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Abstract

This tutorial provides some basic examples to explain how to calculate the dynamics of a quantum
system in contact with a thermal environment using the hierarchy equations of motion integration
software PHI.
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1. Introduction

The goal of this tutorial is to:

• Introduce the hierarchy equations of motion as implemented in PHI

• Show how to use PHI to determine hierarchy structure

• Provide guidance for performing density dynamics calculations using PHI.

Completion of this tutorial requires:

• Files contained in the archive phi tutorial files.zip

• PHI 1.0 or later (http://ks.uiuc.edu/Research/phi)

Some basic understanding of Linux/Unix shell interaction, particularly text editing and file parsing,

is also assumed. This tutorial should be used in conjunction with the PHI 1.0 User’s Guide (see

http://ks.uiuc.edu/Research/phi). The reader would benefit also from reading the PHI

paper: Strümpfer & Schulten, “Open Quantum Dynamics Calculations with the Hierarchy Equations of

Motion on Parallel Computers” J. Chem. Theor. Comp., (2012).
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2. Theory of open quantum systems

Open quantum systems refers to quantum systems that are embedded in some environment. An example

is a molecule in water, where the “system” of interest is the excited states of the molecule. In general, the

system consists of many coupled quantum states that are coupled to a thermal bath. This tutorial focuses

on systems found in photosynthesis, i.e. excited pigments embedded in a biological environment. There

are many resources for more information on the theory of open quantum systems such as:

• H.P Breuer and F. Petruccione. “The theory of open quantum systems.”

Oxford University Press. 2002

• U. Weiss. “Dissipative quantum systems.”

World Scientific. 2008

The reader is also strongly encouraged to read the PHImanual as it includes some more theoretical details

beyond the need for the tutorial.

In general, the system is modeled by an effective Hamiltonian that includes only a subset of the quantum

states |n〉 , n = 1, · · · , N . The system Hamiltonian is

HS =
N∑
n=1

En |n〉 〈n|+
N∑
n=1

n∑
m=1

Vnm(|n〉 〈m|+ |m〉 〈n|) =


E1 V12 · · · V1N

V12 E2 · · · V2N
...

...
. . .

...
V1N V2N · · · EN

 , (1)

where En is the energy level of state n (also called the site energy), and Vnm is the interaction energy

between states n andm. In this tutorial |n〉 refers to the first excited state of the n’th molecule. Although

the general framework of open quantum systems includes multiple excited states of a molecule, PHI

1.0 is currently only capable of calculating dynamics in the single-excitation manifold.

The environment in which the system is embedded is described by an infinite series of harmonic os-

cillators qξ with vibration frequencies ωξ. The coupling of the quantum states in the system to each

environment oscillator is assumed to be linear and is described by the interaction Hamiltonian:

HI =
M∑
a=1

F̂a
∑
ξ

caξqξ. (2)



Tutorial on calculating excited state dynamics using PHI 6

The coupling operators

F̂a =
∑
m

∑
n

fa,mn |m〉 〈n| , (3)

can in principle take any form. The computational expense associated with arbitrary operators is signifi-

cant, and thus PHI 1.0 is restricted to only diagonal forms F̂a =
∑

m fa,m |m〉 〈m|.

The coupling strengths, caξ in Eq. 2 is defined through the spectral density Ja(ω). There are many types

of spectral densities that are often employed. Spectral densities are a kind of power spectrum, in that they

describe the “importance” of each frequency in a given biological system (e.g, the C=O bond vibration).

The primary difference is that spectral densities define how strongly the normal mode vibrations of a

system couple to a given quantum state. The spectral densities is thus often referred to as the weighted

density of vibrational states.

The hierarchy equations of motion implemented in PHI are restricted to Drude spectral densities of the

form

Ja(ω) =
λa
2

γaω

γ2a + ω2
. (4)

The important parameters here are the reorganization energy λa and bath response frequency γa of each

coupling.

