
NAMD User’s Guide

Version 2.14

R. Bernardi, M. Bhandarkar, A. Bhatele, E. Bohm, R. Brunner, R. Buch,
F. Buelens, H. Chen, C. Chipot, A. Dalke, S. Dixit, G. Fiorin, P. Freddolino,

H. Fu, P. Grayson, J. Gullingsrud, A. Gursoy, D. Hardy, C. Harrison,
J. Hénin, W. Humphrey, D. Hurwitz, A. Hynninen, N. Jain, W. Jiang,

N. Krawetz, S. Kumar, D. Kunzman, J. Lai, C. Lee, J. Maia, R. McGreevy,
C. Mei, M. Melo, M. Nelson, J. Phillips, B. Radak, J. Ribeiro, T. Rudack,
O. Sarood, A. Shinozaki, D. Tanner, P. Wang, D. Wells, G. Zheng, F. Zhu

August 5, 2020

Theoretical Biophysics Group
University of Illinois and Beckman Institute

405 N. Mathews
Urbana, IL 61801

Description

The NAMD User’s Guide describes how to run and use the various features of the molecular
dynamics program NAMD. This guide includes the capabilities of the program, how to use these
capabilities, the necessary input files and formats, and how to run the program both on uniprocessor
machines and in parallel.

NAMD development is supported by National Institutes of Health grant NIH P41-GM104601.

NAMD Version 2.14

Authors: R. Bernardi, M. Bhandarkar, A. Bhatele, E. Bohm, R. Brunner, R. Buch,
F. Buelens, H. Chen, C. Chipot, A. Dalke, S. Dixit, G. Fiorin, P. Freddolino, H. Fu,

P. Grayson, J. Gullingsrud, A. Gursoy, D. Hardy, C. Harrison, J. Hénin, W. Humphrey,
D. Hurwitz, A. Hynninen, N. Jain, W. Jiang, N. Krawetz, S. Kumar, D. Kunzman, J. Lai,

C. Lee, J. Maia, R. McGreevy, C. Mei, M. Melo, M. Nelson, J. Phillips, B. Radak,
J. Ribeiro, T. Rudack, O. Sarood, A. Shinozaki, D. Tanner, P. Wang, D. Wells, G. Zheng,

F. Zhu

Theoretical and Computational Biophysics Group, Beckman Institute, University of Illinois.

c©1995-2018 The Board of Trustees of the University of Illinois. All Rights Reserved

NAMD Molecular Dynamics Software
Non-Exclusive, Non-Commercial Use License

Introduction

The University of Illinois at Urbana-Champaign has created its molecular dynamics software,
NAMD, developed by the Theoretical and Computational Biophysics Group (“TCBG”) at Illi-
nois’ Beckman Institute available free of charge for non-commercial use by individuals, academic
or research institutions and corporations for in-house business purposes only, upon completion and
submission of the online registration form presented when attempting to download NAMD at the
web site http://www.ks.uiuc.edu/Research/namd/.

Commercial use of the NAMD software, or derivative works based thereon, REQUIRES A
COMMERCIAL LICENSE. Commercial use includes: (1) integration of all or part of the Software
into a product for sale, lease or license by or on behalf of Licensee to third parties, or (2) distribution
of the Software to third parties that need it to commercialize product sold or licensed by or on
behalf of Licensee. The University of Illinois will negotiate commercial-use licenses for NAMD upon
request. These requests can be directed to namd@ks.uiuc.edu

Online Download Registration Requirements

In completing the online registration form presented before downloading individuals may register
in their own name or with their institutional or corporate affiliations. Registration information
must include name, title, and e-mail of a person with signature authority to authorize and commit
the individuals, academic or research institution, or corporation as necessary to the terms and
conditions of the license agreement.

All parts of the information must be understood and agreed to as part of completing the form.
Completion of the form is required before software access is granted. Pay particular attention to
the authorized requester requirements above, and be sure that the form submission is authorized
by the duly responsible person.

http://www.ks.uiuc.edu/Research/namd/

UNIVERSITY OF ILLINOIS
NAMD MOLECULAR DYNAMICS SOFTWARE LICENSE AGREEMENT

Upon execution of this Agreement by the party identified below (“Licensee”), The Board of Trustees
of the University of Illinois (“Illinois”), on behalf of The Theoretical and Computational Biophysics
Group (“TCBG”) in the Beckman Institute, will provide the molecular dynamics software NAMD
in Executable Code and/or Source Code form (“Software”) to Licensee, subject to the following
terms and conditions. For purposes of this Agreement, Executable Code is the compiled code,
which is ready to run on Licensee’s computer. Source code consists of a set of files which contain
the actual program commands that are compiled to form the Executable Code.

