ECE 498AL

|_ecture 18:

Performance Case Studies:
lon Placement Tool, VMD

Guest Lecture by John Stone
Theoretical and Computational Biophysics Group
NIH Resource for Macromolecular Modeling and Bioinformatics
Beckman Institute for Advanced Science and Technology

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

Objective

e To learn design, implementation, and testing
strategies for GPU acceleration of existing software
using CUDA

Identify performance-critical software modules

Decompose identified modules into kernels which may
benefit from GPU acceleration

Detailed examination of Coulombic potential map code

Abstract the implementation of the computational kernel
so that caller need not worry about the low level details

Software structures supporting GPU acceleration

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

Molecular Modeling: lon Placement

 Biomolecular simulations
attempt to replicate in vivo
conditions in silico.

e Model structures are initially
constructed In vacuum

e Solvent (water) and ions are
added as necessary for the
required biological
conditions

o Computational requirements

scale with the size of the
simulated structure

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 3
ECE 498AL, University of Illinois, Urbana-Champaign

Evolution of lon Placement Code

 First implementation was sequential
* Repeated scientific methodological revisions improved results

o As the size of simulated structures increased, the performance
of the code became much more important

* Virus structure with 1076 atoms would require 10 CPU days
e Tuned for Intel C/C++ vectorization+SSE, ~20x speedup
 Parallelized /w pthreads: high data parallelism = linear speedup

« Parallelized GPU accelerated implementation: Three GeForce
8800GTX cards outrun ~300 CPUs!

e Virus structure now runs in 25 seconds on 3 GPUs!

o Seems impossible until one considers how much faster GPUs
are for graphics than a general purpose CPU...

 Further speedups should still be possible...

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 4
ECE 498AL, University of Illinois, Urbana-Champaign

lon Placement Algorithm

 Calculate initial Coulombic electrostatic potential map around
the simulated structure:

— For each voxel, sum potential contributions for all atoms in the
simulated structure: potential += charge[i] / (distance to atom[i])

« Place ions one at a time:
— Find the voxel containing the minimum potential value
— Add a new ion atom centered on the minimum voxel position

— Update the potential map adding the potential contribution of the newly
placed ion

— Repeat until the required number of ions have been added

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 5
ECE 498AL, University of Illinois, Urbana-Champaign

Computational Profile of the Algorithm

e Over 99% of the run time of the algorithm is
consumed In the initial potential map calculation,
since the number of ions Is always tiny compared to
the size of the simulated system.

 Direct summation of electrostatic potentials is “safe”
In terms of numerical accuracy, and is highly data
parallel

 [Interesting GPU test case since coulombic potential
maps are useful for many other calculations

 Faster approximation algorithms currently in testing...

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 6
ECE 498AL, University of Illinois, Urbana-Champaign

Coulombic Potential Map Slice: Simplest C Version
GFLOPS? Don’t ask...

void cenergy(float *energygrid, dim3 grid,, float gridspacing, float z, const float *atoms, int numatoms) {
inti,j,n;
int atomarrdim = numatoms * 4;
for (j=0; j<grid.y; j++) {
float y = gridspacing * (float) j;
for (i=0; i<grid.x; i++) {
float x = gridspacing * (float) i;
float energy = 0.0f;
for (n=0; n<atomarrdim; n+=4) { // calculate potential contribution of each atom
float dx = x - atoms[n |;
float dy =y - atoms[n+1];
float dz = z - atoms[n+2];
energy += atoms[n+3] / sgrtf(dx*dx + dy*dy + dz*dz);
¥
energygrid[grid.x*grid.y*k + grid.x*j + i] = energy;
¥
}
}

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

Algorithm Design Observations

e Voxel coordinates are generated on-the-fly

e Atom coordinates are translated to the map origin In
advance, eliminating redundant work

 |on placement maps require ~20 potential voxels/atom

o Atom list has the smallest memory footprint, best
choice for the inner loop (both CPU and GPU)

 Arithmetic can be reduced by creating a new atom list
containing X, Q, and a precalculation of dy”2 + dz"2,
updated for each row (CPU)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 8
ECE 498AL, University of Illinois, Urbana-Champaign

Observations and Challenges for GPU
Implementation

e The innermost loop will consume operands VERY quickly

« Straightforward implementation has a low ratio of floating
point arithmetic operations to memory transactions (for a GPU)

« Since atoms are read-only calculation, they are ideal candidates
for texture memory or const memory

e GPU implementation must avoid bank conflicts and overlap
computations with memory latency

e Map iIs padded out to a multiple of the thread block size,
eliminating the need for conditional handling at the edges

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 9
ECE 498AL, University of Illinois, Urbana-Champaign

Plan for CUDA
Coulombic Potential Map Code

 Allocate and initialize potential map memory on host
 Allocate potential map slice buffer on GPU
» Preprocess atom coordinates and charges