The Hamiltonian parameters needed to perform a calculation of excited state dynamics using PHIare

summarized as:

1. N – the number of excited pigments in the system

2. En – the site energy of each excited pigment

3. Vnm – the coupling between the excited pigments

4. M – the number of system-environment coupling terms

5. λa – the reorganization energy for each coupling term

6. γa – the response frequency for each coupling term
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The hierarchy equations of motion (HEOM) are a set of equations that furnishes the noise-averaged time

evolution of the system density matrix

ρ̂(t) =
N∑
n=1

N∑
m=1

ρnm(t) |n〉 〈m| . (5)

The density matrix is Hermitian, positive definite and has trace 1: i.e.,

ρ(t)† = ρ(t)

z†ρ(t)z > 0 ∀z 6= 0

tr {ρ(t)} = 1

The system density matrix describes in full the current state of the quantum system at time t. In the

HEOM formalism, additional density matrices are introduced to account for the non-Markovian dynam-

ics arising from the system-environment interaction. To account for all the matrices an index vector

n = (n1, n2, · · · ) is used. The density matrix with index vector containing all zeros, n = (0, · · · , 0),

is exactly the system density matrix. All other density matrices have positive integer entries in the in-

dex vector. The set of density matrices and the coupling arising from the HEOM is referred to as the

“hierarchy”.

The matrices in the hierarchy need to be truncated at some level greater than or equation to L =
∑
ni,

which depends on how non-Markovian the system is, i.e. how much “memory” the bath has. There are

two types of truncation: (1) Time-Nonlocal truncation that simply sets the matrices at level L to zero;

and (2) Time-Local truncation that employs the Markovian approximation for the matrices at level L.

Typically it is best to use Time-Local truncation. There is an additional set of matrices that account for

low temperature effects. The term “low” is somewhat misleading as in this case it means anything less

than very high temperature. The number of “low temperature” terms, more correctly called Matsubara

terms, K to include is in fact system dependent. The total number of matrices N in the hierarchy

depends on M , K and L through

N =
(M (K + 1) + L− 1)!

(M (K + 1))! (L− 1)!
. (6)

In summary, the additional parameters needed to calculate ρ(t) using the HEOM in PHI are:

1. L – the hierarchy truncation
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2. K – the number of Matsuraba terms

3. Truncation method: TimeLocal or Time-Nonlocal

4. dt – the integration timestep

As such there are TWO distinct parameters sets: (1) Model parameters (that determine the Hamiltonian);

(2) Integration parameters (that specify the HEOM). The following example calculations highlight some

of the features of PHI and show how to specify the different parameters and obtain converged results.

The simplest example that could be described using the HEOM is that of a single excited state. While

this is indeed very simple, it is a little too simple for this tutorial. The next simplest case is the pigment

dimer whereN = 2. In the rest of the tutorial the two level system (TLS) representing the pigment dimer

is investigated to highlight some of the features of PHI and to illustrate the effects of different HEOM

parameters.

3. Hierarchy structure

Although an equation has been given that provides the number of matrices in the hierarchy for a given

truncation scheme and number of interacting states, this can also be calculated using PHI, and for a two

level system. The hierarchy of a TLS with K = 0 (zero Matsubara terms) is shown in Figure 1. It can be

Figure 1: Hierarchy of a two level system with K = 0 showing the matrices in each level L. Each filled
circle is a matrix. The lines connecting the matrices indicate their coupling through the HEOM.

seen from Figure 1 that the number of matrices grow rapidly with truncation. The hierarchy for a TLS
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can be viewed as a form of Pascal’s triangle. Indeed, in higher dimensions (with higher M or K), the

hierarchy can be viewed as a d =M(K + 1) dimensional Pascal’s simplex.

PHI can be used to print out the indices for the matrices in the hierarchy of any system. For this

functionality, the input file needs to only specify N and L. The assumption in this case is that M = N

and K = 0.

Step 1: Create a new plaintext file called TLS-NumMatrices.prm and enter in the following:

NumStates=2

HierarchyTruncation=5

Step 2: In a command line run the following command:

$ phi TLS-NumMatrices.prm print

Part of the screen output from this command will be:
Heirarchy Level: 0

0: 0,0

Heirarchy Level: 1

1: 1,0

2: 0,1

2 Matrices.

Heirarchy Level: 2

3: 2,0

4: 0,2

5: 1,1

3 Matrices.

Heirarchy Level: 3

6: 3,0

7: 0,3

8: 2,1

9: 1,2

4 Matrices.

Heirarchy Level: 4

10: 4,0

11: 0,4

12: 3,1

13: 1,3

14: 2,2



Tutorial on calculating excited state dynamics using PHI 10

5 Matrices.

Total: 15 matrices

The output lists the matrices in each level and gives each associated index vector. E.g., it can be seen

that: hierarchy level 3 contains four matrices, matrix 9 is associated with the index vector (1, 2) and for

a pigment dimer with K = 0 and a truncation of 5 there are 15 matrices in the hierarchy.

