README file for VMD 1.8.7 --------------------------------------------------------------------------- What is VMD? See also http://www.ks.uiuc.edu/Research/vmd/ --------------------------------------------------------------------- VMD is designed for the visualization and analysis of biological systems such as proteins, nucleic acids, lipid bilayer assemblies, etc. It may be used to view more general molecules, as VMD can read standard Protein Data Bank (PDB) files and display the contained structure. VMD provides a wide variety of methods for rendering and coloring molecule. VMD can be used to animate and analyze the trajectory of molecular dynamics (MD) simulations, and can interactively manipulate molecules being simulated on remote computers (Interactive MD). VMD has many features, which include: o No limit on the number of molecules, atoms, residues or number of animation frames, except available memory. o Many molecular and volumetric rendering and coloring methods. o Extensive atom selection language with boolean and algebraic operators, regular expressions, distance based selections, and more. o Extensive graphical and text interfaces to Tcl, Tk, and Python to provide powerful scripting and analysis capabilities. o High-quality on-screen rendering using OpenGL programmable shading on advanced graphics accelerators. o Stereoscopic display with shutter glasses, autostereoscopic flat panels, anaglyph stereo glasses, and side-by-side stereo viewing. o 3-D interactive control through the use of joysticks, Spaceballs, haptic devices and other advanced input devices, with support for Virtual Reality Peripheral Network (VRPN). o An extensible plugin-based file loading system with support for popular formats such as AMBER, CHARMM, Gromacs, NAMD, PDB, X-PLOR, and many others, as well as automatic conversion through Babel. o Export displayed scene to extenal rendering formats including POV-Ray, Raster3D, RenderMan, Gelato, Tachyon, Wavefront, as well as STL or VRML2 files for 3-D printing. o Integration of multiple sequence alignment and evolutionary analysis tools, in the form of the Multiseq plugin and its related toolset. o Perform interactive molecular dynamics (IMD) simulations using NAMD, Protomol, or other programs as simulation back-ends. o Integration with the program NAMD, a fast, parallel, and scalable molecular dynamics program developed in conjunction with VMD. See the NAMD page for details: http://www.ks.uiuc.edu/Research/namd o Integration with the BioCoRE collaborative research environment. VMD can "publish" molecular graphics scripts to BioCoRE, so that collaborators can work together over the internet. See the BioCoRE page for details: http://www.ks.uiuc.edu/Research/biocore What's new in VMD 1.8.7? ------------------------ User documentation updates o Minor improvements and corrections to the VMD User's Guide, added documentation for new commands and environment variables. o Added documentation for new volmap ligand options, "measure pbc2onc", and "measure pbcneighbors" Performance Improvements o Added support for NVIDIA CUDA on MacOS X, and both 32-bit and 64-bit Linux. VMD supports CUDA acceleration for electrostatics calculations (e.g. "volmap coulomb", for both direct summation and multilevel summation method) and for acceleration of molecular orbital display. o Added support for multi-core processors to the Windows versions of VMD and the included Tachyon ray tracer General Improvements o Updated the nucleic acid structure analysis and ribbon/cartoon representations to handle the new PDB atom names "OP1" and "OP2", which have replaced the older "O1P" and "O2P" atom naming convention. o Color selection menus reorganized into subcategories New representations and display features o New 'PaperChain' and 'Twister' graphical representations for display of carbohydrate structures in VMD o New ::vmd_pick_event callback for plugins to trace to get "pick" events o PBC-aware trajectory smoothing New and improved analysis commands o new 'pbwithin' selection for selecting periodic neighbor atoms within a cutoff distance o new 'measure surface' command for finding surface atoms o Added support for periodic boundary conditions to the volmap implicit ligand sampling routines o new 'measure pbc2onc' and 'measure pbcneighbors' commands. o added three more demand-allocated per-timestep user-defined data fields named "user2", "user3", and "user4", Other features and improvements o Added support for PowerPC based Linux for the Indiana 'BigRed' Teragrid cluster o Added support for Linux compilations using the Intel C/C++ compilers o Secondary structure calculations using STRIDE are now able to handle larger protein structures with up to 10,000 protein residues and 100,000 atoms. Secondary structure calculations now propagate error conditions if a STRIDE computation fails. o Updated the py_numeric code for Python 2.5 and NumPy 1.x o Updated the configure script to reference Python 2.5.x o Greatly reduced the acceptable error tolerance for the RMS fitting by default. The new tolerance is 1e-15, vs. the old tolerance which was 1e-5. The new code also accepts an environment variable VMDFITRMSTOLERANCE which will override the default fit tolerance. o Added support for an above/below stereo display mode for use with special stereoscopic movie encoders o Added recognition of SPC water. New and improved plugins and extensions o A new dynamic 'ruler' plugin for VMD for drawing ruled lines in 3-D o New hydrogen bonds plugin for counting/plotting bonds over the course of a molecular dynamics trajectory o Updated the APBS plugin to allow dimension sizes n = a * 