral(i, j, k, l, molid=top, type=None): Adds one dihedral between the atoms
at index i, j, k, and l of the molecule given by molid, with dihedraltype type. Duplicates are
not checked!!! Will return the index of the added dihedral.

• addimproper(i, j, k, l, molid=top, type=None): Adds one improper between the
atoms at index i, j, k, and l of the molecule given by molid, with type type. No duplicate
checks are made. Will return the index of the added improper.

• delbond(i, j, molid=top): Deletes bond between atoms i and j, if present. Method
returns the number of bonds deleted (0 or 1).

• delangle(i, j, k, molid=top): Deletes angle between atoms i, j, and k, if present.
Method returns the number of angles deleted (0 or 1).

• deldihedral(i, j, k, l, molid=top): Deletes dihedral between atoms i, j, k, and l, if
present. Method returns the number of dihedrals deleted (0 or 1).

• delimproper(i, j, k, l, molid=top): Deletes improper between atoms i, j, k, and l, if
present. Method returns the number of impropers deleted (0 or 1).

• delallbonds(molid=top): Deletes all bonds associated with a molid, returning the number
of bonds deleted.

• delallangles(molid=top): Deletes all angles associated with a molid, returning the number
of angles deleted.

• delalldihedrals(molid=top): Deletes all dihedrals associated with a molid, returning the
number of dihedrals deleted.

• delallimpropers(molid=top): Deletes all impropers associated with a molid, returning
the number of impropers deleted.

10.5.15 trans

Python operations available from the trans module, used to change the view of the rendered scene.

• rotate(axis, angle): Rotate the scene about the specified axis by the given angle. axis

should be ’x’, ’y’, or ’z’; angle is measured in degrees.
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• translate(x, y, z): Translate the scene by the given x, y, and z values.

• scale(factor): Scale (zoom) the scene by the given factor.

• resetview(molid): Sets the center, scale, rotation for all molecules so that the viewpoint
is centered on the molecule with the given id.

• get center(molid):

• set center(molid, vector): Get/set the coordinates of the center of the given molecule
as a Python list.

• get scale(molid):

• set scale(molid,scale): Get/set the scale factor used to display the given molecule.

• get rotation(molid):

• set rotation(molid, matrix): Get/set the rotation matrix for the given molecule as a
16-element Python list in row-major order.

• get trans(molid):

• set trans(molid, vector): Get/set the global translation applied to the given molecule
as a Python list.

• is fixed(molid): Returns whether the molecule with the given id is fixed; that is, whether
it is affected by translation, rotation, or scaling. Fixed molecules may still be animated (see
is active in the animate section).

• fix(molid, trueorfalse): Make the molecule with the given id fixed or not.

• is shown(molid): Returns whether the molecule with the given id is shown or not.

• show(molid, trueorfalse): Make the molecule with the given id shown or not.

10.5.16 vmdnumpy

This optional module is made available from within the toplevel VMD module if VMD detects a
Numeric Python installation in the Python search path. When present, the following methods are
provided:

• timestep(molid, frame): Returns a single-precision Numeric array containing a direct
reference to the given set of atom coordinates. Atom coordinates are arranged xyzxyzxyz...
for each atom in the molecule. No copy of VMD’s internal coordinates is made; therefore,
modifications to this array will directly affect atom coordinates in VMD. Using the array after
the timestep has been deleted will likely cause VMD to crash. The advantage is maximum
efficiency and the ability to easily modify atom coordinates without going through the atom
selection interface.

• atomselect(molid, frame, selection): Returns an array of int’s representing flags for
on/off atoms in the given atom selection. The syntax for the selection is the same as for
the AtomSel class. An array of this form can be used in conjunction with the Numeric take

function to get selected coordinates from a timestep. Creating the array in this way can be
50-100 times faster than converting from an AtomSel object.
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10.6 High-level Python Interface

VMD provides three modules for accessing and manipulating VMD state with objects that represent
important entities. These objects can be thought of as references for the actual object within VMD:
you can create as many references as you want and delete them, but modifying the reference changes
the actual state of VMD. This is different from the AtomSel class, where each AtomSel instance
is independent of the molecules and reps in VMD. These proxy classes are written in pure Python
and use the lower level built-in interfaces to communicate with VMD.

10.6.1 Molecule

The Molecule class is a proxy for molecules loaded into VMD. Most operations raise ValueError if
the proxy no longer refers to a valid molecule (i.e. if the molecule has been deleted).

Molecule instances provide the following methods:

• init (id=None): Creating a new Molecule instance with no arguments will create a new
empty molecule in VMD. Passing a valid molecule id will make the Molecule instance mirror
the state of the corresponding molecule in VMD.

• int (): Casting a Molecule to an int returns the molecule ID.

• rename(self, newname): Changes the name of the molecule.

• name(): Returns the name of the molecule.

• delete(): Deletes the molecule corresponding to this Molecule instance. The object can no
longer be used.

• load(filename, filetype=None, first=0, last=-1, step=1, waitfor=-1, volsets=[0]):
Load molecule data from the given file. The filetype will be guessed from the filename ex-
tension; this can be overrideen by setting the filetype option. first, last, and step control
which coordinates frames to load, if any. volsets indicates which volumetric data sets to
load from the file. Raises IOError if the file cannot be loaded.

• save(filename, filetype=None, first=0, last=-1, step=1, waitfor=-1, sel=None):
Save timesteps to the given file. The filetype will be guessed from the filename extension; this
can be overridden by setting the filetype option. first, last, and step control which timesteps
to save. Returns the number of frames written before the command completes. Pass an
AtomSel instance as sel to write only a selection of atoms to the file. Note that this differs
from the AtomSel.write() method in that Molecule.save() writes a range of timesteps,
while AtomSel.write() writes only the coordinates corresponding to the selection’s currently
selected frame.

• files():

• types(): Returns a list of filenames and file types, respectively, for the files that have been
loaded into this molecule.

• numAtoms(): Returns the number of atoms in the molecule.

• numFrames(): Returns the number of coordinate frames in the molecule.
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• setFrame(frame): Set the coordinate frame to the given value. Must be in the range [0,
numFrames())

• curFrame(): Returns the current coordinate frame for the molecule.

• delFrame(first=0, last=-1, step=1): Deletes the given range of frames.

• dupFrame(frame = None): Duplicate the given frame, apending it to the end. if frame is
None then the current frame is used.

• numReps(): Returns the number of molecular representations (reps) in the given molecule.

• reps(): Returns a list of MoleculeRep objects, one for each rep in the molecule.

• addRep(rep): Add the given MoleculeRep instance to the Molecule. Modifications to the
rep will affect all Molecules to which the rep has been added. Raises ValueError if the rep
has already been added to this molecule.

• delRep(rep): Removes the given MoleculeRep from the Molecule. The rep is not affected
and can be added to other molecules, but changes to it will no longer affect this Molecule.

• clearReps(): Removes all reps from this molecule.

• autoUpdate(rep, onoff = None): If onoff is not None, sets the auto-update status for
this rep and molecule (note that a rep’s auto-update status may be different for different
molecules). Returns the reps auto-update status.

• ssRecalc(): Recalculate the secondary structure for this molecule.

Examples:

>>> from VMD import *

>>> from Molecule import *

>>> bR=Molecule()

>>> bR.load(’../proteins/brH.pdb’)

<snip>

<Molecule.Molecule instance at 0x406d878c>

>>> bR.name()

’molecule’

>>> bR.rename(’bR’)

<Molecule.Molecule instance at 0x406d878c>

>>> bR.name()

’bR’

>>> bR.numAtoms()

3762

>>> bR.dupFrame()

<Molecule.Molecule instance at 0x406d878c>

>>> bR.numFrames()

2
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10.6.2 MoleculeRep

The MoleculeRep class, defined in the Molecule module, is designed to make it easy to keep track
of the reps in a molecule and to update reps in many molecules simultaneously. The way it
works is to create a MoleculeRep instance, then add it to as many molecules as you want using
the Molecule.addRep() method. The only operations on MoleculeRep objects is to change their
properties; when this occurs, all molecules to which the rep has been added will be updated.
Deleting a MoleculeRep instance has no effect. A list of MoleculeRep instances for a given molecule
can be gotten from the Molecule.reps() method.

The MoleculeRep class provides the following methods:

• init (style=defStyle, color=defColor, selection=defSelection, material=defMaterial):
Initialize the Rep object with optional style, color, selection and material properties. MoleculeRep
objects also have attributes with the same names as the above keywords; these can be used
to query the state of the rep. Don’t set these attributes directly; use the change* methods
below instead.

• changeStyle(style):

• changeColor(color):

• changeSelection(selection):

• changeMaterial(material): Set the draw style, color, atom selection and material for this
rep. If the rep is assigned to any molecules, the molecule rep will be updated accordingly.
style must be a valid draw style; see the *Style functions below.

In the following example, we load a molecule, add a new transparent VDW rep to the molecule,
then change the atom selection for the rep to ”name CA”:

>>> from VMD import *

>>> from Molecule import *

>>> bR=Molecule()

>>> bR.load(’../proteins/brH.pdb’)

<snip>

>>> reps=bR.reps()

>>> reps[0].style

’Lines’

>>> vdw=MoleculeRep(style=’VDW’, material=’Transparent’)

>>> bR.addRep(vdw)

>>> vdw.changeSelection(’name CA’)

10.6.3 Draw Style Methods

The syntax for changing the draw style in the MoleculeRep.changeStyle() method is fairly simple
and easy to remember as long as the default values for each style are used; however, remembering
that rep.changeStyle("CPK 0.5 0.5 8") is the way to set the bond radius, sphere scale, and
sphere resolution for CPK is a little more difficult. The Molecule class defines a function for each
draw style to make it easier to generate the required strings to pass to the changeStyle methods.
Each function accepts keyword arguments for specifying the draw style parameters and returns a
string suitable for changeStyle().
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10.6.4 Saving and Restoring Molecule State

Molecule and MoleculeRep instances can be saved used the pickle module from the Python stan-
dard library. Molecules will be saved with information about their name, files, and reps. The files
themselves are not saved with the molecule; they will be reloaded when the molecule instance is
recreated using pickle.load(). MoleculeRep instances can also be pickled; when restored they
will be unassigned to any Molecules.
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Chapter 11

Vectors and Matrices

Tcl does not handle mathematical expressions very well. It is slow at evaluating expressions, and
provides no facility for handling vectors or matrices. Since the latter two are needed for structure
analysis, we have added routines to manipulate them.

A vector in VMD is a list of numbers. All of the vector routines but one will work with vectors
of any length; veccross will only use vectors of three numbers. A matrix is a 4x4 collection of
numbers stored as a list of 4 vectors of 4 numbers, in row-major order.

Following are descriptions and examples of all the commands. For more examples of vectors,
though without much documentation, the script used to test the vectors implementation is located
at $env(VMDDIR)/scripts/vmd/test-vectors.tcl.

Since Tcl is slow at math, some of these commands have been reimplemented in C++. (The
original definition is in the vmd script distribution, but it is redefined later on inside VMD). At
times, the speedup is a factor of 40 or more. These commands are noted by (C++).

11.1 Vectors

• veczero – Returns the zero vector, {0 0 0}

Example:

vmd > veczero

0 0 0

• (C++) vecadd v1 v2 [v3 ... vn] – Returns the vector sum of all the terms.

Examples:

vmd > vecadd {1 2 3} {4 5 6} {7 8 9} {-11 -11 -11}

1 4 7

vmd > vecadd {0.1 0.2 0.4 0.8} {1 1 2 3} {3 1 4 1}

4.1 2.2 6.4 4.8

vmd > vecadd 4 5

9

• vecmul v1 v2 – Returns the vector of a term-by-term multiply.
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Examples:

vmd > vecmul {1 2 3} {4 5 6}

4 10 18

vmd > vecmul {0.1 0.2 0.4 0.8} {1 1 2 3}

0.1 0.2 0.8 2.4

• (C++) vecsub v1 v2 – Returns the vector subtraction of the second term from the first

Examples:

vmd > vecsub 6 3.2

2.8

vmd > vecsub {10 9.8 7} {0.1 0 -0.1}

9.9 9.8 7.1

vmd > vecsub {1 2 3 4 5} {6 7 8 9 10}

-5 -5 -5 -5 -5

• (C++) vecsum v – Returns the sum of the elements in v

Examples:

vmd > vecsum { 1 2 3 }

6.0

• (C++) vecmean v – Returns the mean of the elements in v

Examples:

vmd > vecmean { 1 2 3 }

2.0

• (C++) vecstddev v – Returns the standard deviation of the elements in v

Examples:

vmd > vecstddev { 1 2 3 4 5 6 7 8 9 10 }

2.87228131294

• (C++) vecscale c v –

• (C++) vecscale v c – Returns the vector of the scalar value c applied to each term of v

Examples:

vmd > vecscale .2 {1 2 3}

0.2 0.4 0.6

vmd > vecscale {-5 4 -3 2} -2

10 -8 6 -4

vmd > vecscale -2 3

-6

• vecdot v1 v2 – Returns the scalar dot product of the two vectors
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Examples:

vmd > vecdot {1 -2 3} {4 5 6}

12

vmd > vecdot {3 4} {3 4}

25

vmd > vecdot {1 2 3 4 5} {5 4 3 2 1}

35

vmd > vecdot 3 -2

-6

• veccross v1 v2 – Returns the vector cross product of the two vectors.

Examples:

vmd > veccross {1 0 0} {0 1 0}

0 0 1

vmd > veccross {2 2 2} {-1 0 0}

0 -2 2

• veclength v – Returns the scalar length of v (‖v‖)

Examples:

vmd> veclength 5

5.0

vmd > veclength {5 12}

13.0

vmd > veclength {3 4 12}

13.0

vmd > veclength {1 -2 3 -4}

5.47723

• veclength2 v – Returns the square of the scalar length of v (‖v‖2)

Examples:

vmd > veclength2 5

25

vmd > veclength2 {5 12}

169

vmd > veclength2 {3 4 12}

169

vmd > veclength2 {1 -2 3 -4}

30

• vecnorm v – Returns the vector of length 1 directed along v

Examples:

vmd > vecnorm -10

-1.0
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vmd > vecnorm {1 1 }

0.707109 0.707109

vmd > vecnorm {2 -3 1}

0.534522 -0.801783 0.267261

vmd > vecnorm {2 2 -2 2 -2 -2}

0.408248 0.408248 -0.408248 0.408248 -0.408248 -0.408248

• vecdist v1 v2 – Returns the distance between the two vectors (‖v2 − v1‖)

Examples:

vmd > vecdist -1.5 5.5

7.0

vmd > vecdist {0 0 0} {3 4 0}

5.0

vmd > vecdist {0 1 2 3 4 5 6} {-6 -5 -4 -3 -2 -1 0}

15.8745

• vecinvert v – Returns the additive inverse of v (−v).

Examples:

vmd > vecinvert -11.1

11.1

vmd > vecinvert {3 -4 5}

-3 4 -5

vmd > vecinvert {0 -1 2 -3}

0 1 -2 3

11.2 Matrix routines

Because matrices are rather large when expressed in text form, the following definitions are used
for the examples.

• transidentity – Returns the identity matrix.

Example:

vmd > transidentity

{1.0 0.0 0.0 0.0} {0.0 1.0 0.0 0.0} {0.0 0.0 1.0 0.0} {0.0 0.0 0.0 1.0}

• transtranspose m – Returns the matrix transpose of the given matrix

Example:

vmd > transtranspose {{0 1 2 3 4} {5 6 7 8} {9 10 11 12} {13 14 15 16}}

{0 5 9 13} {1 6 10 14} {2 7 11 15} {3 8 12 16}

• (C++) transmult m1 m2 [m3 ... mn] – Returns the matrix multiplication of the given
matrices
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Examples:

vmd > set mat1 {{1 2 3 4} {-2 3 -4 5} {3 -4 5 -6} {4 5 -6 -7}}

vmd > set mat2 {{1 0 0 0} {0 0.7071 -0.7071 0} {0 0.7071 0.7071 0} {0 0 0 1}}

vmd > set mat3 {{0.866025 0 0 0} {0 1 0 0} {-0.5 0 0.866025 0} {0 0 0 1}}

vmd > transmult $mat1 [transidentity]

{1.0 2.0 3.0 4.0} {-2.0 3.0 -4.0 5.0} {3.0 -4.0 5.0 -6.0}

{4.0 5.0 -6.0 -7.0}

vmd > transmult $mat1 $mat2 $mat3

{0.512475 3.5355 0.612366 4.0} {0.7428 -0.7071 -4.28656 5.0}

{-0.58387 0.7071 5.5113 -6.0} {7.35315 -0.7071 -6.73603 -7.0}

• transaxis <x|y|z> amount [deg|rad|pi] – Returns the transformation matrix needed to
rotate around the specified axis by a given amount. By default, the amount is specified in
degrees, though it can also be given in radians or factors of pi.

Examples:

vmd > transaxis x 90

{1.0 0.0 0.0 0.0} {0.0 -3.67321e-06 -1.0 0.0} {0.0 1.0 -3.67321e-06 0.0}

{0.0 0.0 0.0 1.0}

vmd > transaxis y 0.25 pi

{0.707107 0.0 0.707107 0.0} {0.0 1.0 0.0 0.0}

{-0.707107 0.0 0.707107 0.0} {0.0 0.0 0.0 1.0}

vmd > transaxis z 3.1415927 rad

{-1.0 -2.65359e-06 0.0 0.0} {2.65359e-06 -1.0 0.0 0.0} {0.0 0.0 1.0 0.0}

{0.0 0.0 0.0 1.0}

• transvec v – Returns the transformation matrix needed to bring the x axis along the v
vector. This matrix is not unique, since a final rotation is allowed around the vector. The
matrix is made from a rotation around y, then one about z.

Examples:

vmd > transvec {0 1 0}

{-3.67321e-06 -1.0 0.0 0.0} {1.0 -3.67321e-06 0.0 0.0} {0.0 0.0 1.0 0.0}

{0.0 0.0 0.0 1.0}

vmd > vectrans [transvec {0 0 2}] {1 0 0}

0.0 0.0 1.0

• transvecinv v – Returns the transformation needed to bring the vector v to the x axis. This
produces the inverse matrix to transvec, and is composed of a rotation about z then one about
y.

Examples:

vmd > transvecinv {0 -1 0}

{-3.67321e-06 -1.0 0.0 0.0} {1.0 -3.67321e-06 0.0 0.0} {0.0 0.0 1.0 0.0}

{0.0 0.0 0.0 1.0}

vmd > vectrans [transvecinv {-3 4 -12}] {-3 4 -12}

13.0 -1.8e-05 5.8e-05
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vmd > transmult [transvec {6 -5 7}] [transvecinv {6 -5 7}]

{0.999999 2.29254e-07 -6.262e-09 0.0} {2.29254e-07 0.999999

-4.52228e-07 0.0} {-6.262e-09 -4.52228e-07 1.0 0.0} {0.0 0.0 0.0 1.0}

• (C++) transoffset v – Returns the transformation matrix needed to translate by the given
offset

Examples:

vmd > transoffset {1 0 0}

{1.0 0.0 0.0 1} {0.0 1.0 0.0 0} {0.0 0.0 1.0 0} {0.0 0.0 0.0 1.0}

vmd > transoffset {-6 5 -4.3}

{1.0 0.0 0.0 -6} {0.0 1.0 0.0 5} {0.0 0.0 1.0 -4.3} {0.0 0.0 0.0 1.0}

• transabout v amount [deg|rad|pi] – Generates the transformation matrix needed to rotate
by the given amount counter-clockwise around axis which goes through the origin and along
the given vector. As with transvec, the units of the amount of rotation can be degrees,
radians, or multiples of pi.

Examples:

# this is a rotation about x by 180 degrees

vmd > transabout {1 0 0} 180

{1.0 0.0 0.0 0.0} {0.0 -1.0 -2.65359e-06 0.0} {0.0 2.65359e-06

-1.0 0.0} {0.0 0.0 0.0 1.0}

# a rotation about z by 90 degrees

# (compare this to "transaxis z 90"

vmd > transabout {0 0 1} 1.5709 rad

{0.999624 -0.027414 0.0 0.0} {0.027414 0.999624 0.0 0.0}

{0.0 0.0 1.0 0.0} {0.0 0.0 0.0 1.0}

vmd > transabout {1 1 1} 1 pi

{-0.333335 0.666665 0.666669 0.0} {0.666668 -0.333334 0.666666

0.0} {0.666666 0.66667 -0.333332 0.0} {0.0 0.0 0.0 1.0}

• trans [center {x y z}] [origin {x y z}] [offset {x y z}] [axis x amount [rad|deg|pi]]
[axis y amount [rad|deg|pi]] [axis z amount [rad|deg|pi]] [x amount [rad|deg|pi]]
[y amount [rad|deg|pi]] [z amount [rad|deg|pi]] [axis {x y z} amount [rad|deg|pi]]
[bond {x1 y1 z1} {x2 y2 z2} amount [rad|deg|pi]] [angle {x1 y1 z1} {x2 y2 z2} {x3 y3
z3} amount [rad|deg|pi]] –

This command can do almost everything the other ones can do, and then some. It is designed
to be the main function used for generating transformation matrices.

Using it correctly calls for understanding how it works internally. There are three matrices:
centering, rotation, and offset. The centering matrix determines where the center of rotation is
located. By default, this is the origin, but it can be changed to pivot about any point. The
rotation matrix defines the rotation about that centering point, and the offset matrix defines the
final translation after the rotation.

For example, to rotate around a given point, the transformations would be 1) the centering
matrix to bring that point to the origin, 2) the rotation about the center, and 3) the final offset to
return the origin back to its original location.

The different options for the trans command modify the matrices in various ways.
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– center {x y z} – Sets the centering matrix so that point x y z is brought to the origin

– offset {x y z} – Sets the offset matrix so that the origin is brought to x y z

– origin {x y z} – Sets both the centering and offset matrices to x y z

– axis x amount [rad|deg|pi] – Adds a rotation about the x axis by the given amount to the
rotation matrix

– axis y amount [rad|deg|pi] – Adds a rotation about the y axis by the given amount to the
rotation matrix

– axis z amount [rad|deg|pi] – Adds a rotation about the z axis by the given amount to the
rotation matrix

– axis {x y z} amount [rad|deg|pi] – Adds a rotation of the given amount about the given
vector to the rotation matrix

– bond {x1 y1 z1} {x2 y2 z2} amount [rad|deg|pi] – Sets the center and offset transforma-
tions to the first point, and defines a rotation about the bond axis by the given amount.

– angle {x1 y1 z1} {x2 y2 z2} {x3 y3 z3} amount [rad|deg|pi] – Sets the center and offset
transformation to the second point, and defines a rotation about the axis perpendicular to
the plane made by the three points (the vector is computed from the cross product of the
vector connecting the first two points with that connected the last two).

11.3 Multiplying vectors and matrices

There are two commands to multiply a matrix and a vector, vectrans and coordtrans. They
assume the vector is in column form and premultiply the matrix to the vector. If the vector
contains four numbers, the two commands are identical. If the vector has three elements, a fourth
is added; a 0 for vectrans and a 1 for coordtrans. The difference is that vectors are not affected
by translations during transformations, while coordinates are.

• (C++) vectrans m v – Multiple the matrix m with the vector v (length 4); returns a vector

• coordtrans m v – Multiple the matrix m with the coordinate v (length 3); returns a vector

Examples:

vmd > vectrans [transaxis z 90] {1 0 0}

-3.67321e-06 1.0 0.0

vmd > vectrans [transvecinv {-3 4 -12}] {-3 4 -12}

13.0 -1.8e-05 5.8e-05

11.4 Misc. functions and values

Several other terms are added to the vectors package. The first is the variable M PI, which contains
the value of pi.
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Examples:

vmd > set M_PI

3.14159265358979323846

vmd > expr 90 * ($M_PI / 180)

1.5708

The functions trans from rot, trans to rot, trans from offset, and trans to offset are
used to get or set a transformation matrix from either a 3x3 rotation matrix or offset vector. As
currently designed, these assume there is no scaling in the matrix. The trans from offset is
identical to transoffset and is present for completeness.

The last is find rotation value varname, which takes a variable name and extracts from
the beginning of it those terms which describe an amount of rotation. The rest of the data in
the variable remains, and the amount of rotation, in radians, is returned. This is used by those
functions which need a rotation. The valid values are: a number, followed by one of rad, radian,
or radians for a value in radians, the word pi to give the rotation in factors of pi, or one of deg,
degree, or degrees for a value in degrees. If no units are given, the value is assumed to be in
degrees.

Examples:

vmd > set a "180 deg north"

180 deg north

vmd > find_rotation_value a

3.14159

vmd > set a

north

vmd > set a "1 pi to eat"

1 pi to eat

vmd > find_rotation_value a

3.14159

vmd > set a

to eat

vmd > set a 45

45

vmd > find_rotation_value a

0.785398

vmd > expr $M_PI * 3.0 / 2.0

4.71239

vmd > set a "4.71238 radians"

4.71238 radians

vmd > find_rotation_value a

4.71238
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Chapter 12

Molecular Analysis

12.1 Using the molinfo command

This section covers how to extract information about molecules and atoms using the VMD text
command molinfo.

Examples:
Two functions, one to save the current view position, the other to restore it. The position of

the axis is not changed by these operations.

proc save_viewpoint {} {

global viewpoints

if [info exists viewpoints] {unset viewpoints}

# get the current matricies

foreach mol [molinfo list] {

set viewpoints($mol) [molinfo $mol get {

center_matrix rotate_matrix scale_matrix global_matrix}]

}

}

proc restore_viewpoint {} {

global viewpoints

foreach mol [molinfo list] {

puts "Trying $mol"

if [info exists viewpoints($mol)] {

molinfo $mol set {center_matrix rotate_matrix scale_matrix

global_matrix} $viewpoints($mol)

}

}

}

Cycle through the list of displayed molecules, turning each one on one at a time. At the end,
return the display flags to their original state.

# save the current display state

foreach mol [molinfo list] {

set disp($mol) [molinfo $mol get drawn]
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}

# turn everything off

mol off all

# turn each molecule on then off again

foreach mol [molinfo list] {

if $disp($mol) {

mol on $mol

sleep 1

mol off $mol

}

}

# turn the original ones back on

foreach mol [molinfo list] {

if $disp($mol) {mol on $mol }

}

The last loop, which turns the originally drawn molecules back on, doesn’t turn them on at
the same time. That’s because some commands (those which use the command queue) redraw the
graphics when they are used. This can be disabled with the display update (see section 9.3.6 for
more information). Using this, the final loop becomes

#turn the original ones back on

display update off

foreach mol [molinfo list] {

if $disp($mol) {mol on $mol }

}

display update on

Alternatively, since the drawn option is settable, you could do:

foreach mol [molinfo list] {

if $disp($mol) {molinfo $mol set drawn 1}

}

However, that won’t set the flag to redraw the scene so you need to force a redraw with display

redraw.

12.2 Using the atomselect command

Atom selection is the primary method to access information about the atoms in a molecule. It
works in two steps. The first step is to create a selection given the selection text, molecule id, and
optional frame number. This is done by a function called atomselect, which returns the name of
the new atom selection. the second step is to use the created selection to access the information
about the atoms in the selections.

Atom selection is implemented as a Tcl function. The data returned from atomselect is the
name of the function to use. The name is of the form atomselect%d where ’%d’ is a non-negative
number (such as ’atomselect0’, atomselect26’, ...).

The way to use the function created by the atomselect command is to store the name into a
variable, then use the variable to get the name when needed.
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vmd> set sel [atomselect top "water"]

atomselect3

vmd> $sel text

water

This is equivalent to saying

vmd> atomselect3 text

The easiest way of thinking about this is that the atomselect command creates an object.
To get information from the object you have to send it a command. Thus, in the example above
(atomselect1 num) the object ”atomselect1” was sent the command ”num”, which asks the object
to return the number of atoms in the selection. These derived object functions (the ones with
names like atomselect3) take many options, as described in section 9.3.2,

For instance, given the selection

vmd> set sel [atomselect top "resid 4"]

atomselect4

you can get the atom names for each of the atoms in the selection with

vmd> $sel get name

N H CA CB C O

(which, remember, is the same as

vmd> atomselect4 get name

)
Multiple attributes can be requested by submitting a list, so if you want to see which atoms are

on the backbone,

vmd> $sel get {name backbone}

{N 1} {H 0} {CA 1} {CB 0} {C 1} {O 1}

and the atom coordinates with

vmd> $sel get {x y z}

{0.710000 4.211000 1.093000} {-0.026000 3.700000 0.697000} {0.541000

4.841000 2.388000} {-0.809000 4.462000 2.976000} {1.591000 4.371000

3.381000} {2.212000 5.167000 4.085000}

Note that the format of the data you get back from the get command depends on how many
attributes you requested. If you request only one attribute, as in the get name example above, you
will get back a simple list of elements. On the other hand, if you request two or more attributes,
you will get back a list of sublists. Specifically, it is a list of size n where each element is itself
a list of size i, where n is the number of atoms in the selection and i is the number of attributes
requested.

Your scripts will run faster if you retrieve only one attribute at a time, because then VMD
does not have to construct the sublists for each attribute. Remember that in Tcl you can loop over
several lists at once using the foreach command:
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foreach resid [$sel get resid] resname [$sel get resname] {

# process each resid and resname here

}

One quick function you can build with the coordinates is a method to calculate the geometrical
center (not quite the center of mass; that’s a bit harder). This also uses some of the vector
commands discussed in the section about vectors and matrices [§11], but you should be able to
figure them out from context.

proc geom_center {selection} {

# set the geometrical center to 0

set gc [veczero]

# [$selection get {x y z}] returns a list of {x y z}

# values (one per atoms) so get each term one by one

foreach coord [$selection get {x y z}] {

# sum up the coordinates

set gc [vecadd $gc $coord]

}

# and scale by the inverse of the number of atoms

return [vecscale [expr 1.0 /[$selection num]] $gc]

}

With that defined you can say (assuming $sel was created with the previous atomselection
example)

vmd> geom_center $sel

0.703168 4.45868 2.43667

I’ll go through the example line by line. The function is named geom center and takes one param-
eter, the name of the selection. The first line sets the variable “gc” to the zero vector, which is 0 0
0. On the second line of code, two things occur. First, the command

$selection get {x y z}

is executed, and the string is replaced with the result, which is

{0.710000 4.211000 1.093000} {-0.026000 3.700000 0.697000} {0.541000

4.841000 2.388000} {-0.809000 4.462000 2.976000} {1.591000 4.371000

3.381000} {2.212000 5.167000 4.085000}

This is a list of 6 terms (one for each atom in the selection), and each term is a list of three elements,
the x, y, and z coordinate, in that order.

The ”foreach” command splits the list into its six terms and goes down the list term by term,
setting the variable ”coord” to each successive term. Inside the loop, the value of $coord is added
to total sum.

The last line returns the geometrical center of the atoms in the selection. Since the geometrical
center is defined as the sum of the coordinate vectors divided by the number of elements, and so
far I have only calculated the sum of vectors, I need the inverse of the number of elements, which
is done with the expression

expr 1.0 / [$selection num]
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The decimal in ”1.0” is important since otherwise Tcl does integer division. Finally, this value is
used to scale the sum of the coordinate vectors (with vecscale), which returns the new value, which
is itself returned as the result of the procedure.

The center of mass function is slightly harder because you have to get the mass as well as
the x, y, z values, then break that up into to components. The formula for the center of mass is∑
mixi/

∑
massi

proc center_of_mass {selection} {

# some error checking

if {[$selection num] <= 0} {

error "center_of_mass: needs a selection with atoms"

}

# set the center of mass to 0

set com [veczero]

# set the total mass to 0

set mass 0

# [$selection get {x y z}] returns the coordinates {x y z}

# [$selection get {mass}] returns the masses

# so the following says "for each pair of {coordinates} and masses,

# do the computation ..."

foreach coord [$selection get {x y z}] m [$selection get mass] {

# sum of the masses

set mass [expr $mass + $m]

# sum up the product of mass and coordinate

set com [vecadd $com [vecscale $m $coord]]

}

# and scale by the inverse of the number of atoms

if {$mass == 0} {

error "center_of_mass: total mass is zero"

}

# The "1.0" can’t be "1", since otherwise integer division is done

return [vecscale [expr 1.0/$mass] $com]

}

vmd> center_of_mass $sel

Info) 0.912778 4.61792 2.78021

The opposite of ”get” is ”set”. Many keywords (most notably, ”x”, ”y”, and ”z”) can be set to
new values. This allows, for instance, atom coordinates to be changed, the occupancy values to be
updated, or user forces to be added. You can also change the resname, segid, and so forth, which
may be easier to do within VMD than, for example, editing a PDB file by hand.

set sel [atomselect top "index 5"]

$sel get {x y z}

{1.450000 0.000000 0.000000}

$set set {x y z} {{1.6 0 0}}
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Note that just as the get option returned a list of lists, the set option needs a list of lists, which
is why the extra set of curly braces were need. Again, this must be a list of size n containing
elements which are a list of size i. The exeception is if n is 1, the list is duplicated enough times
so there is one element for each atom.

# get two atoms and set their coordinates

set sel [atomselect top "index 6 7"]

$sel set {x y z} { {5 0 0} {7.6 5.4 3.2} }

In this case, the atom with index 6 gets its (x, y, z) values set to 5 0 0 and the atom with index
7 has its coordinates changed to 7.6 5.4 3.2.

It is possible to move atoms this way by getting the coordinates, changing them (say by adding
some offset) and replacing it. Following is a function which will do just that:

proc moveby {sel offset} {

foreach coord [$sel get {x y z}] {

lappend newcoords [vecadd $coord $offset]

}

$sel set {x y z} $newcoords

}

And to use this function (in this case, to apply an offset of (x y z) = (0.1 -2.8 9) to the selection
”$movesel”):

moveby $movesel {0.1 -2.8 9}

However, to simplify matters some options have been added to the selection to deal with movements
(these commands are also implemented in C++ and are much faster than the Tcl versions). These
functions are moveby, moveto, and move. The first two take a position vector and the last takes a
transformation matrix.

The first command, moveby, moves each of the atoms in the selection over by the given vector
offset.

$sel moveby {1 -1 3.4}

The second, moveto, moves all the atoms in a selection to a given coordinate (it would be strange
to use this for a selection of more than one atom, but that’s allowed). Example:

$sel moveto {-1 1 4.3}

The last of those, move, applies the given transformation matrix to each of the atom coordinates.
This is best used for rotating a set of atoms around a given axis, as in

$sel move [trans x 90]

which rotates the selection 90 degrees about the x axis. Of course, any transformation matrix may
be used.

A more useful example is the following, which rotates the side chain atoms around the CA-CB
bond by 10 degrees.
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# get the sidechain atoms (CB and onwards)

set sidechain [atomselect top "sidechain residue 22"]

# get the CA coordinates -- could do next two on one line ...

set CA [atomselect top "name CA and residue 22"]

set CAcoord [lindex [$CA get {x y z}] 0]

# and get the CB coordinates

set CB [atomselect top "name CB and residue 22"]

set CBcoord [lindex [$CB get {x y z}] 0]

# apply a transform of 10 degrees about the given bond axis

$sidechain move [trans bond $CAcoord $CBcoord 10 deg]

12.3 Analysis scripts

Following are some more examples of routines that could be used for analysing molecules. These are
not the best routines to use since many of these can be implemented with the measure command,
which calls a much faster built-in function.

Finding waters near a protein This example finds the waters near the protein for each frame
of a trajectory and writes out a PDB file containing those waters:

set sel [atomselect top "water and same residue as (within 2 of protein)"]

set n [molinfo top get numframes]

for { set i 0 } { $i < $n } { incr i } {

$sel frame $i

$sel update

$sel writepdb water_$i.pdb

}

The frame option sets the frame of the selection, update tells the atom selection to recompute
which waters are near the protein, and writepdb writes the selected waters to a file.

