The University of Texas at Austin, Department of Computer Sciences, Tech Report TR-06-40

An Analysis of Ray Tracing Bandwidth Consumption

Paul Arthur Navratil

William R. Mark*

The University of Texas at Austin
Intel Corporation

Figure 1: The six scenes used in this paper, ordered by increasing visible triangle count (visible tris, total tris): erw6 (0.5K, 0.8K); soda hall
(36K, 2195K); conference (54K, 283K); statue (369K, 1088K); tri-statue (1082K, 3263K); dragon (2261K, 7219K).

ABSTRACT

The trend in chip-multi-processors for the next several years is for
on-chip FLOPS to grow much faster than bandwidth to off-chip
DRAM. This trend is likely to emerge as a performance bottleneck
for future real-time ray tracing systems. In this paper, we assess
the impact of this bottleneck by measuring the DRAM bandwidth
requirements for several different ray tracing algorithms, each run-
ning on simulated architectures with a variety of cache sizes. We
conclude that for current packet-tracing algorithms, bandwidth will
not be a bottleneck for primary rays, but that it will be a bottleneck
for soft shadow rays. This bottleneck is caused primarily by dra-
matically lower cache hit rates, rather than by an increase in total
working set, which suggests that substantial reductions in memory
bandwidth requirements would be possible by designing algorithms
that do a better job of scheduling ray traversals in a coherent fashion
for divergent secondary rays.

CR Categories: 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing;

Keywords. ray tracing, memory bandwidth

1 INTRODUCTION

Ray-tracing based rendering algorithms can generate images that
are of better visual quality than those generated easily by a Z-
buffer algorithm, but ray tracing algorithms have traditionally
been too slow for real-time use. Recent work demonstrates
that real-time ray tracing is possible for primary rays and hard
shadows[10][8][11][2], but it is still an open question as to when it
will become feasible to ray trace soft shadows and other advanced
effects in real time.

Performance of future ray-tracing systems for soft shadows and
other secondary rays could be limited by either raw FLOPS or by
DRAM bandwidth. In designing algorithms for future systems, it
is important to understand which potential bottlenecks are relevant.
This paper examines the potential DRAM bandwidth bottleneck by

*e-mail:[pnav | billmark]@cs.utexas.edu

presenting measurements of the bandwidth requirements of popu-
lar packet-based ray tracing algorithms. We report results for both
primary rays and soft shadow rays.

Because the rays within a soft-shadow secondary-ray packet tend
to diverge more rapidly than rays within an primary-ray packet, we
would expect that memory accesses for soft-shadow rays would be
less coherent, and in fact we find that this is the case. We conclude
that today’s popular algorithms are inefficient with respect to band-
width usage for divergent secondary rays, and that these algorithms
may have to be adapted or replaced to improve their utilization of
the memory hierarchy.

The remainder of the paper is organized as follows: we describe
related work in Section 2. In Section 3 we describe our experimen-
tal method. We present our results in Section 4, and in Section 5 we
summarize and outline future work.

2 RELATED WORK

There are several published results about the bandwidth require-
ments for tracing primary rays and hard shadows. Schmittler, et
al.,[9][10] and Woop, et al.,[11] report primary ray and hard shadow
memory bandwidth consumption on dedicated ray tracing hard-
ware. Benthin, et al.,[2] measure memory traffic for primary rays
on the IBM CELL processor. Purcell, et al.,[7] measure bandwidth
between on-board RAM and processor for GPU-based ray casting.
When scaled by cache size, our measured bandwidth consumption
for primary rays and hard shadows are similar to these related re-
sults.

We are aware of only a few published bandwidth results for
ray tracing with divergent secondary rays. Purcell, et al.,[7] re-
port bandwidth consumption for specular reflection and for path
tracing for one scene on a GPU. They find that adding secondary
rays increases DRAM to core memory traffic 3x to 4x primary ray
traffic. Pharr, et al.,[6] describe bandwidth consumption between
main memory and disk for a complex scene rendered with a Monte
Carlo global illumination simulation. Though this paper deals with
a lower level of the memory hierarchy, they find significant excess
bandwidth consumption due to thrashing data from disk to main
memory. We will compare their findings with ours in Section 5.