* |Loop over slices:
— Copy slice from host to GPU

— Loop over groups of atoms: (if necessary)
» Copy atom data to GPU
 Run CUDA Kernel on atoms and slice resident on GPU

— Copy slice from GPU to host
e Free resources

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 10
ECE 498AL, University of Illinois, Urbana-Champaign

CUDA Block/Grid Decomposition

e 16x16 thread blocks are a nice starting size with a
good number of threads

e Small enough that there’s not much waste if we pad
out the map array to an even number of thread blocks

« Kernel variations that unroll the inner loop calculate
more than one voxel per thread

— Thread count per block must be decreased to retain 16x16
block size

— Or, block size gets bigger as threads do more than one voxel

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 11
ECE 498AL, University of Illinois, Urbana-Champaign

Version 1: Tex Memory
90 GFLOPS, 9 Billion Atom Evals/Sec

e Pros:

— Texture memory Is large, enough capacity to hold millions
of atoms

— Most map slices could be computed in a single pass

e Cons

— Texture fetches aren’t as fast as shared memory or const
memory
 For this algorithm, it has proven a better strategy to
take advantage of broadcasting reads provided by
const memory or shared memory, since all threads
reference the same atom at the same time...

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 12
ECE 498AL, University of Illinois, Urbana-Champaign

Version 1 Inner Loop Structure

Full source for CUDA potential map slice kernels:

float energyval=0.0f;
for (atomid=0,tx=0,ty=0; atomid < numatoms; ty++) {
for (tx=0; tx < TEXROWSIZE && atomid < numatoms; tx++, atomid++) {

float4 atominfo = texfetch(tex, tx, ty); // Bad, no latency hiding, not enough
float dx = coor.x - atominfo.x; I/ FP ops done per texfetch(),
float dy = coor.y - atominfo.y; // not taking any advantage of 2-D
float dz = coor.z - atominfo.z;
energyval += atominfo.w * (1.0f / sqrtf(dx*dx + dy*dy + dz*dz));

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

13

http://www.ks.uiuc.edu/Research/vmd/projects/ece498/

Version 2: Const+Precalc
150 GFLOPS, 16.7 Billion Atom Evals/Sec

e Pros:
— Less addressing arithmetic (compared to texture version)
— Pre-compute dz”2 for entire slice
— Inner loop over read-only atoms, const memory ideal
— If all threads read the same const data at the same time, performance is
similar to reading a register
e Cons:
— Const memory only holds ~4000 atom coordinates and charges

— Potential summation must be done in multiple kernel invocations per
slice, with const atom data updated for each invocation

— Host code has a lot more book keeping to do, but not too big of an issue

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 14
ECE 498AL, University of Illinois, Urbana-Champaign

Version 2: Kernel Structure

float curenergy = energygrid[outaddr]; // start global mem read very early
float coorx = gridspacing * xindex;
float coory = gridspacing * yindex;
Int atomid;
float energyval=0.0f;
[* Main loop: 9 floating point ops, 4 FP loads per iteration */
for (atomid=0; atomid<numatoms; atomid++) {

float dx = coorx - atominfo[atomid].x;

float dy = coory - atominfo[atomid].y;

energyval += atominfo[atomid].w *

(1.0f / sqrtf(dx*dx + dy*dy + atominfo[atomid].z));

}

energygrid[outaddr] = curenergy + energyval,

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 15
ECE 498AL, University of Illinois, Urbana-Champaign

Version 3: Const+Precalc+Loop Unrolling
226 GFLOPS, 33 Billion Atom Evals/Sec

e Pros:

— Although const memory is very fast, loading values into registers costs
Instruction slots

— We can reduce the number of loads by reusing atom coordinate values
for multiple voxels, by storing in regs

— By unrolling the X loop by 4, we can compute dy*2+dz”2 once and use
It multiple times, much like the CPU version of the code does

e Cons:

— Compiler won’t do this type of unrolling for us (yet)
— Uses more registers, one of several finite resources
— Increases effective tile size, or decreases thread count in a block

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 16
ECE 498AL, University of Illinois, Urbana-Champaign

Version 3: Inner Loop

for (atomid=0; atomid<numatoms; atomid++) {
float dy = coory - atominfo[atomid].y;
float dysqpdzsqg = (dy * dy) + atominfo[atomid].z;
float dx1 = coorx1 - atominfo[atomid].x;
float dx2 = coorx2 - atominfo[atomid].x;
float dx3 = coorx3 - atominfo[atomid].x;
float dx4 = coorx4 - atominfo[atomid].x;

energyvalx1 += atominfo[atomid].w

energyvalx2 += atominfo[atomid].w
energyvalx3 += atominfo[atomid].w
energyvalx4 += atominfo[atomid].w

