Interactive HPC Requirements, Challenges, and Solutions for Cutting Edge Molecular Simulation Science Campaigns

John E. Stone
Theoretical and Computational Biophysics Group
Beckman Institute for Advanced Science and Technology
University of Illinois at Urbana-Champaign

http://www.ks.uiuc.edu/Research/vmd/

First Workshop on Interactive High-Performance Computing, ISC 2018
14:10-14:35, Alabaster 2, Marriot Hotel,
Frankfurt, Germany, Thursday June 28th, 2018
VMD – “Visual Molecular Dynamics”

- Visualization and analysis of:
 - Molecular dynamics simulations
 - Lattice cell simulations
 - Quantum chemistry calculations
 - Sequence information
- User extensible scripting and plugins
- http://www.ks.uiuc.edu/Research/vmd/

Cell-Scale Modeling

MD Simulation

Structure

Parameterization

Analysis

Preparation with QwikMD

Refinement with MDF

X-ray, cryo-EM, cryo-ET, NMR

Remote Visualization

Parallel Analysis

MD/Cell Simulation

LM

NAMD

Amber

Gromacs
Goal: A Computational Microscope

Study the molecular machines in living cells

All-Atom Molecular Dynamics

- HIV Capsid
- ATP Synthase
- Photosynthetic Chromatophore
- Aquaporin
- Lysozyme
- STMV
- Ribosome

Number of Atoms

- 10^5
- 10^6
- 10^7
- 10^8

Year

- 1990
- 1994
- 1998
- 2002
- 2006
- 2010
- 2014

Volume

- $(2 \text{ nm})^3$
- $(100 \text{ nm})^3$
How Can Interactivity in HPC Benefit Scientific Productivity

• Historically, MD simulation performance was the major limiting factor on large-scale biomolecular simulation productivity, maybe 95% factor
• 2000s: Batch MD sim performance a gradually shrinking factor affecting overall scientific productivity
• 2012 onward: with petascale supercomputers, “all of the other tasks” now gate scientific productivity as much as simulation throughput does
• An extremely simplified outline:
 – Months of science team effort go into preparing large biomolecular simulations w/experimental structures before MD sims begin
 – Early phases of simulation campaign, hundreds of modeling problems must be identified and addressed, interactivity has a huge impact on productivity
 – Batch simulation commences at scale…
 – Analytical work begins, interactivity is again critical to science productivity
 – Science teams make key decisions about outcomes, potentially conducting further simulations, developing manuscripts using analyses, figures, and movies of dynamics of systems under study
What Do Molecular Scientists Need?

- Interactive resources for **human-intensive** science team activities:
 - Science campaign “bullpen” interactive compute/viz
 - Interactive supercomputing “front end” w/ large memory capacities (persistent memory NVDIMMs) dense GPU counts
 - On-demand batch queues, exploit suspend-resume of other jobs

- Workflows composed from **arbitrary science tools**, including **non-traditional HPC tools** (e.g. CryoEM and X-Ray crystallography pkgs)

- **Meso-scale interactive calculations** performed “at a mouse click”
 - Support early-phase simulation bring-up activities
 - provide rapid-turnaround of results in interactive modeling sessions to correct flaws in molecular models, simulation parameters, etc.
Broader Motivations for Interactive HPC

- Ongoing push for greater **reproducibility**
 - Sharing of data to permit further/alternative analyses by others
 - Large data difficult to “share” w/ non-HPC environments
 - Remote access to interactive, graphically-driven science apps, eliminate roadblocks for non-HPC-expert scientists

- **Interactive “lab notebook” environments**
 - Very popular among data scientists
 - Encapsulate data, math, analysis, visualization
 - Mathematica, Jupyter
 - HPC apps can be driven directly by Jupyter notebook
 - Jobs run remotely on cloud, cluster, supercomputer…

- To reach the scale of modern HPC workloads, we need software infrastructure and HPC center policies that facilitate interactivity and modern workflow technologies
Tutorial 1.2 - Stochastic Solution of a Bimolecular Reaction

Here we examine a stochastic version of Tutorial 1.1.