The University of Texas at Austin, Department of Computer Sciences, Tech Report TR-06-40

L1 cache L2 cache DRAM to L2
Processor configuration configuration bandwidth
Intel 16KB, 8-way, 1MB, 8-way, 10.7 GB/s
Prescott 64B lines 64B lines (975x chipset)
AMD 64KB, 2-way, 1MB, 16-way 8.0 GB/s
Toledo 64B lines 64B lines
Sun Niagara 8KB, 4-way, 4MB, 12-way, 20 GB/s
(constructive) | 16B lines 16B lines
Sun Niagara 2KB, 4-way, 128KB, 12-way, 20 GB/s
(destructive) 16B lines 16B lines
IBM CELL 25.6 GB/s
GeForce 51.2 GB/s
7900 GTX
SaarCOR 1-2GBI/s

Table 1: System Configurations — the first four rows contain the
systems we simulate: two traditional CPUs and two cases for a CMP
system. We include other rendering hardware for bandwidth compar-
ison only.

3 EXPERIMENTAL METHOD

We measure memory traffic for several different ray tracing algo-
rithms (e.g. primary rays only vs. soft shadows); for several dif-
ferent scenes; and for several different cache configurations. We
describe the various algorithms, scenes, and cache configurations
in this section.

3.1 CacheConfigurations

We use cache configurations that correspond to those of several cur-
rent processors, including two traditional CPUs (AMD and Intel),
and a CMP system (Sun Niagara).

Since there are various architecture choices for CPU-based ray
tracers, we take a current sample from each of the major ven-
dors: Intel and AMD. We use the configuration of an Intel Prescott
core with 975x chipset[4] and an AMD Toledo core and mem-
ory controller[1]. We choose the Sun Niagara processor[5] (with
floating-point processing assumed) for our CMP model, since it
has hardware multi-threading, a large L2, and high DRAM to L2
bandwidth. Note that Niagara has a 3MB L2 cache, but our cache
simulator forces us to use power-of-two sizes. We conservatively
use a 4MB L2. The system configurations are summarized in Ta-
ble 1.

We model two configurations for the Niagara: a constructive
cache interference pattern, where all processing resources can share
cached data; and a destructive cache interference pattern, where
no processing resource shares data. For the destructive interfer-
ence pattern, we partition memory-system resources evenly to each
thread on each core. These two interference patterns establish upper
and lower limits on memory system performance.

3.2 Scenes

We use six scenes in our survey (shown in Figure 1), each rendered
at 1024 x 1024 resolution. These scenes represent a four-order-of-
magnitude range of geometric complexity. We choose erw6 , con-
ference, soda hall and dragon since they appear in previously re-
ported performance results for the ray tracer we use[8], which per-

mits us to correlate our memory-system results with these previous
results. We use two additional scenes containing the Stanford Bud-
dha statue so that we have more scenes with many visible triangles.
We trace each scene using four different methods: primary rays
only, hard shadows, soft shadows, and ambient occlusion. These
four methods represent a range of ray complexity to help judge the
capacity of each memory system. We generate one frame’s worth
of memory traffic data for each scene. We use the single-frame data
to estimate animation memory traffic at 60 fps.

During rendering, the number of visible triangles has greater ef-
fect on memory bandwidth consumption than does the total number
of triangles in the scene. Even though soda hall has many more tri-
angles than conference, soda hall has 20K fewer visible triangles
from our selected viewpoints. Thus we expect rendering confer-
ence to consume more bandwidth than rendering soda hall .

3.3 Ray Tracing Algorithms

Our work uses a state of the art ray tracer as the basis for our ar-
chitecture study. The MLRTA system[8] has achieved the best pub-
lished frame rates to date on CPUs for static scenes.

Primary rays are traced in packets of 16 rays, generated through
contiguous 4 x 4 pixel blocks. Hard shadow rays are traced in pack-
ets of 16 rays, where the shadow rays correspond directly to the hit
points from a packet of primary rays. These rays are traced from
point light to hit point, with last-occluder early termination testing.

Soft shadow sampling is performed in 4 x 4 packets that also
correspond directly to hit points for a primary ray packet. Shadow
ray origins are generated randomly on the surface of the area light,
with a separate origin created for each ray in the packet. Nine soft
shadow samples per primary-ray hit point are generated per sam-
pling round. If the surface is too rough, only one sampling round is
performed. Otherwise, soft shadow sampling continues until sam-
ple variance is under a given threshold. Surface roughness is deter-
mined by taking the cosine of the angle between surface normals at
each pair of hit points from the primary ray packet and comparing
the minimal cosine value against a threshold.

