From: McGuire, Kelly (mcg05004_at_byui.edu)
Date: Mon Nov 12 2018 - 15:37:01 CST
Hey Brian, I will go ahead and try running minimization again without restraints on the atoms in the QM region and let you know if I see a difference.
Kelly L. McGuire
PhD Scholar
Biophysics
Department of Physiology and Developmental Biology
Brigham Young University
LSB 3050
Provo, UT 84602
________________________________
From: Brian Radak <brian.radak_at_gmail.com>
Sent: Monday, November 12, 2018 12:45:43 PM
To: namd-l; McGuire, Kelly
Subject: Re: namd-l: Minimization Question
If this kind of minimization uses the regular NAMD steepest descent/conjugate gradient minimizer (which I think it does) then you almost certainly should use fewer steps. I would rarely recommend more than 200 steps.
Cartesian restraints (ala the horrendously misnamed "constraints" keyword) are very probably recommended, but maybe not on the QM region?
On Sun, Nov 11, 2018 at 8:47 PM McGuire, Kelly <mcg05004_at_byui.edu<mailto:mcg05004_at_byui.edu>> wrote:
Usually, during a normal MM simulation, I run the minimization for 1,000 to 2,000 steps. Now, with a QM/MM simulation, using PM7, MOPAC, and GPUs, I can minimize for 1,000 steps in 25 minutes. However, looking at the minimization trajectory, in the QM region some of the sidechain atoms move drastically, causing their bond to stretch really far. I tried restraining the whole sidechain, but the it still happens.
1) Should I not use restraints on the atoms in the QM region?
2) Should I use fewer steps during minimization?
3) Could it be PM7, maybe use a non-semi-empirical theory for minimization?
Same questions for the annealing and equilibration steps...
Kelly L. McGuire
PhD Scholar
Biophysics
Department of Physiology and Developmental Biology
Brigham Young University
LSB 3050
Provo, UT 84602
This archive was generated by hypermail 2.1.6 : Tue Dec 31 2019 - 23:20:21 CST