Total mass of a selection

proc total_mass {selection} {

set sum 0

foreach mass [$selection get mass] {

set sum [expr {$sum + $mass}]

}

return $sum

}

Note the curly braces after the expr command in the above example. Omitting those braces causes
this script to run about three times slower! The moral of the story is: always put curly braces
around the expression that you pass to expr.

Here’s another (slightly slower) way to do the same thing. This works because the mass returned
from the selection is a list of lists. Putting it inside the quotes of the eval makes it a sequence of
vectors, so the vecadd command will work on it.
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proc total_mass1 {selection} {

set mass [$selection get mass]

eval "vecadd $mass"

}

Coordinate min and max Find the min and max coordinate values of a given molecule in the
x, y, and z directions (see also the measure command ’minmax’). The function takes the molecule
id and returns two vectors; the first contains the min values and the second contains the max.

proc minmax {molid} {

set sel [atomselect top all]

set sx [$sel get x]

set sy [$sel get y]

set sz [$sel get z]

set minx [lindex $sx 0]

set miny [lindex $sy 0]

set minz [lindex $sz 0]

set maxx $minx

set maxy $miny

set maxz $minz

foreach x $sx y $sy z $sz {

if {$x < $minx} {set minx $x} else {if {$x > $maxx} {set maxx $x}}

if {$y < $miny} {set miny $y} else {if {$y > $maxy} {set maxy $y}}

if {$z < $minz} {set minz $z} else {if {$z > $maxz} {set maxz $z}}

}

return [list [list $minx $miny $minz] [list $maxx $maxy $maxz]]

}

Radius of gyration Compute the radius of gyration for a selection (see also measure rgyr). The
square of the radius of gyration is defined as

∑
imi(~ri − ~rc)

2/
∑

imi. This uses the center of mass
function defined earlier in this chapter; a faster version would replace that with measure center.
Note that the measure rgyr command does the same thing as this script, only much much faster.

proc gyr_radius {sel} {

# make sure this is a proper selection and has atoms

if {[$sel num] <= 0} {

error "gyr_radius: must have at least one atom in selection"

}

# gyration is sqrt( sum((r(i) - r(center_of_mass))^2) / N)

set com [center_of_mass $sel]

set sum 0

foreach coord [$sel get {x y z}] {

set sum [vecadd $sum [veclength2 [vecsub $coord $com]]]

}

return [expr sqrt($sum / ([$sel num] + 0.0))]

}
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Applying this to the alanin.pdb coordinate file

vmd > mol new alanin.pdb

vmd > set sel [atomselect top all]

vmd > gyr_radius $sel

Info) 5.45443

Root mean square deviation Compute the rms difference of a selection between two frames
of a trajectory. This takes a selection and the values of the two frames to compare.

proc frame_rmsd {selection frame1 frame2} {

set mol [$selection molindex]

# check the range

set num [molinfo $mol get numframes]

if {$frame1 < 0 || $frame1 >= $num || $frame2 < 0 || $frame2 >= $num} {

error "frame_rmsd: frame number out of range"

}

# get the first coordinate set

set sel1 [atomselect $mol [$selection text] frame $frame1]

set coords1 [$sel1 get {x y z}]

# get the second coordinate set

set sel2 [atomselect $mol [$selection text] frame $frame2]

set coords2 [$sel2 get {x y z}]

# and compute the rmsd values

set rmsd 0

foreach coord1 $coords1 coord2 $coords2 {

set rmsd [expr $rmsd + [veclength2 [vecsub $coord2 $coord1]]]

}

# divide by the number of atoms and return the result

return [expr $rmsd / ([$selection num] + 0.0)]

}

The following uses the frame rmsd function to list the rmsd of the molecule over the whole
trajectory, as compared to the first frame.

vmd > mol new alanin.psf

vmd > mol addfile alanin.dcd

vmd > set sel [atomselect top all]

vmd > for {set i 0} {$i < [molinfo top get numframes]} {incr i} {

? puts [list $i [frame_rmsd $sel $i 0]]

? }

0 0.0

1 0.100078

2 0.291405

3 0.523673

....

97 20.0095

98 21.0495

99 21.5747
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The last example shows how to set the beta field. This is useful because one of the coloring
methods is ’Beta’, which uses the beta values to color the molecule according to the current color
scale. (This can also be done with the occupancy field.) Thus redefining the beta values allows you
to color the molecules based on your own definition. One useful example is to color the molecule
based on the distance from a specific point (for this case, coloring a poliovirus protomer based on
its distance to the center of the virus (0, 0, 0) helps bring out the surface features).

proc betacolor_distance {sel point} {

# get the coordinates

foreach coord [$sel get {x y z}] {

# get the distance and put it in the "newbeta" list

set dist [veclength2 [vecsub $coord $point]]

lappend newbeta $dist

}

# set the beta term

$sel set beta $newbeta

}

And here’s one way to use it:

# load pdb2plv.ent using anonymous ftp to the PDB

vmd > mol new 2plv

vmd > set sel [atomselect top all]

vmd > betacolor_distance $sel {0 0 0}

Then go to the graphics menu and set the ’Coloring Method’ to ’Beta’.

12.4 RMS Fit and Alignment

When one has two similar structures, one often wants to compare them. What’s the difference
between two X-ray structures? How much did the structure change during a simulation? To
answer these questions, you must first figure out how to compare two structures, which usually
means that you must find the root mean square deviation (RMSD).

Formally, given N atom positions from structure x and the corresponding N atoms from struc-
ture y with a weighting factor w (i), the RMSD is defined as:

RMSD (N ;x, y) =
[

PN
i=1 wi‖xi−yi‖

2

N
PN

i=1 wi

] 1
2

Using this equation by itself probably won’t give you the answer you are looking for. Imagine
two identical structures offset by some distance. The RMSD should be 0, but the offset prevents
that from happening. What you really want is the minimum RMSD between two given structures;
the best fit. There are many ways to do this, but for VMD we have implemented the method of
Kabsch (Acta Cryst. (1978) A34, 827-828 or see file Measure.C in the VMD source code). This
algorithm computes the transformation, needed to move one structure onto another in order to
minimize the RMSD.

With the mathematical prerequisites behind us, we still need to be able to specify how to choose
the atoms to compare. If you want to compare all the atoms in both structures, and they both
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have the same number of atoms, then the problem is easy – N is everything. This occurs most
often in MD simulations when the only thing different between two structures are the coordinates.

But what about homologous sequences? In this case, the number of atoms differ because
while the number of residues is the same, the sidechains have different numbers of atoms. The
usual solution is to determine the RMSD based solely on the backbone atoms or, in some X-ray
structures where only the Cα atoms have been determined, based on the Cα atoms. VMD allows
you to fit and align based on any valid atom selection, as long as the atom selection specifies the
same number of atoms in each molecule being compared.

12.4.1 RMS Fit and Alignment Extension

To get started with RMS fitting and alignment, open the RMSD item from the Extensions menu.
You should now have a new window titled RMSD Tool We’ll describe the RMSD calculator function
first.

RMSD calculation

Figure 12.1: RMS calculation and alignment extension

The RMSD calculator button is used to calculate RMS distances between molecules. The upper
left corner of the menu is where you specify which atoms are to be used in the calculation. In the
input field, type the atom selection text just as you would in the Graphics window. The checkbox
below the input field entitled Backbone only restricts whatever atom selection you typed to just
the backbone atoms of the selection; in effect, it adds ”and backbone” to the atom selection text.

The upper right corner of the menu has a button labeled RMSD. Its effect depends on which
of the Top, Average, or Selected radio buttons are selected. If Top is selected, VMD calculates
the RMS distance between the top molecule (which is usually the last molecule loaded) and every
other molecule. If Average is selected, VMD first computes the average x, y, z coordinates of
the selected atoms in each molecule, then computes the RMS distance of each molecule from that
average structure.

Results of the RMS calculations for each molecule are shown in the browser in the bottom half
of the menu. Note that this list is not updated until you presse the RMSD button, so the effects
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of loading/deleting molecules will not be immediately reflected. The Total RMSD label at the
bottom of the menu shows the average RMSD for all molecules listed.

RMS Alignment

The RMS Alignment button fits molecules based on selected groups of atoms. Whereas the RMSD
calculator button finds the RMS distance between molecules without disturbing their coordinates,
the RMS Alignment button actually moves molecules to new positions.

This button is quite simple: Enter an atom selection in the input field, and press Align to
align the molecules based on the atoms in that selection. If you recompute the RMSD between
molecules with the RMSD calculator button, you will probably find that the values are different;
this is because the calculation is made based on the current positions of the atoms.

12.4.2 RMS and scripting

The same actions can be taken on the scripting level. The Text interface also gives you more
flexibility through the atom selection mechanism allowing to choose the atoms to fit/compare.

RMSD Computation

There are two atom selections needed to do an RMSD computation, the list of atoms to compare
in both molecules. The first atom of the first selection is compared to the first atom of the second
selection, fifth to fifth, and so on. The actual order is identical to the order from the input PDB
file.

Once the two selections are made, the RMSD calculation is a matter of calling the measure

rmsd function. Here’s an example:

set sel1 [atomselect 0 "backbone"]

set sel2 [atomselect 1 "backbone"]

measure rmsd $sel1 $sel2

Info) 10.403014

This prints the RMSD between the backbone atoms of molecule 0 with those of molecule 1.
You could also use a weighting factor in these calculations. The best way to understand how to do
this is to see another example:

set weighted_rmsd [measure rmsd $sel1 $sel2 weight mass]

Info) 10.403022

In this case, the weight is determined by the mass of each atom. Actually, the term is really
one of the standard keywords available to an atom selection. Other ones include index and resid
(which would both be rather strange to use) as well as charge, beta and occupancy. These last
terms useful if you want to specify your own values for the weighting factors.

Computing the Alignment

The best-fit alignment is done in two steps. The first is to compute the 4×4 matrix transformation
that takes one set of coordinates onto the other. This is done with the measure fit command.
Assuming the same selections as before:
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set transformation_matrix [measure fit $sel1 $sel2]

Info) {0.971188 0.00716391 0.238206 -13.2877}

{0.0188176 0.994122 -0.106619 3.25415} {-0.23757 0.108029 0.965345 -2.97617}

{0.0 0.0 0.0 1.0}

As with the RMSD calculation, you could also add an optional weight <keyword> term on the
end.

The next step is to apply the matrix to a set of atoms using the move command. So far you have
two coordinate sets. You might think you could do something like $sel1 move $transformation matrix

to apply the matrix to all the atoms of that selection. You could, but that’s not the right selection.
The thing to recall is that $sel1 is the selection for the backbone atoms. You really want to

move the whole fragment to which it is attached, or even the whole molecule. (This is where the
discussion earlier comes into play.) So you need to make a third selection containing all the atoms
which are to be moved, and apply the transformation to those atoms.

# molecule 0 is the same molecule used for $sel1

set move_sel [atomselect 0 "all"]

$move_sel move $transformation_matrix

As a more complicated example, say you want to align all of molecule 1 with molecule 9 using
only the backbone atoms of residues 4 to 10 in both systems. Here’s how:

# compute the transformation matrix

set reference_sel [atomselect 9 "backbone and resid 4 to 10"]

set comparison_sel [atomselect 1 "backbone and resid 4 to 10"]

set transformation_mat [measure fit $comparison_sel $reference_sel]

# apply it to all of the molecule 1

set move_sel [atomselect 1 "all"]

$move_sel move $transformation_mat

A simulation example script

Here’s a longer script which you might find useful. The problem is to compute the RMSD between
each frame of the simulation and the first frame. Usually in a simulation there is no initial global
velocity, so the center of mass doesn’t move, but because of angular rotations and because of
numerical imprecisions that slowly build up, the script aligns the molecule before computing its
RMSD.

# Prints the RMSD of the protein atoms between each \timestep

# and the first \timestep for the given molecule id (default: top)

proc print_rmsd_through_time {{mol top}} {

# use frame 0 for the reference

set reference [atomselect $mol "protein" frame 0]

# the frame being compared

set compare [atomselect $mol "protein"]

set num_steps [molinfo $mol get numframes]

for {set frame 0} {$frame < $num_steps} {incr frame} {
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# get the correct frame

$compare frame $frame

# compute the transformation

set trans_mat [measure fit $compare $reference]

# do the alignment

$compare move $trans_mat

# compute the RMSD

set rmsd [measure rmsd $compare $reference]

# print the RMSD

puts "RMSD of $frame is $rmsd"

}

}

To use this, load a molecule with an animation (for example, $VMDDIR/proteins/alanin.DCD
from the VMD distribution). Then run print rmsd through time. Example output is shown here:

vmd > print_rmsd_through_time

RMSD of 0 is 0.000000

RMSD of 1 is 1.060704

RMSD of 2 is 0.977208

RMSD of 3 is 0.881330

RMSD of 4 is 0.795466

RMSD of 5 is 0.676938

RMSD of 6 is 0.563725

RMSD of 7 is 0.423108

RMSD of 8 is 0.335384

RMSD of 9 is 0.488800

RMSD of 10 is 0.675662

RMSD of 11 is 0.749352

[...]

12.5 VMD Script Commands for Colors

In order to fine tune color parameters, one typically needs more sophisticated controls than those
offered in the GUI. For this reason, VMD provides a number of scripting level commands for color
access. These commands will be discussed in detail in chapter 9, but to give you a flavor for their
use, here are a couple of examples that you may find useful right away. Most things can be done
with color [§9.3.4] and colorinfo [§9.3.5] commands.

12.5.1 Changing the color scale definitions

Suppose that of the 1024 colors, the first 511 should be red, then 2 whites, and finally 511 blues.
You can use the ‘color’ command to modify the color scale values accordingly.

proc tricolor_scale {} {

set color_start [colorinfo num]
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display update off

for {set i 0} {$i < 1024} {incr i} {

if {$i == 0} {

set r 1; set g 0; set b 0

}

if {$i == 511} {

set r 1; set g 1; set b 1

}

if {$i == 513} {

set r 0; set g 0; set b 1

}

color change rgb [expr $i + $color_start ] $r $g $b

}

display update on

}

tricolor_scale

12.5.2 Creating a set of black-and-white color definitions

To map grayscale on the color ids 0-16 (0=black; 16=white):

proc make_grayscale {} {

display update off

set coloridcount [colorinfo num]

set colordiv [expr $coloridcount - 1.0]

for {set i 0} {$i < $coloridcount} {incr i} {

set val [expr $i / $colordiv]

color change rgb $i $val $val $val

}

display update on

}

Note that the display updates are switched off for the time of redefinition, so that the screen
would not be redrawn every time one color is changed. This way the procedure works faster. The
only bad thing about this idea is that black becomes white, and white changes too, so the names
of the colors (yellow, orange, etc.) become useless.

12.5.3 Revert all RGB values to defaults

After some of the color definitions have been changed and you want to restore the default definitions,
the following procedure might be useful.

proc revert_colors {} {

display update off

foreach color [colorinfo colors] {

color change rgb $color

}
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display update on

}

12.5.4 Coloring Trick - Override a Coloring Category

There is currently no user-defined coloring method. This makes it hard to color residues by property
“X” if X is not already defined in VMD. It is possible to get around this limitation somewhat by
overriding one of the values in the PDB or PSF. For instance, suppose you wanted to color the
atoms by the distance of the atom from a given point. One way is to compute the distance and
put it in either the occupancy or beta field of the PDB file. Then when the molecule is colored by
occupancy it is actually coloring by distance.

You could also override, say, the segment name field or even the residue name. Don’t override
the atom name unless you are really desperate as VMD uses it to determine which residues are
proteins and nucleic acids, and hence which residues can be drawn as a tube or ribbon.
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Chapter 13

Collective Variables Interface
(Colvars)

Colvars
The features described in this section were originally contributed to VMD by Giacomo Fiorin

(NIH) and Jérôme Hénin (CNRS, France) and are currently developed at this external repository:
https://github.com/Colvars/colvars

An updated version of this section can also be downloaded as a separate manual:
HTML: https://colvars.github.io/colvars-refman-vmd/colvars-refman-vmd.html
PDF: https://colvars.github.io/pdf/colvars-refman-vmd.pdf

See section ?? for specific changes that affect compatibility between versions. Please ask any
usage questions through the VMD mailing list, and development questions through GitHub.

Overview

In molecular dynamics simulations, it is often useful to reduce the large number of degrees of
freedom of a physical system into few parameters whose statistical distributions can be analyzed
individually, or used to define biasing potentials to alter the dynamics of the system in a controlled
manner. These have been called ‘order parameters’, ‘collective variables’, ‘(surrogate) reaction
coordinates’, and many other terms.

Here we use primarily the term ‘collective variable’, often shortened to colvar, to indicate any
differentiable function of atomic Cartesian coordinates, xi, with i between 1 and N , the total
number of atoms:

ξ(t) = ξ(X(t)) = ξ (xi(t),xj(t),xk(t), . . .) , 1 ≤ i, j, k . . . ≤ N (13.1)

The Colvars module in VMD may be used to calculate these functions over a molecular structure,
and to analyze the results of previous simulations. The module is designed to perform multiple
tasks concurrently during or after a simulation, the most common of which are:

• apply restraints or biasing potentials to multiple variables, tailored on the system by choosing
from a wide set of basis functions, without limitations on their number or on the number of
atoms involved;
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• calculate potentials of mean force (PMFs) along any set of variables, using different enhanced
sampling methods, such as Adaptive Biasing Force (ABF), metadynamics, steered MD and
umbrella sampling; variants of these methods that make use of an ensemble of replicas are
supported as well;

• calculate statistical properties of the variables, such as running averages and standard devi-
ations, correlation functions of pairs of variables, and multidimensional histograms: this can
be done either at run-time without the need to save very large trajectory files, or after a
simulation has been completed using VMD and the cv command.

Note: although restraints and PMF algorithms are primarily used during simulations, they are
also available in VMD to test a new input for a simulation, or to evaluate the relative free energy of
a new structure based on data from a previous calculation. Options that only have an effect during
a simulation are also included for compatibility purposes.

Detailed explanations of the design of the Colvars module are provided in reference [48]. Please
cite this reference whenever publishing work that makes use of this module.

Using the Colvars Module in VMD Within VMD, the Colvars Module can be accessed in
two ways:

• Using the Colvars dashboard, an intuitive, but partial interface to the Colvars module, to
easily define and analyze collective variables, but not biases (section ??).

• Using the full-featured Tcl scripting interface as documented in section ??; see in particular
the example in section ??.

13.1 Writing a Colvars configuration: a crash course

The Colvars configuration is a plain text file or string that defines collective variables, biases,
and general parameters of the Colvars module. It is passed to the module using back-end-specific
commands documented in section ??. Writing the configuration fora collective variable in VMD
is made much easier using the dashboard and its configuration editor (section ??). However, note
that the dashboard does not handle biases: if necessary, they should be managed separately using
the scripting interface.

Now let us look at a complete, non-trivial configuration. Suppose that we want to run a steered
MD experiment where a small molecule is pulled away from a protein binding site. In Colvars
terms, this is done by applying a moving restraint to the distance between the two objects. The
configuration will contain two blocks, one defining the distance variable (see section ?? and ??), and
the other the moving harmonic restraint (??). Note that in VMD, no biasing forces are applied, but
biases may be useful in the context of an analysis script, e.g. to collect histograms or to compute
bias energies.

colvar {
name dist

distance {
group1 { atomNumbersRange 42-55 }
group2 {
psfSegID PR
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atomNameResidueRange CA 15-30

}
}

}

harmonic {
colvars dist

forceConstant 20.0

centers 4.0 # initial distance

targetCenters 15.0 # final distance

targetNumSteps 500000

}

Reading this input in plain English: the variable here named dist consists in a distance function
between the centers of two groups: the ligand (atoms 42 to 55) and the α-carbon atoms of residues
15 to 30 in the protein (segment name PR). To the “dist” variable, we apply a harmonic potential
of force constant 20 kcal/mol/Å2 , initially centered around a value of 4 Å, which will increase to
15 Å over 500,000 simulation steps.

The atom selection keywords are detailed in section ??.

13.2 The Colvars dashboard

The Colvars dashboard is a graphical interface for interactive visualization and refinement of collec-
tive variables aided by molecular structures and trajectories. It is accessible in VMD’s Main Menu
under “Extensions/Analysis/Colvars Dashboard”. Throughout the interface, keyboard shortcuts
for common operations are indicated in square brackets.

13.2.1 A mini-tutorial

Here are the steps for a quick first tour of the Dashboard:

1. load an MD trajectory into VMD;

2. open the Dashboard;

3. click “New” to create a new collective variable;

4. in the Editor window, click “Apply” to accept the dein the Dashboard window, fault template;

5. in the Dashboard window, click “Show atoms” to display the two atom groups involved in
this distance coordinate;

6. click “Timeline plot”;

7. click anywhere in the timeline plot to navigate in the trajectory.

Now, clicking “Edit” in the Dashboard window, you can modify the collective variable to reflect
interesting geometric properties of the system. The power of the collective variables approach lies
in the variety of geometric functions (“components”) and their combinations. The editor window
provides a number of helpers to make it easy and quick to define the most relevant variables. See
section ?? for details.
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13.2.2 The Dashboard window

The Dashboard window displays a table listing currently defined variables, and their values for
the current frame indicated at the bottom of the window. By default the frame is updated to
track VMD’s currently displayed frame, but that can be changed by toggling the “Track frame”
checkbox, e.g. to animate the trajectory without recomputing expensive variables. Vector-values
variables can be expanded to list their scalar elements. This is necessary when individual scalar
quantities have to be selected for plotting. Other operations act on variables as a whole and ignore
specific selected scalar elements.

Buttons above the table allow for general operations on the state of the Colvars Module. Buttons
below the table offer operations on selected variables.

If several molecules are loaded, the dashboard only interacts with the molecule labeled ”top”
(T in VMD’s main window). If the top molecule is changed, the Colvars Module needs to be reset
using the Reset button. This will remove all current definitions, so make sure to save the variables
to a file beforehand.

If variables are modified, added or deleted interactively or by an external script, hit “Refresh”
or press F5 to update the displayed variables and values. Starting the dashboard also enables
trajectory animation using the left/right arrow keys within VMD’s graphical window. Atomic
coordinates can be modified using VMD’s “Mouse/Move” functions, and the Colvars Module can
then be updated by pressing F5 directly from the graphical window.

A dropdown list allows for changing the current unit system if no variables are defined. If some
variables are already defined, it is recommended to edit the configuration for all of them at once
(eg. pressing Ctrl-a, then Ctrl-e), checking that all quantities are expressed in the desired set of
units, and adding the units keyword to the general parameters, outside of colvar {} blocks (??).

Another dropdown lets the user change which VMD molecule is associated with the Colvars
module. Internally, this requires recording the configuration of currently defined colvars, deleting
the current instance of the Colvars module, creating a new one linked to the target molecule, and
applying the saved configuration. Beware of incompatible colvar definitions, such as atom groups
listing atom IDs that exist in one molecule, but not the other. Auto-updating selections (see below)
can be used to adapt the colvar definitions to a different system using VMD selection texts.

13.2.3 Loading / Saving configuration files

This saves the configuration of all defined collective variables to a file. Neither biases, nor general
parameters of the Colvars Module are saved: editing them is beyond the scope of the dashboard.
We recommend keeping them in separate configuration files, and reading them separately in biased
MD simulations.

13.2.4 The configuration editor

The configuration editor can be started with the “Edit” or “New” buttons. Using the “Edit”
button, the configuration of selected variables is loaded, and those variables will be replaced when
applying the new configuration.

The editor window offers links to online documentation, as well as helpers to write correct
configuration files.

As a first step, the most useful helper is the collection of template files. Some parameters
that must be supplied are indicated by the symbol @. Colvar templates can be inserted at the
beginning of the configuration, whereas “component” templates define basis functions that belong
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inside a colvar block. Templates are indented using 4 spaces per level to indicate their position in
the nested structure of the configuration: general options, colvars and biases at level 0, bias and
colvar parameters like components at level 1, component parameters such as atom groups at level
2, and atom group parameters at level 3.

The next helper buttons allow importing atom selections from VMD, either typing a VMD atom
selection text, by copying the selection of an existing graphical representation, or by inserting the
list of atoms currently labeled in VMD using the “Pick atom” feature. Atom selections should be
inserted within an atom group block, within a component block (such as distance). By default
atom selections are preceded with a comment line marking them as auto-updating. This instructs
the Dashboard to update the list of atoms whenever the configuration is applied, that is, when it
is edited, when the file is loaded by the Dashboard, or when changing the VMD molecule linked to
Colvars. This is useful when working across systems with different atom numberings, but topologies
that make the relevant atom groups identifiable using VMD selection texts. Special fields (O, B, and
user) may be used, as well as atom positions (e.g. z > 0). If the selection text is modified manually,
the atom list will be updated when applying the new configuration. This auto-updating behavior
can be disabled by removing the special comment line or altering the keywords “auto-updating
selection”.

Note that atom lists are not auto-updated:

1. when changing frame within the same molecule (animating a trajectory);

2. when the configuration is read by the Colvars module outside of VMD (eg. within an MD
engine).

The “Insert labeled...” button combined with the selection box allows for inserting components
matching VMD’s geometry measurements: Bonds (distances), angles, and dihedrals. Hidden labels
are not used for inserting components.

13.2.5 Plotting and visualizing collective variables

Timeline plots show the selected variables as a function of time. A vertical bar indicates the
current frame, which can be changed either using VMD’s trajectory animation controls, or directly
in the plot window by clicking the mouse inside the graph, or using the keyboard left/right arrows.
Shift+arrow skips frames for faster animation, and Ctrl+arrow skips more frames. The up/down
arrows operate a zoom/unzoom along the time axis. Visible data can be fitted vertically using the
h key. All data can be fitted horizontally using the h key.

Pairwise scatterplots are useful to identify correlation between variables. To create a pairwise
plot, select exactly two scalar variables (or scalar components of vector variables), and click “Pair-
wise plot”. Frames are represented by circles, and lines connect consecutive frames. The blue dot
tracks the current frame. Arrow keys animate the trajectory as in the timeline plot. Clicking a
circle jumps to the corresponding frame.

“Show atoms” creates representations of the atoms involved in the definition of the selected
colvars. Each atom group is shown in a different color. “Show gradient” is available for scalar
variables only. It creates a graphical representation of the atomic gradients of the selected variables,
visualizing how the value of the collective variable would vary in response to a change in atomic
coordinates. Vectors representing the gradient are rescaled as indicated by the radio buttons Set
max. vector norm and Set scaling factor. Set max. vector norm rescales gradients so that the largest
vector component of each colvar’s gradient is represented by an arrow of the specified length, in Å.
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Set scaling factor rescales gradients by the specified factor, divided by the colvar’s width parameter
(1 by default, see ??). This use of width makes it easier to compare the gradients of collective
variables that are not commensurate. The scaling factor has the unit Å ∗ L/(cv/width), where L
is the current length unit, and cv represents the natural unit of the collective variable. By default
width is unity, but (cv/width) may be seen as dimensionless if width is expressed in cv units.

13.3 Enabling and controlling the Colvars module in VMD

Here, we document the syntax of the commands and parameters used to set up and use the Colvars
module in VMD. One of these parameters is the configuration file or the configuration text for the
module itself, whose syntax is described in ?? and in the following sections.

13.3.1 Units in the Colvars module

The “internal units” of the Colvars module are the units in which values are expected to be in
the configuration file, and in which collective variable values, energies, etc. are expressed in the
output and colvars trajectory files. Generally the Colvars module uses internally the same
units as its back-end MD engine, with the exception of VMD, where different unit sets
are supported to allow for easy setup, visualization and analysis of Colvars simulations performed
with any simulation engine.

Note that angles are expressed in degrees, and derived quantites such as force constants are
based on degrees as well. Atomic coordinates read from XYZ files (and PDB files where applicable)
are expected to be expressed in Ångström, no matter what unit system is in use by the back-end
or the Colvars Module.

To avoid errors due to reading configuration files written in a different unit system, it can be
specified within the input:

• units 〈Unit system to be used 〉
Context: global
Acceptable values: string
Description: A string defining the units to be used internally by Colvars. Allowed values
are: real (Å, kcal/mol), gromacs (nm, kJ/mol), metal (Å, eV), and electron (Bohr, Hartree).
In VMD, the default system of units for Colvars is VMD’s native units: real (Å, kcal/mol).
However, the units keyword will switch to a different unit system than the current one if no
colvars were defined before reading the current configuration. If colvars are already defined,
units will refuse changing the unit system to avoid making the definition of those variables
erroneous in the new system of units. If needed this precaution can be overridden using the
cv units scripting command (??).

13.3.2 Using the cv command to control the Colvars module

At any moment after the first initialization of the Colvars module, several options can be read or
modified by the Tcl command cv, with the following syntax:
cv <subcommand> [args ...]

The cv command is used by the Dashboard graphical interface,(??), but can be also used in scripts
or interactively from the command-line terminal (for example, in remote terminal sessions) or in
the Tk Console. The most frequent uses of the cv command are discussed here. For a complete
list of all sub-commands of cv, see section ??.
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Setting up the Colvars module

The first step to using Colvars in VMD is choosing which “molecule” (i.e. which system): because
VMD can handle multiple “molecules”, the Colvars module needs to remain attached to a specific
VMD molecule. For example:
cv molid top

will attach the Colvars module onto the molecule currently holding the “top” status (alternatively,
you can refer to a molecule by its numeric ID in lieu of top). All following invocations of the cv

command will continue operating on the same molecule, regardless of whether other molecules are
loaded, or which one has the “top” status. The cv molid command without argument will return
the molid currently associated with Colvars.

To define collective variables and biases, configuration can be loaded using either:
cv configfile colvars-file.in

to load configuration from a file, or:
cv config "keyword { ... }"
to load configuration as a string argument.

The latter version is particularly useful to dynamically define the Colvars configuration.

Using the Colvars version in scripts

The vast majority of the syntax in Colvars is backward-compatible, adding keywords when new
features are introduced. However, when using multiple versions simultaneously it may be useful
to test within the script whether the version is recent enough to support the desired feature. cv

version can be used to get the Colvars version for this use:
if { [cv version] >= "2020-02-25" } {
cv config "(use a recent feature)"

}

Loading and saving the Colvars state and other information

After a configuration is fully defined, cv load may be used to load a state file from a previous sim-
ulation that contains e.g. data from history-dependent biases), to either continue that simulation
or analyze its results:
cv load <oldjob>.colvars.state
or more simply using the prefix of the state file itself:
cv load <oldjob>

cv save, analogous to cv load, saves all restart information to a state file. This is normally not
required during a simulation if colvarsRestartFrequency is defined (either directly or indirectly
by the VMD restart frequency), but it is necessary in post-processing e.g. with VMD. Because
not only a state file (used to continue simulations) but also other data files (used to analyze the
trajectory) are written, it is generally clearer to use cv save with a prefix rather than a file name:
cv save <job>

See ?? for a complete list of scripting commands used to manage the Colvars module.
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Analyzing a trajectory in VMD

One of the typical uses of Colvars in VMD is computing the values of one or more variables along
an existing trajectory. A complete example input for this use case is shown here.

# Activate the module on the current VMD molecule

cv molid top

# Load a Colvars config file

cv configfile test.in

set out [open "test.colvars.traj" "w"]

# Write the labels to the file

puts -nonewline ${out} [cv printframelabels]

for { set fr 0 } { ${fr} < [molinfo top get numframes] } { incr fr } {
# Point Colvars to this trajectory frame

cv frame ${fr}
# Recompute variables and biases (required in VMD)

cv update

# Print variables and biases to the file

puts -nonewline ${out} [cv printframe]

}
close ${out}

Managing collective variables

After one or more collective variables are defined, they can be accessed via cv colvar [args ...].
For example, to recompute the collective variable xi the following command can be used:
cv colvar xi update

This ordinarily is not needed during a simulation run, where all variables are recomputed at every
step (along with biasing forces acting on them). However, when analyzing an existing trajectory a
call to update is generally required.

While in all typical cases all configuration of the variables is done with cv config or cv

configfile, a limited set of changes can be enacted at runtime using cv colvar <name> modifycvcs

[args ...]. Each argument is a string passed to the function or functions that are used to com-
pute the variable, and are called colvar components, or CVCs (??). For example, a variable DeltaZ
made of a single distanceZ CVC can be made periodic with a period equal to the unit cell dimen-
sion along the Z-axis:
cv colvar DeltaZ modifycvcs "period $Lz"

where $Lz may be obtained for example as:
set Lz [molinfo top get c].
This option is currently limited to changing the values of componentCoeff and componentExp (e.g.
to update the polynomial superposition parameters on the fly), of period and wrapAround, and of
the forceNoPBC option for all components that support it.

If the variable is computed using more than one CVC, it is possible to selectively turn some of
them on or off:
cv colvar xi cvcflags <flags>
where <flags> is a list of 0/1 values, one per component. This is useful for example when Tcl
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script-based path collective variables in Cartesian coordinates (??) are used, to minimize compu-
tational cost by disabling the computation of terms that are very close to zero.

Important: None of the changes enacted by modifycvcs or cvcflags will be saved to state
files, and will be lost when restarting a simulation, deleting the corresponding collective variable,
or resetting the module with cv delete or cv reset.

Applying and analyzing forces on collective variables

As soon as a collective variable is up to date (during a MD run or after its update method
has been called), forces can be applied to it, e.g. as part of a custom restraint implemented
by scriptedColvarForces:
cv colvar xi addforce $force

where $force is a scalar or a vector (depending on the type of variable xi) and is defined by
the user’s function. The force will be physically applied to the corresponding atoms during the
simulation after Colvars communicates all forces to the rest of VMD. (In VMD, these forces will
never have an effect.) Until then, the total force applied to xi from all biases can be retrieved by:
cv colvar xi getappliedforce

(see also the use of the outputAppliedForce option).
To obtain the total force projected on the variable xi:

cv colvar xi gettotalforce

Note that not all types of variable support this option, and the value of the total force may not be
available immediately: see outputTotalForce for more details.

See ?? for a complete list of scripting commands used to manage collective variables.

Managing collective variable biases

Because biases depend only upon data internal to the Colvars module (i.e. they do not need atomic
coordinates from VMD), it is generally easy to create them or update their configuration at any
time. For example, given the most current value of the variable xi, an already-defined restraint on
it named harmonic xi can be updated as:
cv bias harmonic xi update

Again, this is not generally needed during a running simulation, when an automat ic update of
each bias is already carried out.

Calling update for a bias is most useful for just-defined biases or when changing their config-
uration. When update is called e.g. as part of the function invoked by scriptedColvarForces,
it is executed before any biasing forces are applied to the variables, thus allowing to modify them.
This use of update is often used e.g. in the definition of custom bias-exchange algorithms as part
of the VMD script. Because a bias is a relatively light-weight object, the easiest way to change the
configuration of an existing bias is deleting it and re-creating it:

# Delete the restraint "harmonic xi"

cv bias harmonic xi delete

# Re-define it, but using an updated restraint center

cv config "harmonic {
name harmonic xi

centers ${new center}]
...
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}"
# Now update it (based on the current value of "xi")

cv bias harmonic xi update

It is also possible to make the change subject to a condition on the energy of the new bias:
...

cv bias harmonic xi update

if { [cv bias harmonic xi energy] < ${E accept} } {
...

}

Loading and saving the state of individual biases

Some types of bias are history-dependent, and the magnitude of their forces depends not only on
the values of their corresponding variables, but also on previous simulation history. It is thus useful
to load information from a state file that contains information specifically for one bias only, for
example:
cv bias metadynamics1 load old.colvars.state

or alternatively, using the prefix of the file instead of its full name:
cv bias metadynamics1 load old

A corresponding save function is also available:
cv bias metadynamics1 save new

This pair of functions is also used internally by Colvars to implement e.g. multiple-walker meta-
dynamics (??), but they can be called from a scripted function to implement alternative coupling
schemes.

See ?? for a complete list of scripting commands used to manage biases.