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

w * (1.0f / sqrtf(dx1*dx1 + dysqpdzsq));

w * (1.0f / sqrtf(dx2*dx2 + dysqpdzsq));
* (1.0f / sqrtf(dx3*dx3 + dysgpdzsq));
* (1.0f / sqrtf(dx4*dx4 + dysqpdzsq));

17

Version 4.
Const+Shared+Loop Unrolling+Precalc
235 GFLOPS, 34.8 Billion Atom Evals/Sec

* Pros:

— Loading prior potential values from global memory into shared memory
frees up several registers, so we can afford to unroll by 8 instead of 4

— Using fewer registers allows more blocks, increasing GPU “occupancy”

e Cons:
— Even with shared memory, still uses 21 registers
— Only a net performance gain of ~5% over version 3
— Higher performance should still be possible
— Bumping against hardware limits (uses all const memory, most shared
memory, and a largish number of registers)
* Need more experience or a different strategy in order to go
beyond this level of performance

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 18
ECE 498AL, University of Illinois, Urbana-Champaign

Version 4: Kernel Structure

« Loads 8 potential map voxels from global memory at startup,
and immediately stores them into shared memory before going
Into inner loop

e Processes 8 X voxels at a time in the inner loop

o Sums previously loaded potential values and stores back to
global memory

« Code is too long (and ugly) to show even in a snippet due to
the large amount of manual unrolling of loads into registers

« Various attempts to further reduce register usage didn’t yield
any benefits, so a different approach is required for further
performance gains on a single GPU

» See full source example “cuenergyshared”

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 19
ECE 498AL, University of Illinois, Urbana-Champaign

Calculating Potential Maps in Parallel

e Both CPU and GPU versions of the code are easily
parallelized by decomposing the 3-D potential map
Into slices, and computing them concurrently

 For the 1on placement tool, maps often have 200-500
slices in the Z direction, so there’s plenty of coarse
grained parallelism still available even for a big
machine with hundreds of CPUs/GPUs

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

20

Parallel GPUs with Multithreading:
705 GFLOPS /w 3 GPUs

One host thread iIs created for each CUDA GPU

Threads are spawned and attach to their GPU based on their
host thread ID
— First CUDA call binds that thread’s CUDA context to that GPU for life

— Handling error conditions within child threads is dependent on the
thread library and, makes dealing with any CUDA errors somewhat
tricky, left as an exercise to the reader.... ©

Map slices are computed cyclically by the GPUs

Want to avoid false sharing on the host memory system

— map slices are usually much bigger than the host memory page size, so
this is usually not a problem for this application

Performance of 3 GPUs is stunning!
Power: 3 GPU test box consumes 700 watts running flat out

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 21
ECE 498AL, University of Illinois, Urbana-Champaign

Multi-GPU CUDA
Coulombic Potential Map Performance

e Host: Intel Core 2 Quad, 8GB
RAM, ~$3,000

« 3 GPUs: NVIDIA GeForce
8800GTX, ~3$550 each

o 32-bit RHEL4 Linux
(want 64-bit CUDAI!)

o 235 GFLOPS per GPU for
current versoin of coulombic
potential map kernel

e 705 GFLOPS total for
multithreaded multi-GPU
version

Three GeForce 8800GTX GPUSs
In a single machine, cost ~$4,650

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 22
ECE 498AL, University of Illinois, Urbana-Champaign

Never Trust Compilers
(With apologies to Wen-mei and David)

* When performance really matters, it is wise to distrust
compilers by default and to read their assembly output to see if
you’re getting what you had hoped for

— Compilers often miss “easy” optimizations for various reasons

— By reading intermediate output, e.g. PTX, you can find ways to coax the
compiler into doing what you want

— PTXstill isn’t the final word, as it gets run through another optimization
pass, but it’s the first place to look until better tools are available
« Test on microbenchmarks representative of inner loops before
Integrating into real code
— Small benchmark codes facilitate focused experimentation

— MUCH easier to isolate bugs and performance issues in a small code
than a large one

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 23
ECE 498AL, University of Illinois, Urbana-Champaign

Early Experiences Integrating
CUDA Kernels Into VMD

e VMD: molecular visualization and
analysis

e State-of-the-art simulations
require more viz/analysis power
than ever before

* For some algorithms, CUDA can
bring what was previously
supercomputer class performance
to an appropriately equipped
desktop workstation

o Early results from a variation on
the work already done for the ion

placement tool Ribosome: 260,790 atoms
before adding solvent/ions

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 24
ECE 498AL, University of Illinois, Urbana-Champaign

VMD/CUDA Integration Observations

» Single VMD binary must run on all hardware,
whether CUDA accelerators are installed or not
— Must maintain both CPU and CUDA versions of kernels

— High performance requirements mean that the CPU kernel
may use a different memory layout and algorithm strategy
than CUDA, so they could be entirely different bodies of

code to maintain

— Further complicated by the need to handle both single-
threaded and multithreaded compilations, support for many
platforms, etc...