In Python you "import" libraries to be able to use their functionality. The first several lines import certain functionality including certain operating system functions (os), standard numeric capabilities that are much like Matlab (numpy) and plotting capabilities (matplotlib). There lines are boiler-plate code for most pyLM scripts.

In order to use pyLM we need to import several libraries. The first is pyLM proper (pyLM). The second is a library with a number of functions such as nan(), micron(), ms(), microsecond(), etc. that allow cleaner definition of units. Finally, we import the pyLM standard library of functionality pySTDLM, which contains standard plotting and post-processing commands.

```python
# Import Standard Python Libraries
import os
import numpy as np
# import matplotlib.pyplot as plt

# Import pyLM Libraries
from pyLM import *
from pyLM.units import *
from pySTDLM import *
from pySTDLM.PostProcessing import *

# Enable plotting inline in the Jupyter notebook
#matplotlib inline
```

Hit Shift+Enter to execute cell
QwikMD: Interactive, Guided MD Simulation

Interactive preparation, simulation, and analysis

Smooths initial learning curve (non-expert users)

Speed up tedious simulation preparation tasks (expert users)

Reproducibility: detailed log of all steps

Making Our Research Tools and Science Workflows Easily Accessible

- Docker “container” images available in NVIDIA NGC registry
 - Users obtain Docker images via registry, download and run on the laptop, workstation, cloud, or supercomputer of their choosing
 - https://ngc.nvidia.com/registry/
 - https://ngc.nvidia.com/registry/hpc-vmd

- Cloud based deployment
 - Full virtual machines (known as “AMI” in Amazon terminology)
 - Amazon AWS EC2 GPU-accelerated instances: http://www.ks.uiuc.edu/Research/cloud/

Next Generation: Simulating a Proto-Cell

- Emulate aspects of the *Mycoplasma mycoides* bacterium
- 200nm diameter
- ~1 billion atoms w/ solvent
- ~1400 proteins in membrane

Cryo-ET image of ultra-small bacteria (scale bar 100nm)
Proto-Cell Data Challenges

- 1B-atom proto-cell requires nodes with more than TB RAM to build complete model...
- 1B-atom proto-cell binary structure file: 63GB
- Trajectory frame atomic coordinates: 12GB, 1.2TB/ns of simulation (1 frame per 10ps)
- Routine modeling and visualization tasks are a big challenge at this scale
 - Models contain thousands of atomic-detail components that must work together in harmony
 - Exploit persistent memory technologies to enable “instant on” operation on massive cell-scale models – eliminate several minutes of startup during analysis/visualization of known structure
 - Sparse output of results at multiple timescales will help ameliorate visualization and analysis I/O
 - Data quantization, compression, APIs like ZFP
VMD Petascale Visualization and Analysis

- Analyze/visualize large trajectories too large to transfer off-site:
 - User-defined parallel analysis operations, data types
 - Parallel rendering, movie making

- Supports GPU-accelerated Cray XK7 nodes for both visualization and analysis:
 - GPU accelerated trajectory analysis w/ CUDA
 - OpenGL and GPU ray tracing for visualization and movie rendering

- Parallel I/O rates up to 275 GB/sec on 8192 Cray XE6 nodes – can read in 231 TB in 15 minutes!