13.3.3 Configuration syntax used by the Colvars module

The Colvars configuration is usually read using the commands cv configfile (with a filename as
argument) or cv config (with the configuration as a string argument). Each configuration line
follows the format “keyword value”, where the keyword and its value are separated by any white
space. The following rules apply:

• keywords are case-insensitive (upperBoundary is the same as upperboundary and UPPERBOUNDARY):
their string values are however case-sensitive (e.g. file names);

• a long value, or a list of multiple values, can be distributed across multiple lines by using
curly braces, “{” and “}”: the opening brace “{” must occur on the same line as the keyword,
following a space character or other white space; the closing brace “}” can be at any position
after that; any keywords following the closing brace on the same line are not valid (they
should appear instead on a different line);

• many keywords are nested, and are only meaningful within a specific context: for every
keyword documented in the following, the “parent” keyword that defines such context is also
indicated;

• Tcl syntax is generally not available, but it is possible to use Tcl variables or bracket expansion
of commands within a configuration string, when this is passed via the command cv config
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...: for example, it is possible to convert the atom selection $sel into an atom group (see
??) using cv config "atomNumbers { [$sel get serial] }";

• if a keyword requiring a boolean value (yes|on|true or no|off|false) is provided without
an explicit value, it defaults to ‘yes|on|true’; for example, ‘outputAppliedForce’ may be
used as shorthand for ‘outputAppliedForce on’;

• the hash character # indicates a comment: all text in the same line following this character
will be ignored.

13.3.4 Global keywords

The following keywords are available in the global context of the Colvars configuration, i.e. they
are not nested inside other keywords:

• colvarsTrajFrequency 〈Colvar value trajectory frequency 〉
Context: global
Acceptable values: positive integer
Default value: 100
Description: The values of each colvar (and of other related quantities, if requested)
are written to the file outputName.colvars.traj every these many steps throughout the
simulation. If the value is 0, such trajectory file is not written. For optimization the output
is buffered, and synchronized with the disk only when the restart file is being written.

• colvarsRestartFrequency 〈Colvar module restart frequency 〉
Context: global
Acceptable values: positive integer
Default value: 0
Description: The state file and any other output files produced by Colvars are written every
these many steps (the trajectory file is still written every colvarsTrajFrequency steps). In
VMD, the simulation step is not progressed and this parameter is effectively ignored. It is
generally a good idea to leave this parameter at its default value, unless needed for special
cases or to disable automatic writing of output files altogether. Writing can still be invoked
at any time via the command cv save.

• indexFile 〈 Index file for atom selection (GROMACS “ndx” format) 〉
Context: global
Acceptable values: UNIX filename
Description: This option reads an index file (usually with a .ndx extension) as produced
by the make ndx tool of GROMACS. This keyword may be repeated to load multiple index
files. A group with the same name may appear multiple times, as long as it contains the same
indices in identical order each time: an error is raised otherwise. The names of index groups
contained in this file can then be used to define atom groups with the indexGroup keyword.
Other supported methods to select atoms are described in ??.

• smp 〈Whether SMP parallelism should be used 〉
Context: global
Acceptable values: boolean
Default value: on
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Description: If this flag is enabled (default), SMP parallelism over threads will be used to
compute variables and biases, provided that this is supported by the VMD build in use.

To illustrate the flexibility of the Colvars module, a non-trivial setup is represented in Fig-
ure 13.1. The corresponding configuration is given below. The options within the colvar blocks
are described in ??, those within the harmonic and histogram blocks in ??. Note: except colvar,
none of the keywords shown is mandatory.

Figure 13.1: Graphical representation of a Colvars configuration. The colvar called “d” is defined
as the difference between two distances: the first distance (d1) is taken between the center of mass
of atoms 1 and 2 and that of atoms 3 to 5, the second (d2) between atom 7 and the center of mass
of atoms 8 to 10. The difference d = d1 − d2 is obtained by multiplying the two by a coefficient
C = +1 or C = −1, respectively. The colvar called “c” is the coordination number calculated
between atoms 1 to 10 and atoms 11 to 20. A harmonic restraint is applied to both d and c: to
allow using the same force constant K, both d and c are scaled by their respective fluctuation
widths wd and wc. A third colvar “alpha” is defined as the α-helical content of residues 1 to 10.
The values of “c” and “alpha” are also recorded throughout the simulation as a joint 2-dimensional
histogram.

colvar {
# difference of two distances

name d

width 0.2 # 0.2 Å of estimated fluctuation width

distance {
componentCoeff 1.0

group1 { atomNumbers 1 2 }
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group2 { atomNumbers 3 4 5 }
}
distance {

componentCoeff -1.0

group1 { atomNumbers 7 }
group2 { atomNumbers 8 9 10 }

}
}

colvar {
name c

coordNum {
cutoff 6.0

group1 { atomNumbersRange 1-10 }
group2 { atomNumbersRange 11-20 }

}
}

colvar {
name alpha

alpha {
psfSegID PROT

residueRange 1-10

}
}

harmonic {
colvars d c

centers 3.0 4.0

forceConstant 5.0

}

histogram {
colvars c alpha

}

Section ?? explains how to define a colvar and its behavior, regardless of its specific functional
form. To define colvars that are appropriate to a specific physical system, Section ?? documents
how to select atoms, and section ?? lists all of the available functional forms, which we call “colvar
components”. Finally, section ?? lists the available methods and algorithms to perform biased
simulations and multidimensional analysis of colvars.

13.3.5 Input state file

Because many of the methods implemented in Colvars are history-dependent, a state file is often
needed to continue a long simulation over consecutive runs. Such state file is written automatically
at the end of any simulation with Colvars, and contains data accumulated during that simulation
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along with the step number at the end of it. The step number read from the state file is then used
to control such time-dependent biases: because of this essential role, the step number internal to
Colvars may not always match the step number reported by the MD program that carried during
the simulation (which may instead restart from zero each time).

Depending on the configuration, a state file may need to be loaded issued at the beginning of a
new simulation when time-dependent biasing methods are applied (moving restraints, metadynam-
ics, ABF, ...). . After initialization, a state file may be loaded at any time with the Tcl command
cv load.

It is possible to load a state file even if the configuration has changed: for example, new variables
may be defined or restraints be added in between consecutive runs. For each newly defined variable
or bias, no information will be read from the state file if this is unavailable: such new objects will
remain uninitialized until the first compute step. Conversely, any information that the state file has
about variables or biases that are not defined any longer is silently ignored. Because these checks
are done by the names of variables or biases, it is the user’s responsibility to ensure that these are
consistent between runs.

13.3.6 Output files

During a simulation with collective variables defined, the following three output files are written:

• A state file, named outputName.colvars.state; this file is in ASCII (plain text) format.
This file is written at the end of the specified run, but can also be written at any time with
the command cv save (??).
This is the only Colvars output file needed to continue a simulation.

• If the parameter colvarsRestartFrequency is larger than zero, a restart file is written every
that many steps: this file is fully equivalent to the final state file. The name of this file is
restartName.colvars.state.

• If the parameter colvarsTrajFrequency is greater than 0 (default: 100), a trajectory file is
written during the simulation: its name is outputName.colvars.traj; unlike the state file,
it is not needed to restart a simulation, but can be used later for post-processing and analysis.

Other output files may also be written by specific methods, e.g. the ABF or metadynamics
methods (??, ??). Like the trajectory file, they are needed only for analyzing, not continuing a
simulation. All such files’ names also begin with the prefix outputName.

13.4 Defining collective variables

A collective variable is defined by the keyword colvar followed by its configuration options con-
tained within curly braces:

colvar {
name xi

<other options>
function name {
<parameters>
<atom selection>

213



}
}

There are multiple ways of defining a variable:

• The simplest and most common way way is using one of the precompiled functions (here
called “components”), which are listed in section ??. For example, using the keyword rmsd

(section ??) defines the variable as the root mean squared deviation (RMSD) of the selected
atoms.

• A new variable may also be constructed as a linear or polynomial combination of the compo-
nents listed in section ?? (see ?? for details).

• A user-defined Tcl function of the existing components (see list in section ??), or of the
atomic coordinates directly (see the cartesian keyword in ??). The function is provided
by a separate Tcl script, and referenced through the keyword scriptedFunction (see ?? for
details).

Choosing a component (function) is the only parameter strictly required to define a collective
variable. It is also highly recommended to specify a name for the variable:

• name 〈Name of this colvar 〉
Context: colvar

Acceptable values: string
Default value: “colvar” + numeric id
Description: The name is an unique case-sensitive string which allows the Colvars module
to identify this colvar unambiguously; it is also used in the trajectory file to label to the
columns corresponding to this colvar.

13.4.1 Choosing a function

In this context, the function that computes a colvar is called a component. A component’s choice
and definition consists of including in the variable’s configuration a keyword indicating the type of
function (e.g. rmsd), followed by a definition block specifying the atoms involved (see ??) and any
additional parameters (cutoffs, “reference” values, . . . ). At least one component must be chosen to
define a variable: if none of the keywords listed below is found, an error is raised.

The following components implement functions with a scalar value (i.e. a real number):

• distance: distance between two groups;

• distanceZ: projection of a distance vector on an axis;

• distanceXY: projection of a distance vector on a plane;

• distanceInv: mean distance between two groups of atoms (e.g. NOE-based distance);

• angle: angle between three groups;

• dihedral: torsional (dihedral) angle between four groups;

• dipoleAngle: angle between two groups and dipole of a third group;
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• dipoleMagnitude magnitude of the dipole of a group of atoms;

• polarTheta: polar angle of a group in spherical coordinates;

• polarPhi: azimuthal angle of a group in spherical coordinates;

• coordNum: coordination number between two groups;

• selfCoordNum: coordination number of atoms within a group;

• hBond: hydrogen bond between two atoms;

• rmsd: root mean square deviation (RMSD) from a set of reference coordinates;

• eigenvector: projection of the atomic coordinates on a vector;

• orientationAngle: angle of the best-fit rotation from a set of reference coordinates;

• orientationProj: cosine of orientationProj;

• spinAngle: projection orthogonal to an axis of the best-fit rotation from a set of reference
coordinates;

• tilt: projection on an axis of the best-fit rotation from a set of reference coordinates;

• gyration: radius of gyration of a group of atoms;

• inertia: moment of inertia of a group of atoms;

• inertiaZ: moment of inertia of a group of atoms around a chosen axis;

• alpha: α-helix content of a protein segment.

• dihedralPC: projection of protein backbone dihedrals onto a dihedral principal component.

Some components do not return scalar, but vector values:

• distanceVec: distance vector between two groups (length: 3);

• distanceDir: unit vector parallel to distanceVec (length: 3);

• cartesian: vector of atomic Cartesian coordinates (length: N times the number of Cartesian
components requested, X, Y or Z);

• distancePairs: vector of mutual distances (length: N1 ×N2);

• orientation: best-fit rotation, expressed as a unit quaternion (length: 4).

The types of components used in a colvar (scalar or not) determine the properties of that colvar,
and particularly which biasing or analysis methods can be applied.

What if “X” is not listed? If a function type is not available on this list, it may be possible
to define it as a polynomial superposition of existing ones (see ??), or a scripted function (see ??).

In the rest of this section, all available component types are listed, along with their physical
units and the ranges of values, if limited. Such limiting values can be used to define lowerBoundary
and upperBoundary in the parent colvar.
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For each type of component, the available configurations keywords are listed: when two com-
ponents share certain keywords, the second component references to the documentation of the first
one that uses that keyword. The very few keywords that are available for all types of components
are listed in a separate section ??.

13.4.2 Distances

distance: center-of-mass distance between two groups.

The distance {...} block defines a distance component between the two atom groups, group1
and group2.
List of keywords (see also ?? for additional options):

• group1 〈First group of atoms 〉
Context: distance

Acceptable values: Block group1 {...}
Description: First group of atoms.

• group2: analogous to group1

• forceNoPBC 〈Calculate absolute rather than minimum-image distance? 〉
Context: distance

Acceptable values: boolean
Default value: no

Description: By default, in calculations with periodic boundary conditions, the distance

component returns the distance according to the minimum-image convention. If this parame-
ter is set to yes, PBC will be ignored and the distance between the coordinates as maintained
internally will be used. This is only useful in a limited number of special cases, e.g. to de-
scribe the distance between remote points of a single macromolecule, which cannot be split
across periodic cell boundaries, and for which the minimum-image distance might give the
wrong result because of a relatively small periodic cell.

• oneSiteTotalForce 〈Measure total force on group 1 only? 〉
Context: angle, dipoleAngle, dihedral
Acceptable values: boolean
Default value: no

Description: If this is set to yes, the total force is measured along a vector field (see
equation (13.25) in section ??) that only involves atoms of group1. This option is only useful
for ABF, or custom biases that compute total forces. See section ?? for details.

The value returned is a positive number (in Å), ranging from 0 to the largest possible interatomic
distance within the chosen boundary conditions (with PBCs, the minimum image convention is used
unless the forceNoPBC option is set).

distanceZ: projection of a distance vector on an axis.

The distanceZ {...} block defines a distance projection component, which can be seen as mea-
suring the distance between two groups projected onto an axis, or the position of a group along
such an axis. The axis can be defined using either one reference group and a constant vector, or
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dynamically based on two reference groups. One of the groups can be set to a dummy atom to
allow the use of an absolute Cartesian coordinate.
List of keywords (see also ?? for additional options):

• main 〈Main group of atoms 〉
Context: distanceZ

Acceptable values: Block main {...}
Description: Group of atoms whose position r is measured.

• ref 〈Reference group of atoms 〉
Context: distanceZ

Acceptable values: Block ref {...}
Description: Reference group of atoms. The position of its center of mass is noted r1

below.

• ref2 〈Secondary reference group 〉
Context: distanceZ

Acceptable values: Block ref2 {...}
Default value: none
Description: Optional group of reference atoms, whose position r2 can be used to define
a dynamic projection axis: e = (‖r2 − r1‖)−1 × (r2 − r1). In this case, the origin is rm =
1/2(r1 + r2), and the value of the component is e · (r − rm).

• axis 〈Projection axis (Å) 〉
Context: distanceZ

Acceptable values: (x, y, z) triplet
Default value: (0.0, 0.0, 1.0)

Description: The three components of this vector define a projection axis e for the distance
vector r−r1 joining the centers of groups ref and main. The value of the component is then
e · (r − r1). The vector should be written as three components separated by commas and
enclosed in parentheses.

• forceNoPBC: see definition of forceNoPBC (distance component)

• oneSiteTotalForce: see definition of oneSiteTotalForce (distance component)

This component returns a number (in Å) whose range is determined by the chosen boundary
conditions. For instance, if the z axis is used in a simulation with periodic boundaries, the returned
value ranges between −bz/2 and bz/2, where bz is the box length along z (this behavior is disabled
if forceNoPBC is set).

distanceXY: modulus of the projection of a distance vector on a plane.

The distanceXY {...} block defines a distance projected on a plane, and accepts the same key-
words as the component distanceZ, i.e. main, ref, either ref2 or axis, and oneSiteTotalForce.
It returns the norm of the projection of the distance vector between main and ref onto the plane
orthogonal to the axis. The axis is defined using the axis parameter or as the vector joining ref

and ref2 (see distanceZ above).
List of keywords (see also ?? for additional options):
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• main: see definition of main (distanceZ component)

• ref: see definition of ref (distanceZ component)

• ref2: see definition of ref2 (distanceZ component)

• axis: see definition of axis (distanceZ component)

• forceNoPBC: see definition of forceNoPBC (distance component)

• oneSiteTotalForce: see definition of oneSiteTotalForce (distance component)

distanceVec: distance vector between two groups.

The distanceVec {...} block defines a distance vector component, which accepts the same key-
words as the component distance: group1, group2, and forceNoPBC. Its value is the 3-vector
joining the centers of mass of group1 and group2.
List of keywords (see also ?? for additional options):

• group1: see definition of group1 (distance component)

• group2: analogous to group1

• forceNoPBC: see definition of forceNoPBC (distance component)

• oneSiteTotalForce: see definition of oneSiteTotalForce (distance component)

distanceDir: distance unit vector between two groups.

The distanceDir {...} block defines a distance unit vector component, which accepts the same
keywords as the component distance: group1, group2, and forceNoPBC. It returns a 3-dimensional
unit vector d = (dx, dy, dz), with |d| = 1.
List of keywords (see also ?? for additional options):

• group1: see definition of group1 (distance component)

• group2: analogous to group1

• forceNoPBC: see definition of forceNoPBC (distance component)

• oneSiteTotalForce: see definition of oneSiteTotalForce (distance component)

distanceInv: mean distance between two groups of atoms.

The distanceInv {...} block defines a generalized mean distance between two groups of atoms
1 and 2, weighted with exponent 1/n:

d
[n]
1,2 =


 1

N1N2

∑

i,j

(
1

‖dij‖

)n



−1/n

(13.2)

where ‖dij‖ is the distance between atoms i and j in groups 1 and 2 respectively, and n is an even
integer.
List of keywords (see also ?? for additional options):
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• group1: see definition of group1 (distance component)

• group2: analogous to group1

• oneSiteTotalForce: see definition of oneSiteTotalForce (distance component)

• exponent 〈Exponent n in equation 13.2 〉
Context: distanceInv

Acceptable values: positive even integer
Default value: 6
Description: Defines the exponent to which the individual distances are elevated before
averaging. The default value of 6 is useful for example to applying restraints based on NOE-
measured distances.

This component returns a number in Å, ranging from 0 to the largest possible distance within the
chosen boundary conditions.

13.4.3 Angles

angle: angle between three groups.

The angle {...} block defines an angle, and contains the three blocks group1, group2 and group3,
defining the three groups. It returns an angle (in degrees) within the interval [0 : 180].
List of keywords (see also ?? for additional options):

• group1: see definition of group1 (distance component)

• group2: analogous to group1

• group3: analogous to group1

• forceNoPBC: see definition of forceNoPBC (distance component)

• oneSiteTotalForce: see definition of oneSiteTotalForce (distance component)

dipoleAngle: angle between two groups and dipole of a third group.

The dipoleAngle {...} block defines an angle, and contains the three blocks group1, group2 and
group3, defining the three groups, being group1 the group where dipole is calculated. It returns
an angle (in degrees) within the interval [0 : 180].
List of keywords (see also ?? for additional options):

• group1: see definition of group1 (distance component)

• group2: analogous to group1

• group3: analogous to group1

• forceNoPBC: see definition of forceNoPBC (distance component)

• oneSiteTotalForce: see definition of oneSiteTotalForce (distance component)
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dihedral: torsional angle between four groups.

The dihedral {...} block defines a torsional angle, and contains the blocks group1, group2,
group3 and group4, defining the four groups. It returns an angle (in degrees) within the interval
[−180 : 180]. The Colvars module calculates all the distances between two angles taking into
account periodicity. For instance, reference values for restraints or range boundaries can be defined
by using any real number of choice.
List of keywords (see also ?? for additional options):

• group1: see definition of group1 (distance component)

• group2: analogous to group1

• group3: analogous to group1

• group4: analogous to group1

• forceNoPBC: see definition of forceNoPBC (distance component)

• oneSiteTotalForce: see definition of oneSiteTotalForce (distance component)

polarTheta: polar angle in spherical coordinates.

The polarTheta {...} block defines the polar angle in spherical coordinates, for the center of
mass of a group of atoms described by the block atoms. It returns an angle (in degrees) within the
interval [0 : 180]. To obtain spherical coordinates in a frame of reference tied to another group of
atoms, use the fittingGroup (??) option within the atoms block. An example is provided in file
examples/11 polar angles.in of the Colvars public repository.
List of keywords (see also ?? for additional options):

• atoms 〈Atom group 〉
Context: polarPhi

Acceptable values: atoms {...} block
Description: Defines the group of atoms for the COM of which the angle should be
calculated.

polarPhi: azimuthal angle in spherical coordinates.

The polarPhi {...} block defines the azimuthal angle in spherical coordinates, for the center of
mass of a group of atoms described by the block atoms. It returns an angle (in degrees) within the
interval [−180 : 180]. The Colvars module calculates all the distances between two angles taking
into account periodicity. For instance, reference values for restraints or range boundaries can be
defined by using any real number of choice. To obtain spherical coordinates in a frame of reference
tied to another group of atoms, use the fittingGroup (??) option within the atoms block. An
example is provided in file examples/11 polar angles.in of the Colvars public repository.
List of keywords (see also ?? for additional options):

• atoms 〈Atom group 〉
Context: polarPhi

Acceptable values: atoms {...} block
Description: Defines the group of atoms for the COM of which the angle should be
calculated.
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13.4.4 Contacts

coordNum: coordination number between two groups.

The coordNum {...} block defines a coordination number (or number of contacts), which calculates
the function (1 − (d/d0)

n)/(1 − (d/d0)
m), where d0 is the “cutoff” distance, and n and m are

exponents that can control its long range behavior and stiffness [49]. This function is summed over
all pairs of atoms in group1 and group2:

C(group1, group2) =
∑

i∈group1

∑

j∈group2

1 − (|xi − xj|/d0)
n

1 − (|xi − xj |/d0)m
(13.3)

List of keywords (see also ?? for additional options):

• group1: see definition of group1 (distance component)

• group2: analogous to group1

• cutoff 〈 “Interaction” distance (Å) 〉
Context: coordNum

Acceptable values: positive decimal
Default value: 4.0
Description: This number defines the switching distance to define an interatomic contact:
for d≪ d0, the switching function (1 − (d/d0)

n)/(1 − (d/d0)
m) is close to 1, at d = d0 it has

a value of n/m (1/2 with the default n and m), and at d≫ d0 it goes to zero approximately
like dm−n. Hence, for a proper behavior, m must be larger than n.

• cutoff3 〈Reference distance vector (Å) 〉
Context: coordNum

Acceptable values: “(x, y, z)” triplet of positive decimals
Default value: (4.0, 4.0, 4.0)

Description: The three components of this vector define three different cutoffs d0 for each
direction. This option is mutually exclusive with cutoff.

• expNumer 〈Numerator exponent 〉
Context: coordNum

Acceptable values: positive even integer
Default value: 6
Description: This number defines the n exponent for the switching function.

• expDenom 〈Denominator exponent 〉
Context: coordNum

Acceptable values: positive even integer
Default value: 12
Description: This number defines the m exponent for the switching function.

• group2CenterOnly 〈Use only group2’s center of mass 〉
Context: coordNum

Acceptable values: boolean
Default value: off
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Description: If this option is on, only contacts between each atoms in group1 and the
center of mass of group2 are calculated (by default, the sum extends over all pairs of atoms
in group1 and group2). If group2 is a dummyAtom, this option is set to yes by default.

• tolerance 〈Pairlist control 〉
Context: coordNum

Acceptable values: decimal
Default value: 0.0
Description: This controls the pairlist feature, dictating the minimum value for each
summation element in Eq. 13.3 such that the pair that contributed the summation element
is included in subsequent simulation timesteps until the next pairlist recalculation. For most
applications, this value should be small (eg. 0.001) to avoid missing important contributions
to the overall sum. Higher values will improve performance by reducing the number of
pairs that contribute to the sum. Values above 1 will exclude all possible pair interactions.
Similarly, values below 0 will never exclude a pair from consideration. To ensure continuous
forces, Eq. 13.3 is further modified by subtracting the tolerance and then rescaling so that
each pair covers the range [0, 1].

• pairListFrequency 〈Pairlist regeneration frequency 〉
Context: coordNum

Acceptable values: positive integer
Default value: 100
Description: This controls the pairlist feature, dictating how many steps are taken between
regenerating pairlists if the tolerance is greater than 0.

This component returns a dimensionless number, which ranges from approximately 0 (all in-
teratomic distances are much larger than the cutoff) to Ngroup1 × Ngroup2 (all distances are less
than the cutoff), or Ngroup1 if group2CenterOnly is used. For performance reasons, at least one
of group1 and group2 should be of limited size or group2CenterOnly should be used: the cost of
the loop over all pairs grows as Ngroup1 ×Ngroup2. Setting tolerance > 0 ameliorates this to some
degree, although every pair is still checked to regenerate the pairlist.

selfCoordNum: coordination number between atoms within a group.

The selfCoordNum {...} block defines a coordination number similarly to the component coordNum,
but the function is summed over atom pairs within group1:

C(group1) =
∑

i∈group1

∑

j>i

1 − (|xi − xj |/d0)
n

1 − (|xi − xj|/d0)m
(13.4)

The keywords accepted by selfCoordNum are a subset of those accepted by coordNum, namely
group1 (here defining all of the atoms to be considered), cutoff, expNumer, and expDenom.
List of keywords (see also ?? for additional options):

• group1: see definition of group1 (coordNum component)

• cutoff: see definition of cutoff (coordNum component)

• cutoff3: see definition of cutoff3 (coordNum component)
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• expNumer: see definition of expNumer (coordNum component)

• expDenom: see definition of expDenom (coordNum component)

• tolerance: see definition of tolerance (coordNum component)

• pairListFrequency: see definition of pairListFrequency (coordNum component)

This component returns a dimensionless number, which ranges from approximately 0 (all inter-
atomic distances much larger than the cutoff) to Ngroup1× (Ngroup1− 1)/2 (all distances within the
cutoff). For performance reasons, group1 should be of limited size, because the cost of the loop
over all pairs grows as N2

group1.

hBond: hydrogen bond between two atoms.

The hBond {...} block defines a hydrogen bond, implemented as a coordination number (eq. 13.3)
between the donor and the acceptor atoms. Therefore, it accepts the same options cutoff (with a
different default value of 3.3 Å), expNumer (with a default value of 6) and expDenom (with a default
value of 8). Unlike coordNum, it requires two atom numbers, acceptor and donor, to be defined. It
returns an adimensional number, with values between 0 (acceptor and donor far outside the cutoff
distance) and 1 (acceptor and donor much closer than the cutoff).
List of keywords (see also ?? for additional options):

• acceptor 〈Number of the acceptor atom 〉
Context: hBond

Acceptable values: positive integer
Description: Number that uses the same convention as atomNumbers.

• donor: analogous to acceptor

• cutoff: see definition of cutoff (coordNum component)
Note: default value is 3.3 Å.

• expNumer: see definition of expNumer (coordNum component)
Note: default value is 6.

• expDenom: see definition of expDenom (coordNum component)
Note: default value is 8.

13.4.5 Collective metrics

rmsd: root mean square displacement (RMSD) from reference positions.

The block rmsd {...} defines the root mean square replacement (RMSD) of a group of atoms
with respect to a reference structure. For each set of coordinates {x1(t),x2(t), . . . xN (t)}, the

colvar component rmsd calculates the optimal rotation U{xi(t)}→{x
(ref)
i } that best superimposes the

coordinates {xi(t)} onto a set of reference coordinates {x(ref)
i }. Both the current and the reference

coordinates are centered on their centers of geometry, xcog(t) and x
(ref)
cog . The root mean square

displacement is then defined as:

RMSD({xi(t)}, {x(ref)
i }) =

√√√√ 1

N

N∑

i=1

∣∣∣U (xi(t) − xcog(t)) −
(
x

(ref)
i − x

(ref)
cog

)∣∣∣
2

(13.5)
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The optimal rotation U{xi(t)}→{x
(ref)
i } is calculated within the formalism developed in reference [50],

which guarantees a continuous dependence of U{xi(t)}→{x
(ref)
i } with respect to {xi(t)}.

List of keywords (see also ?? for additional options):

• atoms 〈Atom group 〉
Context: rmsd

Acceptable values: atoms {...} block
Description: Defines the group of atoms of which the RMSD should be calculated. Optimal
fit options (such as refPositions and rotateReference) should typically NOT be set within
this block. Exceptions to this rule are the special cases discussed in the Advanced usage
paragraph below.

• refPositions 〈Reference coordinates 〉
Context: rmsd

Acceptable values: space-separated list of (x, y, z) triplets
Description: This option (mutually exclusive with refPositionsFile) sets the reference
coordinates for RMSD calculation, and uses these to compute the roto-translational fit. It is
functionally equivalent to the option refPositions in the atom group definition, which also
supports more advanced fitting options.

• refPositionsFile 〈Reference coordinates file 〉
Context: rmsd

Acceptable values: UNIX filename
Description: This option (mutually exclusive with refPositions) sets the reference co-
ordinates for RMSD calculation, and uses these to compute the roto-translational fit. It is
functionally equivalent to the option refPositionsFile in the atom group definition, which
also supports more advanced fitting options.

• refPositionsCol 〈PDB column containing atom flags 〉
Context: rmsd

Acceptable values: O, B, X, Y, or Z
Description: If refPositionsFile is a PDB file that contains all the atoms in the topology,
this option may be provided to set which PDB field is used to flag the reference coordinates
for atoms.

• refPositionsColValue 〈Atom selection flag in the PDB column 〉
Context: rmsd

Acceptable values: positive decimal
Description: If defined, this value identifies in the PDB column refPositionsCol of the
file refPositionsFile which atom positions are to be read. Otherwise, all positions with a
non-zero value are read.

• atomPermutation 〈Alternate ordering of atoms for RMSD computation 〉
Context: rmsd

Acceptable values: List of atom numbers
Description: If defined, this parameter defines a re-ordering (permutation) of the 1-based
atom numbers that can be used to compute the RMSD, typically due to molecular symmetry.
This parameter can be specified multiple times, each one defining a new permutation: the
returned RMSD value is the minimum over the set of permutations. For example, if the atoms
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making up the group are 6, 7, 8, 9, and atoms 7, 8, and 9 are invariant by circular permutation
(as the hydrogens in a CH3 group), a symmetry-adapted RMSD would be obtained by adding:
atomPermutation 6 8 9 7

atomPermutation 6 9 7 8

Note that this does not affect the least-squares roto-translational fit, which is done using the
topology ordering of atoms, and the reference positions in the order provided. Therefore, this
feature is mostly useful when using custom fitting parameters within the atom group, such
as fittingGroup, or when fitting is disabled altogether.

This component returns a positive real number (in Å).

Advanced usage of the rmsd component.

In the standard usage as described above, the rmsd component calculates a minimum RMSD, that
is, current coordinates are optimally fitted onto the same reference coordinates that are used to
compute the RMSD value. The fit itself is handled by the atom group object, whose parameters
are automatically set by the rmsd component. For very specific applications, however, it may be
useful to control the fitting process separately from the definition of the reference coordinates, to
evaluate various types of non-minimal RMSD values. This can be achieved by setting the related
options (refPositions, etc.) explicitly in the atom group block. This allows for the following
non-standard cases:

1. applying the optimal translation, but no rotation (rotateReference off), to bias or restrain
the shape and orientation, but not the position of the atom group;

2. applying the optimal rotation, but no translation (centerReference off), to bias or restrain
the shape and position, but not the orientation of the atom group;

3. disabling the application of optimal roto-translations, which lets the RMSD component de-
scribe the deviation of atoms from fixed positions in the laboratory frame: this allows for
custom positional restraints within the Colvars module;

4. fitting the atomic positions to different reference coordinates than those used in the RMSD
calculation itself (by specifying refPositions or refPositionsFile within the atom group
as well as within the rmsd block);

5. applying the optimal rotation and/or translation from a separate atom group, defined through
fittingGroup: the RMSD then reflects the deviation from reference coordinates in a separate,
moving reference frame (see example in the section on fittingGroup).

eigenvector: projection of the atomic coordinates on a vector.

The block eigenvector {...} defines the projection of the coordinates of a group of atoms (or
more precisely, their deviations from the reference coordinates) onto a vector in R

3n, where n is
the number of atoms in the group. The computed quantity is the total projection:

p({xi(t)}, {x(ref)
i }) =

n∑

i=1

vi ·
(
U(xi(t) − xcog(t)) − (x

(ref)
i − x(ref)

cog )
)
, (13.6)
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where, as in the rmsd component, U is the optimal rotation matrix, xcog(t) and x
(ref)
cog are the

centers of geometry of the current and reference positions respectively, and vi are the components
of the vector for each atom. Example choices for (vi) are an eigenvector of the covariance matrix
(essential mode), or a normal mode of the system. It is assumed that

∑
i vi = 0: otherwise, the

Colvars module centers the vi automatically when reading them from the configuration.
List of keywords (see also ?? for additional options):

• atoms: see definition of atoms (rmsd component)

• refPositions: see definition of refPositions (rmsd component)

• refPositionsFile: see definition of refPositionsFile (rmsd component)

• refPositionsCol: see definition of refPositionsCol (rmsd component)

• refPositionsColValue: see definition of refPositionsColValue (rmsd component)

• vector 〈Vector components 〉
Context: eigenvector

Acceptable values: space-separated list of (x, y, z) triplets
Description: This option (mutually exclusive with vectorFile) sets the values of the
vector components.

• vectorFile 〈file containing vector components 〉
Context: eigenvector

Acceptable values: UNIX filename
Description: This option (mutually exclusive with vector) sets the name of a coordinate
file containing the vector components; the file is read according to the same format used for
refPositionsFile. For a PDB file specifically, the components are read from the X, Y and
Z fields. Note: The PDB file has limited precision and fixed-point numbers: in some cases,
the vector components may not be accurately represented; a XYZ file should be used instead,
containing floating-point numbers.

• vectorCol 〈PDB column used to flag participating atoms 〉
Context: eigenvector

Acceptable values: O or B
Description: Analogous to atomsCol.

• vectorColValue 〈Value used to flag participating atoms in the PDB file 〉
Context: eigenvector

Acceptable values: positive decimal
Description: Analogous to atomsColValue.

• differenceVector 〈The 3n-dimensional vector is the difference between vector and
refPositions 〉
Context: eigenvector

Acceptable values: boolean
Default value: off

Description: If this option is on, the numbers provided by vector or vectorFile are

interpreted as another set of positions, x′
i: the vector vi is then defined as vi =

(
x′

i − x
(ref)
i

)
.
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This allows to conveniently define a colvar ξ as a projection on the linear transformation
between two sets of positions, “A” and “B”. For convenience, the vector is also normalized so
that ξ = 0 when the atoms are at the set of positions “A” and ξ = 1 at the set of positions
“B”.

This component returns a number (in Å), whose value ranges between the smallest and largest abso-
lute positions in the unit cell during the simulations (see also distanceZ). Due to the normalization
in eq. 13.6, this range does not depend on the number of atoms involved.

gyration: radius of gyration of a group of atoms.

The block gyration {...} defines the parameters for calculating the radius of gyration of a group
of atomic positions {x1(t),x2(t), . . . xN (t)} with respect to their center of geometry, xcog(t):

Rgyr =

√√√√ 1

N

N∑

i=1

|xi(t) − xcog(t)|2 (13.7)

This component must contain one atoms {...} block to define the atom group, and returns a
positive number, expressed in Å.
List of keywords (see also ?? for additional options):

• atoms: see definition of atoms (rmsd component)

inertia: total moment of inertia of a group of atoms.

The block inertia {...} defines the parameters for calculating the total moment of inertia of a
group of atomic positions {x1(t),x2(t), . . . xN (t)} with respect to their center of geometry, xcog(t):

I =
N∑

i=1

|xi(t) − xcog(t)|2 (13.8)

Note that all atomic masses are set to 1 for simplicity. This component must contain one atoms {...}
block to define the atom group, and returns a positive number, expressed in Å2.
List of keywords (see also ?? for additional options):

• atoms: see definition of atoms (rmsd component)

dipoleMagnitude: dipole magnitude of a group of atoms.

The dipoleMagnitude {...} block defines the dipole magnitude of a group of atoms (norm of the
dipole moment’s vector), being atoms the group where dipole magnitude is calculated. It returns
the magnitude in elementary charge e times Å.
List of keywords (see also ?? for additional options):

• atoms: see definition of atoms (rmsd component)
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inertiaZ: total moment of inertia of a group of atoms around a chosen axis.