Exercise 1: Generate the figure below by using the
MatsubaraTerms keyword in TLS-NumMatrices.prm to
specify K and using the print option of PHI.

The figure shows how the hierarchy matrix count rapidly grows with
hierarchy truncation L and Matsubara terms K.

4. Dynamics

The first system we consider is a pair of bacteriochlorophyll pigments found in the photosynthetic reac-

tion center as is known as the “special pair” due to their close proximity and resulting strong interaction.

The RC special pair is shown in Fig. 2 along their associated transition dipole moments.

To calculate the dynamics of the system we first need to specify the effective Hamiltonian. The site

energy of each pigment is approximately 12,100 cm−1 (∼826 nm, ∼1.5 eV). In fact, a slight asymmetry

results in one of the special pair pigments being lower in energy by about 100 cm−1. Their close prox-

imity results in an extremely large coupling of their excited states with an interaction energy of about

500 cm−1. The special pair pigments can thus be modeled with the effective Hamiltonian:

HS = 12 100 |1〉 〈1|+ 12 000 |2〉 〈2|+ 500(|1〉 〈2|+ |2〉 〈1|) =

(
12 100 500

500 12 000

)
. (7)
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Figure 2: Side and top view of the special pair pigments in the photosynthetic reaction center. Arrows indicate the orientation

of the transition dipole moments.

In the absence of any environment (in vacuum) excitation of one pigment results in so-called Rabi oscil-

lations. A system in vacuum can be simulated by setting the hierarchy truncation to 1, and reorganization

energies λ and response frequencies γ to 0.

Step 1: Input parameters. Create a file called TLS-Dynamics vacuum.prm containing the fol-
lowing text
OutputFile=TLS-Dynamics_vacuum.out

NumStates=2

HierarchyTruncation=1

Temperature=0

Hamiltonian:

12100,500

500,12000

InitialDensityMatrix:

1.0,0.0

0.0,0.0

gamma:

0,0

lambda:

0,0

Timestep=0.0001

Time=0.1

Here the timestep is set to dt = 0.1 fs and the total simulation time is set to t = 100 fs. The Hamiltonian

is specified exactly as in Eq. 7. Additionally, the initial density matrix has been specified such that the
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higher energy pigment is initially excited, i.e., that

ρ(0) = |1〉 〈1| =

(
1 0

0 0

)
. (8)

Step 2: Run simulation. In a command line run the following command:

$ phi TLS-DynamicsVacuum.prm rk4

This command specifies that PHI reads the simulation parameters from the file TLS-Dynamics Vacuum.prm

and perform Runga-Kutta 4 (rk4) integration.

Step 3: Examine screen output. PHIwill output some basic status information to the screen (STDOUT).

The verbosity of the screen output can be altered with the verbose keyword (accepting values of −1,

0, 1, 2, 3. The default is 1). Of interest here is that for the current set of parameters, PHI requires only

about 0.95 kB of RAM for rk4 integration (more memory is used to store the program in memory, but

this is negligible, particularly for larger calculations).

Step 4: Examine file output. The body of the output is written to the file specified by the OutputFile

keyword. Open TLS-Dynamics Vacuum.out in a text editor. All lines beginning with # are com-

ments that either specify what input parameters were used to generate the output in the current file, or

give information about the calculation time, integration method and memory used. The first few non-

comment lines are
0 (1,0) (0,0) (0,0) (0,0)
0.0001 (0.999645,-2.50483e-18) (3.54772e-05,-0.018832) (3.54772e-05,0.018832) (0.000354772,1.09161e-20)
0.0002 (0.999645,-2.50483e-18) (3.54772e-05,-0.018832) (3.54772e-05,0.018832) (0.000798118,2.9362e-20)
0.0003 (0.999202,7.74338e-18) (7.98118e-05,-0.0282396) (0.000141858,0.0376371) (0.00141858,6.42733e-20)

In each non-commented output line the first number is the timestep followed by the density matrix, in

this case ρ00(t) ρ01(t) ρ10(t) ρ11(t). PHI outputs the density matrix for each timestep on one line in

row-major order. Plotting ρ00(t) shows the expected Rabi oscillations as seen in Fig. 3
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Figure 3: Rabi oscillations arising in the coherently coupled pigment dimer in the absence of a thermal environment.