1. The Software is intellectual property owned by Illinois, and all right, title and interest, in-
cluding copyright, remain with Illinois. Illinois grants, and Licensee hereby accepts, a restricted,
non-exclusive, non-transferable license to use the Software for academic, research and internal busi-
ness purposes only e.g. not for commercial use (see Paragraph 7 below), without a fee. Licensee
agrees to reproduce the copyright notice and other proprietary markings on all copies of the Soft-
ware. Licensee has no right to transfer or sublicense the Software to any unauthorized person or
entity. However, Licensee does have the right to make complimentary works that interoperate with
NAMD, to freely distribute such complimentary works, and to direct others to the TCBG server
to obtain copies of NAMD itself.

2. Licensee may, at its own expense, modify the Software to make derivative works, for its own
academic, research, and internal business purposes. Licensee’s distribution of any derivative work
is also subject to the same restrictions on distribution and use limitations that are specified herein
for Illinois’ Software. Prior to any such distribution the Licensee shall require the recipient of the
Licensee’s derivative work to first execute a license for NAMD with Illinois in accordance with
the terms and conditions of this Agreement. Any derivative work should be clearly marked and
renamed to notify users that it is a modified version and not the original NAMD code distributed
by Illinois.

3. Except as expressly set forth in this Agreement, THIS SOFTWARE IS PROVIDED “AS
IS” AND ILLINOIS MAKES NO REPRESENTATIONS AND EXTENDS NO WARRANTIES
OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
WARRANTIES OR MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE,
OR THAT THE USE OF THE SOFTWARE WILL NOT INFRINGE ANY PATENT, TRADE-
MARK, OR OTHER RIGHTS. LICENSEE ASSUMES THE ENTIRE RISK AS TO THE RE-
SULTS AND PERFORMANCE OF THE SOFTWARE AND/OR ASSOCIATED MATERIALS.
LICENSEE AGREES THAT UNIVERSITY SHALL NOT BE HELD LIABLE FOR ANY DI-
RECT, INDIRECT, CONSEQUENTIAL, OR INCIDENTAL DAMAGES WITH RESPECT TO
ANY CLAIM BY LICENSEE OR ANY THIRD PARTY ON ACCOUNT OF OR ARISING FROM
THIS AGREEMENT OR USE OF THE SOFTWARE AND/OR ASSOCIATED MATERIALS.

4. Licensee understands the Software is proprietary to Illinois. Licensee agrees to take all
reasonable steps to insure that the Software is protected and secured from unauthorized disclosure,
use, or release and will treat it with at least the same level of care as Licensee would use to protect
and secure its own proprietary computer programs and/or information, but using no less than a
reasonable standard of care. Licensee agrees to provide the Software only to any other person or
entity who has registered with Illinois. If licensee is not registering as an individual but as an
institution or corporation each member of the institution or corporation who has access to or uses
Software must understand and agree to the terms of this license. If Licensee becomes aware of any
unauthorized licensing, copying or use of the Software, Licensee shall promptly notify Illinois in

3

writing. Licensee expressly agrees to use the Software only in the manner and for the specific uses
authorized in this Agreement.

5. By using or copying this Software, Licensee agrees to abide by the copyright law and all
other applicable laws of the U.S. including, but not limited to, export control laws and the terms
of this license. Illinois shall have the right to terminate this license immediately by written notice
upon Licensee’s breach of, or non-compliance with, any of its terms. Licensee may be held legally
responsible for any copyright infringement that is caused or encouraged by its failure to abide by
the terms of this license. Upon termination, Licensee agrees to destroy all copies of the Software
in its possession and to verify such destruction in writing.

6. The user agrees that any reports or published results obtained with the Software will ac-
knowledge its use by the appropriate citation as follows:

NAMD was developed by the Theoretical and Computational Biophysics Group in the
Beckman Institute for Advanced Science and Technology at the University of Illinois at
Urbana-Champaign.

Any published work which utilizes NAMD shall include the following reference:

James C. Phillips, David J. Hardy, Julio D. C. Maia, John E. Stone, Joao V. Ribeiro,
Rafael C. Bernardi, Ronak Buch, Giacomo Fiorin, Jerome Henin, Wei Jiang, Ryan
McGreevy, Marcelo C. R. Melo, Brian K. Radak, Robert D. Skeel, Abhishek Singharoy,
Yi Wang, Benoit Roux, Aleksei Aksimentiev, Zaida Luthey-Schulten, Laxmikant V.
Kale, Klaus Schulten, Christophe Chipot, and Emad Tajkhorshid. Scalable molecular
dynamics on CPU and GPU architectures with NAMD. Journal of Chemical Physics,
153:044130, 2020. doi:10.1063/5.0014475

Electronic documents will include a direct link to the official NAMD page:

http://www.ks.uiuc.edu/Research/namd/

One copy of each publication or report will be supplied to Illinois at the addresses listed below
in Contact Information.

7. Should Licensee wish to make commercial use of the Software, Licensee will contact Illinois
(namd@ks.uiuc.edu) to negotiate an appropriate license for such use. Commercial use includes: (1)
integration of all or part of the Software into a product for sale, lease or license by or on behalf
of Licensee to third parties, or (2) distribution of the Software to third parties that need it to
commercialize product sold or licensed by or on behalf of Licensee.