The ambient occlusion algorithm traces 16 primary rays per pixel
in jittered 4 x 4 packets. Each packet covers a 4 x 4 pixel block, and
sixteen such packets are traced per block. Nine random occlusion
rays are generated per primary ray hit, for a maximum of 144 occlu-
sion rays per pixel. The algorithm resamples until sample variance
is under a given threshold (four iterations max).

34 Measurement Methodology

We create a trace of actual memory used by the MLRTA ray tracer
when rendering each comination of scene and ray tracing algo-
rithm. We record a cache read for ray and node data at each traver-
sal step and a read for ray and geometry data at each intersection
step. We never record cache writes. We use the Dinero IV cache
simulator[3] to model each memory system. This light-weight sim-
ulator provides cache usage statistics without modeling functional-
ity or providing timing estimates.

Our measurements conservatively estimate the memory system
resources required to process the sample loads because we only
model data reads during ray traversal and intersection. We do not
model acceleration structure generation, instruction cache traffic,
shading or writing the image. As such, we expect our measurements
to serve as a lower bound for the memory-system requirements for
ray tracing systems.

We report our findings both in terms of bandwidth consumed and
in terms of cache efficiency. We define cache efficiency as compul-
sory bandwidth consumed (i.e. total size of working set) divided
by total bandwidth consumed. With this measure, we can estimate
how much cache utilization could be improved.

The University of Texas at Austin, Department of Computer Sciences, Tech Report TR-06-40

primary rays only primary + soft shadows
L2toL1 DRAMtolL2 compulsory L2to L1 DRAMto L2 compulsory
machine scene traffic traffic traffic traffic traffic traffic
Intel conference | 14 649 856 4836 416 4833024 902 914 496 28859 264 8705 280
Prescott statue 63 664 000 32026688 32001472 | 16886719744 9090462080 54 827 456
AMD conference | 11 039 616 4835776 4833024 371575744 29 347 904 8705 280
Toledo statue 59 739 840 32011072 32001472 | 16121283648 8795612672 54827 456
Sun Niagara ~ conference | 13726 672 4214736 4214736 977 741 632 8230672 8220272
(constructive) statue 49 424 016 28732560 28732560 | 10673545664 1929019776 51919504
Sun Niagara conference | 40 396 432 5420 320 4214736 2785107 632 106 545 280 8220 272
(destructive) statue 78 355 200 41465696 28732560 | 12070645792 9737228000 51919504

Table 2: Memory Traffic — total data traffic in bytes from DRAM to L2 and from L2 to L1 for two representative scenes (conference and
statue), each rendered with only primary rays and with primary + soft shadows. The third column under each lists compulsory traffic. Dividing
compulsory traffic by total traffic provides our efficiency measurement for each cache level. Note that these traffic data are for a single frame.
In Figure 2 and Figure 3, we extrapolate to 60 fps by multiplying the per-frame data by 60. Also note that compulsory traffic differs slightly

between the CPUs and the CMP simulations due to their different cache line sizes.

primary rays only (@ 60 fps)
DRAM to L2 traffic

1E10 e

1E:00] 20F.0R P0F.NA 9sE.0e 3AEL0E 0 I

1.E<DE —

1.E+07 ——
. 1.E+D6 —
g 1E:05 ——

1.E:4 —

1.E:02 —

1.E+02 —

1.E:01 S

1E+00

conference statue
Ointel Frascott B AME Toledo DOSun Niagara O5un Miagara
{1MB L2} {1MB L2} {constructive. 4ME L2) (destructive, 123KE L2)

Figure 2: DRAM to L2 data traffic in bytes for primary rays, ex-
trapolated to 60 fps. The traffic is well within current DRAM to L2
bandwidth rates.

primary + soft shadows (@ 60 fps)
DRAM to L2 traffic
5.5E+11 53E+11 5.8E=11

1E+12 1 2€21

1 FAER —

1.E+10 | 175400 1.85.08

1 Eeln 4.8E+08 |

1.E+DB S
o LEOT -
g 1.E+D6 S
2 1E08 —

1.E«D4 E—

1.E+03 —

1E+02 S

EsD1 —

1E+00

conference statue
Ointel Prescott HAMD Toledo OSun Niagara OSun Niagara
(1IME L2) (1MB L2} (constructive. 4MB L2} (destructive, 128KB L2)

Figure 3: DRAM to L2 data traffic in bytes for primary + soft shad-
ows, extrapolated to 60 fps. When there are few visible triangles
(conference), traffic is within current DRAM to L2 bandwidth rates.