The block inertiaZ {...} defines the parameters for calculating the component along the axis
e of the moment of inertia of a group of atomic positions {x1(t),x2(t), . . . xN (t)} with respect to
their center of geometry, xcog(t):

Ie =

N∑

i=1

((xi(t) − xcog(t)) · e)2 (13.9)

Note that all atomic masses are set to 1 for simplicity. This component must contain one atoms {...}
block to define the atom group, and returns a positive number, expressed in Å2.
List of keywords (see also ?? for additional options):

• atoms: see definition of atoms (rmsd component)

• axis 〈Projection axis (Å) 〉
Context: inertiaZ

Acceptable values: (x, y, z) triplet
Default value: (0.0, 0.0, 1.0)

Description: The three components of this vector define (when normalized) the projection
axis e.

13.4.6 Rotations

orientation: orientation from reference coordinates.

The block orientation {...} returns the same optimal rotation used in the rmsd component to

superimpose the coordinates {xi(t)} onto a set of reference coordinates {x(ref)
i }. Such component

returns a four dimensional vector q = (q0, q1, q2, q3), with
∑

i q
2
i = 1; this quaternion expresses the

optimal rotation {xi(t)} → {x(ref)
i } according to the formalism in reference [50]. The quaternion

(q0, q1, q2, q3) can also be written as (cos(θ/2), sin(θ/2)u), where θ is the angle and u the normalized
axis of rotation; for example, a rotation of 90◦ around the z axis is expressed as “(0.707, 0.0,

0.0, 0.707)”. The script quaternion2rmatrix.tcl provides Tcl functions for converting to and
from a 4 × 4 rotation matrix in a format suitable for usage in VMD.

As for the component rmsd, the available options are atoms, refPositionsFile, refPositionsCol
and refPositionsColValue, and refPositions.

Note: refPositionsand refPositionsFile define the set of positions from which the optimal
rotation is calculated, but this rotation is not applied to the coordinates of the atoms involved: it
is used instead to define the variable itself.
List of keywords (see also ?? for additional options):

• atoms: see definition of atoms (rmsd component)

• refPositions: see definition of refPositions (rmsd component)

• refPositionsFile: see definition of refPositionsFile (rmsd component)

• refPositionsCol: see definition of refPositionsCol (rmsd component)

• refPositionsColValue: see definition of refPositionsColValue (rmsd component)
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• closestToQuaternion 〈Reference rotation 〉
Context: orientation

Acceptable values: “(q0, q1, q2, q3)” quadruplet
Default value: (1.0, 0.0, 0.0, 0.0) (“null” rotation)
Description: Between the two equivalent quaternions (q0, q1, q2, q3) and (−q0,−q1,−q2,−q3),
the closer to (1.0, 0.0, 0.0, 0.0) is chosen. This simplifies the visualization of the colvar
trajectory when sampled values are a smaller subset of all possible rotations. Note: this only
affects the output, never the dynamics.

Tip: stopping the rotation of a protein. To stop the rotation of an elongated macro-
molecule in solution (and use an anisotropic box to save water molecules), it is possible to define
a colvar with an orientation component, and restrain it through the harmonic bias around the
identity rotation, (1.0, 0.0, 0.0, 0.0). Only the overall orientation of the macromolecule is
affected, and not its internal degrees of freedom. The user should also take care that the macro-
molecule is composed by a single chain, or disable wrapAll otherwise.

orientationAngle: angle of rotation from reference coordinates.

The block orientationAngle {...} accepts the same base options as the component orientation:
atoms, refPositions, refPositionsFile, refPositionsCol and refPositionsColValue. The
returned value is the angle of rotation θ between the current and the reference positions. This angle
is expressed in degrees within the range [0◦:180◦].
List of keywords (see also ?? for additional options):

• atoms: see definition of atoms (rmsd component)

• refPositions: see definition of refPositions (rmsd component)

• refPositionsFile: see definition of refPositionsFile (rmsd component)

• refPositionsCol: see definition of refPositionsCol (rmsd component)

• refPositionsColValue: see definition of refPositionsColValue (rmsd component)

orientationProj: cosine of the angle of rotation from reference coordinates.

The block orientationProj {...} accepts the same base options as the component orientation:
atoms, refPositions, refPositionsFile, refPositionsCol and refPositionsColValue. The
returned value is the cosine of the angle of rotation θ between the current and the reference positions.
The range of values is [-1:1].
List of keywords (see also ?? for additional options):

• atoms: see definition of atoms (rmsd component)

• refPositions: see definition of refPositions (rmsd component)

• refPositionsFile: see definition of refPositionsFile (rmsd component)

• refPositionsCol: see definition of refPositionsCol (rmsd component)

• refPositionsColValue: see definition of refPositionsColValue (rmsd component)
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spinAngle: angle of rotation around a given axis.

The complete rotation described by orientation can optionally be decomposed into two sub-
rotations: one is a “spin” rotation around e, and the other a “tilt” rotation around an axis or-
thogonal to e. The component spinAngle measures the angle of the “spin” sub-rotation around
e.
List of keywords (see also ?? for additional options):

• atoms: see definition of atoms (rmsd component)

• refPositions: see definition of refPositions (rmsd component)

• refPositionsFile: see definition of refPositionsFile (rmsd component)

• refPositionsCol: see definition of refPositionsCol (rmsd component)

• refPositionsColValue: see definition of refPositionsColValue (rmsd component)

• axis 〈Special rotation axis (Å) 〉
Context: tilt

Acceptable values: (x, y, z) triplet
Default value: (0.0, 0.0, 1.0)

Description: The three components of this vector define (when normalized) the special
rotation axis used to calculate the tilt and spinAngle components.

The component spinAngle returns an angle (in degrees) within the periodic interval [−180 : 180].
Note: the value of spinAngle is a continuous function almost everywhere, with the exception

of configurations with the corresponding “tilt” angle equal to 180◦ (i.e. the tilt component is
equal to −1): in those cases, spinAngle is undefined. If such configurations are expected, consider
defining a tilt colvar using the same axis e, and restraining it with a lower wall away from −1.

tilt: cosine of the rotation orthogonal to a given axis.

The component tilt measures the cosine of the angle of the “tilt” sub-rotation, which combined
with the “spin” sub-rotation provides the complete rotation of a group of atoms. The cosine of the
tilt angle rather than the tilt angle itself is implemented, because the latter is unevenly distributed
even for an isotropic system: consider as an analogy the angle θ in the spherical coordinate system.
The component tilt relies on the same options as spinAngle, including the definition of the axis
e. The values of tilt are real numbers in the interval [−1 : 1]: the value 1 represents an orientation
fully parallel to e (tilt angle = 0◦), and the value −1 represents an anti-parallel orientation.
List of keywords (see also ?? for additional options):

• atoms: see definition of atoms (rmsd component)

• refPositions: see definition of refPositions (rmsd component)

• refPositionsFile: see definition of refPositionsFile (rmsd component)

• refPositionsCol: see definition of refPositionsCol (rmsd component)

• refPositionsColValue: see definition of refPositionsColValue (rmsd component)

• axis: see definition of axis (spinAngle component)
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13.4.7 Protein structure descriptors

alpha: α-helix content of a protein segment.

The block alpha {...} defines the parameters to calculate the helical content of a segment of
protein residues. The α-helical content across the N + 1 residues N0 to N0 + N is calculated by
the formula:

α
(
C(N0)

α ,O(N0),C(N0+1)
α ,O(N0+1), . . .N(N0+5),C(N0+5)

α ,O(N0+5), . . .N(N0+N),C(N0+N)
α

)
= (13.10)
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where the score function for the Cα − Cα − Cα angle is defined as:
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and the score function for the O(n) ↔ N(n+4) hydrogen bond is defined through a hBond colvar
component on the same atoms.
List of keywords (see also ?? for additional options):

• residueRange 〈Potential α-helical residues 〉
Context: alpha

Acceptable values: “<Initial residue number>-<Final residue number>”
Description: This option specifies the range of residues on which this component should
be defined. The Colvars module looks for the atoms within these residues named “CA”, “N”
and “O”, and raises an error if any of those atoms is not found.

• psfSegID 〈PSF segment identifier 〉
Context: alpha

Acceptable values: string (max 4 characters)
Description: This option sets the PSF segment identifier for the residues specified in
residueRange. This option is only required when PSF topologies are used.

• hBondCoeff 〈Coefficient for the hydrogen bond term 〉
Context: alpha

Acceptable values: positive between 0 and 1
Default value: 0.5
Description: This number specifies the contribution to the total value from the hydrogen
bond terms. 0 disables the hydrogen bond terms, 1 disables the angle terms.

• angleRef 〈Reference Cα − Cα − Cα angle 〉
Context: alpha

Acceptable values: positive decimal
Default value: 88◦

Description: This option sets the reference angle used in the score function (13.12).
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• angleTol 〈Tolerance in the Cα − Cα − Cα angle 〉
Context: alpha

Acceptable values: positive decimal
Default value: 15◦

Description: This option sets the angle tolerance used in the score function (13.12).

• hBondCutoff 〈Hydrogen bond cutoff 〉
Context: alpha

Acceptable values: positive decimal
Default value: 3.3 Å
Description: Equivalent to the cutoff option in the hBond component.

• hBondExpNumer 〈Hydrogen bond numerator exponent 〉
Context: alpha

Acceptable values: positive integer
Default value: 6
Description: Equivalent to the expNumer option in the hBond component.

• hBondExpDenom 〈Hydrogen bond denominator exponent 〉
Context: alpha

Acceptable values: positive integer
Default value: 8
Description: Equivalent to the expDenom option in the hBond component.

This component returns positive values, always comprised between 0 (lowest α-helical score)
and 1 (highest α-helical score).

dihedralPC: protein dihedral principal component

The block dihedralPC {...} defines the parameters to calculate the projection of backbone dihe-
dral angles within a protein segment onto a dihedral principal component, following the formalism
of dihedral principal component analysis (dPCA) proposed by Mu et al.[51] and documented in
detail by Altis et al.[52]. Given a peptide or protein segment of N residues, each with Ramachan-
dran angles φi and ψi, dPCA rests on a variance/covariance analysis of the 4(N − 1) variables
cos(ψ1), sin(ψ1), cos(φ2), sin(φ2) · · · cos(φN ), sin(φN ). Note that angles φ1 and ψN have little im-
pact on chain conformation, and are therefore discarded, following the implementation of dPCA in
the analysis software Carma.[53]

For a given principal component (eigenvector) of coefficients (ki)1≤i≤4(N−1), the projection of
the current backbone conformation is:

ξ =
N−1∑

n=1

k4n−3 cos(ψn) + k4n−2 sin(ψn) + k4n−1 cos(φn+1) + k4n sin(φn+1) (13.13)

dihedralPC expects the same parameters as the alpha component for defining the relevant
residues (residueRange and psfSegID) in addition to the following:
List of keywords (see also ?? for additional options):

• residueRange: see definition of residueRange (alpha component)

• psfSegID: see definition of psfSegID (alpha component)
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• vectorFile 〈File containing dihedral PCA eigenvector(s) 〉
Context: dihedralPC

Acceptable values: file name
Description: A text file containing the coefficients of dihedral PCA eigenvectors on the
cosine and sine coordinates. The vectors should be arranged in columns, as in the files output
by Carma.[53]

• vectorNumber 〈File containing dihedralPCA eigenvector(s) 〉
Context: dihedralPC

Acceptable values: positive integer
Description: Number of the eigenvector to be used for this component.

13.4.8 Raw data: building blocks for custom functions

cartesian: vector of atomic Cartesian coordinates.

The cartesian {...} block defines a component returning a flat vector containing the Cartesian
coordinates of all participating atoms, in the order (x1, y1, z1, · · · , xn, yn, zn).
List of keywords (see also ?? for additional options):

• atoms 〈Group of atoms 〉
Context: cartesian

Acceptable values: Block atoms {...}
Description: Defines the atoms whose coordinates make up the value of the component.
If rotateReference or centerReference are defined, coordinates are evaluated within the
moving frame of reference.

distancePairs: set of pairwise distances between two groups.

The distancePairs {...} block defines a N1 ×N2-dimensional variable that includes all mutual
distances between the atoms of two groups. This can be useful, for example, to develop a new
variable defined over two groups, by using the scriptedFunction feature.
List of keywords (see also ?? for additional options):

• group1: see definition of group1 (distance component)

• group2: analogous to group1

• forceNoPBC: see definition of forceNoPBC (distance component)

This component returns a N1 × N2-dimensional vector of numbers, each ranging from 0 to the
largest possible distance within the chosen boundary conditions.

13.4.9 Geometric path collective variables

The geometric path collective variables define the progress along a path, s, and the distance from
the path, z. These CVs are proposed by Leines and Ensing[54] , which differ from that[55] proposed
by Branduardi et al., and utilize a set of geometric algorithms. The path is defined as a series of
frames in the atomic Cartesian coordinate space or the CV space. s and z are computed as
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where v1 = sm − z is the vector connecting the current position to the closest frame, v2 =
z− sm−1 is the vector connecting the second closest frame to the current position, v3 = sm+1 − sm

is the vector connecting the closest frame to the third closest frame, and v4 = sm − sm−1 is the
vector connecting the second closest frame to the closest frame. m and M are the current index
of the closest frame and the total number of frames, respectively. If the current position is on the
left of the closest reference frame, the ± in s turns to the positive sign. Otherwise it turns to the
negative sign.

The equations above assume: (i) the frames are equidistant and (ii) the second and the third
closest frames are neighbouring to the closest frame. When these assumptions are not satisfied,
this set of path CV should be used carefully.

gspath: progress along a path defined in atomic Cartesian coordinate space.

In the gspath {...} and the gzpath {...} block all vectors, namely z and sk are defined in atomic
Cartesian coordinate space. More specifically, z = [r1, · · · , rn], where ri is the i-th atom specified
in the atoms block. sk = [rk,1, · · · , rk,n], where rk,i means the i-th atom of the k-th reference frame.
List of keywords (see also ?? for additional options):

• atoms 〈Group of atoms 〉
Context: gspath and gzpath

Acceptable values: Block atoms {...}
Description: Defines the atoms whose coordinates make up the value of the component.

• refPositionsCol 〈PDB column containing atom flags 〉
Context: gspath and gzpath

Acceptable values: O, B, X, Y, or Z
Description: If refPositionsFileN is a PDB file that contains all the atoms in the
topology, this option may be provided to set which PDB field is used to flag the reference
coordinates for atoms.

• refPositionsFileN 〈File containing the reference positions for fitting 〉
Context: gspath and gzpath

Acceptable values: UNIX filename
Description: The path is defined by multiple refPositionsFiles which are similiar to
refPositionsFile in the rmsd CV. If your path consists of 10 nodes, you can list the coor-
dinate file (in PDB or XYZ format) from refPositionsFile1 to refPositionsFile10.

• useSecondClosestFrame 〈Define sm−1 as the second closest frame? 〉
Context: gspath and gzpath

Acceptable values: boolean
Default value: on
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Description: The definition assumes the second closest frame is neighbouring to the closest
frame. This is not always true especially when the path is crooked. If this option is set to
on (default), sm−1 is defined as the second closest frame. If this option is set to off, sm−1 is
defined as the left or right neighbouring frame of the closest frame.

• useThirdClosestFrame 〈Define sm+1 as the third closest frame? 〉
Context: gspath and gzpath

Acceptable values: boolean
Default value: off

Description: The definition assumes the third closest frame is neighbouring to the closest
frame. This is not always true especially when the path is crooked. If this option is set to
on, sm+1 is defined as the third closest frame. If this option is set to off (default), sm+1 is
defined as the left or right neighbouring frame of the closest frame.

• fittingAtoms 〈The atoms that are used for alignment 〉
Context: gspath and gspath

Acceptable values: Group of atoms
Description: Before calculating v1, v2, v3 and v4, the current frame need to be aligned
to the corresponding reference frames. This option specifies which atoms are used to do
alignment.

gzpath: distance from a path defined in atomic Cartesian coordinate space.

List of keywords (see also ?? for additional options):

• useZsquare 〈Compute z2 instead of z 〉
Context: gzpath

Acceptable values: boolean
Default value: off

Description: z is not differentiable when it is zero. This implementation workarounds it
by setting the derivative of z to zero when z = 0. Another workaround is set this option to
on, which computes z2 instead of z, and then z2 is differentiable when it is zero.

The usage of gzpath and gspath is illustrated below:

colvar {
# Progress along the path

name gs

# The path is defined by 5 reference frames (from string-00.pdb to string-04.pdb)

# Use atomic coordinate from atoms 1, 2 and 3 to compute the path

gspath {
atoms {atomnumbers { 1 2 3 }}
refPositionsFile1 string-00.pdb

refPositionsFile2 string-01.pdb

refPositionsFile3 string-02.pdb

refPositionsFile4 string-03.pdb

refPositionsFile5 string-04.pdb

}
}
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colvar {
# Distance from the path

name gz

# The path is defined by 5 reference frames (from string-00.pdb to string-04.pdb)

# Use atomic coordinate from atoms 1, 2 and 3 to compute the path

gzpath {
atoms {atomnumbers { 1 2 3 }}
refPositionsFile1 string-00.pdb

refPositionsFile2 string-01.pdb

refPositionsFile3 string-02.pdb

refPositionsFile4 string-03.pdb

refPositionsFile5 string-04.pdb

}
}

linearCombination: Helper CV to define a linear combination of other CVs

This is a helper CV which can be defined as a linear combination of other CVs. It maybe useful
when you want to define the gspathCV {...} and the gzpathCV {...} as combinations of other
CVs.

gspathCV: progress along a path defined in CV space.

In the gspathCV {...} and the gzpathCV {...} block all vectors, namely z and sk are defined
in CV space. More specifically, z = [ξ1, · · · , ξn], where ξi is the i-th CV. sk = [ξk,1, · · · , ξk,n],
where ξk,i means the i-th CV of the k-th reference frame. It should be note that these two CVs
requires the pathFile option, which specifies a path file. Each line in the path file contains a set
of space-seperated CV value of the reference frame. The sequence of reference frames matches the
sequence of the lines.
List of keywords (see also ?? for additional options):

• useSecondClosestFrame 〈Define sm−1 as the second closest frame? 〉
Context: gspathCV and gzpathCV

Acceptable values: boolean
Default value: on

Description: The definition assumes the second closest frame is neighbouring to the closest
frame. This is not always true especially when the path is crooked. If this option is set to
on (default), sm−1 is defined as the second closest frame. If this option is set to off, sm−1 is
defined as the left or right neighbouring frame of the closest frame.

• useThirdClosestFrame 〈Define sm+1 as the third closest frame? 〉
Context: gspathCV and gzpathCV

Acceptable values: boolean
Default value: off

Description: The definition assumes the third closest frame is neighbouring to the closest
frame. This is not always true especially when the path is crooked. If this option is set to
on, sm+1 is defined as the third closest frame. If this option is set to off (default), sm+1 is
defined as the left or right neighbouring frame of the closest frame.
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• pathFile 〈The file name of the path file. 〉
Context: gspathCV and gzpathCV

Acceptable values: UNIX filename
Description: Defines the nodes or images that constitutes the path in CV space. The CVs
of an image are listed in a line of pathFile using space-seperated format. Lines from top to
button in pathFile corresponds images from initial to last.

gzpathCV: distance from a path defined in CV space.

List of keywords (see also ?? for additional options):

• useZsquare 〈Compute z2 instead of z 〉
Context: gzpathCV

Acceptable values: boolean
Default value: off

Description: z is not differentiable when it is zero. This implementation workarounds it
by setting the derivative of z to zero when z = 0. Another workaround is set this option to
on, which computes z2 instead of z, and then z2 is differentiable when it is zero.

The usage of gzpathCV and gspathCV is illustrated below:

colvar {
# Progress along the path

name gs

# Path defined by the CV space of two dihedral angles

gspathCV {
pathFile ./path.txt

dihedral {
name 001

group1 {atomNumbers {5}}
group2 {atomNumbers {7}}
group3 {atomNumbers {9}}
group4 {atomNumbers {15}}

}
dihedral {
name 002

group1 {atomNumbers {7}}
group2 {atomNumbers {9}}
group3 {atomNumbers {15}}
group4 {atomNumbers {17}}

}
}

}
colvar {
# Distance from the path

name gz

gzpathCV {
pathFile ./path.txt
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dihedral {
name 001

group1 {atomNumbers {5}}
group2 {atomNumbers {7}}
group3 {atomNumbers {9}}
group4 {atomNumbers {15}}

}
dihedral {
name 002

group1 {atomNumbers {7}}
group2 {atomNumbers {9}}
group3 {atomNumbers {15}}
group4 {atomNumbers {17}}

}
}

}

13.4.10 Arithmetic path collective variables

The arithmetic path collective variable in CV space uses the same formula as the one proposed by
Branduardi[55] et al., except that it computes s and z in CV space instead of RMSDs in Cartesian
space. Moreover, this implementation allows different coefficients for each CV components as
described in [56]. Assuming a path is composed of N reference frames and defined in an M -
dimensional CV space, then the equations of s and z of the path are

s =
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i=1 i exp
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2
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where cj is the coefficient(weight) of the j-th CV, xi,j is the value of j-th CV of i-th reference frame
and xj is the value of j-th CV of current frame. λ is a parameter to smooth the variation of s and
z.

aspathCV: progress along a path defined in CV space.

This colvar component computes the s variable.
List of keywords (see also ?? for additional options):

• weights 〈Coefficients of the collective variables 〉
Context: aspathCV and azpathCV

Acceptable values: space-separated numbers in a {...} block
Default value: {1.0 ...}
Description: Define the coefficients. The j-th value in the {...} block corresponds the cj
in the equations.
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• lambda 〈Smoothness of the variation of s and z 〉
Context: aspathCV and azpathCV

Acceptable values: decimal
Default value: inverse of the mean square displacements of successive reference frames
Description: The value of λ in the equations.

• pathFile 〈The file name of the path file. 〉
Context: aspathCV and azpathCV

Acceptable values: UNIX filename
Description: Defines the nodes or images that constitutes the path in CV space. The CVs
of an image are listed in a line of pathFile using space-seperated format. Lines from top to
button in pathFile corresponds images from initial to last.

azpathCV: distance from a path defined in CV space.

This colvar component computes the z variable. Options are the same as in ??.
The usage of azpathCV and aspathCV is illustrated below:

colvar {
# Progress along the path

name as

# Path defined by the CV space of two dihedral angles

aspathCV {
pathFile ./path.txt

weights {1.0 1.0}
lambda 0.005

dihedral {
name 001

group1 {atomNumbers {5}}
group2 {atomNumbers {7}}
group3 {atomNumbers {9}}
group4 {atomNumbers {15}}

}
dihedral {
name 002

group1 {atomNumbers {7}}
group2 {atomNumbers {9}}
group3 {atomNumbers {15}}
group4 {atomNumbers {17}}

}
}

}
colvar {
# Distance from the path

name az

azpathCV {
pathFile ./path.txt

weights {1.0 1.0}
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lambda 0.005

dihedral {
name 001

group1 {atomNumbers {5}}
group2 {atomNumbers {7}}
group3 {atomNumbers {9}}
group4 {atomNumbers {15}}

}
dihedral {
name 002

group1 {atomNumbers {7}}
group2 {atomNumbers {9}}
group3 {atomNumbers {15}}
group4 {atomNumbers {17}}

}
}

}

Path collective variables in Cartesian coordinates

The path collective variables defined by Branduardi et al. [55] are based on RMSDs in Cartesian
coordinates. Noting di the RMSD between the current set of Cartesian coordinates and those of
image number i of the path:
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where λ is the smoothing parameter.
These coordinates are implemented as Tcl-scripted combinations of rmsd components. The

implementation is available as file colvartools/pathCV.tcl, and an example is provided in file
examples/10 pathCV.namd of the Colvars public repository. It implements an optimization pro-
cedure, whereby the distance to a given image is only calculated if its contribution to the sum is
larger than a user-defined tolerance parameter. All distances are calculated every freq timesteps
to update the list of nearby images.

13.4.11 Shared keywords for all components

The following options can be used for any of the above colvar components in order to obtain a
polynomial combination or any user-supplied function provided by scriptedFunction.

• name 〈Name of this component 〉
Context: any component
Acceptable values: string
Default value: type of component + numeric id
Description: The name is an unique case-sensitive string which allows the Colvars module
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to identify this component. This is useful, for example, when combining multiple components
via a scriptedFunction.

• scalable 〈Attempt to calculate this component in parallel? 〉
Context: any component
Acceptable values: boolean
Default value: on, if available
Description: If set to on (default), the Colvars module will attempt to calculate this com-
ponent in parallel to reduce overhead. Whether this option is available depends on the type
of component: currently supported are distance, distanceZ, distanceXY, distanceVec,
distanceDir, angle and dihedral. This flag influences computational cost, but does not
affect numerical results: therefore, it should only be turned off for debugging or testing pur-
poses.

13.4.12 Periodic components

The following components returns real numbers that lie in a periodic interval:

• dihedral: torsional angle between four groups;

• spinAngle: angle of rotation around a predefined axis in the best-fit from a set of reference
coordinates.

In certain conditions, distanceZ can also be periodic, namely when periodic boundary conditions
(PBCs) are defined in the simulation and distanceZ’s axis is parallel to a unit cell vector.

In addition, a custom or scripted scalar colvar may be periodic depending on its user-defined
expression. It will only be treated as such by the Colvars module if the period is specified using
the period keyword, while wrapAround is optional.

The following keywords can be used within periodic components, or wthin scripted variables
??).

• period 〈Period of the component 〉
Context: distanceZ, custom colvars
Acceptable values: positive decimal
Default value: 0.0
Description: Setting this number enables the treatment of distanceZ as a periodic com-
ponent: by default, distanceZ is not considered periodic. The keyword is supported, but
irrelevant within dihedral or spinAngle, because their period is always 360 degrees.

• wrapAround 〈Center of the wrapping interval for periodic variables 〉
Context: distanceZ, dihedral, spinAngle, custom colvars
Acceptable values: decimal
Default value: 0.0
Description: By default, values of the periodic components are centered around zero,
ranging from −P/2 to P/2, where P is the period. Setting this number centers the interval
around this value. This can be useful for convenience of output, or to set the walls for a
harmonicWalls in an order that would not otherwise be allowed.
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Internally, all differences between two values of a periodic colvar follow the minimum image
convention: they are calculated based on the two periodic images that are closest to each other.

Note: linear or polynomial combinations of periodic components (see ??) may become meaning-
less when components cross the periodic boundary. Use such combinations carefully: estimate the
range of possible values of each component in a given simulation, and make use of wrapAround to
limit this problem whenever possible.

13.4.13 Non-scalar components

When one of the following components are used, the defined colvar returns a value that is not a
scalar number:

• distanceVec: 3-dimensional vector of the distance between two groups;

• distanceDir: 3-dimensional unit vector of the distance between two groups;

• orientation: 4-dimensional unit quaternion representing the best-fit rotation from a set of
reference coordinates.

The distance between two 3-dimensional unit vectors is computed as the angle between them. The
distance between two quaternions is computed as the angle between the two 4-dimensional unit
vectors: because the orientation represented by q is the same as the one represented by −q, distances
between two quaternions are computed considering the closest of the two symmetric images.

Non-scalar components carry the following restrictions:

• Calculation of total forces (outputTotalForce option) is currently not implemented.

• Each colvar can only contain one non-scalar component.

• Binning on a grid (abf, histogram and metadynamics with useGrids enabled) is currently
not implemented for colvars based on such components.

Note: while these restrictions apply to individual colvars based on non-scalar components, no
limit is set to the number of scalar colvars. To compute multi-dimensional histograms and PMFs,
use sets of scalar colvars of arbitrary size.

Calculating total forces

In addition to the restrictions due to the type of value computed (scalar or non-scalar), a final
restriction can arise when calculating total force (outputTotalForce option or application of a abf

bias). total forces are available currently only for the following components: distance, distanceZ,
distanceXY, angle, dihedral, rmsd, eigenvector and gyration.

13.4.14 Linear and polynomial combinations of components

To extend the set of possible definitions of colvars ξ(r), multiple components qi(r) can be summed
with the formula:

ξ(r) =
∑

i

ci[qi(r)]
ni (13.20)

where each component appears with a unique coefficient ci (1.0 by default) the positive integer
exponent ni (1 by default).
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Any set of components can be combined within a colvar, provided that they return the same
type of values (scalar, unit vector, vector, or quaternion). By default, the colvar is the sum of its
components. Linear or polynomial combinations (following equation (13.20)) can be obtained by
setting the following parameters, which are common to all components:

• componentCoeff 〈Coefficient of this component in the colvar 〉
Context: any component
Acceptable values: decimal
Default value: 1.0

Description: Defines the coefficient by which this component is multiplied (after being
raised to componentExp) before being added to the sum.

• componentExp 〈Exponent of this component in the colvar 〉
Context: any component
Acceptable values: integer
Default value: 1

Description: Defines the power at which the value of this component is raised before being
added to the sum. When this exponent is different than 1 (non-linear sum), total forces and
the Jacobian force are not available, making the colvar unsuitable for ABF calculations.

Example: To define the average of a colvar across different parts of the system, simply define
within the same colvar block a series of components of the same type (applied to different atom
groups), and assign to each component a componentCoeff of 1/N .

13.4.15 Scripted functions

When scripting is supported (default in VMD), a colvar may be defined as a scripted function of its
components, rather than a linear or polynomial combination. When implementing generic functions
of Cartesian coordinates rather than functions of existing components, the cartesian component
may be particularly useful. A scalar-valued scripted variable may be manually defined as periodic
by providing the keyword period, and the optional keyword wrapAround, with the same meaning
as in periodic components (see ?? for details).

An example of elaborate scripted colvar is given in example 10, in the form of path-based
collective variables as defined by Branduardi et al[55] (Section ??).

• scriptedFunction 〈Compute colvar as a scripted function of its components 〉
Context: colvar

Acceptable values: string
Description: If this option is specified, the colvar will be computed as a scripted function
of the values of its components. To that effect, the user should define two Tcl procedures:
calc <scriptedFunction> and calc <scriptedFunction> gradient, both accepting as
many parameters as the colvar has components. Values of the components will be passed to
those procedures in the order defined by their sorted name strings. Note that if all components
are of the same type, their default names are sorted in the order in which they are defined,
so that names need only be specified for combinations of components of different types.
calc <scriptedFunction> should return one value of type <scriptedFunctionType>, cor-
responding to the colvar value. calc <scriptedFunction> gradient should return a Tcl
list containing the derivatives of the function with respect to each component. If both the

243



function and some of the components are vectors, the gradient is really a Jacobian ma-
trix that should be passed as a linear vector in row-major order, i.e. for a function fi(xj):
∇xf1∇xf2 · · · .

• scriptedFunctionType 〈Type of value returned by the scripted colvar 〉
Context: colvar

Acceptable values: string
Default value: scalar

Description: If a colvar is defined as a scripted function, its type is not constrained by the
types of its components. With this flag, the user may specify whether the colvar is a scalar
or one of the following vector types: vector3 (a 3D vector), unit vector3 (a normalized 3D
vector), or unit quaternion (a normalized quaternion), or vector (a vector whose size is
specified by scriptedFunctionVectorSize). Non-scalar values should be passed as space-
separated lists.

• scriptedFunctionVectorSize 〈Dimension of the vector value of a scripted colvar 〉
Context: colvar

Acceptable values: positive integer
Description: This parameter is only valid when scriptedFunctionType is set to vector.
It defines the vector length of the colvar value returned by the function.

13.4.16 Defining grid parameters

Many algorithms require the definition of boundaries and/or characteristic spacings that can be
used to define discrete “states” in the collective variable, or to combine variables with very different
units. The parameters described below offer a way to specify these parameters only once for each
variable, while using them multiple times in restraints, time-dependent biases or analysis methods.

• width 〈Unit of the variable, or grid spacing 〉
Context: colvar

Acceptable values: positive decimal
Default value: 1.0
Description: This number defines the effective unit of measurement for the collective
variable, and is used by the biasing methods for the following purposes. Harmonic (??),
harmonic walls (??) and linear restraints (??) use it to set the physical unit of the force
constant, which is useful for multidimensional restraints involving multiple variables with
very different units (for examples, Å or degrees ◦) with a single, scaled force constant. The
values of the scaled force constant in the units of each variable are printed at initialization
time. Histograms (??), ABF (??) and metadynamics (??) all use this number as the initial
choice for the grid spacing along this variable: for this reason, width should generally be
no larger than the standard deviation of the colvar in an unbiased simulation. Unless it is
required to control the spacing, it is usually simplest to keep the default value of 1, so that
restraint force constants are provided with their full physical unit.

• lowerBoundary 〈Lower boundary of the colvar 〉
Context: colvar

Acceptable values: decimal
Default value: natural boundary of the function
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Description: Defines the lowest end of the interval of “relevant” values for the variable.
This number can be, for example, a true physical boundary imposed by the choice of function
(e.g. the distance function is always larger than zero): if this is the case, and only one
function is used to define the variable, the default value of this number is set to the lowest
end of the range of values of that function, if available (see Section ??). Alternatively, this
value may be provided by the user, to represent for example the left-most point of a PMF
calculation along this variable. In the latter case, it is the user’s responsibility to either (a)
ensure the variable does not go significantly beyond the boundary (for example by adding a
harmonicWalls restraint, ??), or (b) instruct the code that this is a true physical boundary
by setting hardLowerBoundary.

• upperBoundary 〈Upper boundary of the colvar 〉
Context: colvar

Acceptable values: decimal
Default value: natural boundary of the function
Description: Similarly to lowerBoundary, defines the highest of the “relevant” values of
the variable.

• hardLowerBoundary 〈Whether the lower boundary is the physical lower limit 〉
Context: colvar

Acceptable values: boolean
Default value: provided by the component
Description: When the colvar has a “natural” boundary (for example, a distance colvar
cannot go below 0) this flag is automatically enabled. For more complex variable definitions,
or when lowerBoundary is provided directly by the user, it may be useful to set this flag
explicitly. This option does not affect simulation results, but enables some internal opti-
mizations by letting the code know that the variable is unable to cross the lower boundary,
regardless of whether restraints are applied to it.

• hardUpperBoundary 〈Whether the upper boundary is the physical upper limit of the
colvar’s values 〉
Context: colvar

Acceptable values: boolean
Default value: provided by the component
Description: Analogous to hardLowerBoundary.

• expandBoundaries 〈Allow to expand the two boundaries if needed 〉
Context: colvar

Acceptable values: boolean
Default value: off

Description: If defined, lowerBoundary and upperBoundary may be automatically ex-
panded to accommodate colvar values that do not fit in the initial range. Currently, this
option is used by the metadynamics bias (??) to keep all of its hills fully within the grid.
This option cannot be used when the initial boundaries already span the full period of a
periodic colvar.
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Grid files: multicolumn text format

Many simulation methods and analysis tools write files that contain functions of the collective
variables tabulated on a grid (e.g. potentials of mean force or multidimentional histograms) for
the purpose of analyzing results. Such files are produced by ABF (??), metadynamics (??), mul-
tidimensional histograms (??), as well as any restraint with optional thermodynamic integration
support (??).

In some cases, these files may also be read as input of a new simulation. Suitable input files for
this purpose are typically generated as output files of previous simulations, or directly by the user in
the specific case of ensemble-biased metadynamics (??). This section explains the “multicolumn”
format used by these files. For a multidimensional function f(ξ1, ξ2, . . . ) the multicolumn grid
format is defined as follows:

# Ncv

# min(ξ1) width(ξ1) npoints(ξ1) periodic(ξ1)
# min(ξ2) width(ξ2) npoints(ξ2) periodic(ξ2)
# . . . . . . . . . . . .
# min(ξNcv) width(ξNcv) npoints(ξNcv) periodic(ξNcv)

ξ11 ξ12 . . . ξ1Ncv
f(ξ11 , ξ12 , . . . , ξ1Ncv

)

ξ11 ξ12 . . . ξ2Ncv
f(ξ11 , ξ12 , . . . , ξ2Ncv

)

. . . . . . . . . . . . . . .