Exercise 2: Damped oscillations Determine the effect of increased environmental coupling. Modify the
input script TLS-Dynamics Vacuum.prm to increase the hierarchy truncation to 10, set the response
frequencies to γ = 10 ps−1 and set the temperature to 300 K. Plot the dynamics of the initially excited
pigment in the special pair for reorganization energies of λ = 80, 240 and 960. (N.B.: remember to change
the OutputFile keyword for each calculation!)
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5. Matsubara Terms, Hierarchy Integration & Hierarchy Truncation

Up to now the examples provided use HEOM integration parameters to obtain the results without know-

ing how “good” they are or whether the result were converged for different values of K and L. Although

converged results can be obtained with sufficiently large values of K and L, such calculations are of-

ten prohibitively expensive. It is thus vital for larger calculations to use optimal parameters that yield

converged results in a reasonable time. We again examine a pigment dimer, however at a much lower

temperature of T = 77 K, and investigate the effect of different K and L values.

Step 1: Input parameters. Create a file called TLS-Dynamics 77K.prm containing the following

text (note the different model parameters to those in the prior examples).

OutputFile=TLS-Dynamics_77K_L5K0.out

NumStates=2

HierarchyTruncation=5

Temperature=77

MatsubaraTerms=0

Hamiltonian:

100,200

200,0

InitialDensityMatrix:

1.0,0.0

0.0,0.0

gamma:

10,10

lambda:

300,300

Timestep=0.0001

Time=1.0

Step 2: Integrate the HEOM using PHI. Run the following command

$ phi TLS-Dynamics_77K.prm rk4

to calculate the dynamics of the TLS at 77 K with zero Matsubara terms.

Step 3: Modify Matsubara terms. Modify the OutputFile and MatsubaraTerms parameters

in the input file and repeat step 2 in order to obtain the density matrix dynamics for K = 1, 2, 3. The

dynamics of the initially excited pigment is shown in Fig. 4. It can be seen that the difference between

K = 2 and K = 3 is quite small but still non-zero.
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Figure 4: Dynamics of initially excited pigment with different number of Matsubara terms.

Step 4: Reduce the calculation time. Notice that the calculation withK = 3 took a little while longer

than the others. This is due to the larger number of equations (495 compared to 70 for K = 2) that have

to be integrated. To improve the calculation time use the adaptive Runga-Kutta-Fehlberg 4/5 integrator

instead by running PHI with the following command:

$ phi TLS-Dynamics_77K.prm rkf45

Notice that the calculation was much faster! It took only 297 integration steps (compared to 10 000 with

rk4), 5 of which it had to discard due to integration errors. Although better performance for the rk4

integrator could also be obtained with a larger step size, it is tedious to find the optimal step size for each

system. Take note also from the PHI screen output that the rkf45 integrator uses more memory than

the rk4 integrator.

Even faster calculation can be obtained by using multiple threads if you have a multi-core CPU. To use

N integration threads, add N to the end of the PHI run command. E.g., to use 2 integration threads (for

a dual-core CPU) use the following command:

$ phi TLS-Dynamics_77K.prm rkf45 2

Benchmarking should be done to utilize the most efficient number of cores for a calculation, and never

specify more integration threads than number of physical cores.
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Exercise 3: Optimal hierarchy truncation. Determine the minimum hierarchy truncation L to obtain
converged results. Modify the input file TLS-Dynamics 77K.prm (see Step 1 of the current section) to
set MatsubaraTerms=3. Calculate the density matrix dynamics from 0 to 1 ps, employing the rkf45
integrator, for hierarchy truncations of L = 5, 7, 9, 11, 13. Be aware, the calculation for L = 13 will take
some time (>30 mins on a single processor). Plot ρ00(t) for each value of L as shown below.

The error with using a too low truncation is readily apparent showing reasonable convergence with L = 13.
Care must be used when determining the appropriate truncation level for a given set of model parameters.

Although the steps taken above will indicate the optimal K and L values to employ, only the initially ex-

cited pigment population has been considered. In practice the whole density matrix ought to be checked

for convergence: all the population and coherence terms.
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