 Parallel VMD currently available on:

 ORNL Titan, NCSA Blue Waters, Indiana Big Red II, CSCS Piz Daint, and similar systems

NCSA Blue Waters Hybrid Cray XE6 / XK7
22,640 XE6 dual-Opteron CPU nodes
4,224 XK7 nodes w/ Tesla K20X GPUs
Molecular Dynamics Flexible Fitting (MDFF)

X-ray crystallography → MDFF → Electron microscopy

APS at Argonne

ORNL Titan

FEI microscope

Interactive and Parallel Analysis

• New graphical interfaces for batch and interactive exploration, calculation
 - User interactions drive analysis focus with progressive refinement of details
 - Interactive in-situ analysis of running simulations
• Enabled by GPU acceleration, parallel computing on desktops, clouds, clusters, and supercomputers

MDFF Cross Correlation Analysis

Regions with poor fit Regions with good fit

Time
Parallel MDFF Cross Correlation Analysis on Cray XK7

Rabbit Hemorrhagic Disease Virus (RHDV)

<table>
<thead>
<tr>
<th>Traj. frames</th>
<th>10,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure component selections</td>
<td>720</td>
</tr>
<tr>
<td>Single-node XK7 (projected)</td>
<td>336 hours (14 days)</td>
</tr>
<tr>
<td>128-node XK7</td>
<td>3.2 hours 105x speedup</td>
</tr>
<tr>
<td>2048-node XK7</td>
<td>19.5 minutes 1035x speedup</td>
</tr>
</tbody>
</table>

Calculation of 7M CCs would take 5 years using serial CPU algorithm!

VMD Tesla V100 Cross Correlation Performance

Rabbit Hemorrhagic Disease Virus: 702K atoms, 6.5Å resolution
VMD on Volta GPUs now ~9x faster than Kepler GPUs

37 Summit nodes ~= 2048 BW XK7 nodes:
In the realm of “Interactive HPC” now!

<table>
<thead>
<tr>
<th>Application and Hardware platform</th>
<th>Runtime, Speedup vs. Chimera, VMD+GPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMD-CUDA Intel Xeon E5-2687W + 1x Quadro K6000 [1,2]</td>
<td>0.458s, 35x 1.0x</td>
</tr>
<tr>
<td>VMD-CUDA Intel Xeon E5-2697Av4 + 1x Tesla V100</td>
<td>0.050s, 317x 9.2x</td>
</tr>
<tr>
<td>VMD-CUDA IBM Power9 “Newell” + 1x Tesla V100</td>
<td>0.049s, 323x 9.3x</td>
</tr>
</tbody>
</table>

Clustering Analysis of Molecular Dynamics Trajectories

Interactive Remote Visualization

- Enable access to massive data sets
 - Continuous visual display of status
 - Rapid, incremental, and reversible actions with 100ms updates
 - Visual Information Seeking mantra: “Overview first, zoom and filter, then details-on-demand”
Cryo-EM / Cryo-ET Density Map Segmentation

Evaluate 3-D volumetric electron density maps and segment them, to identify key structural components.

Index/label components so they can be referred to, colored, analyzed, and simulated…
Density Map Segmentation

VMD GPU-accelerated density map segmentation of GroEL

VMD Interactive Ray Tracing

- Exploit computational power to improve rendering of the structural details of biomolecular complexes
- Remote visualization tasks on very large macromolecular complexes
- High fidelity shading, shadows, AO lighting, depth of field, …

VMD/OptiX GPU Ray Tracing of all-atom Chromatophore w/ lipids.
Interactive RT For High-Fidelity Immersive Viz.

- Permit immersive interaction, while maintaining high visual fidelity
- Ray trace stereoscopic 360° views
- H.264, H.265 video streaming to remote VR HMDs
- Stereo spheremaps or cubemaps allow very high-frame-rate interactive OpenGL display

Goal: Intuitive interactive viz. in crowded molecular complexes

Results from 64 M atom, 1 μs sim!

Close-up view of chloride ions permeating capsid hexameric centers
Acknowledgements

• Theoretical and Computational Biophysics Group, University of Illinois at Urbana-Champaign

• Funding:
 – NIH support: P41GM104601
 – DOE INCITE, ORNL Titan: DE-AC05-00OR22725
“When I was a young man, my goal was to look with mathematical and computational means at the inside of cells, one atom at a time, to decipher how living systems work. That is what I strived for and I never deflected from this goal.” – Klaus Schulten