When there are many visible triangles (statue), traffic exceeds current

bandwidth rates by 10x or more.

primary rays only
DRAM to L2 efficiency
102 100 100 100 100 100
1.00
0.e0 —
. 0.78

BT 063

070 49—

060 4— ——
§ 0.50 — E——

D4 4+—1 —

030 4— ——

020 — ——

010 — i

0.00

confersnce statue
Dintel Prescott BANMD Toledo O%un Niagara OSun Niagara
{IMB L2) {IMB L2) (constructive, 4M3 L2) (destructve, 128KE L2)

Figure 4: DRAM to L2 efficiency for primary rays only — when
tracing only primary rays, bandwidth between DRAM and L2 is used
efficiently, even for small L2 sizes (Sun Niagara (destructive)).

primary + soft shadows
DRAM to L2 efficiency
1.00
100
0.e0
0.80
0.7
0.60

§ [
7 S—
N 030 030
0.3
020 +—
0.10 o ann
-] TOT 00T 85—
0.0
conference statue
BEAND Toledo OSun Miagara OSun Niagara

| Dintel Prescott

(IMELZ) (1IMB L2} {constructve. 4MB L2) (destructive, 128KE L2}

Figure 5: DRAM to L2 efficiency for primary + soft shadows — when
tracing soft shadows, bandwidth efficiency is maintained when the
working set can be maintained in cache (Sun Niagara (constructive)).
When the working set cannot be maintained in cache, cache efficiency
degrades significantly (conference) or catastrophically (statue).

The University of Texas at Austin, Department of Computer Sciences, Tech Report TR-06-40

4 RESULTS

We present memory traffic and memory efficiency data for the four
memory systems described in Section 3.1. The data in Table 2 is
for rendering a single frame at 1024 x 1024 resolution. The data in
Figures 2-5 are extrapolated to 60 fps from single-frame data.

We gather data for four ray tracing algorithms (see Section 3.3)
on each of six scenes (see Section 3.2). Since the results for primary
rays and for hard shadows were similar, we report only results for
primary rays. Likewise, results for soft shadows and for ambient
occlusion were similar, so we report only results for soft shadows.

Memory traffic for divergent secondary rays (soft shadows, am-
bient occlusion) is largely determined by the number of visible tri-
angles in the scene. There is a natural separation in our data be-
tween scenes with few visible triangles (erw6 , soda hall , confer-
ence) and scenes with many visible triangles (statue, tri-statue,
dragon). Results within each group are similar, so we report only
the results for one scene in each group.

As the data in Table 2 shows, rendering with divergent secondary
rays can increase bandwidth consumed between main memory and
L2 by an order of magnitude or more. However, for scenes with
many visible triangles, rendering with divergent secondary rays can
increase bandwidth consumed by two orders of magnitude or more.
In Figure 2 and Figure 3, we extrapolate these data to rendering at
60 fps. Bandwidth demand for scenes with few visible triangles is
within current memory-to-core bandwidth rates, but bandwidth de-
mand for scenes with many visible triangles exceeds current band-
width rates by more than an order of magnitude.

By comparing the total bytes loaded to the compulsory byte
loads (Figure 4 and Figure 5), we see that there is a large differ-
ence in how efficiently the L2 cache is used. Primary rays produce
high L2 hit rates, whereas divergent secondary rays produce much
lower hit rates. The Niagara results are particularly evocative. First,
consider the results for few visible triangles. In the constructive
interference case, where the entire 4MB of cache is available for
scene data, the L2 hit rate is high; in the destructive interference
case, where only a fraction of the L2 is available, the L2 hit rate is
considerably lower. When we consider the results for many visible
triangles, we see that the hit rate is miserable for both L2 cases.