Lines beginning with the character “#” are the header of the file. Ncv is the number of collective
variables sampled by the grid. For each variable ξi, min(ξi) is the lowest value sampled by the grid
(i.e. the left-most boundary of the grid along ξi), width(ξi) is the width of each grid step along ξi,
npoints(ξi) is the number of points and periodic(ξi) is a flag whose value is 1 or 0 depending on
whether the grid is periodic along ξi. In most situations:

• min(ξi) is given by the lowerBoundary keyword of the variable ξi;

• width(ξi) is given by the width keyword;

• npoints(ξi) is calculated from the two above numbers and the upperBoundary keyword;

• periodic(ξi) is set to 1 if and only if ξi is periodic and the grids’ boundaries cover its period.

Exception: there is a slightly different header in PMF files computed by ABF (??) or by other
biases with an optional thermodynamic integration (TI) estimator (??). In this case, free-energy
gradients are accumulated on an (npoints)-long grid along each variable ξ: after these gradients are
integrated, the resulting PMF is discretized on a grid with (npoints+1) points along ξ. Therefore,
the edges of the PMF’s grid extend width/2 above and below the original boundaries (unless these
are periodic). The format of the file’s header is otherwise unchanged.

After the header, the rest of the file contains values of the tabulated function f(ξ1, ξ2, . . . ξNcv),
one for each line. The first Ncv columns contain values of ξ1, ξ2, . . . ξNcv and the last column
contains the value of the function f . Points are sorted in ascending order with the fastest-changing
values at the right (“C-style” order). Each sweep of the right-most variable ξNcv is terminated by
an empty line. For two dimensional grid files, this allows quick visualization by programs such as
GNUplot.
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Example 1: multicolumn text file for a one-dimensional histogram with lowerBoundary = 15,
upperBoundary = 48 and width = 0.1.

# 1

# 15 0.1 330 0

15.05 6.14012e-07

15.15 7.47644e-07

. . . . . .
47.85 1.65944e-06

47.95 1.46712e-06

Example 2: multicolumn text file for a two-dimensional histogram of two dihedral angles (periodic
interval with 6◦ bins):

# 2

# -180.0 6.0 30 1

# -180.0 6.0 30 1

-177.0 -177.0 8.97117e-06

-177.0 -171.0 1.53525e-06

. . . . . . . . .
-177.0 177.0 2.442956-06

-171.0 -177.0 2.04702e-05

. . . . . . . . .

13.4.17 Trajectory output

• outputValue 〈Output a trajectory for this colvar 〉
Context: colvar

Acceptable values: boolean
Default value: on

Description: If colvarsTrajFrequency is non-zero, the value of this colvar is written to
the trajectory file every colvarsTrajFrequency steps in the column labeled “<name>”.

• outputVelocity 〈Output a velocity trajectory for this colvar 〉
Context: colvar

Acceptable values: boolean
Default value: off

Description: If colvarsTrajFrequency is defined, the finite-difference calculated velocity
of this colvar are written to the trajectory file under the label “v <name>”.

• outputEnergy 〈Output an energy trajectory for this colvar 〉
Context: colvar

Acceptable values: boolean
Default value: off

Description: This option applies only to extended Lagrangian colvars. If colvarsTrajFrequency
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is defined, the kinetic energy of the extended degree and freedom and the potential energy
of the restraining spring are are written to the trajectory file under the labels “Ek <name>”
and “Ep <name>”.

• outputTotalForce 〈Output a total force trajectory for this colvar 〉
Context: colvar

Acceptable values: boolean
Default value: off

Description: If colvarsTrajFrequency is defined, the total force on this colvar (i.e. the
projection of all atomic total forces onto this colvar — see equation (13.25) in section ??) are
written to the trajectory file under the label “fs <name>”. For extended Lagrangian colvars,
the “total force” felt by the extended degree of freedom is simply the force from the harmonic
spring. Note: not all components support this option. The physical unit for this force is
kcal/mol, divided by the colvar unit U.

• outputAppliedForce 〈Output an applied force trajectory for this colvar 〉
Context: colvar

Acceptable values: boolean
Default value: off

Description: If colvarsTrajFrequency is defined, the total force applied on this colvar
by Colvars biases are written to the trajectory under the label “fa <name>”. For extended
Lagrangian colvars, this force is actually applied to the extended degree of freedom rather
than the geometric colvar itself. The physical unit for this force is kcal/mol divided by the
colvar unit.

13.4.18 Extended Lagrangian

The following options enable extended-system dynamics, where a colvar is coupled to an additional
degree of freedom (fictitious particle) by a harmonic spring. This extended coordinate masks the
colvar and replaces it transparently from the perspective of biasing and analysis methods. Biasing
forces are then applied to the extended degree of freedom, and the actual geometric colvar (function
of Cartesian coordinates) only feels the force from the harmonic spring. This is particularly useful
when combined with an abf bias to perform eABF simulations (13.6.3).

Note that for some biases (harmonicWalls, histogram), this masking behavior is controlled by
the keyword bypassExtendedLagrangian. Specifically for harmonicWalls, the default behavior is
to bypass extended Lagrangian coordinates and act directly on the actual colvars.

• extendedLagrangian 〈Add extended degree of freedom 〉
Context: colvar

Acceptable values: boolean
Default value: off

Description: Adds a fictitious particle to be coupled to the colvar by a harmonic spring.
The fictitious mass and the force constant of the coupling potential are derived from the
parameters extendedTimeConstant and extendedFluctuation, described below. Biasing
forces on the colvar are applied to this fictitious particle, rather than to the atoms directly.
This implements the extended Lagrangian formalism used in some metadynamics simula-
tions [49]. .
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• extendedFluctuation 〈Standard deviation between the colvar and the fictitious particle
(colvar unit) 〉
Context: colvar

Acceptable values: positive decimal
Description: Defines the spring stiffness for the extendedLagrangian mode, by setting
the typical deviation between the colvar and the extended degree of freedom due to thermal
fluctuation. The spring force constant is calculated internally as kBT/σ

2, where σ is the value
of extendedFluctuation.

• extendedTimeConstant 〈Oscillation period of the fictitious particle (fs) 〉
Context: colvar

Acceptable values: positive decimal
Default value: 200

Description: Defines the inertial mass of the fictitious particle, by setting the oscillation
period of the harmonic oscillator formed by the fictitious particle and the spring. The period
should be much larger than the MD time step to ensure accurate integration of the extended
particle’s equation of motion. The fictitious mass is calculated internally as kBT (τ/2πσ)2,
where τ is the period and σ is the typical fluctuation (see above).

• extendedTemp 〈Temperature for the extended degree of freedom (K) 〉
Context: colvar

Acceptable values: positive decimal
Default value: thermostat temperature
Description: Temperature used for calculating the coupling force constant of the extended
variable (see extendedFluctuation) and, if needed, as a target temperature for extended
Langevin dynamics (see extendedLangevinDamping). This should normally be left at its
default value.

• extendedLangevinDamping 〈Damping factor for extended Langevin dynamics (ps−1) 〉
Context: colvar

Acceptable values: positive decimal
Default value: 1.0

Description: If this is non-zero, the extended degree of freedom undergoes Langevin dy-
namics at temperature extendedTemp. The friction force is minus extendedLangevinDamping
times the velocity. This is useful because the extended dynamics coordinate may heat up in
the transient non-equilibrium regime of ABF. Use moderate damping values, to limit viscous
friction (potentially slowing down diffusive sampling) and stochastic noise (increasing the
variance of statistical measurements). In doubt, use the default value.

13.4.19 Multiple time-step variables

• timeStepFactor 〈Compute this colvar once in a certain number of timesteps 〉
Context: colvar

Acceptable values: positive integer
Default value: 1

Description: Instructs this colvar to activate at a time interval equal to the base (MD)
timestep times timeStepFactor.[57] At other time steps, the value of the variable is not
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updated, and no biasing forces are applied. Any forces exerted by biases are accumulated
over the given time interval, then applied as an impulse at the next update.

13.4.20 Backward-compatibility

• subtractAppliedForce 〈Do not include biasing forces in the total force for this colvar 〉
Context: colvar

Acceptable values: boolean
Default value: off

Description: If the colvar supports total force calculation (see ??), all forces applied to this
colvar by biases will be removed from the total force. This keyword allows to recover some
of the “system force” calculation available in the Colvars module before version 2016-08-10.
Please note that removal of all other external forces (including biasing forces applied to a
different colvar) is no longer supported, due to changes in the underlying simulation engines
(primarily NAMD). This option may be useful when continuing a previous simulation where
the removal of external/applied forces is essential. For all new simulations, the use of this
option is not recommended.

13.4.21 Statistical analysis

Run-time calculations of statistical properties that depend explicitly on time can be performed for
individual collective variables. Currently, several types of time correlation functions, running aver-
ages and running standard deviations are implemented. For run-time computation of histograms,
please see the histogram bias (??).

• corrFunc 〈Calculate a time correlation function? 〉
Context: colvar

Acceptable values: boolean
Default value: off

Description: Whether or not a time correlaction function should be calculated for this
colvar.

• corrFuncWithColvar 〈Colvar name for the correlation function 〉
Context: colvar

Acceptable values: string
Description: By default, the auto-correlation function (ACF) of this colvar, ξi, is cal-
culated. When this option is specified, the correlation function is calculated instead with
another colvar, ξj, which must be of the same type (scalar, vector, or quaternion) as ξi.

• corrFuncType 〈Type of the correlation function 〉
Context: colvar

Acceptable values: velocity, coordinate or coordinate p2

Default value: velocity

Description: With coordinate or velocity, the correlation functionCi,j(t) = 〈Π(ξi(t0), ξj(t0 + t))〉
is calculated between the variables ξi and ξj, or their velocities. Π(ξi, ξj) is the scalar product
when calculated between scalar or vector values, whereas for quaternions it is the cosine be-
tween the two corresponding rotation axes. With coordinate p2, the second order Legendre
polynomial, (3 cos(θ)2 − 1)/2, is used instead of the cosine.
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• corrFuncNormalize 〈Normalize the time correlation function? 〉
Context: colvar

Acceptable values: boolean
Default value: on

Description: If enabled, the value of the correlation function at t = 0 is normalized to 1;
otherwise, it equals to 〈O (ξi, ξj)〉.

• corrFuncLength 〈Length of the time correlation function 〉
Context: colvar

Acceptable values: positive integer
Default value: 1000

Description: Length (in number of points) of the time correlation function.

• corrFuncStride 〈Stride of the time correlation function 〉
Context: colvar

Acceptable values: positive integer
Default value: 1

Description: Number of steps between two values of the time correlation function.

• corrFuncOffset 〈Offset of the time correlation function 〉
Context: colvar

Acceptable values: positive integer
Default value: 0

Description: The starting time (in number of steps) of the time correlation function
(default: t = 0). Note: the value at t = 0 is always used for the normalization.

• corrFuncOutputFile 〈Output file for the time correlation function 〉
Context: colvar

Acceptable values: UNIX filename
Default value: outputName.<name>.corrfunc.dat
Description: The time correlation function is saved in this file.

• runAve 〈Calculate the running average and standard deviation 〉
Context: colvar

Acceptable values: boolean
Default value: off

Description: Whether or not the running average and standard deviation should be cal-
culated for this colvar.

• runAveLength 〈Length of the running average window 〉
Context: colvar

Acceptable values: positive integer
Default value: 1000

Description: Length (in number of points) of the running average window.

• runAveStride 〈Stride of the running average window values 〉
Context: colvar

Acceptable values: positive integer
Default value: 1

Description: Number of steps between two values within the running average window.
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• runAveOutputFile 〈Output file for the running average and standard deviation 〉
Context: colvar

Acceptable values: UNIX filename
Default value: outputName.<name>.runave.traj
Description: The running average and standard deviation are saved in this file.

13.5 Selecting atoms

To define collective variables, atoms are usually selected as groups. Each group is defined using
an identifier that is unique in the context of the specific colvar component (e.g. for a distance
component, the two groups are group1 and group2). The identifier is followed by a brace-delimited
block containing selection keywords and other parameters, including an optional name:

• name 〈Unique name for the atom group 〉
Context: atom group
Acceptable values: string
Description: This parameter defines a unique name for this atom group, which can be
referred to in the definition of other atom groups (including in other colvars) by invoking
atomsOfGroup as a selection keyword.

13.5.1 Atom selection keywords

Selection keywords may be used individually or in combination with each other, and each can be
repeated any number of times. Selection is incremental: each keyword adds the corresponding
atoms to the selection, so that different sets of atoms can be combined. However, atoms included
by multiple keywords are only counted once. Below is an example configuration for an atom group
called “atoms”. Note: this is an unusually varied combination of selection keywords, demonstrat-
ing how they can be combined together: most simulations only use one of them.

atoms {

# add atoms 1 and 3 to this group (note: the first atom in the system is 1)

atomNumbers {
1 3

}

# add atoms starting from 20 up to and including 50

atomNumbersRange 20-50

# add all the atoms with occupancy 2 in the file atoms.pdb

atomsFile atoms.pdb

atomsCol O

atomsColValue 2.0

# add all the C-alphas within residues 11 to 20 of segments "PR1" and "PR2"

psfSegID PR1 PR2

atomNameResidueRange CA 11-20
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atomNameResidueRange CA 11-20

# add index group (requires a .ndx file to be provided globally)

indexGroup Water

}

The resulting selection includes atoms 1 and 3, those between 20 and 50, the Cα atoms between
residues 11 and 20 of the two segments PR1 and PR2, and those in the index group called “Water”.
The indices of this group are read from the file provided by the global keyword indexFile.

In the current version, the Colvars module does not manipulate VMD atom selections directly:
however, these can be converted to atom groups within the Colvars configuration string, using
selection keywords such as atomNumbers. The complete list of selection keywords available in VMD
is:

• atomNumbers 〈List of atom numbers 〉
Context: atom group
Acceptable values: space-separated list of positive integers
Description: This option adds to the group all the atoms whose numbers are in the list.
The number of the first atom in the system is 1: to convert from a VMD selection, use
“atomselect get serial”.

• indexGroup 〈Name of index group to be used (GROMACS format) 〉
Context: atom group
Acceptable values: string
Description: If the name of an index file has been provided by indexFile, this option
allows to select one index group from that file: the atoms from that index group will be used
to define the current group.

• atomsOfGroup 〈Name of group defined previously 〉
Context: atom group
Acceptable values: string
Description: Refers to a group defined previously using its user-defined name. This adds
all atoms of that named group to the current group.

• atomNumbersRange 〈Atoms within a number range 〉
Context: atom group
Acceptable values: <Starting number>-<Ending number>
Description: This option includes in the group all atoms whose numbers are within the
range specified. The number of the first atom in the system is 1.

• atomNameResidueRange 〈Named atoms within a range of residue numbers 〉
Context: atom group
Acceptable values: <Atom name> <Starting residue>-<Ending residue>
Description: This option adds to the group all the atoms with the provided name, within
residues in the given range.

• psfSegID 〈PSF segment identifier 〉
Context: atom group
Acceptable values: space-separated list of strings (max 4 characters)
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Description: This option sets the PSF segment identifier for atomNameResidueRange. Mul-
tiple values may be provided, which correspond to multiple instances of atomNameResidueRange,
in order of their occurrence. This option is only necessary if a PSF topology file is used.

• atomsFile 〈PDB file name for atom selection 〉
Context: atom group
Acceptable values: UNIX filename
Description: This option selects atoms from the PDB file provided and adds them to the
group according to numerical flags in the column atomsCol. Note: the sequence of atoms in
the PDB file provided must match that in the system’s topology.

• atomsCol 〈PDB column to use for atom selection flags 〉
Context: atom group
Acceptable values: O, B, X, Y, or Z
Description: This option specifies which PDB column in atomsFile is used to determine
which atoms are to be included in the group.

• atomsColValue 〈Atom selection flag in the PDB column 〉
Context: atom group
Acceptable values: positive decimal
Description: If defined, this value in atomsCol identifies atoms in atomsFile that are
included in the group. If undefined, all atoms with a non-zero value in atomsCol are included.

• dummyAtom 〈Dummy atom position (Å) 〉
Context: atom group
Acceptable values: (x, y, z) triplet
Description: Instead of selecting any atom, this option makes the group a virtual particle
at a fixed position in space. This is useful e.g. to replace a group’s center of geometry with a
user-defined position.

13.5.2 Moving frame of reference.

The following options define an automatic calculation of an optimal translation (centerReference)
or optimal rotation (rotateReference), that superimposes the positions of this group to a provided
set of reference coordinates. This can allow, for example, to effectively remove from certain colvars
the effects of molecular tumbling and of diffusion. Given the set of atomic positions xi, the colvar
ξ can be defined on a set of roto-translated positions x′

i = R(xi − xC) + xref . xC is the geometric
center of the xi, R is the optimal rotation matrix to the reference positions and xref is the geometric
center of the reference positions.

Components that are defined based on pairwise distances are naturally invariant under global
roto-translations. Other components are instead affected by global rotations or translations: how-
ever, they can be made invariant if they are expressed in the frame of reference of a chosen group
of atoms, using the centerReference and rotateReference options. Finally, a few components
are defined by convention using a roto-translated frame (e.g. the minimal RMSD): for these com-
ponents, centerReference and rotateReference are enabled by default. In typical applications,
the default settings result in the expected behavior.
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Warning on rotating frames of reference and periodic boundary conditions. rotateReference

affects coordinates that depend on minimum-image distances in periodic boundary conditions
(PBC). After rotation of the coordinates, the periodic cell vectors become irrelevant: the rotated
system is effectively non-periodic. A safe way to handle this is to ensure that the relevant inter-
group distance vectors remain smaller than the half-size of the periodic cell. If this is not desirable,
one should avoid the rotating frame of reference, and apply orientational restraints to the reference
group instead, in order to keep the orientation of the reference group consistent with the orientation
of the periodic cell.

Warning on rotating frames of reference and ABF. Note that centerReference and
rotateReference may affect the Jacobian derivative of colvar components in a way that is not
taken into account by default. Be careful when using these options in ABF simulations or when
using total force values.

• centerReference 〈 Implicitly remove translations for this group 〉
Context: atom group
Acceptable values: boolean
Default value: off

Description: If this option is on, the center of geometry of the group will be aligned
with that of the reference positions provided by either refPositions or refPositionsFile.
Colvar components will only have access to the aligned positions. Note: unless otherwise
specified, rmsd and eigenvector set this option to on by default.

• rotateReference 〈 Implicitly remove rotations for this group 〉
Context: atom group
Acceptable values: boolean
Default value: off

Description: If this option is on, the coordinates of this group will be optimally super-
imposed to the reference positions provided by either refPositions or refPositionsFile.
The rotation will be performed around the center of geometry if centerReference is on, or
around the origin otherwise. The algorithm used is the same employed by the orientation

colvar component [50]. Forces applied to the atoms of this group will also be implicitly ro-
tated back to the original frame. Note: unless otherwise specified, rmsd and eigenvector

set this option to on by default.

• refPositions 〈Reference positions for fitting (Å) 〉
Context: atom group
Acceptable values: space-separated list of (x, y, z) triplets
Description: This option provides a list of reference coordinates for centerReference

and/or rotateReference, and is mutually exclusive with refPositionsFile. If only centerReference

is on, the list may contain a single (x, y, z) triplet; if also rotateReference is on, the list
should be as long as the atom group, and its order must match the order in which atoms were
defined.

• refPositionsFile 〈File containing the reference positions for fitting 〉
Context: atom group
Acceptable values: UNIX filename
Description: This option provides a list of reference coordinates for centerReference
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and/or rotateReference, and is mutually exclusive with refPositions. The acceptable
file format is XYZ, which is read in double precision, or PDB; the latter is discouraged if
the precision of the reference coordinates is a concern. Atomic positions are read differently
depending on the following scenarios: (i) the file contains exactly as many records as the
atoms in the group: all positions are read in sequence; (ii) (most common case) the file
contains coordinates for the entire system: only the positions corresponding to the numeric
indices of the atom group are read; (iii) if the file is a PDB file and refPositionsCol is
specified, positions are read according to the value of the column refPositionsCol (which
may be the same as atomsCol). In each case, atoms are read from the file in order of increasing
number.

• refPositionsCol 〈PDB column containing atom flags 〉
Context: atom group
Acceptable values: O, B, X, Y, or Z
Description: Like atomsCol for atomsFile, indicates which column to use to identify the
atoms in refPositionsFile (if this is a PDB file).

• refPositionsColValue 〈Atom selection flag in the PDB column 〉
Context: atom group
Acceptable values: positive decimal
Description: Analogous to atomsColValue, but applied to refPositionsCol.

• fittingGroup 〈Use an alternate set of atoms to define the roto-translation 〉
Context: atom group
Acceptable values: Block fittingGroup { ... }
Default value: This atom group itself
Description: If either centerReference or rotateReference is defined, this keyword
defines an alternate atom group to calculate the optimal roto-translation. Use this option
to define a continuous rotation if the structure of the group involved changes significantly (a
typical symptom would be the message “Warning: discontinuous rotation!”).

The following example illustrates the use of fittingGroup as part of a Distance to Bound
Configuration (DBC) coordinate for use in ligand restraints for binding affinity calculations.[58]
The group called “atoms” describes coordinates of a ligand’s atoms, expressed in a moving
frame of reference tied to a binding site (here within a protein). An optimal roto-translation
is calculated automatically by fitting the Cα trace of the rest of the protein onto the coordi-
nates provided by a PDB file. To define a DBC coordinate, this atom group would be used
within an rmsd function.

# Example: defining a group "atoms" (the ligand) whose coordinates are expressed

# in a roto-translated frame of reference defined by a second group (the receptor)

atoms {

atomNumbers 1 2 3 4 5 6 7 # atoms of the ligand (1-based)

centerReference yes

rotateReference yes

fittingGroup {
# define the frame by fitting alpha carbon atoms
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# in 2 protein segments close to the site

psfSegID PROT PROT

atomNameResidueRange CA 1-40

atomNameResidueRange CA 59-100

}
refPositionsFile all.pdb # can be the entire system

}

The following two options have default values appropriate for the vast majority of applications,
and are only provided to support rare, special cases.

• enableFitGradients 〈 Include the roto-translational contribution to colvar gradients 〉
Context: atom group
Acceptable values: boolean
Default value: on

Description: When either centerReference or rotateReference is on, the gradients
of some colvars include terms proportional to ∂R/∂xi (rotational gradients) and ∂xC/∂xi

(translational gradients). By default, these terms are calculated and included in the total
gradients; if this option is set to off, they are neglected. In the case of a minimum RMSD
component, this flag is automatically disabled because the contributions of those derivatives
to the gradients cancel out.

• enableForces 〈Apply forces from this colvar to this group 〉
Context: atom group
Acceptable values: boolean
Default value: on

Description: If this option is off, no forces are applied the atoms in the group. Other
forces are not affected (i.e. those from the MD engine, from other colvars, and other external
forces). For dummy atoms, this option is off by default.

13.5.3 Treatment of periodic boundary conditions.

When periodic boundary conditions are defined, the Colvars module requires that the coordinates
of each molecular fragment are contiguous, without “jumps” when a fragment is partially wrapped
near a periodic boundary. The Colvars module relies on this assumption when calculating a group’s
center of geometry, but the condition may fail if the group spans different molecules. In general,
coordinate wrapping does not affect the calculation of colvars if each atom group satisfies one or
more of the following:

i) it is composed by only one atom;

ii) it is used by a colvar component which does not make use of its center of geometry, but only
of pairwise distances (distanceInv, coordNum, hBond, alpha, dihedralPC);

iii) it is used by a colvar component that ignores the ill-defined Cartesian components of its
center of mass (such as the x and y components of a membrane’s center of mass modeled
with distanceZ).
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If none of these conditions are met, wrapping may affect the calculation of collective variables:
a possible solution is to use pbc wrap or pbc unwrap prior to processing a trajectory with the
Colvars module.

13.5.4 Performance of a Colvars calculation based on group size.

In simulations performed with message-passing programs (such as NAMD or LAMMPS), the cal-
culation of energy and forces is distributed (i.e., parallelized) across multiple nodes, as well as over
the processor cores of each node. When Colvars is enabled, certain atomic coordinates are col-
lected on a single node, where the calculation of collective variables and of their biases is executed.
This means that for simulations over large numbers of nodes, a Colvars calculation may produce a
significant overhead, coming from the costs of transmitting atomic coordinates to one node and of
processing them.

Performance can be improved in multiple ways:

• The calculation of variables, components and biases can be distributed over the processor cores
of the node where the Colvars module is executed. Currently, an equal weight is assigned to
each colvar, or to each component of those colvars that include more than one component. The
performance of simulations that use many colvars or components is improved automatically.
For simulations that use a single large colvar, it may be advisable to partition it in multiple
components, which will be then distributed across the available cores. If printed, the
message “SMP parallelism is available.” indicates the availability of the option (will be
supported in a future release of VMD). If available, the option is turned on by default, but
may be disabled using the keyword smp if required for debugging.

• As a general rule, the size of atom groups should be kept relatively small (up to a few
thousands of atoms, depending on the size of the entire system in comparison). To gain an
estimate of the computational cost of a large colvar, one can use a test calculation of the same
colvar in VMD (hint: use the time Tcl command to measure the cost of running cv update).

13.6 Biasing and analysis methods

A biasing or analysis method can be applied to existing collective variables by using the following
configuration:

<biastype> {
name <name>
colvars <xi1> <xi2> ...

<parameters>
}

The keyword <biastype> indicates the method of choice. There can be multiple instances of the
same method, e.g. using multiple harmonic blocks allows defining multiple restraints.

All biasing and analysis methods implemented recognize the following options:

• name 〈 Identifier for the bias 〉
Context: colvar bias
Acceptable values: string
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Default value: <type of bias><bias index>
Description: This string is used to identify the bias or analysis method in the output, and
to name some output files. Tip: because the default name depends on the order of definition,
but the outcome of the simulation does not, it may be convenient to assign consistent names
for certain biases; for example, you may want to name a moving harmonic restraint smd, so
that it can always be identified regardless of the presence of other restraints.

• colvars 〈Collective variables involved 〉
Context: colvar bias
Acceptable values: space-separated list of colvar names
Description: This option selects by name all the variables to which this bias or analysis
will be applied.

• outputEnergy 〈Write the current bias energy to the trajectory file 〉
Context: colvar bias
Acceptable values: boolean
Default value: off

Description: If this option is chosen and colvarsTrajFrequency is not zero, the current
value of the biasing energy will be written to the trajectory file during the simulation.

• outputFreq 〈Frequency (number of steps) at which output files are written 〉
Context: colvar bias
Acceptable values: positive integer
Default value: colvarsRestartFrequency

Description: If this bias produces aggregated data that needs to be written to disk (for
example, a PMF), this number specifies the number of steps after which these data are written
to files. A value of zero disables writing files for this bias during the simulation (except for
outputEnergy, which is controlled by colvarsTrajFrequency). All output files are also
written at the end of a simulation run, regardless of the value of this number. In VMD, this
option has no effect.

• bypassExtendedLagrangian 〈Apply bias to actual colvars, bypassing extended coordinates 〉
Context: colvar bias
Acceptable values: boolean
Default value: off

Description: This option is implemented by the harmonicWalls and histogram biases. It
is only relevant if the bias is applied to one or several extended-Lagrangian colvars (??), for
example within an eABF (13.6.3) simulation. Usually, biases use the value of the extended
coordinate as a proxy for the actual colvar, and their biasing forces are applied to the extended
coordinates as well. If bypassExtendedLagrangian is enabled, the bias behaves as if there
were no extended coordinates, and accesses the value of the underlying colvars, applying any
biasing forces along the gradients of those variables.

• stepZeroData 〈Accumulate data starting at step 0 of a simulation run 〉
Context: colvar bias
Acceptable values: boolean
Default value: off

Description: This option is meaningful for biases that record and accumulate data during
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a simulation, such as ABF (??), metadynamics (??), histograms (??) and in general any bias
that accumulates free-energy samples with thermodynamic integration, or TI (??). When this
option is disabled (default), data will only be recorded into the bias after the first coordinate
update: this is generally the correct choice in simulation runs. Biasing energy and forces will
always be computed for all active biases, regardless of this option.

13.6.1 Thermodynamic integration

The methods implemented here provide a variety of estimators of conformational free-energies.
These are carried out at run-time, or with the use of post-processing tools over the generated
output files. The specifics of each estimator are discussed in the documentation of each biasing or
analysis method.

A special case is the traditional thermodynamic integration (TI) method, used for example to
compute potentials of mean force (PMFs). Most types of restraints (??, ??, ??, ...) as well as
metadynamics (??) can optionally use TI alongside their own estimator, based on the keywords
documented below.

• writeTIPMF 〈Write the PMF computed by thermodynamic integration 〉
Context: colvar bias
Acceptable values: boolean
Default value: off

Description: If the bias is applied to a variable that supports the calculation of total forces
(see outputotalForce and ??), this option allows calculating the corresponding PMF by
thermodynamic integration, and writing it to the file outputName.<name>.ti.pmf, where
<name> is the name of the bias and the contents of the file are in multicolumn text format
(??). The total force includes the forces applied to the variable by all bias, except those from
this bias itself. If any bias applies time-dependent forces besides the one using this option,
an error is raised.

• writeTISamples 〈Write the free-energy gradient samples 〉
Context: colvar bias
Acceptable values: boolean
Default value: off

Description: This option allows to compute total forces for use with thermodynamic inte-
gration as done by the keyword writeTIPMF. The names of the files containing the variables’
histogram and mean thermodynamic forces are outputName.<name>.ti.count and output-
Name.<name>.ti.force, respectively: these can be used by abf integrate (see ??) or
similar utility. Note that because the .force file contains mean forces instead of free-energy
gradients, abf integrate <filename> -s -1.0 should be used. This option is on by de-
fault when writeTIPMF is on, but can be enabled separately if the bias is applied to more
than one variable, making not possible the direct integration of the PMF at runtime. If any
bias applies time-dependent forces besides the one using this option, an error is raised.

In adaptive biasing force (ABF) (??) the above keywords are not recognized, because their
functionality is either included already (conventional ABF) or not available (extended-system ABF).
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13.6.2 Adaptive Biasing Force

For a full description of the Adaptive Biasing Force method, see reference [59]. For details about
this implementation, see references [60] and [61]. When publishing research that makes use
of this functionality, please cite references [59] and [61].

An alternate usage of this feature is the application of custom tabulated biasing potentials to
one or more colvars. See inputPrefix and updateBias below.

Combining ABF with the extended Lagrangian feature (??) of the variables produces the
extended-system ABF variant of the method (13.6.3).

ABF is based on the thermodynamic integration (TI) scheme for computing free energy profiles.
The free energy as a function of a set of collective variables ξ = (ξi)i∈[1,n] is defined from the
canonical distribution of ξ, P(ξ):

A(ξ) = − 1

β
lnP(ξ) +A0 (13.21)

In the TI formalism, the free energy is obtained from its gradient, which is generally calculated
in the form of the average of a force F ξ exerted on ξ, taken over an iso-ξ surface:

∇ξA(ξ) = 〈−F ξ〉ξ (13.22)

Several formulae that take the form of (13.22) have been proposed. This implementation relies
partly on the classic formulation [62], and partly on a more versatile scheme originating in a work
by Ruiz-Montero et al. [63], generalized by den Otter [64] and extended to multiple variables by
Ciccotti et al. [65]. Consider a system subject to constraints of the form σk(x) = 0. Let (vi)i∈[1,n]

be arbitrarily chosen vector fields (R3N → R
3N ) verifying, for all i, j, and k:

vi · ∇x ξj = δij (13.23)

vi · ∇x σk = 0 (13.24)

then the following holds [65]:

∂A

∂ξi
= 〈vi · ∇x V − kBT∇x · vi〉ξ (13.25)

where V is the potential energy function. vi can be interpreted as the direction along which the
force acting on variable ξi is measured, whereas the second term in the average corresponds to the
geometric entropy contribution that appears as a Jacobian correction in the classic formalism [62].
Condition (13.23) states that the direction along which the total force on ξi is measured is orthogonal
to the gradient of ξj, which means that the force measured on ξi does not act on ξj.

Equation (13.24) implies that constraint forces are orthogonal to the directions along which the
free energy gradient is measured, so that the measurement is effectively performed on unconstrained
degrees of freedom.

In the framework of ABF, Fξ is accumulated in bins of finite size δξ, thereby providing an
estimate of the free energy gradient according to equation (13.22). The biasing force applied along
the collective variables to overcome free energy barriers is calculated as:

FABF = α(Nξ) × ∇x Ã(ξ) (13.26)
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where ∇x Ã denotes the current estimate of the free energy gradient at the current point ξ in
the collective variable subspace, and α(Nξ) is a scaling factor that is ramped from 0 to 1 as the
local number of samples Nξ increases to prevent nonequilibrium effects in the early phase of the
simulation, when the gradient estimate has a large variance. See the fullSamples parameter below
for details.

As sampling of the phase space proceeds, the estimate ∇x Ã is progressively refined. The
biasing force introduced in the equations of motion guarantees that in the bin centered around ξ,
the forces acting along the selected collective variables average to zero over time. Eventually, as
the undelying free energy surface is canceled by the adaptive bias, evolution of the system along ξ

is governed mainly by diffusion. Although this implementation of ABF can in principle be used in
arbitrary dimension, a higher-dimension collective variable space is likely to be difficult to sample
and visualize. Most commonly, the number of variables is one or two, sometimes three.

ABF requirements on collective variables

The following conditions must be met for an ABF simulation to be possible and to produce an
accurate estimate of the free energy profile. Note that these requirements do not apply when using
the extended-system ABF method (13.6.3).

1. Only linear combinations of colvar components can be used in ABF calculations.

2. Availability of total forces is necessary. The following colvar components can be used in ABF
calculations: distance, distance xy, distance z, angle, dihedral, gyration, rmsd and
eigenvector. Atom groups may not be replaced by dummy atoms, unless they are excluded
from the force measurement by specifying oneSiteTotalForce, if available.

3. Mutual orthogonality of colvars. In a multidimensional ABF calculation, equation (13.23)
must be satisfied for any two colvars ξi and ξj. Various cases fulfill this orthogonality condi-
tion:

• ξi and ξj are based on non-overlapping sets of atoms.

• atoms involved in the force measurement on ξi do not participate in the definition of
ξj . This can be obtained using the option oneSiteTotalForce of the distance, angle,
and dihedral components (example: Ramachandran angles φ, ψ).

• ξi and ξj are orthogonal by construction. Useful cases are the sum and difference of two
components, or distance z and distance xy using the same axis.

4. Mutual orthogonality of components: when several components are combined into a colvar,
it is assumed that their vectors vi (equation (13.25)) are mutually orthogonal. The cases
described for colvars in the previous paragraph apply.

5. Orthogonality of colvars and constraints: equation 13.24 can be satisfied in two simple ways,
if either no constrained atoms are involved in the force measurement (see point 3 above) or
pairs of atoms joined by a constrained bond are part of an atom group which only intervenes
through its center (center of mass or geometric center) in the force measurement. In the latter
case, the contributions of the two atoms to the left-hand side of equation 13.24 cancel out.
For example, all atoms of a rigid TIP3P water molecule can safely be included in an atom
group used in a distance component.
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Parameters for ABF

ABF depends on parameters from collective variables to define the grid on which free energy
gradients are computed. In the direction of each colvar, the grid ranges from lowerBoundary to
upperBoundary, and the bin width (grid spacing) is set by the width parameter. The following
specific parameters can be set in the ABF configuration block:

• name: see definition of name (biasing and analysis methods)

• colvars: see definition of colvars (biasing and analysis methods)

• outputEnergy: see definition of outputEnergy (biasing and analysis methods)

• outputFreq: see definition of outputFreq (biasing and analysis methods)

• stepZeroData: see definition of stepZeroData (biasing and analysis methods)

• fullSamples 〈Number of samples in a bin prior to application of the ABF 〉
Context: abf

Acceptable values: positive integer
Default value: 200
Description: To avoid nonequilibrium effects due to large fluctuations of the force exerted
along the colvars, it is recommended to apply a biasing force only after a the estimate has
started converging. If fullSamples is non-zero, the applied biasing force is scaled by a factor
α(Nξ) between 0 and 1. If the number of samples Nξ in the current bin is higher than
fullSamples, the factor is one. If it is less than half of fullSamples, the factor is zero and
no bias is applied. Between those two thresholds, the factor follows a linear ramp from 0 to
1: α(Nξ) = (2Nξ/fullSamples) − 1.