2^b + 1 for values of a other than 1. o Updated vmdmovie plugin with correct transparency rendering flags for movies made with Tachyon o Updated the volmap plugin with support for the new "Coulomb" potential map type New and improved file import and export o Improved compactness of ASCII-formatted DX files written by VMD Bug Fixes o Fixed a memory allocation bug with the 'within' distance selection o Fixed Python callbacks o Fixed memory leak in mol2plugin o Fixed memory leaks in bgfplugin and xbgfplugin bond reading routines o Fixed projection of surface normals into world coordinates for isosurfaces of density maps with non-axis aligned basis vectors, and/or opposite handedness coordinate systems. o Fixed defaulted automatic color update behavior for coloring by velocity, physical time, and user data per-timestep when animating, or when using the draw multiple timesteps feature. Known bugs ---------- Visit the VMD page for information on known bugs, workarounds, and fixes: http://www.ks.uiuc.edu/Research/vmd/ Cost and Availability --------------------- BioCoRE, JMV, MDTools, NAMD, VMD and the Structural Biology Software Database represent the broad efforts of the Theoretical and Computational Biophysics Group, an NIH Resource for Macromolecular Modeling and Bioinformatics, designed to develop and distribute free, effective tools (with source code) for molecular dynamics studies in structural biology. For more information, see: http://www.ks.uiuc.edu/Research/biocore/ http://www.ks.uiuc.edu/Research/namd/ http://www.ks.uiuc.edu/Research/vmd/ http://www.ks.uiuc.edu/Research/jmv/ http://www.ks.uiuc.edu/Development/biosoftdb/ http://www.ks.uiuc.edu/Development/MDTools/ The VMD project is funded by the National Institutes of Health (grant number PHS 5 P41 RR05969). Disclaimer and Copyright ------------------------ VMD is Copyright (c) 1995-2008 the Board of Trustees of the University of Illinois and others. The terms for using, copying, modifying, and distributing VMD are specified in the file LICENSE. If you use VMD in a way you think is interesting or novel, we would like to know about it. The authors request that any published work which utilizes VMD includes a reference to the VMD web page: http://www.ks.uiuc.edu/Research/vmd/ and/or the following reference: Humphrey, W., Dalke, A. and Schulten, K., "VMD - Visual Molecular Dynamics", J. Molec. Graphics, 1996, vol. 14, pp. 33-38. Documentation ------------- The VMD Installation Guide, User's Guide, and Programmer's Guide are available which describe how to install, use, and modify VMD. All three guides are available from the main web site. Online help may be accessed via the "Help" menu in the main VMD window or by typing help in the VMD command window. This will bring up the VMD quick help page in a browser, and will lead you to several other VMD help files and manuals. Quick Installation Instructions ------------------------------- Detailed instructions for compiling VMD from source code can be found in the programmer's guide. The Windows version of VMD is distributed as a self-extracting archive, and should be entirely self explanatory. The native MacOS X version of VMD is packaged as a disk image and is extracted by opening the disk image, and dragging the "VMD" application contained inside into an appropriate directory. For quick installation of the binary distribution for Unix do the following: 1) Uncompress and untar the distribution into a working directory. In this working directory, there are several subdirectories such as bin, src, doc, data, as well as this README and a configure script. Change to this working directory after the unpacking is complete. 2) Edit the file 'configure'; change the values for the $install_library_dir and $install_bin_dir to a directory in which vmd data files and executables should be installed, be sure that you installing into a clean target directory and not overwriting an existing version of VMD (which would otherwise give problems): $install_bin_dir is the location of the startup script 'vmd'. It should be located in the path of users interested in running VMD. $install_library_dir is the location of all other VMD files. This included the binary and helper scripts. It should not be in the path. 3) A Makefile must be generated based on these configuration variables by running "./configure". 4) After configuration is complete, cd to the src directory, and type "make install". This will install VMD in the two directories listed above. Note that running "make install" twice will print error messages because you are attempting to overwrite some read-only files. Similarly, if you have incorrectly specified the target installation directories or attempt to overwrite an existing VMD installation, you will get error messages. 5) When installed, type 'vmd' to start (make sure the $install_bin_dir directory is in your path). Required Libraries ------------------ VMD requires several libraries and programs for various of its functions. In particular, it uses GL or OpenGL based 3-D rendering, and will require that you have the appropriate GL or OpenGL libraries on your system. Other programs are required by some of VMD's optional features. Please visit the VMD web site for more information: http://www.ks.uiuc.edu/Research/vmd/ For problems, questions, or suggestions, send e-mail to 'vmd@ks.uiuc.edu'. VMD Development Team Theoretical and Computational Biophysics Group University of Illinois and Beckman Institute 405 N. Matthews Urbana, IL 61801 TBG: http://www.ks.uiuc.edu/ VMD: http://www.ks.uiuc.edu/Research/vmd/ README for VMD; last modified April 29, 2009 by John Stone