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 25
ECE 498AL, University of Illinois, Urbana-Champaign

VMD/CUDA Integration Observations (2)

o Graceful behavior under errors or resource exhaustion
conditions becomes trickier to deal with:
— CPU kernel becomes the fallback
— What to do when the CPU version is 100x slower than
CUDA on the GPU?!?
 All of these software design problems already existed:
— Not specific to CUDA

— CUDA just adds another ply to the existing situation for
codes like VMD that employ multiple computation
strategies

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 26
ECE 498AL, University of Illinois, Urbana-Champaign

VMD/CUDA Resource Management

e Must choose the best kernel/strategy at runtime,
depending on availability of CPU/GPU resources,
combined with user preferences and system policies

e Examples:
— Good for VMD to use all CPUs and CUDA GPUs on a
workstation not shared by multiple users
— Bad for VMD to use all 1024 processors on a shared
supercomputer by default (e.g. running remotely In text
mode for batch analysis)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

27

VMD/CUDA Resource Management (2)

« Dynamically changing load on CPUs/GPUs:

— Interference from other apps multitasking on the same set of
CPUs/GPUs

— A “benchmark” run at startup can become invalid for
selection of kernel strategy if CPU/GPU load changes
during the course of a long-running execution (e.qg.
overnight analysis job running at the same time as an
Interactive visualization, both vying for the CPUs/GPUs...)

— Perhaps the computation strategy should be periodically re-
tested/evaluated as load conditions change

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 28
ECE 498AL, University of Illinois, Urbana-Champaign

VMD/CUDA Code Organization

 Single header file containing all the CUDA kernel
function prototypes, easy inclusion in other src files

« Separate .cu files for each kernel:
— each in their compilation unit

— no need to worry about multiple kernels defining const
buffers etc...
* As new CUDA kernels augment existing CPU
kernels, the original class/function becomes a wrapper

that dynamically invokes the CPU/GPU version at
runtime

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 29
ECE 498AL, University of Illinois, Urbana-Champaign

VMD/CUDA Code Organization (2)

o A C++ wrapper class to hold data needed for execution
strategy, CPU/GPU load balancing, etc. (much is still
unimplemented and only exists in my head)

o First CUDA GPU kernels are so much faster than the CPU that
the existing VMD runtime strategy Is nearly as simple as:
int err = 1; // force CPU execution if CUDA is not compiled in
#if defined(VMDCUDA)
If (cudagpucount > 0)
err=CUDAKernel(); // try CUDA kernel if GPUs are available
#endif
if (err)
err=CPUKernel(); // if no CUDA GPUs or an error occurred, try on CPU

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007

30
ECE 498AL, University of Illinois, Urbana-Champaign

	ECE 498AL��Lecture 18: �Performance Case Studies: �Ion Placement Tool, VMD��Guest Lecture by John Stone�Theoretical and Compu
	Objective
	Molecular Modeling: Ion Placement
	Evolution of Ion Placement Code
	Ion Placement Algorithm
	Computational Profile of the Algorithm
	Coulombic Potential Map Slice: Simplest C Version�GFLOPS? Don’t ask…
	Algorithm Design Observations
	Observations and Challenges for GPU Implementation
	Plan for CUDA �Coulombic Potential Map Code
	CUDA Block/Grid Decomposition
	Version 1: Tex Memory�90 GFLOPS, 9 Billion Atom Evals/Sec
	Version 1 Inner Loop Structure
	Version 2: Const+Precalc�150 GFLOPS, 16.7 Billion Atom Evals/Sec
	Version 2: Kernel Structure
	Version 3: Const+Precalc+Loop Unrolling�226 GFLOPS, 33 Billion Atom Evals/Sec
	Version 3: Inner Loop
	Version 4: �Const+Shared+Loop Unrolling+Precalc�235 GFLOPS, 34.8 Billion Atom Evals/Sec
	Version 4: Kernel Structure
	Calculating Potential Maps in Parallel
	Parallel GPUs with Multithreading:�705 GFLOPS /w 3 GPUs
	Multi-GPU CUDA �Coulombic Potential Map Performance
	Never Trust Compilers�(With apologies to Wen-mei and David)
	Early Experiences Integrating �CUDA Kernels Into VMD
	VMD/CUDA Integration Observations
	VMD/CUDA Integration Observations (2)
	VMD/CUDA Resource Management
	VMD/CUDA Resource Management (2)
	VMD/CUDA Code Organization
	VMD/CUDA Code Organization (2)