• maxForce 〈Maximum magnitude of the ABF force 〉
Context: abf

Acceptable values: positive decimals (one per colvar)
Default value: disabled
Description: This option enforces a cap on the magnitude of the biasing force effectively
applied by this ABF bias on each colvar. This can be useful in the presence of singularities
in the PMF such as hard walls, where the discretization of the average force becomes very
inaccurate, causing the colvar’s diffusion to get “stuck” at the singularity. To enable this cap,
provide one non-negative value for each colvar. The unit of force is kcal/mol divided by the
colvar unit.

• hideJacobian 〈Remove geometric entropy term from calculated free energy gradient? 〉
Context: abf

Acceptable values: boolean
Default value: no

Description: In a few special cases, most notably distance-based variables, an alternate
definition of the potential of mean force is traditionally used, which excludes the Jacobian term
describing the effect of geometric entropy on the distribution of the variable. This results, for
example, in particle-particle potentials of mean force being flat at large separations. Setting
this parameter to yes causes the output data to follow that convention, by removing this
contribution from the output gradients while applying internally the corresponding correction
to ensure uniform sampling. It is not allowed for colvars with multiple components.
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• historyFreq 〈Frequency (in timesteps) at which ABF history files are accumulated 〉
Context: abf

Acceptable values: positive integer
Default value: 0
Description: If this number is non-zero, the free energy gradient estimate and sampling
histogram (and the PMF in one-dimensional calculations) are written to files on disk at the
given time interval. History file names use the same prefix as output files, with “.hist”
appended (outputName.hist.pmf). historyFreq must be a multiple of outputFreq.

• inputPrefix 〈Filename prefix for reading ABF data 〉
Context: abf

Acceptable values: list of strings
Description: If this parameter is set, for each item in the list, ABF tries to read a gradient
and a sampling files named <inputPrefix>.grad and <inputPrefix>.count. This is done
at startup and sets the initial state of the ABF algorithm. The data from all provided files
is combined appropriately. Also, the grid definition (min and max values, width) need not
be the same that for the current run. This command is useful to piece together data from
simulations in different regions of collective variable space, or change the colvar boundary
values and widths. Note that it is not recommended to use it to switch to a smaller width, as
that will leave some bins empty in the finer data grid. This option is NOT compatible with
reading the data from a restart file (cv load command).

• applyBias 〈Apply the ABF bias? 〉
Context: abf

Acceptable values: boolean
Default value: yes

Description: If this is set to no, the calculation proceeds normally but the adaptive
biasing force is not applied. Data is still collected to compute the free energy gradient. This
is mostly intended for testing purposes, and should not be used in routine simulations.

• updateBias 〈Update the ABF bias? 〉
Context: abf

Acceptable values: boolean
Default value: yes

Description: If this is set to no, the initial biasing force (e.g. read from a restart file or
through inputPrefix) is not updated during the simulation. As a result, a constant bias is
applied. This can be used to apply a custom, tabulated biasing potential to any combination
of colvars. To that effect, one should prepare a gradient file containing the gradient of the
potential to be applied (negative of the bias force), and a count file containing only values
greater than fullSamples. These files must match the grid parameters of the colvars.

Output files

The ABF bias produces the following files, all in multicolumn text format (??):

• outputName.grad: current estimate of the free energy gradient (grid), in multicolumn;

• outputName.count: histogram of samples collected, on the same grid;
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• outputName.pmf: integrated free energy profile or PMF (for dimensions 1, 2 or 3).

Also in the case of one-dimensional calculations, the ABF bias can report its current energy
via outputEnergy; in higher dimensions, such computation is not implemented and the energy
reported is zero.

If several ABF biases are defined concurrently, their name is inserted to produce unique filenames
for output, as in outputName.abf1.grad. This should not be done routinely and could lead to
meaningless results: only do it if you know what you are doing!

If the colvar space has been partitioned into sections (windows) in which independent ABF sim-
ulations have been run, the resulting data can be merged using the inputPrefix option described
above (a run of 0 steps is enough).

Multidimensional free energy surfaces

If a one-dimensional calculation is performed, the estimated free energy gradient is integrated using
a simple rectangle rule. In dimension 2 or 3, it is calculated as the solution of a Poisson equation:

∆A(ξ) = −∇ · 〈Fξ〉 (13.27)

wehere ∆A is the Laplacian of the free energy. The potential of mean force is written under the file
name <outputName>.pmf, in a plain text format (see ??) that can be read by most data plotting
and analysis programs (e.g. Gnuplot). This applies periodic boundary conditions to periodic
coordinates, and Neumann boundary conditions otherwise (imposed free energy gradient at the
boundary of the domain). Note that the grid used for free energy discretization is extended by one
point along non-periodic coordinates, but not along periodic coordinates.

In dimension 4 or greater, integrating the discretized gradient becomes non-trivial. The stan-
dalone utility abf integrate is provided to perform that task. Because 4D ABF calculations are
uncommon, this tool is practically deprecated by the Poisson integration described above.

abf integrate reads the gradient data and uses it to perform a Monte-Carlo (M-C) simulation
in discretized collective variable space (specifically, on the same grid used by ABF to discretize the
free energy gradient). By default, a history-dependent bias (similar in spirit to metadynamics) is
used: at each M-C step, the bias at the current position is incremented by a preset amount (the hill
height). Upon convergence, this bias counteracts optimally the underlying gradient; it is negated
to obtain the estimate of the free energy surface.

abf integrate is invoked using the command-line:
abf integrate <gradient file> [-n <nsteps>] [-t <temp>] [-m (0|1)] [-h <hill height>] [-f <factor>]

The gradient file name is provided first, followed by other parameters in any order. They are
described below, with their default value in square brackets:

• -n: number of M-C steps to be performed; by default, a minimal number of steps is chosen
based on the size of the grid, and the integration runs until a convergence criterion is satisfied
(based on the RMSD between the target gradient and the real PMF gradient)

• -t: temperature for M-C sampling (unrelated to the simulation temperature) [500 K]

• -s: scaling factor for the gradients; when using a histogram of total forces obtained from
outputTotalForce or the .force file written by writeTISamples, a scaling factor of -1
should be used [1.0]

• -m: use metadynamics-like biased sampling? (0 = false) [1]
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• -h: increment for the history-dependent bias (“hill height”) [0.01 kcal/mol]

• -f: if non-zero, this factor is used to scale the increment stepwise in the second half of the
M-C sampling to refine the free energy estimate [0.5]

Using the default values of all parameters should give reasonable results in most cases.

abf integrate produces the following output files:

• <gradient file>.pmf: computed free energy surface

• <gradient file>.histo: histogram of M-C sampling (not usable in a straightforward way
if the history-dependent bias has been applied)

• <gradient file>.est: estimated gradient of the calculated free energy surface (from finite
differences)

• <gradient file>.dev: deviation between the user-provided numerical gradient and the ac-
tual gradient of the calculated free energy surface. The RMS norm of this vector field is used
as a convergence criteria and displayed periodically during the integration.

Note: Typically, the “deviation” vector field does not vanish as the integration converges. This
happens because the numerical estimate of the gradient does not exactly derive from a potential,
due to numerical approximations used to obtain it (finite sampling and discretization on a grid).

13.6.3 Extended-system Adaptive Biasing Force (eABF)

Extended-system ABF (eABF) is a variant of ABF (??) where the bias is not applied directly to the
collective variable, but to an extended coordinate (“fictitious variable”) λ that evolves dynamically
according to Newtonian or Langevin dynamics. Such an extended coordinate is enabled for a given
colvar using the extendedLagrangian and associated keywords (??). The theory of eABF and the
present implementation are documented in detail in reference [66].

Defining an ABF bias on a colvar wherein the extendedLagrangian option is active will perform
eABF automatically; there is no dedicated option.

The extended variable λ is coupled to the colvar z = ξ(q) by the harmonic potential (k/2)(z−λ)2.
Under eABF dynamics, the adaptive bias on λ is the running estimate of the average spring force:

F bias(λ∗) = 〈k(λ− z)〉λ∗ (13.28)

where the angle brackets indicate a canonical average conditioned by λ = λ∗. At long simulation
times, eABF produces a flat histogram of the extended variable λ, and a flattened histogram of ξ,
whose exact shape depends on the strength of the coupling as defined by extendedFluctuation in
the colvar. Coupling should be somewhat loose for faster exploration and convergence, but strong
enough that the bias does help overcome barriers along the colvar ξ.[66] Distribution of the colvar
may be assessed by plotting its histogram, which is written to the outputName.zcount file in every
eABF simulation. Note that a histogram bias (??) applied to an extended-Lagrangian colvar will
access the extended degree of freedom λ, not the original colvar ξ; however, the joint histogram
may be explicitly requested by listing the name of the colvar twice in a row within the colvars

parameter of the histogram block.
The eABF PMF is that of the coordinate λ, it is not exactly the free energy profile of ξ. That

quantity can be calculated based on the CZAR estimator.
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CZAR estimator of the free energy

The corrected z-averaged restraint (CZAR) estimator is described in detail in reference [66]. It is
computed automatically in eABF simulations, regardless of the number of colvars involved. Note
that ABF may also be applied on a combination of extended and non-extended colvars; in that
case, CZAR still provides an unbiased estimate of the free energy gradient.

CZAR estimates the free energy gradient as:

A′(z) = − 1

β

d ln ρ̃(z)

dz
+ k(〈λ〉z − z). (13.29)

where z = ξ(q) is the colvar, λ is the extended variable harmonically coupled to z with a force
constant k, and ρ̃(z) is the observed distribution (histogram) of z, affected by the eABF bias.

Parameters for the CZAR estimator are:

• CZARestimator 〈Calculate CZAR estimator of the free energy? 〉
Context: abf

Acceptable values: boolean
Default value: yes

Description: This option is only available when ABF is performed on extended-Lagrangian
colvars. When enabled, it triggers calculation of the free energy following the CZAR estimator.

• writeCZARwindowFile 〈Write internal data from CZAR to a separate file? 〉
Context: abf

Acceptable values: boolean
Default value: no

Description: When this option is enabled, eABF simulations will write a file containing
the z-averaged restraint force under the name outputName.zgrad. The same information is
always included in the colvars state file, which is sufficient for restarting an eABF simulation.
These separate file is only useful when joining adjacent windows from a stratified eABF
simulation, either to continue the simulation in a broader window or to compute a CZAR
estimate of the PMF over the full range of the coordinate(s). Important warning. Unbiased
free-energy estimators from eABF dynamics rely on some form of sampling histogram. When
running stratified (windowed) calculations this histogram becomes discontinuous, and as a
result the free energy gradient estimated by CZAR is inaccurate at the window boundary,
resulting in visible ”blips” in the PMF. As a workaround, we recommend manually replacing
the two free energy gradient values at the boundary, either with the ABF values from .grad
files (accurate in the limit of tight coupling), or with values interpolated for the neighboring
values of the CZAR gradient.

Similar to ABF, the CZAR estimator produces two output files in multicolumn text format
(??):

• outputName.czar.grad: current estimate of the free energy gradient (grid), in multicolumn;

• outputName.czar.pmf: only for one-dimensional calculations, integrated free energy profile
or PMF.

The sampling histogram associated with the CZAR estimator is the z-histogram, which is written
in the file outputName.zcount.
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13.6.4 Metadynamics

The metadynamics method uses a history-dependent potential [67] that generalizes to any type
of colvars the conformational flooding [68] and local elevation [69] methods, originally formulated
to use as colvars the principal components of a covariance matrix or a set of dihedral angles,
respectively. The metadynamics potential on the colvars ξ = (ξ1, ξ2, . . . , ξNcv) is defined as:

Vmeta(ξ(t)) =

t′<t∑

t′=δt,2δt,...

W

Ncv∏

i=1

exp

(
−(ξi(t) − ξi(t

′))2

2σ2
ξi

)
, (13.30)

where Vmeta is the history-dependent potential acting on the current values of the colvars ξ, and
depends only parametrically on the previous values of the colvars. Vmeta is constructed as a sum
of Ncv-dimensional repulsive Gaussian “hills”, whose height is a chosen energy constant W , and
whose centers are the previously explored configurations (ξ(δt), ξ(2δt), . . .).

During the simulation, the system evolves towards the nearest minimum of the “effective”
potential of mean force Ã(ξ), which is the sum of the “real” underlying potential of mean force
A(ξ) and the the metadynamics potential, Vmeta(ξ). Therefore, at any given time the probability

of observing the configuration ξ∗ is proportional to exp
(
−Ã(ξ∗)/κBT

)
: this is also the probability

that a new Gaussian “hill” is added at that configuration. If the simulation is run for a sufficiently
long time, each local minimum is canceled out by the sum of the Gaussian “hills”. At that stage
the “effective” potential of mean force Ã(ξ) is constant, and −Vmeta(ξ) is an estimator of the “real”
potential of mean force A(ξ), save for an additive constant:

A(ξ) ≃ −Vmeta(ξ) +K (13.31)

Such estimate of the free energy can be provided by enabling writeFreeEnergyFile. Assuming
that the set of collective variables includes all relevant degrees of freedom, the predicted error of
the estimate is a simple function of the correlation times of the colvars τξi

, and of the user-defined
parameters W , σξi

and δt [70]. In typical applications, a good rule of thumb can be to choose the
ratio W/δt much smaller than κBT/τξ, where τξ is the longest among ξ’s correlation times: σξi

then dictates the resolution of the calculated PMF.
If the metadynamics parameters are chosen correctly, after an equilibration time, te, the es-

timator provided by eq. 13.31 oscillates on time around the “real” free energy, thereby a better
estimate of the latter can be obtained as the time average of the bias potential after te [71, 72]:

A(ξ) = − 1

ttot − te

∫ ttot

te

Vmeta(ξ, t)dt (13.32)

where te is the time after which the bias potential grows (approximately) evenly during the sim-
ulation and ttot is the total simulation time. The free energy calculated according to eq. 13.32
can thus be obtained averaging on time mutiple time-dependent free energy estimates, that can
be printed out through the keyword keepFreeEnergyFiles. An alternative is to obtain the free
energy profiles by summing the hills added during the simulation; the hills trajectory can be printed
out by enabling the option writeHillsTrajectory.

Treatment of the PMF boundaries

In typical scenarios the Gaussian hills of a metadynamics potential are interpolated and summed
together onto a grid, which is much more efficient than computing each hill independently at
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every step (the keyword useGrids is on by default). This numerical approximation typically yields
neglibile errors in the resulting PMF [48]. However, due to the finite thickness of the Gaussian
function, the metadynamics potential would suddenly vanish each time a variable exceeds its grid
boundaries.

To avoid such discontinuity the Colvars metadynamics code will keep an explicit copy of each
hill that straddles a grid’s boundary, and will use it to compute metadynamics forces outside the
grid. This measure is taken to protect the accuracy and stability of a metadynamics simulation,
except in cases of “natural” boundaries (for example, the [0 : 180] interval of an angle colvar)
or when the flags hardLowerBoundary and hardUpperBoundary are explicitly set by the user.
Unfortunately, processing explicit hills alongside the potential and force grids could easily become
inefficient, slowing down the simulation and increasing the state file’s size.

In general, it is a good idea to define a repulsive potential to avoid hills from coming too close
to the grid’s boundaries, for example as a harmonicWalls restraint (see ??).

Example: Using harmonic walls to protect the grid’s boundaries.
colvar {
name r

distance { ... }
upperBoundary 15.0

width 0.2

}

metadynamics {
name meta r

colvars r

hillWeight 0.001

hillWidth 2.0

}

harmonicWalls {
name wall r

colvars r

upperWalls 13.0

upperWallConstant 2.0

}

In the colvar r, the distance function used has a lowerBoundary automatically set to 0 Å by
default, thus the keyword lowerBoundary itself is not mandatory and hardLowerBoundary is set
to yes internally. However, upperBoundary does not have such a “natural” choice of value. The
metadynamics potential meta r will individually process any hill whose center is too close to the
upperBoundary, more precisely within fewer grid points than 6 times the Gaussian σ parameter
plus one. It goes without saying that if the colvar r represents a distance between two freely-moving
molecules, it will cross this “threshold” rather frequently.

In this example, where the value of hillWidth (2σ) amounts to 2 grid points, the threshold is
6+1 = 7 grid points away from upperBoundary. In explicit units, the width of r is wr = 0.2 Å,
and the threshold is 15.0 - 7×0.2 = 13.6 Å.
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The wall r restraint included in the example prevents this: the position of its upperWall is 13 Å,
i.e. 3 grid points below the buffer’s threshold (13.6 Å). For the chosen value of upperWallConstant,
the energy of the wall r bias at r = rupper = 13.6 Å is:

E∗ =
1

2
k

(
r − rupper

wr

)2

=
1

2
2.0 (−3)2 = 9 kcal/mol

which results in a relative probability exp(−E∗/κBT ) ≃ 3 × 10−7 that r crosses the threshold.
The probability that r exceeds upperBoundary, which is further away, has also become vanishingly
small. At that point, you may want to set hardUpperBoundary to yes for r, and let meta r know
that no special treatment near the grid’s boundaries will be needed.

What is the impact of the wall restraint onto the PMF? Not a very complicated one: the PMF
reconstructed by metadynamics will simply show a sharp increase in free-energy where the wall
potential kicks in (r > 13 Å). You may then choose between using the PMF only up until that
point and discard the rest, or subtracting the energy of the harmonicWalls restraint from the
PMF itself. Keep in mind, however, that the statistical convergence of metadynamics may be less
accurate where the wall potential is strong.

In summary, although it would be simpler to set the wall’s position upperWall and the grid’s
boundary upperBoundary to the same number, the finite width of the Gaussian hills calls for setting
the former strictly within the latter.

Basic configuration keywords

To enable a metadynamics calculation, a metadynamics {...} block must be defined in the Colvars
configuration file. Its mandatory keywords are colvars, the variables involved, hillWeight, the
weight parameter W , and the widths 2σ of the Gaussian hills in each dimension given by the single
dimensionless parameter hillWidth, or more explicitly by the gaussianSigmas.

• name: see definition of name (biasing and analysis methods)

• colvars: see definition of colvars (biasing and analysis methods)

• outputEnergy: see definition of outputEnergy (biasing and analysis methods)

• outputFreq: see definition of outputFreq (biasing and analysis methods)

• writeTIPMF: see definition of writeTIPMF (biasing and analysis methods)

• writeTISamples: see definition of writeTISamples (biasing and analysis methods)

• stepZeroData: see definition of stepZeroData (biasing and analysis methods)

• hillWeight 〈Height of each hill (kcal/mol) 〉
Context: metadynamics

Acceptable values: positive decimal
Description: This option sets the height W of the Gaussian hills that are added during
this run. Lower values provide more accurate sampling of the system’s degrees of freedom at
the price of longer simulation times to complete a PMF calculation based on metadynamics.
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• hillWidth 〈Width 2σ of a Gaussian hill, measured in number of grid points 〉
Context: metadynamics

Acceptable values: positive decimal
Description: This keyword sets the Gaussian width 2σξi

for all colvars, expressed in number
of grid points, with the grid spacing along each colvar ξ determined by the respective value
of width. Values between 1 and 3 are recommended for this option: smaller numbers will fail
to adequately interpolate each Gaussian function [48], while larger values may be unable to
account for steep free-energy gradients. The values of each half-width σξi

in the physical units
of ξi are also printed by VMD at initialization time; alternatively, they may be set explicitly
via gaussianSigmas.

• gaussianSigmas 〈Half-widths σ of the Gaussian hill (one for each colvar) 〉
Context: metadynamics

Acceptable values: space-separated list of decimals
Description: This option sets the parameters σξi

of the Gaussian hills along each colvar ξi,
expressed in the same unit of ξi. No restrictions are placed on each value, but a warning will
be printed if useGrids is on and the Gaussian width 2σξi

is smaller than the corresponding
grid spacing, width(ξi). If not given, default values will be computed from the dimensionless
number hillWidth.

• newHillFrequency 〈Frequency of hill creation 〉
Context: metadynamics

Acceptable values: positive integer
Default value: 1000

Description: This option sets the number of steps after which a new Gaussian hill is
added to the metadynamics potential. The product of this number and the integration time-
step defines the parameter δt in eq. 13.30. Higher values provide more accurate statistical
sampling, at the price of longer simulation times to complete a PMF calculation. When
analyzing data from a previous simulation in VMD, the metadynamics potential does not
need to be updated, and it is useful to set this number to 0.

Output files

When interpolating grids are enabled (default behavior), the PMF is written by default every
colvarsRestartFrequency steps to the file outputName.pmf in multicolumn text format (??). The
following two options allow to disable or control this behavior and to track statistical convergence:

• writeFreeEnergyFile 〈Periodically write the PMF for visualization 〉
Context: metadynamics

Acceptable values: boolean
Default value: on

Description: When useGrids and this option are on, the PMF is written every outputFreq

steps.

• keepFreeEnergyFiles 〈Keep all the PMF files 〉
Context: metadynamics

Acceptable values: boolean
Default value: off
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Description: When writeFreeEnergyFile and this option are on, the step number is
included in the file name, thus generating a series of PMF files. Activating this option can be
useful to follow more closely the convergence of the simulation, by comparing PMFs separated
by short times.

• writeHillsTrajectory 〈Write a log of new hills 〉
Context: metadynamics

Acceptable values: boolean
Default value: off

Description: If this option is on, a file containing the Gaussian hills written by the
metadynamics bias, with the name:
“outputName.colvars.<name>.hills.traj”,
which can be useful to post-process the time series of the Gassian hills. Each line is written
every newHillFrequency, regardless of the value of outputFreq. When multipleReplicas

is on, its name is changed to:
“outputName.colvars.<name>.<replicaID>.hills.traj”.
The columns of this file are the centers of the hills, ξi(t

′), followed by the half-widths, σξi
,

and the weight, W . Note: prior to version 2020-02-24, the full-width 2σ of the Gaussian was
reported in lieu of σ.

Performance optimization

The following options control the computational cost of metadynamics calculations, but do not
affect results. Default values are chosen to minimize such cost with no loss of accuracy.

• useGrids 〈 Interpolate the hills with grids 〉
Context: metadynamics

Acceptable values: boolean
Default value: on

Description: This option discretizes all hills for improved performance, accumulating their
energy and their gradients on two separate grids of equal spacing. Grids are defined by
the values of lowerBoundary, upperBoundary and width for each colvar. Currently, this
option is implemented for all types of variables except the non-scalar types (distanceDir or
orientation). If expandBoundaries is defined in one of the colvars, grids are automatically
expanded along the direction of that colvar.

• rebinGrids 〈Recompute the grids when reading a state file 〉
Context: metadynamics

Acceptable values: boolean
Default value: off

Description: When restarting from a state file, the grid’s parameters (boundaries and
widths) saved in the state file override those in the configuration file. Enabling this option
forces the grids to match those in the current configuration file.

• keepHills 〈Write each individual hill to the state file 〉
Context: metadynamics

Acceptable values: boolean
Default value: off
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Description: When useGrids and this option are on, all hills are saved to the state
file in their analytic form, alongside their grids. This makes it possible to later use exact
analytic Gaussians for rebinGrids. To only keep track of the history of the added hills,
writeHillsTrajectory is preferable.

Ensemble-Biased Metadynamics

The ensemble-biased metadynamics (EBMetaD) approach [73] is designed to reproduce a target
probability distribution along selected collective variables. Standard metadynamics can be seen
as a special case of EBMetaD with a flat distribution as target. This is achieved by weighing the
Gaussian functions used in the metadynamics approach by the inverse of the target probability
distribution:

VEBmetaD(ξ(t)) =

t′<t∑

t′=δt,2δt,...

W

exp (Sρ) ρexp(ξ(t′))

Ncv∏

i=1

exp

(
−(ξi(t) − ξi(t

′))2

2σ2
ξi

)
, (13.33)

where ρexp(ξ) is the target probability distribution and Sρ = −
∫
ρexp(ξ) log ρexp(ξ) dξ its corre-

sponding differential entropy. The method is designed so that during the simulation the resulting
distribution of the collective variable ξ converges to ρexp(ξ). A practical application of EBMetaD
is to reproduce an “experimental” probability distribution, for example the distance distribution
between spectroscopic labels inferred from Förster resonance energy transfer (FRET) or double
electron-electron resonance (DEER) experiments [73].

The PMF along ξ can be estimated from the bias potential and the target ditribution [73]:

A(ξ) ≃ −VEBmetaD(ξ) − κBT log ρexp(ξ) (13.34)

and obtained by enabling writeFreeEnergyFile. Similarly to eq. 13.32, a more accurate es-
timate of the free energy can be obtained by averaging (after an equilibration time) multiple
time-dependent free energy estimates (see keepFreeEnergyFiles).

The following additional options define the configuration for the ensemble-biased metadynamics
approach:

• ebMeta 〈Perform ensemble-biased metadynamics 〉
Context: metadynamics

Acceptable values: boolean
Default value: off

Description: If enabled, this flag activates the ensemble-biased metadynamics as described
by Marinelli et al.[73]. The target distribution file, targetdistfile, is then required. The
keywords lowerBoundary, upperBoundary and width for the respective variables are also
needed to set the binning (grid) of the target distribution file.

• targetDistFile 〈Target probability distribution file for ensemble-biased metadynamics 〉
Context: metadynamics

Acceptable values: multicolumn text file
Description: This file provides the target probability distribution, ρexp(ξ), reported in eq.
13.33. The latter distribution must be a tabulated function provided in a multicolumn text
format (see ??). The provided distribution is then normalized.
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• ebMetaEquilSteps 〈Number of equilibration steps for ensemble-biased metadynamics 〉
Context: metadynamics

Acceptable values: positive integer
Description: The EBMetaD approach may introduce large hills in regions with small values
of the target probability distribution (eq. 13.33). This happens, for example, if the probability
distribution sampled by a conventional molecular dynamics simulation is significantly different
from the target distribution. This may lead to instabilities at the beginning of the simulation
related to large biasing forces. In this case, it is useful to introduce an equilibration stage
in which the bias potential gradually switches from standard metadynamics (eq. 13.30) to
EBmetaD (eq. 13.33) as λVmeta(ξ) + (1 − λ)VEBmetaD(ξ), where λ = (ebMetaEquilSteps−
step)/ebMetaEquilSteps and step is the current simulation step number.

• targetDistMinVal 〈Minimum value of the target distribution in reference to its maximum
value 〉
Context: metadynamics

Acceptable values: positive decimal
Description: It is useful to set a minimum value of the target probability distribution to
avoid values of the latter that are nearly zero, leading to very large hills. This parameter sets
the minimum value of the target probability distribution that is expressed as a fraction of
its maximum value: minimum value = maximum value X targetDistMinVal. This implies
that 0 < targetDistMinVal < 1 and its default value is set to 1/1000000. To avoid divisions
by zero (see eq. 13.33), if targetDistMinVal is set as zero, values of ρexp equal to zero are
replaced by the smallest positive value read in the same file.

As with standard metadynamics, multidimensional probability distributions can be targeted us-
ing a single metadynamics block using multiple colvars and a multidimensional target distribution
file (see ??). Instead, multiple probability distributions on different variables can be targeted sepa-
rately in the same simulation by introducing multiple metadynamics blocks with the ebMeta option.

Example: EBmetaD configuration for a single variable.
colvar {
name r

distance {
group1 { atomNumbers 991 992 }
group2 { atomNumbers 1762 1763 }

}
upperBoundary 100.0

width 0.1

}

metadynamics {
name ebmeta

colvars r

hillWeight 0.01

hillWidth 3.0

ebMeta on

targetDistFile targetdist1.dat

ebMetaEquilSteps 500000
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}

where targetdist1.dat is a text file in “multicolumn” format (??) with the same width as the
variable r (0.1 in this case):

# 1

# 0.0 0.1 1000 0

0.05 0.0012

0.15 0.0014

. . . . . .
99.95 0.0010

Tip: Besides setting a meaninful value for targetDistMinVal, the exploration of unphysi-
cally low values of the target distribution (which would lead to very large hills and possibly nu-
merical instabilities) can be also prevented by restricting sampling to a given interval, using e.g.
harmonicWalls restraint (??).

Well-tempered metadynamics

The following options define the configuration for the “well-tempered” metadynamics approach
[74]:

• wellTempered 〈Perform well-tempered metadynamics 〉
Context: metadynamics

Acceptable values: boolean
Default value: off

Description: If enabled, this flag causes well-tempered metadynamics as described by
Barducci et al.[74] to be performed, rather than standard metadynamics. The parameter
biasTemperature is then required. This feature was contributed by Li Li (Luthey-Schulten
group, Department of Chemistry, UIUC).

• biasTemperature 〈Temperature bias for well-tempered metadynamics 〉
Context: metadynamics

Acceptable values: positive decimal
Description: When running metadynamics in the long time limit, collective variable space
is sampled to a modified temperature T+∆T . In conventional metadynamics, the temperature
“boost” ∆T would constantly increases with time. Instead, in well-tempered metadynamics
∆T must be defined by the user via biasTemperature. The written PMF includes the scaling
factor (T + ∆T )/∆T [74]. A careful choice of ∆T determines the sampling and convergence
rate, and is hence crucial to the success of a well-tempered metadynamics simulation.

Multiple-walker metadynamics

Metadynamics calculations can be performed concurrently by multiple replicas that share a common
history. This variant of the method is called multiple-walker metadynamics [75]: the Gaussian hills
of all replicas are periodically combined into a single biasing potential, intended to converge to a
single PMF.

275



In the implementation here described [48], replicas communicate through files. This arrange-
ment allows launching the replicas either (1) as a bundle (i.e. a single job in a cluster’s queueing
system) or (2) as fully independent runs (i.e. as separate jobs for the queueing system). One
advantage of the use case (1) is that an identical Colvars configuration can be used for all replicas
(otherwise, replicaID needs to be manually set to a different string for each replica). However,
the use case (2) is less demanding in terms of high-performance computing resources: a typical
scenario would be a computer cluster (including virtual servers from a cloud provider) where not
all nodes are connected to each other at high speed, and thus each replica runs on a small group
of nodes or a single node.

Whichever way the replicas are started (coupled or not), a shared filesystem is needed so that
each replica can read the files created by the others: paths to these files are stored in the shared
file replicasRegistry. This file, and those listed in it, are read every replicaUpdateFrequency

steps. Each time the Colvars state file is written (for example, colvarsRestartFrequency steps),
the file named:
outputName.colvars.name.replicaID.state

is written as well; this file contains only the state of the metadynamics bias, which the other repli-
cas will read in turn. In between the times when this file is modified/replaced, new hills are also
temporarily written to the file named:
outputName.colvars.name.replicaID.hills

Both files are only used for communication, and may be deleted after the replica begins writing
files with a new outputName.

Example: Multiple-walker metadynamics with file-based communication.
metadynamics {
name mymtd

colvars x

hillWeight 0.001

newHillFrequency 1000

hillWidth 3.0

multipleReplicas on

replicasRegistry /shared-folder/mymtd-replicas.txt

replicaUpdateFrequency 50000 # Best if larger than newHillFrequency

}

The following are the multiple-walkers related options:

• multipleReplicas 〈Enable multiple-walker metadynamics 〉
Context: metadynamics

Acceptable values: boolean
Default value: off

Description: This option turns on multiple-walker communication between replicas.

• replicasRegistry 〈Multiple replicas database file 〉
Context: metadynamics

Acceptable values: UNIX filename
Description: If multipleReplicas is on, this option sets the path to the replicas’ shared
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database file. It is best to use an absolute path (especially when running individual replicas
in separate folders).

• replicaUpdateFrequency 〈How often hills are shared between replicas 〉
Context: metadynamics

Acceptable values: positive integer
Description: If multipleReplicas is on, this option sets the number of steps after which
each replica tries to read the other replicas’ files. On a networked file system, it is best to use
a number of steps that corresponds to at least a minute of wall time.

• replicaID 〈Set the identifier for this replica 〉
Context: metadynamics

Acceptable values: string
Default value: replica index (only if a shared communicator is used)
Description: If multipleReplicas is on, this option sets a unique identifier for this
replicas. When the replicas are launched in a single command (i.e. they share a parallel
communicator and are tightly synchronized) this value is optional, and defaults to the replica’s
numeric index (starting at zero). However, when the replicas are launched as independent
runs this option is required.

• writePartialFreeEnergyFile 〈Periodically write the contribution to the PMF from this
replica 〉
Context: metadynamics

Acceptable values: boolean
Default value: off

Description: If multipleReplicas is on, enabling this option produces an additional file
outputName.partial.pmf, which can be useful to monitor the contribution of each replica
to the total PMF (which is written to the file outputName.pmf). Note: the name of this file
is chosen for consistency and convenience, but its content is not a PMF and it is not expected
to converge, even if the total PMF does.

13.6.5 Harmonic restraints

The harmonic biasing method may be used to enforce fixed or moving restraints, including variants
of Steered and Targeted MD. Within energy minimization runs, it allows for restrained minimiza-
tion, e.g. to calculate relaxed potential energy surfaces. In the context of the Colvars module,
harmonic potentials are meant according to their textbook definition:

V (ξ) =
1

2
k

(
ξ − ξ0
wξ

)2

(13.35)

There are two noteworthy aspects of this expression:

1. Because the standard coefficient of 1/2 of the harmonic potential is included, this expression
differs from harmonic bond and angle potentials historically used in common force fields,
where the factor was typically omitted resulting in a non-standard definition of the force
constant.

2. The variable ξ is not only centered at ξ0, but is also scaled by its characteristic length scale
wξ (keyword width). The resulting dimensionless variable z = (ξ − ξ0)/wξ is typically easier
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to treat numerically: for example, when the forces typically experienced by ξ are much
smaller than k/wξ and k is chosen equal to κBT (thermal energy), the resulting probability
distribution of z is approximately a Gaussian with mean equal to 0 and standard deviation
equal to 1.

This property can be used for setting the force constant in umbrella-sampling ensemble runs:
if the restraint centers are chosen in increments of wξ, the resulting distributions of ξ are most
often optimally overlapped. In regions where the underlying free-energy landscape induces
highly skewed distributions of ξ, additional windows may be added as needed, with spacings
finer than wξ.

Beyond one dimension, the use of a scaled harmonic potential also allows a standard definition
of a multi-dimensional restraint with a unified force constant:

V (ξ1, . . . , ξM ) =
1

2
k

M∑

i=1

(
ξi − ξ0
wξ

)2

(13.36)

If one-dimensional or homogeneous multi-dimensional restraints are defined, and there are no
other uses for the parameter wξ, width can be left at its default value of 1.

A harmonic restraint is defined by a harmonic {...} block, which may contain the following
keywords:

• name: see definition of name (biasing and analysis methods)

• colvars: see definition of colvars (biasing and analysis methods)

• outputEnergy: see definition of outputEnergy (biasing and analysis methods)

• writeTIPMF: see definition of writeTIPMF (biasing and analysis methods)

• writeTISamples: see definition of writeTISamples (biasing and analysis methods)

• stepZeroData: see definition of stepZeroData (biasing and analysis methods)

• forceConstant 〈Scaled force constant (kcal/mol) 〉
Context: harmonic

Acceptable values: positive decimal
Default value: 1.0

Description: This option defines a scaled force constant k for the harmonic potential
(eq. 13.36). To ensure consistency for multidimensional restraints, it is divided internally by
the square of the specific width of each variable (which is 1 by default). This makes all values
effectively dimensionless and of commensurate size. For instance, if this force constant is set
to the thermal energy κBT (equal to RT if molar units are used), then the amplitude of the
thermal fluctuations of each variable ξ will be on the order of its width, wξ. This can be used
to estimate the optimal spacing of umbrella-sampling windows (under the assumption that
the force constant is larger than the curvature of the underlying free energy). The values of
the actual force constants k/w2

ξ are always printed when the restraint is defined.