5 SUMMARY AND FUTURE WORK

We have examined the DRAM bandwidth bottleneck for ray tracing
systems, and we conclude that current traversal algorithms are inef-
ficient with respect to divergent secondary rays. This inefficiency is
a result of poor cache management rather than a dramatic increase
in the working set. Future ray tracing systems must either main-
tain better ray coherence or increase available cache to maintain the
entire working set. Since new processor designs have less cache
per-core, ray tracing algorithms for such systems may need to be
modified or replaced to achieve better utilization of the memory
hierarchy.

A ray reordering algorithm similar to Pharr’s[6] may provide suf-
ficient secondary ray coherency. They render a 9.6M triangle scene
with Monte Carlo path tracing on a system with 325MB RAM. This
generates 120MB of compulsory geometry traffic and 2.1GB of ad-
ditional traffic from incoherent geometry accesses (0.05 efficiency,
by our measure). With the ray reordering technique they propose,
geometry traffic can be reduced or eliminated while also reducing
the total memory required. With ray reordering and only 50MB
RAM, they cut geometry traffic to 938MB plus 70MB ray traffic
overhead. With ray reordering and 120MB of RAM, they eliminate
geometry traffic and consume only 70MB of ray traffic. For such a
technique to be viable, it should be compatible with modern surface
shaders and SIMD-based instruction optimizations. The additional

memory traffic generated by maintaining ray state explicitly must
be factored against any savings in geometry memory traffic.

An analytic model of ray traversal and intersection would deepen
our understanding of the coherence problem and would provide in-
sight for possible solutions. A well-constructed model will qualify
the inefficiencies in current ray tracing algorithms and will provide
a quantifiable measure of improvement for new approaches.

ACKNOWLEDGMENTS

We would like to thank to Alexander Reshetov for allowing us to
use the MLRTA codebase and for orienting us to its use. Thanks
to Igor Sevastianov for his instructions on how to use ambient oc-
clusion in MLRTA. This research was performed with support from
Intel Corporation.

REFERENCES

[1] Advanced Micro Devices, Inc. AMD Opteron(TM)
Product Data Sheet (http://www.amd.com/us-
en/assets/content_type/white_papers_and_tech_docs/23932.pdf).

[2] Carsten Benthin, Ingo Wald, Michael Scherbaum, and Heiko
Friedrich. Ray tracing on the cell processor. In submitted to the 2006
|EEE Symposium on Interactive Ray Tracing, 2006.

[3] Jan Edler and Mark D. Hill. Dinero IV cache simulator
(http://www.cs.wisc.edu/fharkhill/DinerolV/).

[4] Intel Corporation. Intel(R) 975x
(http://www.intel.com/products/chipsets/975x/).

[5] Poonacha Kongetira, Kathirgamar Aingaran, and Kunle Olukotun. Ni-
agara: a 32-way multithreaded SPARC processor. In IEEE MICRO
2005, volume 25, pages 21-29, 2005.

[6] Matt Pharr, Craig Kolb, Reid Gershbein, and Pat Hanrahan. Ren-
dering complex scenes with memory-coherent ray tracing. Computer
Graphics, 31(Annual Conference Series):101-108, 1997.

[7]1 Timothy J. Purcell, lan Buck, William R. Mark, and Pat Hanrahan.
Ray tracing on programmable graphics hardware. ACM Transactions
on Graphics, 21(3):703-712, July 2002.

[8] Alexander Reshetov, Alexei Soupikov, and Jim Hurley. Multi-level
ray tracing algorithm. ACM Trans. Graph., 24(3):1176-1185, 2005.

[9] Jorg Schmittler, Ingo Wald, and Philipp Slusallek. Saarcor - a hard-
ware achitecture for ray tracing. In Proceedings of Eurographics
Workshop on Graphics Hardware, pages 27-36. European Associa-
tion for Computer Graphics, September 2002.

[10] Jorg Schmittler, Sven Woop, Daniel Wagner, Wolfgang J. Paul, and
Philipp Slusallek. Realtime ray tracing of dynamic scenes on an FPGA
chip. In Graphics Hardware 2004, 2004.

[11] Sven Woop, Jorg Schmittler, and Philipp Slusallek. RPU: a pro-
grammable ray processing engine. In SGGRAPH '05: Proceedings
of the 32nd annual conference on Computer graphics and interactive
techniques, New York, NY, USA, 2005. ACM Press.

Express Chipset