• centers 〈 Initial harmonic restraint centers 〉
Context: harmonic

Acceptable values: space-separated list of colvar values
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Description: The centers (equilibrium values) of the restraint, ξ0, are entered here. The
number of values must be the number of requested colvars. Each value is a decimal number
if the corresponding colvar returns a scalar, a “(x, y, z)” triplet if it returns a unit vector
or a vector, and a “(q0, q1, q2, q3)” quadruplet if it returns a rotational quaternion. If a
colvar has periodicities or symmetries, its closest image to the restraint center is considered
when calculating the harmonic potential.

Tip: A complex set of restraints can be applied to a system, by defining several colvars, and
applying one or more harmonic restraints to different groups of colvars. In some cases, dozens of
colvars can be defined, but their value may not be relevant: to limit the size of the colvars trajectory
file, it may be wise to disable outputValue for such “ancillary” variables, and leave it enabled only
for “relevant” ones.

Moving restraints: steered molecular dynamics

The following options allow to change gradually the centers of the harmonic restraints during a
simulations. When the centers are changed continuously, a steered MD in a collective variable space
is carried out.

• targetCenters 〈Steer the restraint centers towards these targets 〉
Context: harmonic

Acceptable values: space-separated list of colvar values
Description: When defined, the current centers will be moved towards these values during
the simulation. By default, the centers are moved over a total of targetNumSteps steps by a
linear interpolation, in the spirit of Steered MD. If targetNumStages is set to a nonzero value,
the change is performed in discrete stages, lasting targetNumSteps steps each. This second
mode may be used to sample successive windows in the context of an Umbrella Sampling
simulation. When continuing a simulation run, the centers specified in the configuration
file <colvarsConfig> are overridden by those saved in the restart file <colvarsInput>.
To perform Steered MD in an arbitrary space of colvars, it is sufficient to use this option
and enable outputAccumulatedWork and/or outputAppliedForce within each of the colvars
involved.

• targetNumSteps 〈Number of steps for steering 〉
Context: harmonic

Acceptable values: positive integer
Description: In single-stage (continuous) transformations, defines the number of MD steps
required to move the restraint centers (or force constant) towards the values specified with
targetCenters or targetForceConstant. After the target values have been reached, the
centers (resp. force constant) are kept fixed. In multi-stage transformations, this sets the
number of MD steps per stage.

• outputCenters 〈Write the current centers to the trajectory file 〉
Context: harmonic

Acceptable values: boolean
Default value: off

Description: If this option is chosen and colvarsTrajFrequency is not zero, the positions
of the restraint centers will be written to the trajectory file during the simulation. This
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option allows to conveniently extract the PMF from the colvars trajectory files in a steered
MD calculation.

Note on restarting moving restraint simulations: Information about the current step
and stage of a simulation with moving restraints is stored in the restart file (state file). Thus, such
simulations can be run in several chunks, and restarted directly using the same colvars configuration
file. In case of a restart, the values of parameters such as targetCenters, targetNumSteps, etc.
should not be changed manually.

Moving restraints: umbrella sampling

The centers of the harmonic restraints can also be changed in discrete stages: in this cases a
one-dimensional umbrella sampling simulation is performed. The sampling windows in simulation
are calculated in sequence. The colvars trajectory file may then be used both to evaluate the
correlation times between consecutive windows, and to calculate the frequency distribution of the
colvar of interest in each window. Furthermore, frequency distributions on a predefined grid can
be automatically obtained by using the histogram bias (see ??).

To activate an umbrella sampling simulation, the same keywords as in the previous section can
be used, with the addition of the following:

• targetNumStages 〈Number of stages for steering 〉
Context: harmonic

Acceptable values: non-negative integer
Default value: 0

Description: If non-zero, sets the number of stages in which the restraint centers or force
constant are changed to their target values. If zero, the change is continuous. Each stage
lasts targetNumSteps MD steps. To sample both ends of the transformation, the simulation
should be run for targetNumSteps × (targetNumStages + 1).

Changing force constant

The force constant of the harmonic restraint may also be changed to equilibrate [76].

• targetForceConstant 〈Change the force constant towards this value 〉
Context: harmonic

Acceptable values: positive decimal
Description: When defined, the current forceConstant will be moved towards this value
during the simulation. Time evolution of the force constant is dictated by the targetForceExponent
parameter (see below). By default, the force constant is changed smoothly over a total of
targetNumSteps steps. This is useful to introduce or remove restraints in a progressive
manner. If targetNumStages is set to a nonzero value, the change is performed in discrete
stages, lasting targetNumSteps steps each. This second mode may be used to compute the
conformational free energy change associated with the restraint, within the FEP or TI for-
malisms. For convenience, the code provides an estimate of the free energy derivative for
use in TI. A more complete free energy calculation (particularly with regard to convergence
analysis), while not handled by the Colvars module, can be performed by post-processing the
colvars trajectory, if colvarsTrajFrequency is set to a suitably small value. It should be
noted, however, that restraint free energy calculations may be handled more efficiently by an
indirect route, through the determination of a PMF for the restrained coordinate.[76]

280



• targetForceExponent 〈Exponent in the time-dependence of the force constant 〉
Context: harmonic

Acceptable values: decimal equal to or greater than 1.0
Default value: 1.0

Description: Sets the exponent, α, in the function used to vary the force constant as
a function of time. The force is varied according to a coupling parameter λ, raised to the
power α: kλ = k0 + λα(k1 − k0), where k0, kλ, and k1 are the initial, current, and final
values of the force constant. The parameter λ evolves linearly from 0 to 1, either smoothly,
or in targetNumStages equally spaced discrete stages, or according to an arbitrary schedule
set with lambdaSchedule. When the initial value of the force constant is zero, an exponent
greater than 1.0 distributes the effects of introducing the restraint more smoothly over time
than a linear dependence, and ensures that there is no singularity in the derivative of the
restraint free energy with respect to lambda. A value of 4 has been found to give good results
in some tests.

• targetEquilSteps 〈Number of steps discarded from TI estimate 〉
Context: harmonic

Acceptable values: positive integer
Description: Defines the number of steps within each stage that are considered equilibra-
tion and discarded from the restraint free energy derivative estimate reported reported in the
output.

• lambdaSchedule 〈Schedule of lambda-points for changing force constant 〉
Context: harmonic

Acceptable values: list of real numbers between 0 and 1
Description: If specified together with targetForceConstant, sets the sequence of discrete
λ values that will be used for different stages.

13.6.6 Computing the work of a changing restraint

If the restraint centers or force constant are changed continuosly (targetNumStages undefined) it
is possible to record the net work performed by the changing restraint:

• outputAccumulatedWork 〈Write the accumulated work of the changing restraint to the
Colvars trajectory file 〉
Context: harmonic

Acceptable values: boolean
Default value: off

Description: If targetCenters or targetForceConstant are defined and this option is
enabled, the accumulated work from the beginning of the simulation will be written to the
trajectory file (colvarsTrajFrequency must be non-zero). When the simulation is contin-
ued from a state file, the previously accumulated work is included in the integral. This
option allows to conveniently extract the estimated PMF of a steered MD calculation (when
targetCenters is used), or of other simulation protocols.

13.6.7 Harmonic wall restraints

The harmonicWalls {...} bias is closely related to the harmonic bias (see ??), with the following
two differences: (i) instead of a center a lower wall and/or an upper wall are defined, outside of
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which the bias implements a half-harmonic potential;

V (ξ) =





1
2k
(

ξ−ξupper

wξ

)2
if ξ > ξupper

0 if ξlower ≤ ξ ≥ ξupper

1
2k
(

ξ−ξlower
wξ

)2
if ξ < ξlower

(13.37)

where ξlower and ξupper are the lower and upper wall thresholds, respectively; (ii) because an interval
between two walls is defined, only scalar variables can be used (but any number of variables can
be defined, and the wall bias is intrinsically multi-dimensional).

Note: this bias replaces the keywords lowerWall, lowerWallConstant, upperWall and upperWallConstant

defined in the colvar context. Those keywords are deprecated.
The harmonicWalls bias implements the following options:

• name: see definition of name (biasing and analysis methods)

• colvars: see definition of colvars (biasing and analysis methods)

• outputEnergy: see definition of outputEnergy (biasing and analysis methods)

• writeTIPMF: see definition of writeTIPMF (biasing and analysis methods)

• writeTISamples: see definition of writeTISamples (biasing and analysis methods)

• stepZeroData: see definition of stepZeroData (biasing and analysis methods)

• lowerWalls 〈Position of the lower wall 〉
Context: colvar

Acceptable values: Space-separated list of decimals
Description: Defines the values ξlower below which a confining restraint on the colvar is
applied to each colvar ξ.

• upperWalls 〈Position of the lower wall 〉
Context: colvar

Acceptable values: Space-separated list of decimals
Description: Defines the values ξupper above which a confining restraint on the colvar is
applied to each colvar ξ.

• forceConstant: see definition of forceConstant (Harmonic restraints)

• lowerWallConstant 〈Force constant for the lower wall 〉
Context: harmonicWalls

Acceptable values: positive decimal
Default value: forceConstant

Description: When both sets of walls are defined (lower and upper), this keyword allows
setting different force constants for them. As with forceConstant, the specified constant is
divided internally by the square of the specific width of each variable (see also the equivalent
keyword for the harmonic restraint, forceConstant). The force constant reported in the
output as “k”, and used in the change of force constant scheme, is the geometric mean of
upperWallConstant and upperWallConstant.
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• upperWallConstant: analogous to lowerWallConstant

• targetForceConstant: see definition of targetForceConstant (harmonic restraints)

• targetForceConstant 〈Change the force constant(s) towards this value 〉
Context: harmonicWalls

Acceptable values: positive decimal
Description: This keyword allows changing either one or both of the wall force constants
over time. In the case that lowerWallConstant and upperWallConstant have the same
value, the behavior of this keyword is identical to the corresponding keyword in the harmonic
restraint; otherwise, the change schedule is applied to the geometric mean of the two constant.
When only one set of walls is defined (lowerWall or upperWalls), only the respective force
constant is changed. Note: if only one of the two force constants is meant to change over
time, it is possible to use two instances of harmonicWalls, and apply the changing schedule
only to one of them.

• targetNumSteps: see definition of targetNumSteps (harmonic restraints)

• targetForceExponent: see definition of targetForceExponent (harmonic restraints)

• targetEquilSteps: see definition of targetEquilSteps (harmonic restraints)

• targetNumStages: see definition of targetNumStages (harmonic restraints)

• lambdaSchedule: see definition of lambdaSchedule (harmonic restraints)

• outputAccumulatedWork: see definition of outputAccumulatedWork (harmonic restraints)

• bypassExtendedLagrangian 〈Apply bias to actual colvars, bypassing extended coordinates 〉
Context: harmonicWalls

Acceptable values: boolean
Default value: on

Description: This option behaves as bypassExtendedLagrangian for other biases, but
it defaults to on, unlike in the general case. Thus, by default, the harmonicWalls

bias applies to the actual colvars, so that the distribution of the colvar between the walls
is unaffected by the bias, which then applies a flat-bottom potential as a function of the
colvar value. This bias will affect the extended coordinate distribution near the walls. If
bypassExtendedLagrangian is disabled, harmonicWalls applies a flat-bottom potential as
a function of the extended coordinate. Conversely, this bias will then modify the distribution
of the actual colvar value near the walls.

Example 1: harmonic walls for one variable with two different force constants.
harmonicWalls {
name mywalls

colvars dist

lowerWalls 22.0

upperWalls 38.0

lowerWallConstant 2.0

upperWallConstant 10.0

}
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Example 2: harmonic walls for two variables with a single force constant.
harmonicWalls {
name mywalls

colvars phi psi

lowerWalls -180.0 0.0

upperWalls 0.0 180.0

forceConstant 5.0

}

13.6.8 Linear restraints

The linear restraint biasing method is used to minimally bias a simulation. There is generally a
unique strength of bias for each CV center, which means you must know the bias force constant
specifically for the center of the CV. This force constant may be found by using experiment directed
simulation described in section ??. Please cite Pitera and Chodera when using [77].

• name: see definition of name (biasing and analysis methods)

• colvars: see definition of colvars (biasing and analysis methods)

• outputEnergy: see definition of outputEnergy (biasing and analysis methods)

• forceConstant 〈Scaled force constant (kcal/mol) 〉
Context: linear

Acceptable values: positive decimal
Default value: 1.0

Description: This option defines a scaled force constant for the linear bias. To ensure con-
sistency for multidimensional restraints, it is divided internally by the specific width of each
variable (which is 1 by default), so that all variables are effectively dimensionless and of com-
mensurate size. See also the equivalent keyword for the harmonic restraint, forceConstant.
The values of the actual force constants k/wξ are always printed when the restraint is defined.

• centers 〈 Initial linear restraint centers 〉
Context: linear

Acceptable values: space-separated list of colvar values
Description: These are analogous to the centers keyword of the harmonic restraint.
Although they do not affect dynamics, they are here necessary to ensure a well-defined energy
for the linear bias.

• writeTIPMF: see definition of writeTIPMF (biasing and analysis methods)

• writeTISamples: see definition of writeTISamples (biasing and analysis methods)

• targetForceConstant: see definition of targetForceConstant (Harmonic restraints)

• targetNumSteps: see definition of targetNumSteps (Harmonic restraints)

• targetForceExponent: see definition of targetForceExponent (Harmonic restraints)

• targetEquilSteps: see definition of targetEquilSteps (Harmonic restraints)
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• targetNumStages: see definition of targetNumStages (Harmonic restraints)

• lambdaSchedule: see definition of lambdaSchedule (Harmonic restraints)

• outputAccumulatedWork: see definition of outputAccumulatedWork (Harmonic restraints)

13.6.9 Adaptive Linear Bias/Experiment Directed Simulation

Experiment directed simulation applies a linear bias with a changing force constant. Please cite
White and Voth [78] when using this feature. As opposed to that reference, the force constant here
is scaled by the width corresponding to the biased colvar. In White and Voth, each force constant
is scaled by the colvars set center. The bias converges to a linear bias, after which it will be the
minimal possible bias. You may also stop the simulation, take the median of the force constants
(ForceConst) found in the colvars trajectory file, and then apply a linear bias with that constant.
All the notes about units described in sections ?? and ?? apply here as well. This is not a valid
simulation of any particular statistical ensemble and is only an optimization algorithm
until the bias has converged.

• name: see definition of name (biasing and analysis methods)

• colvars: see definition of colvars (biasing and analysis methods)

• centers 〈Collective variable centers 〉
Context: alb

Acceptable values: space-separated list of colvar values
Description: The desired center (equilibrium values) which will be sought during the
adaptive linear biasing. The number of values must be the number of requested colvars.
Each value is a decimal number if the corresponding colvar returns a scalar, a “(x, y, z)”
triplet if it returns a unit vector or a vector, and a “q0, q1, q2, q3)” quadruplet if it
returns a rotational quaternion. If a colvar has periodicities or symmetries, its closest image
to the restraint center is considered when calculating the linear potential.

• updateFrequency 〈The duration of updates 〉
Context: alb

Acceptable values: An integer
Description: This is, N , the number of simulation steps to use for each update to the bias.
This determines how long the system requires to equilibrate after a change in force constant
(N/2), how long statistics are collected for an iteration (N/2), and how quickly energy is
added to the system (at most, A/2N , where A is the forceRange). Until the force constant
has converged, the method as described is an optimization procedure and not an integration
of a particular statistical ensemble. It is important that each step should be uncorrelated
from the last so that iterations are independent. Therefore, N should be at least twice the
autocorrelation time of the collective variable. The system should also be able to dissipate
energy as fast as N/2, which can be done by adjusting thermostat parameters. Practically,
N has been tested successfully at significantly shorter than the autocorrelation time of the
collective variables being biased and still converge correctly.

• forceRange 〈The expected range of the force constant in units of energy 〉
Context: alb

285



Acceptable values: A space-separated list of decimal numbers
Default value: 3 kbT
Description: This is largest magnitude of the force constant which one expects. If this
parameter is too low, the simulation will not converge. If it is too high the simulation will
waste time exploring values that are too large. A value of 3 kbT has worked well in the
systems presented as a first choice. This parameter is dynamically adjusted over the course of
a simulation. The benefit is that a bad guess for the forceRange can be corrected. However,
this can lead to large amounts of energy being added over time to the system. To prevent
this dynamic update, add hardForceRange yes as a parameter

• rateMax 〈The maximum rate of change of force constant 〉
Context: alb

Acceptable values: A list of space-separated real numbers
Description: This optional parameter controls how much energy is added to the system
from this bias. Tuning this separately from the updateFrequency and forceRange can allow
for large bias changes but with a low rateMax prevents large energy changes that can lead to
instability in the simulation.

13.6.10 Multidimensional histograms

The histogram feature is used to record the distribution of a set of collective variables in the form
of a N-dimensional histogram. A histogram block may define the following parameters:

• name: see definition of name (biasing and analysis methods)

• colvars: see definition of colvars (biasing and analysis methods)

• outputFreq: see definition of outputFreq (biasing and analysis methods)

• stepZeroData: see definition of stepZeroData (biasing and analysis methods)

• outputFile 〈Write the histogram to a file 〉
Context: histogram

Acceptable values: UNIX filename
Default value: outputName.<name>.dat
Description: Name of the file containing histogram data (multicolumn format), which is
written every outputFreq steps. For the special case of 2 variables, Gnuplot may be used to
visualize this file. If outputFile is set to none, the file is not written.

• outputFileDX 〈Write the histogram to a file 〉
Context: histogram

Acceptable values: UNIX filename
Default value: outputName.<name>.dx
Description: Name of the file containing histogram data (OpenDX format), which is
written every outputFreq steps. For the special case of 3 variables, VMD may be used to
visualize this file. This file is written by default if the dimension is 3 or more. If outputFileDX
is set to none, the file is not written.

• gatherVectorColvars 〈Treat vector variables as multiple observations of a scalar variable? 〉
Context: histogram
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Acceptable values: UNIX filename
Default value: off

Description: When this is set to on, the components of a multi-dimensional colvar
(e.g. one based on cartesian, distancePairs, or a vector of scalar numbers given by
scriptedFunction) are treated as multiple observations of a scalar variable. This results
in the histogram being accumulated multiple times for each simulation step or iteration of
cv update). When multiple vector variables are included in histogram, these must have the
same length because their components are accumulated together. For example, if ξ, λ and τ
are three variables of dimensions 5, 5 and 1, respectively, for each iteration 5 triplets (ξi, λi, τ)
(i = 1, . . . 5) are accumulated into a 3-dimensional histogram.

• weights 〈Treat vector variables as multiple observations of a scalar variable? 〉
Context: histogram

Acceptable values: list of space-separated decimals
Default value: all weights equal to 1
Description: When gatherVectorColvars is on, the components of each multi-dimensional
colvar are accumulated with a different weight. For example, if x and y are two distinct
cartesian variables defined on the same group of atoms, the corresponding 2D histogram
can be weighted on a per-atom basis: to compute an electron density map, it is possible to
use weights [$sel get atomicnumber] in the definition of histogram.

As with any other biasing and analysis method, when a histogram is applied to an extended-
system colvar (??), it accesses the value of the extended coordinate rather than that of the actual
colvar. This can be overridden by enabling the bypassExtendedLagrangian option. A joint his-
togram of the actual colvar and the extended coordinate may be collected by specifying the colvar
name twice in a row in the colvars parameter (e.g. colvars myColvar myColvar): the first
instance will be understood as the actual colvar, and the second, as the extended coordinate.

• bypassExtendedLagrangian: see definition of bypassExtendedLagrangian (biasing and
analysis methods)

Grid definition for multidimensional histograms

Like the ABF and metadynamics biases, histogram uses the parameters lowerBoundary, upperBoundary,
and width to define its grid. These values can be overridden if a configuration block histogramGrid

{ ...} is provided inside the configuration of histogram. The options supported inside this con-
figuration block are:

• lowerBoundaries 〈Lower boundaries of the grid 〉
Context: histogramGrid

Acceptable values: list of space-separated decimals
Description: This option defines the lower boundaries of the grid, overriding any values
defined by the lowerBoundary keyword of each colvar. Note that when gatherVectorColvars

is on, each vector variable is automatically treated as a scalar, and a single value should be
provided for it.

• upperBoundaries: analogous to lowerBoundaries

• widths: analogous to lowerBoundaries
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13.6.11 Probability distribution-restraints

The histogramRestraint bias implements a continuous potential of many variables (or of a single
high-dimensional variable) aimed at reproducing a one-dimensional statistical distribution that is
provided by the user. The M variables (ξ1, . . . , ξM ) are interpreted as multiple observations of a
random variable ξ with unknown probability distribution. The potential is minimized when the
histogram h(ξ), estimated as a sum of Gaussian functions centered at (ξ1, . . . , ξM ), is equal to the
reference histogram h0(ξ):

V (ξ1, . . . , ξM ) =
1

2
k

∫
(h(ξ) − h0(ξ))

2 dξ (13.38)

h(ξ) =
1

M
√

2πσ2

M∑

i=1

exp

(
−(ξ − ξi)

2

2σ2

)
(13.39)

When used in combination with a distancePairs multi-dimensional variable, this bias implements
the refinement algorithm against ESR/DEER experiments published by Shen et al [79].

This bias behaves similarly to the histogram bias with the gatherVectorColvars option, with
the important difference that all variables are gathered, resulting in a one-dimensional histogram.
Future versions will include support for multi-dimensional histograms.

The list of options is as follows:

• name: see definition of name (biasing and analysis methods)

• colvars: see definition of colvars (biasing and analysis methods)

• outputEnergy: see definition of outputEnergy (biasing and analysis methods)

• lowerBoundary 〈Lower boundary of the colvar grid 〉
Context: histogramRestraint

Acceptable values: decimal
Description: Defines the lowest end of the interval where the reference distribution h0(ξ)
is defined. Exactly one value must be provided, because only one-dimensional histograms are
supported by the current version.

• upperBoundary: analogous to lowerBoundary

• width 〈Width of the colvar grid 〉
Context: histogramRestraint

Acceptable values: positive decimal
Description: Defines the spacing of the grid where the reference distribution h0(ξ) is
defined.

• gaussianSigma 〈Standard deviation of the approximating Gaussian 〉
Context: histogramRestraint

Acceptable values: positive decimal
Default value: 2 × width

Description: Defines the parameter σ in eq. 13.39.
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• forceConstant 〈Force constant (kcal/mol) 〉
Context: histogramRestraint

Acceptable values: positive decimal
Default value: 1.0

Description: Defines the parameter k in eq. 13.38.

• refHistogram 〈Reference histogram h0(ξ) 〉
Context: histogramRestraint

Acceptable values: space-separated list of M positive decimals
Description: Provides the values of h0(ξ) consecutively. The mid-point convention is used,
i.e. the first point that should be included is for ξ = lowerBoundary+width/2. If the integral
of h0(ξ) is not normalized to 1, h0(ξ) is rescaled automatically before use.

• refHistogramFile 〈Reference histogram h0(ξ) 〉
Context: histogramRestraint

Acceptable values: UNIX file name
Description: Provides the values of h0(ξ) as contents of the corresponding file (mutually
exclusive with refHistogram). The format is that of a text file, with each line containing the
space-separated values of ξ and h0(ξ). The same numerical conventions as refHistogram are
used.

• writeHistogram 〈Periodically write the instantaneous histogram h(ξ) 〉
Context: metadynamics

Acceptable values: boolean
Default value: off

Description: If on, the histogram h(ξ) is written every colvarsRestartFrequency steps
to a file with the name outputName.<name>.hist.datThis is useful to diagnose the conver-
gence of h(ξ) against h0(ξ).

13.6.12 Defining scripted biases

Rather than using the biasing methods described above, it is possible to apply biases provided at
run time as a Tcl script. This option, also available in NAMD, can be useful to test a new algorithm
to be used in a MD simulation.

• scriptedColvarForces 〈Enable custom, scripted forces on colvars 〉
Context: global
Acceptable values: boolean
Default value: off

Description: If this flag is enabled, a Tcl procedure named calc colvar forces accepting
one parameter should be defined by the user. It is executed at each timestep, with the
current step number as parameter, between the calculation of colvars and the application of
bias forces. This procedure may use the cv command to access the values of colvars (e.g.
cv colvar xi value), apply forces on them (cv colvar xi addforce $F) or add energy
to the simulation system (cv addenergy $E), effectively defining custom collective variable
biases.

289



13.6.13 Performance of scripted biases

If concurrent computation over multiple threads is available (this is indicated by the message “SMP
parallelism is available.” printed at initialization time), it is useful to take advantage of the scripting
interface to combine many components, all computed in parallel, into a single variable.

The default SMP schedule is the following:

1. distribute the computation of all components across available threads;

2. on a single thread, collect the results of multi-component variables using polynomial combi-
nations (see ??), or scripted functions (see ??);

3. distribute the computation of all biases across available threads;

4. compute on a single thread any scripted biases implemented via the keyword scriptedColvarForces.

5. communicate on a single thread forces to VMD.

The following options allow to fine-tune this schedule:

• scriptingAfterBiases 〈Scripted colvar forces need updated biases? 〉
Context: global
Acceptable values: boolean
Default value: on

Description: This flag specifies that the calc colvar forces procedure (last step in the
list above) is executed only after all biases have been updated (next-to-last step) For example,
this allows using the energy of a restraint bias, or the force applied on a colvar, to calculate
additional scripted forces, such as boundary constraints. When this flag is set to off, it is
assumed that only the values of the variables (but not the energy of the biases or applied
forces) will be used by calc colvar forces: this can be used to schedule the calculation of
scripted forces and biases concurrently to increase performance.

13.7 Scripting interface (Tcl): list of commands

This section lists all the commands used in VMD to control the behavior of the Colvars module
from within a run script.

13.7.1 Commands to manage the Colvars module

• cv addenergy <E>

Add an energy to the MD engine (no effect in VMD)

Parameters

E : float - Amount of energy to add

• cv config <conf>

Read configuration from the given string

Parameters

conf : string - Configuration string
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• cv configfile <conf file>

Read configuration from a file

Parameters

conf file : string - Path to configuration file

• cv delete

Delete this Colvars module instance (VMD only)

• cv frame [frame]

Get or set current frame number (VMD only)

Parameters

frame : integer - Frame number (optional)

• cv getconfig

Get the module’s configuration string read so far

• cv getenergy

Get the current Colvars energy

• cv help [command]

Get the help string of the Colvars scripting interface

Parameters

command : string - Get the help string of this specific command (optional)

• cv list [param]

Return a list of all variables or biases

Parameters

param : string - "colvars" or "biases"; default is "colvars" (optional)

• cv listcommands

Get the list of script functions, prefixed with "cv ", "colvar " or "bias "

• cv load <prefix>

Load data from a state file into all matching colvars and biases

Parameters

prefix : string - Path to existing state file or input prefix

• cv loadfromstring <buffer>

Load state data from a string into all matching colvars and biases

Parameters

buffer : string - String buffer containing the state information

• cv molid [molid]

Get or set the molecule ID on which Colvars is defined (VMD only)

Parameters

molid : integer - Molecule ID; -1 means undefined (optional)

• cv printframe

Return the values that would be written to colvars.traj
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• cv printframelabels

Return the labels that would be written to colvars.traj

• cv reset

Delete all internal configuration

• cv resetindexgroups

Clear the index groups loaded so far, allowing to replace them

• cv save <prefix>

Change the prefix of all output files and save them

Parameters

prefix : string - Output prefix with trailing ".colvars.state" gets removed)

• cv savetostring

Write the Colvars state to a string and return it

• cv units [units]

Get or set the current Colvars unit system

Parameters

units : string - The new unit system (optional)

• cv update

Recalculate colvars and biases

• cv version

Get the Colvars Module version number

13.7.2 Commands to manage individual collective variables

• cv colvar name addforce <force>

Apply the given force onto this colvar and return the same

Parameters

force : float or array - Applied force; must match colvar dimensionality

• cv colvar name cvcflags <flags>

Enable or disable individual components by setting their active flags

Parameters

flags : integer array - Zero/nonzero value disables/enables the CVC

• cv colvar name delete

Delete this colvar, along with all biases that depend on it

• cv colvar name get <feature>

Get the value of the given feature for this colvar

Parameters

feature : string - Name of the feature

• cv colvar name getappliedforce

Return the total of the forces applied to this colvar
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• cv colvar name getatomgroups

Return the atom indices used by this colvar as a list of lists

• cv colvar name getatomids

Return the list of atom indices used by this colvar

• cv colvar name getconfig

Return the configuration string of this colvar

• cv colvar name getgradients

Return the atomic gradients of this colvar

• cv colvar name gettotalforce

Return the sum of internal and external forces to this colvar

• cv colvar name help [command]

Get a help summary or the help string of one colvar subcommand

Parameters

command : string - Get the help string of this specific command (optional)

• cv colvar name modifycvcs <confs>

Modify configuration of individual components by passing string arguments

Parameters

confs : sequence of strings - New configurations; empty strings are skipped

• cv colvar name run ave

Get the current running average of the value of this colvar

• cv colvar name set <feature> <value>

Set the given feature of this colvar to a new value

Parameters

feature : string - Name of the feature

value : string - String representation of the new feature value

• cv colvar name state

Print a string representation of the feature state of this colvar

• cv colvar name type

Get the type description of this colvar

• cv colvar name update

Recompute this colvar and return its up-to-date value

• cv colvar name value

Get the current value of this colvar

• cv colvar name width

Get the width of this colvar
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13.7.3 Commands to manage individual biases

• cv bias name bin

Get the current grid bin index (1D ABF only for now)

• cv bias name bincount [index]

Get the number of samples at the given grid bin (1D ABF only for now)

Parameters

index : integer - Grid index; defaults to current bin (optional)

• cv bias name binnum

Get the total number of grid points of this bias (1D ABF only for now)

• cv bias name delete

Delete this bias

• cv bias name energy

Get the current energy of this bias

• cv bias name get <feature>

Get the value of the given feature for this bias

Parameters

feature : string - Name of the feature

• cv bias name getconfig

Return the configuration string of this bias

• cv bias name help [command]

Get a help summary or the help string of one bias subcommand

Parameters

command : string - Get the help string of this specific command (optional)

• cv bias name load <prefix>

Load data into this bias

Parameters

prefix : string - Read from a file with this name or prefix

• cv bias name loadfromstring <buffer>

Load state data into this bias from a string

Parameters

buffer : string - String buffer containing the state information

• cv bias name save <prefix>

Save data from this bias into a file with the given prefix

Parameters

prefix : string - Prefix for the state file of this bias

• cv bias name savetostring

Save data from this bias into a string and return it
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• cv bias name set <feature> <value>

Set the given feature of this bias to a new value

Parameters

feature : string - Name of the feature

value : string - String representation of the new feature value

• cv bias name share

Share bias information with other replicas (multiple-walker scheme)

• cv bias name state

Print a string representation of the feature state of this bias

• cv bias name update

Recompute this bias and return its up-to-date energy

13.8 Syntax changes from older versions

The following is a list of syntax changes in Colvars since its first release. Many of the older keywords
are still recognized by the current code, thanks to specific compatibility code. This is not a list of
new features: its primary purpose is to make you aware of those improvements that affect the use
of old configuration files with new versions of the code.
Note: if you are using any of the NAMD and VMD tutorials:
https://www.ks.uiuc.edu/Training/Tutorials/

please be aware that several of these tutorials are not actively maintained : for those cases, this list
will help you reconcile any inconsistencies.

• Colvars version 2016-06-09 or later (VMD version 1.9.3 or later).
The legacy keyword refPositionsGroup has been renamed fittingGroup for clarity (the
legacy version is still supported).

• Colvars version 2016-08-10 or later (VMD version 1.9.3 or later).
“System forces” have been replaced by “total forces” (see for example outputTotalForce).
See the following page for more information:
https://colvars.github.io/README-totalforce.html

• Colvars version 2017-01-09 or later (VMD version 1.9.4 or later).
A new type of restraint, harmonicWalls (see ??), replaces and improves upon the legacy
keywords lowerWall and upperWall: these are still supported as short-hands.

• Colvars version 2018-11-15 or later (VMD version 1.9.4 or later).
The global analysis keyword has been discontinued: specific analysis tasks are controlled
directly by the keywords corrFunc and runAve, which continue to remain off by default.

• Colvars version 2020-02-25 or later (VMD version 1.9.4 or later).
The parameter hillWidth, expressing the Gaussian width 2σ in relative units (number
of grid points), does not have a default value any more. A new alternative parameter
gaussianSigmas allows setting the σ parameters explicitly for each variable if needed.
Furthermore, to facilitate the use of other analysis tools such as for example sum hills:
https://www.plumed.org/doc-v2.6/user-doc/html/sum hills.html
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the format of the file written by writeHillsTrajectory has also been changed to use σ
instead of 2σ. This change does not affect how the biasing potential is written in the state
file, or the simulated trajectory.

• Colvars version 2020-02-25 or later (VMD version 1.9.4 or later).
The legacy keywords lowerWall and upperWall of a colvar definition block do not have de-
fault values any longer, and need to be set explicitly, preferably as part of the harmonicWalls
restraint. When using an ABF bias, it is recommended to set the two walls equal to
lowerBoundary and upperBoundary, respectively. When using a metadynamics bias, it is
recommended to set the two walls strictly within lowerBoundary and upperBoundary; see ??
for details.

Up-to-date documentation can always be accessed at:
https://colvars.github.io/colvars-refman-vmd/colvars-refman-vmd.html
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Chapter 14

Customizing VMD Sessions

There are a number of ways to change the behavior of VMD from the default settings, both in how
the program starts up and in how the program behaves during a session. This Chapter describes
the data files, command-line options, and environment variables which are used to customize a
VMD session.

These files control the initial appearance and behavior of VMD at the start, and may be
customized to suit each user’s particular tastes. Default versions of these files are placed in the VMD
installation directory (On Unix this is usually /usr/local/lib/vmd, on Windows this defaults to
C:\Program Files\University of Illinois\VMD ). Each user may specify their own versions of
some of these files, but unless this is done the commands and values in the default files are used. In
this way, an administrator may customize the default behavior of VMD for all users, while giving
each user the option to change the default behavior however they choose.

Several configurable parameters may also be set in a number of ways, including use of command-
line options or environment variables. The order of precedence of these methods is as follows
(highest precedence to lowest):

1. Command-line options.

2. Environment variable settings.

3. Built-in defaults, as specified by compilation configurable parameters. These are used only
if no other values are specified by the other methods mentioned in this list. The Installation
Guide describes how to change these default values when compiling VMD.

14.1 VMD Command-Line Options

When started, the following command-line options may be given to VMD. Note that if a command-
line option does not start with a dash (-), and is not part of another option, it is assumed to be a
filename, and its extension is matched to the extension registered by the proper plugin. Thus, the
Unix command

vmd molecule.pdb

will start VMD and load a molecule from the file molecule.pdb, while the command

vmd molecule.psf molecule.dcd
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will load the corresponding structure and coordinate files into the same molecule. On the Windows
platform, one must preface the VMD invocation with the Windows start command

start vmd molecule.pdb

• -h | --help : Print a summary a command-line options to the console.

• -e filename : After initialization, execute the text commands in filename, and then resume
normal operation.

• -python : After initialization, switch to the Python interpreter before executing commands
in the file specified by -e (if any), and leave the text interpreter in Python mode.

• filename : Load the specified file at startup. The file type will be determined from the
filename extension; if there is no filename extension, and the filename contains 4 letters, it is
assumed to be a PDB accession code and will be loaded accordingly; otherwise the format is
assumed to be PDB.

• -<filetype> filename : Load the specified file using the given filetype.

• -f : Load all subsequent files into the same molecule. This is the default. A new molecule
is created for each invocation of -f; thus, vmd -f 1.pdb 2.pdb -f 3.pdb loads 1.pdb and

2.pdb into the same molecule and 3.pdb into a different molecule.

• -m : Load all subsequent files into separate molecules. The -f and -m options may be specified
multiple times on the command line in order to load multiple molecule containing one or more
files.

• -dispdev < win | text | cave | caveforms | none > : Specify the type of graphical
display to use. The possible display devices include:

– win: a standard graphics display window.

– text: do not provide any graphics display window.

– cave: use the CAVE virtual environment for display, windows are disabled.

– caveforms: use the CAVE virtual environment for display and with windows enabled.
This is useful with -display machine:0 for remote display of the windows when the
CAVE uses the local screen.

– none: same as text.

It is possible to use VMD as a filter to convert coordinate files into rendered images, by using
the -dispdev text and -e options.

• -dist z : Specify the distance to the VMD image plane.

• -height y : Specify the height of the VMD image plane.

• -pos x y : Specify the position for the graphics display window. The position (x,y) is the
number of pixels from the lower-left corner of the display to the lower-left corner of the
graphics window.

• -size x y : Specify the size for the graphics display window, in pixels.
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• -nt : Do not display the VMD title at startup.

• -eofexit : Make VMD exit when EOF on stdin is reached; for example, when a script is redi-
rected to VMD. The combination vmd -dispdev text -eofexit < input.tcl > output.log

is useful for batch mode scripting.

• -startup filename : Use filename as the VMD startup command script, instead of the
default .vmdrc or vmd.rc file.

• -args : Pass subsequent command line arguments to the text interpreter. The Tcl interpreter
will store these arguments in the list variable argv. By default, no arguments are stored in
this variable.

• -debug [level : Turn on output of debugging messages, and optionally set the current debug
level (1=few messages ... 5=many verbose messages). Note this is only useful if VMD has
been compiled with debugging option included.

14.2 Environment Variables

Several environment variables are used by VMD to determine the location of certain files and
directories. These variables are accessible to text interface through array env. These variables
include:

• DISPLAY : (Unix-only) The X-Windows display that VMD should use for displaying the
VMD windows and menus, as well as the graphics window. If this environment variable is
not overridden by VMDGDISPLAY all VMD windows will be directed to this display.

• OPTIX CACHE PATH : This environment variable sets the path that the OptiX runtime will use
for caching of just-in-time compiled ray tracing shaders.

• VMDDIR : The directory which contains the VMD data files (such as this help file) and
architecture-specific executables. By default, this is /usr/local/lib/vmd on Unix systems,
and C:\Program Files\University of Illinois\VMD on Windows sytems.

• VMDTMPDIR : The directory which VMD should use for temporary data files. By default, this
is /tmp, or /usr/tmp on Unix systems, and C:\ on Windows.

• VMDCUSTOMIZESTARTUP : (Unix-only) The name of a C-shell script to source prior to running
the actual VMD process. This shell script can contain any commands necessary for performing
machine-specific spaceball, graphics, and other customizations necessary to run VMD. This
can be anything from a simple script that sets the right serial port for a Spaceball based
on the hostname, or it can be a complex script for turning on a projection system, logging
demos, configuring multi-display stereo-framelock features, etc.

• VMDBABELBIN : The complete path and filename for the program babel, which is used by
VMD to convert molecular structure/coordinates files into PDB files which VMD can actually
understand. If this is not set explicitly, the VMD startup script will attempt to find babel in
the current path. If Babel cannot be found or is not installed, VMD will not be able to read
molecular file formats other than PDB, PSF, and binary DCD files.
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• VMDFILECHOOSER : Specifies which file chooser to use for loading and saving files from the
GUI. At present, this should be either FLTK, which uses Fltk’s platform- independent file
chooser, or TK, which uses Tk’s file chooser. The Tk file chooser is the default and uses a
native Windows interface on Windows platforms. The Fltk file chooser looks the same on all
platforms, supports tab completion but not drive letters, and is probably most appropriate
for Unix environments. The file chooser can be overridden at any time by changing the
environment variable (e.g., in Tcl, set env(VMDFILECHOOSER) FLTK).

• VMDFORCECPUCOUNT : Specifies the maximum number of CPUs or CPU cores that VMD should
use when running on a multiprocessor or multicore computer system. By default, VMD
will use all of the processors on the host machine. This option can be used to prevent
VMD from “hogging” CPUs or to make it abide by job submission policies required on large
supercomputer systems, when running batch mode.

• VMDCAVEMEM : (Unix-only) This overrides the default size of the shared memory arena which
is allocated by VMD when the CAVE starts up. The variable must be an integer number of
megabytes. Since this is the only shared memory pool allocated, and it is done only once, you
must choose a value sufficient to account for the largest scene you intend to render in VMD
in that CAVE session. The default value unless otherwise specified is 80 Megabytes. Values
of 200MB to 512MB are commonly needed for large molecular systems containing several
hundred thousand atoms.

• VMDFREEVRMEM : (Unix-only) This overrides the default size of the shared memory arena
which is allocated by VMD when the FreeVR starts up. The variable must be an integer
number of megabytes. Since this is the only shared memory pool allocated, and it is done
only once, you must choose a value sufficient to account for the largest scene you intend to
render in VMD in that FreeVR session. The default value unless otherwise specified is 80
Megabytes. Values of 200MB to 512MB are commonly needed for large molecular systems
containing several hundred thousand atoms.

• VMDFORCECONSOLETTY : (Unix-only, intended only for clusters This environment variable
forces VMD to treat the text console as an interactive terminal, despite what the operating
system says. This is only useful for running an interactive VMD session on a Clustermatic
or Scyld Linux cluster node.

• VMDGDISPLAY : (Unix-only) The name of an X-Windows display that VMD will use to display
the graphics window. This environment variable is only used on Unix systems. Through the
use of the the DISPLAY and VMDGDISPLAY envrironment variables, the VMD graphics
window can be placed on a separate screen from the windows and menus. This is particularly
useful when giving 3-D demonstrations using a projector. The windows and menus can be
kept on a different screen from the graphics so that they do not distract the audience.

• VMDGLSLVERBOSE : OpenGL Shading language compiler diagnostic errors only printed only
when this environment variable is set.

• VMDHTMLVIEWER : The name of a command that will run a web browser in the background
(Netscape, Mozilla, Firefox or whatever you prefer) that VMD should use to display HTML
documents (such as this help file). By default, on UNIX, this is mozilla. (usage examples in
Tcl: set env(VMDHTMLVIEWER) ‘‘mozilla -remote openURL(%s)", set env(VMDHTMLVIEWER)

‘‘mozilla %s &")
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• VMDIMAGEVIEWER : The name of the external program to use for displaying VMD snapshots
(or other images), in various formats.

• VMDIMMERSADESKFLIP : Enable a special reversed/reflected stereo projection mode for use
with experimental displays based on LCD panels, phase plates, and beam splitters.

• VMDMACENABLEEEXTENSIONS : Enable performance-oriented OpenGL rendering extensions which
are disabled by default. These extensions have been observed to trigger instability on some
MacOS X systems.

• VMDMAXAASAMPLES : Override the maximum requested OpenGL multisample antialiasing sam-
ple depth with a user-specified value. The VMD default is normally 8 samples per pixel. Some
video cards exhibit poor performance with large numbers of antialiasing samples and must
be restricted to 5 or fewer samples per pixel.

• VMDMSECDELAYHACK : Add in a user-specified delay which causes VMD to sleep for specified
number of milliseconds each time it renders the molecular scene on the display. This feature is
meant as a workaround to poor performing display drivers which make the windowing system
unresponsive if VMD is allowed to run unrestricted at maximum drawing rate.

• VMDMSMSUSEFILE : Force VMD to communicate with MSMS through the filesystem rather
than with the socket-based network interface. This option can be used when the socket
interface isn’t working properly for some reason. This is the default behavior when using
VMD on Windows.

• VMDNOCUDA : Force VMD not to use CUDA-based GPU acceleration, even if CUDA support
was compiled in, and CUDA-capable devices are detected at startup. This can be used in
cases where a GPU or GPU drivers prove to be unreliable for computation, for benchmarking
vs. CPU-only implementations, and to prevent VMD from using a GPU that’s already
oversubscribed by other processes running on the same machine.

• VMDCUDADEVICEMASK This environment variable limits VMD to running GPU-accelerated al-
gorithms on a specific subset of GPUs, based on a hexadecimal mask. For example, to allow
rendering on only the first two GPUs, one would set the mask to 0x3; to use only the second
GPU, the mask would be set to 0x2.

• VMDDISABLESTEREO : (Unix) Prevents VMD from enabling stereoscopic display features. This
is normally only used as a workaround for buggy display drivers.

• VMDPREFERSTEREO : (Unix, MacOS X) On Unix systems using X11, this environment vari-
able allows NVidia Quadro users to override the normal X11 visual search order, skipping
multisample capable visuals in favor of stereo visuals. VMD still attempts to get the more
complex visuals first, but if it comes down to a choice between stereo and multisample as
mutually exclusive options, this variable provides the ability to force the use of stereo if avail-
able. On MacOS X, this environment variable tells VMD to create a a stereo-capable display
window, even at the risk of terminating the program if the request is denied.

• VMDSCRDIST : Distance to the VMD image plane.

• VMDSCRHEIGHT : Height of the VMD image plane.
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• VMDSCRPOS : Position of the VMD graphics window (x,y).

• VMDSCRSIZE : Size of the VMD graphics window (x,y).

• VMD EXCL GL EXTENSIONS : Disable the use of named OpenGL extensions according to their
official OpenGL extension names. This is intended to be used only when one encounters
severe stability problems caused by buggy display drivers.

• VMDSHEARSTEREO : Enable the use of an alternative perspective projection mode which may
result in improved stereoscopic display. Uses the shear-matrix stereo formulation rather than
eye rotation.

• VMDSIMPLEGRAPHICS : Forces VMD to use absolutely minimalistic graphics features with
no use of OpenGL extensions. Essentially, nothing but bread-and-butter vertex arrays and
immediate mode rendering will be used. This mode is intended to be used only when one
encounters severe stability problems caused by buggy display drivers.

• VMDWIREGL : This environment variable disables several graphics features which are unsup-
ported (or poorly supported) by WireGL and Chromium. This variable will be superceded
with a more general implementation in a future release.

• VMDOPTIXDEVICE : This environment variable limits VMD to performing OptiX GPU-accelerated
ray tracing on a specific GPU.

• VMDOPTIXDEVICEMASK : This environment variable limits VMD to performing OptiX GPU-
accelerated ray tracing on a specific subset of GPUs, based on a hexadecimal mask. For
example, to allow rendering on only the first two GPUs, one would set the mask to 0x3; to
use only the second GPU, the mask would be set to 0x2.

• VMDOPTIXNODISPLAYGPUS : This environment variable limits VMD to performing OptiX GPU-
accelerated ray tracing on GPUs that are not attached to a display, to prevent long-running
batch mode OptiX renderings from interfering with interactive VMD sessions or other desktop
applications.

• VMDOPTIXBUILDER : This environment variable allows the default fast-but-memory-intensive
“Trbvh” acceleration structure to be overridden by “MedianBvh” or other algorithms that
aren’t as fast, but require much less GPU memory when rendering hundreds of millions of
objects that could otherwise cause GPU out-of-memory errors.

• VMDOPTIXIMAGESIZE : This environment variable allows the user to forcibly override the reso-
lution of the images to be rendered, ignoring the incoming image height and width parameters
VMD would normally use. This variable is particularly useful when combining interactive ray
tracing with VR HMDs, where the ray traced image dimensions should generally be more than
3× higher horizontal resolution than the VR HMD display, and at least 2× higher vertical
resolution.

• VMDOPTIXAOMAXDIST : This environment variable specifies a maximum occlusion distance in
eye coordinates, rather than the default of infinity, for use when computing the ambient
occlusion factor for a hit point. By setting this to a small to moderate value, the interior
region of closed structures such as virus capsids will be lit with soft shadows as they would
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with conventional AO, both on the interior and exterior. Without the reduced occlusion
distance cutoff, closed surfaces would fall entirely into shadow.

• VMDOPTIXHEADLIGHT : This environment variable enables a positional light that is always
located at the center of projection, useful for interiors of virus capsids and the like.

• VMDOPTIXDOMEMASTER : This environment variable allows the user to forcibly override the cur-
rently active VMD 3-D projection mode (only “Orthographic” or “Perspective” are currently
implemented in the OpenGL-based renderer), allowing the OptiX ray tracer to generate hemi-
spherical images for so-called “fulldome” projection systems such as those typically used in
digital planetariums.

• VMDOPTIXEQUIRECTANGULAR : This environment variable allows the user to forcibly override
the currently active VMD 3-D projection mode (only “Orthographic” or “Perspective” are
currently implemented in the OpenGL-based renderer), allowing the OptiX ray tracer to
generate omnidirectional VR movies, e.g. for YouTube.

• VMDOPTIXSTEREO : This environment variable allows the user to forcibly override the currently
active VMD stereoscopic 3-D projection mode allowing the OptiX ray tracer to generate
stereoscopic omnidirectional VR movies, e.g. for YouTube.

• VMDOSPRAYAOMAXDIST : This environment variable specifies a maximum occlusion distance
in eye coordinates, rather than the default of infinity, for use when computing the ambient
occlusion factor for a hit point. By setting this to a small to moderate value, the interior
region of closed structures such as virus capsids will be lit with soft shadows as they would
with conventional AO, both on the interior and exterior. Without the reduced occlusion
distance cutoff, closed surfaces would fall entirely into shadow.

• VMDOSPRAYMPI : This environment variable enables the use of the MPI distributed memory
rendering mode of OSPRay if it was compiled into the OSPRay library in use by VMD.

• VMDOSPRAYIMAGESIZE : This environment variable allows the user to forcibly override the
resolution of the images to be rendered, ignoring the incoming image height and width pa-
rameters VMD would normally use. This environment variable makes it easy to renderer very
large images without changing the VMD display resolution.

14.3 Startup Files

14.3.1 Core Script Files

In the following, the value of $VMDDIR is the vmd installation directory. During the original in-
stallation this is the value of INSTALLLIBDIR. It can also be found by looking at the first few lines
of the vmd startup script (head ‘which vmd‘) or by starting VMD and using the command set

env(VMDDIR).
As mentioned elsewhere, VMD uses the Tcl interpreter. VMD read Tcl scripts at initializa-

tion, which are contained in VMD distribution. The locations of the scripts is determined by the
TCL LIBRARY environment variable, which is set in the vmd startup script to $VMDDIR/scripts/tcl.
In addition, VMD has its own directory of core Tcl routines.
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The most important of these is $VMDDIR/scripts/vmd/vmdinit.tcl. This file sets up the basic
Tcl initialization commands, defines some environment variables, and adds the vmd script directory
to the Tcl autoindex path. Most of the other files are referenced through the auto path.

There are a few non-Tcl scripts in this directory. Currently these are perl scripts used for the
urlload command and web client startup (see section 9.3.20 and section 14.4).

14.3.2 User Script Files

A user-written run-time command file, .vmdrc on Unix, vmd.rc on Windows, can be used with a
list of initial VMD text commands to process. This file may be changed to customize individual
user’s initial screen appearance and to set the proper display characteristics for displaying in stereo.
If it does not exist, default values are used.

14.3.3 .vmdrc and vmd.rc Files

After everything is initialized, VMD reads the startup file using the equivalent of the command play

.vmdrc. This file contains text commands for VMD to execute just as if they had been entered at
the VMD text console command prompt. The file can contain any number of commands, including
blank lines and comment lines (which begin with the # character). If an error is encountered while
reading this file, the command in error is skipped and processing of the file continues.

VMD searches for this file in three locations on Unix; ./.vmdrc, $HOME/.vmdrc and $VMDDIR/.vmdrc.
On Windows, VMD searches in ./vmd.rc, $HOME/vmd.rc and $VMDDIR/vmd.rc. Only the first file
found will be read in and processed.

See chapter 9 for a description of the VMD text commands which may be put in this file. Also,
section 5.1.3 discusses how to put commands into the .vmdrc file to customize the behavior of the
hot keys.

Here is an example of a startup file:

# add personalized keyboard shortcuts

user add key E echo on

user add key e echo off

user add key g display reset

user add key A stage location bottom

user add key m mol list

# position the stage and axes

axes location lowerleft

stage location off

# position and turn on menus

menu main move 5 196

menu display move 386 90

menu graphics move 5 455

menu files move 5 496

menu main on

# start the scene a-rockin’
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rock y by 1

14.4 Using VMD as a WWW Client (for chemical/* documents)

Mosaic, Netscape, and possibly other browsers can be configured to use VMD as a helper application
for viewing some chemical/* documents.

14.4.1 MIME types

When a web browser receives a document from a server it actually gets two pieces of information:
the header and the body. The header contains information about the message and body. One of
the most important pieces of data, called the MIME type specifies what the body of text describes.
For instance, a GIF image is given the MIME type of image/gif, a JPEG image is image/jpg,
and postscript is application/postscript. A class of types, chemical/*, has been created for
chemical models so the MIME type for PDB files is chemical/pdb, for XYZ is chemical/xyz, etc.

Helper Applications

The web browser uses the MIME type to determine how to view the body of the message. Some of
the documents are viewed by the browser itself, like text/html which describes HTML documents.
In other cases, the browser has to start up another application. From here on, we’ll describe how
Mosaic and Netscape do this. First, it saves the incoming message body to a temporary file. It
then scans the global and local mailcap files to determine which application is used to view the
given MIME type. The application, which must take a file name on the command line, is then
executed. When the application exits, the temporary file is deleted.

14.4.2 Setting up your .mailcap

The Unix versions of VMD have an extra -webhelper command line flag which causes VMD not
to be spawned in the background, so that it has time to read temporary files downloaded by the
web browser. This command line flag is just slightly simpler to use than the chemical2vmd script,
as it does not depend on having Perl installed, so may be more appropriate for some cases.

In the VMD installation directory ($VMDDIR/scripts/vmd/) there is a perl script called
chemical2vmd which will create a VMD command file and execute VMD. Since VMD does not
block the calling process, Netscape and other web browsers cannot directly call VMD, as they do not
know when to delete the temporary file containing the molecule or other data. The chemical2vmd

script starts VMD with the -e command line option which runs the saved VMD script or molecule
file.

It is also possible to install the previous script in the global .mailcap file to make it accessible
to everyone. You will have to consult the documentation for your web browser(s) to find out how.

14.4.3 Example sites

Some web sites that send chemical/pdb types are the Protein Data Bank at http://www.rcsb.org/
and “Molecules R US” at http://www.nih.gov/htbin/pdb.
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yield unbiased free energies with the extended-system adaptive biasing force method. J. Phys.
Chem. B, 121(15):3676–3685, 2017.

[67] A. Laio and M. Parrinello. Escaping free-energy minima. Proc. Natl. Acad. Sci. USA,
99(20):12562–12566, 2002.

[68] Helmut Grubmüller. Predicting slow structural transitions in macromolecular systems: Con-
formational flooding. Phys. Rev. E, 52(3):2893–2906, Sep 1995.

[69] T. Huber, A. E. Torda, and W.F. van Gunsteren. Local elevation - A method for improving the
searching properties of molecular-dynamics simulation. Journal of Computer-Aided Molecular
Design, 8(6):695–708, DEC 1994.

[70] G. Bussi, A. Laio, and M. Parrinello. Equilibrium free energies from nonequilibrium metady-
namics. Phys. Rev. Lett., 96(9):090601, 2006.

[71] Fabrizio Marinelli, Fabio Pietrucci, Alessandro Laio, and Stefano Piana. A kinetic model of
trp-cage folding from multiple biased molecular dynamics simulations. PLOS Computational
Biology, 5(8):1–18, 2009.

[72] Yanier Crespo, Fabrizio Marinelli, Fabio Pietrucci, and Alessandro Laio. Metadynamics con-
vergence law in a multidimensional system. Phys. Rev. E, 81:055701, May 2010.

[73] Fabrizio Marinelli and José D. Faraldo-Gómez. Ensemble-biased metadynamics: A molecular
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Babel, 27
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batch mode, 299
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add or remove, 30
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Python, 159
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CHARMM
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hBondExpDenom, 232
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name, 284
outputAccumulatedWork, 285
outputEnergy, 284
targetEquilSteps, 284
targetForceConstant, 284
targetForceExponent, 284
targetNumStages, 285
targetNumSteps, 284
writeTIPMF, 284
writeTISamples, 284

metadynamics

biasTemperature, 275
colvars, 270
ebMetaEquilSteps, 274
ebMeta, 273
gaussianSigmas, 271
hillWeight, 270
hillWidth, 271
keepFreeEnergyFiles, 271
keepHills, 272
multipleReplicas, 276
name, 270
newHillFrequency, 271
outputEnergy, 270
outputFreq, 270
rebinGrids, 272
replicaID, 277
replicaUpdateFrequency, 277
replicasRegistry, 276
stepZeroData, 270
targetDistFile, 273
targetDistMinVal, 274
useGrids, 272
wellTempered, 275
writeFreeEnergyFile, 271
writeHillsTrajectory, 272
writeHistogram, 289
writePartialFreeEnergyFile, 277
writeTIPMF, 270
writeTISamples, 270

orientationAngle

atoms, 229
refPositionsColValue, 229
refPositionsCol, 229
refPositionsFile, 229
refPositions, 229

orientationProj

atoms, 229
refPositionsColValue, 229
refPositionsCol, 229
refPositionsFile, 229
refPositions, 229

orientation

atoms, 228
closestToQuaternion, 229
refPositionsColValue, 228
refPositionsCol, 228
refPositionsFile, 228
refPositions, 228

polarPhi

atoms, 220
rmsd

atomPermutation, 224
atoms, 224
refPositionsColValue, 224
refPositionsCol, 224
refPositionsFile, 224
refPositions, 224

selfCoordNum

cutoff3, 222
cutoff, 222
expDenom, 223
expNumer, 223
group1, 222
pairListFrequency, 223
tolerance, 223

spinAngle

atoms, 230
refPositionsColValue, 230
refPositionsCol, 230
refPositionsFile, 230
refPositions, 230

tilt

atoms, 230
axis, 230
refPositionsColValue, 230
refPositionsCol, 230
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refPositionsFile, 230
refPositions, 230

any component
componentCoeff, 243
componentExp, 243
name, 240
scalable, 241

atom group
atomNameResidueRange, 253
atomNumbersRange, 253
atomNumbers, 253
atomsColValue, 254
atomsCol, 254
atomsFile, 254
atomsOfGroup, 253
centerReference, 255
dummyAtom, 254
enableFitGradients, 257
enableForces, 257
fittingGroup, 256
indexGroup, 253
name, 252
psfSegID, 253
refPositionsColValue, 256
refPositionsCol, 256
refPositionsFile, 255
refPositions, 255
rotateReference, 255

colvar bias
bypassExtendedLagrangian, 259
colvars, 259
name, 258
outputEnergy, 259
outputFreq, 259
stepZeroData, 259
writeTIPMF, 260
writeTISamples, 260

global
colvarsRestartFrequency, 210
colvarsTrajFrequency, 210
indexFile, 210
scriptedColvarForces, 289
scriptingAfterBiases, 290
smp, 210
units, 205

color

access definitions, 106
assignment, 23
background, 52
category, 51, 75, 76, 106, 199
command, 74, 101, 105
id, 46, 74
in user-defined graphics, 111
index, 106
map, 51
material properties, 111
names, 74, 106
properties, 106
Python module, 161
redefinition, 52, 198
revert to default, 198
scale, 52, 77, 105, 197

changing, 52
set minmax, 130, 168

window, 23, 51, 74–76
color map, 75
colorinfo

command, 101, 106
coloring

by category, 76
by color scale, 77
by property, 199
methods, 20, 45, 63, 74–76, 128, 199

Colvars
cv command, 205

Command line options, 297
contact residues, 85
copyright, 13
Coulomb potential

volumetric data, 138
cross correlation, 116
culling, 108

debug
command, 101

density
volumetric data, 137

depth cue, 108
depth cueing, 43
Depth of Field, 45
display

ambient occlusion, 107
antialiasing, 107
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backgroundgradient, 43, 108
command, 101, 107
depth of field, 107
device, 298
dof, 107
Python module, 161
update, 108, 185, 198
window, 42

distance
volumetric data, 138

distance between atoms, 23
DoF, 45
draw

command, 109
drawing

method, 20, 45
drawn, 37

electrostatics
volumetric data, 138

environment variables, 299
DISPLAY, 299
MSMSSERVER, 71
OPTIX CACHE PATH, 299
SURF BIN, 70
TCL LIBRARY, 303
VMD EXCL GL EXTENSIONS, 302
VMDBABELBIN, 27, 299
VMDCAVEMEM, 300
VMDCUDADEVICEMASK, 301
VMDCUSTOMIZESTARTUP, 299
VMDDIR, 299
VMDDISABLESTEREO, 301
VMDFILECHOOSER, 300
VMDFORCECONSOLETTY, 300
VMDFORCECPUCOUNT, 300
VMDFREEVRMEM, 300
VMDGDISPLAY, 300
VMDGLSLVERBOSE, 300
VMDHTMLVIEWER, 300
VMDIMAGEVIEWER, 301
VMDIMMERSADESKFLIP, 301
VMDMACENABLEEEXTENSIONS, 301
VMDMAXAASAMPLES, 301
VMDMSECDELAYHACK, 301
VMDMSMSUSEFILE, 301
VMDNOCUDA, 301

VMDOPTIXAOMAXDIST, 302
VMDOPTIXBUILDER, 302
VMDOPTIXDEVICE, 302
VMDOPTIXDEVICEMASK, 302
VMDOPTIXDOMEMASTER, 303
VMDOPTIXEQUIRECTANGULAR, 303
VMDOPTIXHEADLIGHT, 303
VMDOPTIXIMAGESIZE, 302
VMDOPTIXNODISPLAYGPUS, 302
VMDOPTIXSTEREO, 303
VMDOSPRAYAOMAXDIST, 303
VMDOSPRAYIMAGESIZE, 303
VMDOSPRAYMPI, 303
VMDPREFERSTEREO, 301
VMDSCRDIST, 301
VMDSCRHEIGHT, 301
VMDSCRPOS, 302
VMDSCRSIZE, 302
VMDSHEARSTEREO, 302
VMDSIMPLEGRAPHICS, 302
VMDSPACEBALLPORT, 33
VMDTMPDIR, 299
VMDWIREGL, 302

evaltcl
Python module, 162

example scripts
Python

callbacks, 159
Tcl

customized startup file example, 304
exit

command, 101
eye separation, 93, 108

file
load, 19

file types
input, 26, 40
output, 37

files
output, 21
read, 102
reading, 19, 21, 26, 39, 40, 128
startup, 32, 299, 303, 304
writing, 37, 102

fit
RMSD, 195
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focal length, 93, 108
frame

delete, 37, 102
duplicate, 100
write, 102

frames, 36
frames per second indicator, 43

geometric center, 187
gettimestep

command, 101, 112
gopython

command, 148
graphics

command, 110
delete, 112
loading, 110
primitives, 110
Python module, 162
replace, 112
user-defined, 109
window, 45

Gromacs
files, 26, 40

gyration, radius of, 191

hardware requirements, 17
help, 36

command, 101, 112
topics, 113

highlight, 60
hot keys, 32, 137

animation control, 35
customizing, 32
menu control, 34
mouse control, 33
rotation and scaling, 34

hydrogen bonds, 65, 117

image
lighting controls, 30, 43
shading and material properties, 53

IMD, 57
imd

command, 101, 112
Python module, 163
requirements, 57

implicit ligand sampling

volumetric data, 138
Interactive Molecular Dynamics, 57
interpolation

volumetric data, 138

joystick
using, 35

label
command, 101, 113
Python module, 164

labels, 22
categories, 49, 113
delete, 50
hide, 50
picking with mouse, 30
plotting, 51, 147
show, 50
text, 109
window, 49

light
command, 101, 114
controlling with mouse, 30
toggle, 43

logfile
command, 101, 115
disable from GUI, 24
disable from text, 115
enable from GUI, 24
enable from text, 115

logging tcl commands, 24, 115

mask
volumetric data, 138

mass
center of, 188
of residue atoms, 146
total, 190

material
changing, 128, 129
command, 101, 115
methods, 45
Python module, 165

material properties, 111
matrix routines

alignment, 180
identity, 179
inverse alignment, 180
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list of, 179
multiplication, 179
rotation, 180
trans command, 181
translation, 181
transpose, 179

MDFF, 116
mdffi

command, 101, 116
MDTools, 16
measure

command, 101, 116, 190, 191
Python module, 165

menu
command, 101, 126

menus, 126
molecular surface, 69–71
molecule

active, 37, 38
analysis, 190
best-fit alignment, 195
command, 101, 127, 130
data, 131
deleting, 38
drawn, 37
fixed, 23, 37
graphics, 110
id, 127
index, 127
info, 184
list, 36
loading, 19, 21, 110, 193
Python module, 166
status, 37, 128

changing, 37, 130, 184
top, 37, 39, 132
translation, 23

molinfo
command, 130, 184
keywords, 131

molrep
Python module, 167

mouse
add or remove bonds, 30
callback, 133
command, 101, 132

modes, 19, 23, 29, 33, 132
mouse mode, 41
move, 41

atom, 41
fragment, 41
highlighted rep, 41
molecule, 41
residue, 41

object menus, 41
pick information, 51
rocking, 133
stop rotation, 133
using, 29

movies, 97

NAMD, 16
files, 26, 40

occupancy
volumetric data, 138

orthographic view, 42, 90
output

format, 21

parallel
command, 101, 133

PCRE, 14
periodic boundary conditions, 49
periodic image display, 49
perspective view, 42, 90
picking

angles, 30, 31
atoms, 22, 30, 31
bonds, 22, 30, 31
center, 31
dihedrals, 30, 31
distances, 22
hot keys, 33
modes, 23, 30
move atom, 31
move fragment, 31
move highlighted rep, 32
move molecule, 32
move residue, 31
query, 31
text command, 133

play
command, 99, 101, 133, 298
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plot
geometry monitors, 51

postscript, 96
potential of mean force

volumetric data, 138
Python, 14

interface, 148
RMSD, 153, 154
Tkinter, 159
version, 148

python
atomsel, 149
environment variables, 148
libraries, 148
Numeric, 149, 171
startup, 298
Tkinter, 149

quit, 36
command, 110, 134

quoting, 81

radius of gyration, 191
Ramachandran plot, 61
Raster3D, 28, 96
regular expression, 82, 88

X-PLOR conversion, 89
remote

connection, 112
detaching, 58
killing, 58
modifiable parameters, 58

options, 112
simulation control, 112

render
command, 101, 134
Python module, 169
window, 21, 54

rendering, 21, 54, 94
ambient occlusion lighting, 107, 134
antialiasing, 134
ART, 98
caveats and considerations, 95
exec command, 135
Gelato, 98
in background process, 54
list of supported renderers, 98

methods, 98, 134
PostScript, 98
POV-Ray, 98
Radiance, 98
Raster3D, 98
Rayshade, 98
RenderMan, 98
stereo, 96
STL, 98
Tachyon, 13, 15, 21, 98, 134
TachyonInternal, 98, 134
TachyonLOptiXInteractive, 98
TachyonLOptiXInternal, 98
TachyonLOSPRayInteractive, 98
TachyonLOSPRayInternal, 98
VRML-1, 98
VRML-2, 98
Wavefront, 98
X3D, 98
X3DOM, 98

rendering modes, 108
rendermode, 44
representation, 63, 127

add new, 47
adding, 47
auto-update, 47
Beads, 73
Bonds, 64
Cartoon, 68
changing, 22, 46, 128
clipping planes

user defined, 128
CPK, 66
deleting, 47
dotted van der Waals, 73
draw multiple frames, 130
DynamicBonds, 65
examples, 23
FieldLines, 73
HBonds, 65
hiding, 47
Isosurface, 72
Licorice, 66
Lines, 64
list of available, 64
MSMS, 71
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NanoShaper, 71
NewCartoon, 69
NewRibbons, 68
Orbital, 73
PaperChain, 69
Points, 65
Polyhedra, 66
QuickSurf, 69
Ribbons, 67
show/hide, 130, 169
solvent representation, 74
style, 20, 45, 63, 128
Surf, 70
Trace, 67
Tube, 67
Twister, 69
van der Waals, 66
VolumeSlice, 72

represention
auto-update, 130

reset view, 42
resetview, 108
restore

viewpoint, 184
vmd state, 24

RMS
Fit, 193

RMS:Alignment, 193
RMSD, 153, 154, 156, 192, 195, 196
rock, 39

command, 101, 135
rotate

command, 101, 135
side chain, 189

rotation
continuous, 30
hot keys, 34
stop, 30
using mouse, 30

save
configuration, 24
logfile, 24
viewpoint, 184
vmd state, 24, 175

scale
command, 101, 135

scaling
using mouse, 30

screen parameters, 44
scripts

play, 99
source, 99

secondary structure codes, 59
selection, 20, 22, 45, 63, 102, 128, 185

comparison, 83
keywords, 47, 79, 86

boolean, 81
logic, 81
math functions, 88
modes, 79
text, 185
volumetric data, 88

sensor configuration file, 55
sensors, 55
sequence, 59

caveats, 61
dna, 59
window, 59
zooming, 60

Shadows, 44
short circuit logic, 81, 84
sleep

command, 101, 145
source

command, 99
spaceball

driver, 13, 33
serial, 33
windowing system, 33

modes, 33
using, 33

SpaceNavigator
driver, 33

windowing system, 33
modes, 33
using, 33

stage, 43
command, 101, 135

startup files, 32, 299, 303, 304
stereo

mode, 91
checkerboard, 92
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column interleaved, 92
cross-eyed, 91
CrystalEyes, 91
HDTV side-by-side, 92
quad buffered, 91
row interleaved, 92
scanline interleaved, 92
side-by-side, 91

off, 90
parameters, 43, 93, 108

STL files, 98
stop rotation, 42
stride, 14
surf, 14
surface

molecular, 74
solvent accessible, 74

Tachyon, 15
TachyonInternal, 96
Tcl, 100
tcl commands, 100
text

displayed, 111
Tk, 100
tool

CAVE, 55
command, 101, 136
FreeVR, 55
Spaceball, 55
VRPN, 55
window, 54

tools, 56
topology

Python module, 169
topology files, 26
trajectory

draw multiple frames, 49, 130
files, 26
read, 40
smoothing, 49, 130, 168
write, 37

trans
Python module, 170

translate
command, 101, 136

translation

change atom coordinates, 189
using mouse, 30

transparency, 46

unit cell information, 49
universal sensor locator, 55
user

command, 101, 136
user interfaces

python, 148
text, 99

USL, 55

variables
env, 299, 303
M PI, 182
trace, 145

vector command
coordtrans, 182
vecadd, 176
veccross, 178
vecdist, 179
vecdot, 177
vecinvert, 179
veclength, 178
veclength2, 178
vecmean, 177
vecnorm, 178
vecscale, 177
vecstddev, 177
vecsub, 177
vecsum, 177
vectrans, 182
veczero, 176

vector routines, 176
view, 127
viewing modes

changing, 90
VMD

as MIME helper application, 305
command line options, 297
compile options, 137
copyright, 13
customizing, 32, 297

vmdinfo
command, 101, 137

volmap

324



command, 101, 137
voltool, 143

command, 101, 143
volumetric data, 72

generating, 137
VRML files, 98

wait
command, 101, 145

window
animate, 21
color, 23, 51, 74–76
display, 42
files, 19
graphics, 20, 22, 45
hot keys, 34
IMD simulation, 57
label, 49
main, 36, 38
material, 53
molecule file browser, 39
mouse menu, 40
RamaPlot, 61
render, 21, 54
sequence, 59
tool, 54

windows, 126

X3D files, 98
XPLOR

files, 26, 40
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