8. Government Rights. Because substantial governmental funds have been used in the devel-
opment of NAMD, any possession, use or sublicense of the Software by or to the United States
government shall be subject to such required restrictions.

9. NAMD is being distributed as a research and teaching tool and as such, TCBG encourages
contributions from users of the code that might, at Illinois’ sole discretion, be used or incorporated to
make the basic operating framework of the Software a more stable, flexible, and/or useful product.
Licensees that wish to contribute their code to become an internal portion of the Software may be
required to sign an “Agreement Regarding Contributory Code for NAMD Software” before Illinois
can accept it (contact namd@ks.uiuc.edu for a copy).

4

http://www.ks.uiuc.edu/Research/namd/

Contact Information

The best contact path for licensing issues is by e-mail to namd@ks.uiuc.edu or send correspondence
to:

NAMD Team
Theoretical and Computational Biophysics Group
Beckman Institute
University of Illinois
405 North Mathews MC-251
Urbana, Illinois 61801 USA

5

Contents

1 Introduction 14
1.1 NAMD and molecular dynamics simulations . 14
1.2 Acknowledgments . 16

2 Getting Started 17
2.1 What is needed . 17
2.2 NAMD configuration file . 17

2.2.1 Configuration parameter syntax . 18
2.2.2 Tcl scripting interface and features . 18
2.2.3 Multiple-copy/replica-exchange scripting interface 21
2.2.4 Python scripting interface and features . 23
2.2.5 Required NAMD configuration parameters 24

3 Input and Output Files 25
3.1 File formats . 25

3.1.1 PDB files . 25
3.1.2 X-PLOR format PSF files . 25
3.1.3 CHARMM19, CHARMM22, and CHARMM27 parameter files 25
3.1.4 DCD trajectory files . 25
3.1.5 NAMD binary files . 26

3.2 NAMD configuration parameters . 26
3.2.1 Input files . 26
3.2.2 Output files . 27
3.2.3 Standard output . 29

3.3 AMBER file and force field support . 31
3.4 GROMACS file support . 33

4 Creating PSF Structure Files 35
4.1 New commands and Functionalities . 35
4.2 Ordinary Usage . 37

4.2.1 Preparing separate PDB files . 37
4.2.2 Deleting unwanted atoms . 38

4.3 BPTI Example . 38
4.4 Building solvent around a protein . 42
4.5 New Commands in the version 2.0 . 44
4.6 List of Commands . 44
4.7 Example of a Session Log . 50

5 Force Field Parameters 52
5.1 Potential energy functions . 52

5.1.1 Bonded potential energy terms . 52
5.1.2 Nonbonded potential energy terms . 53

5.2 Non-bonded interactions . 53
5.2.1 Van der Waals interactions . 53
5.2.2 Electrostatic interactions . 54

6

5.2.3 Non-bonded force field parameters . 54
5.2.4 PME parameters . 57
5.2.5 MSM parameters . 59
5.2.6 Full direct parameters . 62
5.2.7 Tabulated nonbonded interaction parameters 62

5.3 Water Models . 64
5.4 Drude polarizable force field . 64

5.4.1 Required input files . 65
5.4.2 Standard output . 65
5.4.3 Drude force field parameters . 65

5.5 MARTINI Residue-Based Coarse-Grain Forcefield . 67
5.6 Constraints and Restraints . 67

5.6.1 Bond constraint parameters . 67
5.6.2 Position restraint parameters . 68
5.6.3 Fixed atoms parameters . 69
5.6.4 Extra bond, angle, and dihedral restraints . 70

6 Generalized Born Implicit Solvent 72
6.1 Theoretical Background . 72

6.1.1 Poisson Boltzmann Equation . 72
6.1.2 Generalized Born . 72
6.1.3 Generalized Born Equations . 72

6.2 3-Phase Calculation . 75
6.3 Configuration Parameters . 76

7 Standard Minimization and Dynamics Parameters 78
7.1 Boundary Conditions . 78

7.1.1 Periodic boundary conditions . 78
7.1.2 Spherical harmonic boundary conditions . 79
7.1.3 Cylindrical harmonic boundary conditions . 80

7.2 Energy Minimization . 82
7.2.1 Conjugate gradient parameters . 82
7.2.2 Velocity quenching parameters . 82

7.3 Dynamics . 83
7.3.1 Timestep parameters . 83
7.3.2 Initialization . 83
7.3.3 Conserving momentum . 84
7.3.4 Multiple timestep parameters . 84

7.4 Temperature Control and Equilibration . 86
7.4.1 Langevin dynamics parameters . 86
7.4.2 Temperature coupling parameters . 87
7.4.3 Stochastic velocity rescaling parameters . 87
7.4.4 Temperature rescaling parameters . 88
7.4.5 Temperature reassignment parameters . 89
7.4.6 Lowe-Andersen dynamics parameters . 90

7.5 Pressure Control . 90
7.5.1 Berendsen pressure bath coupling . 91

7

7.5.2 Nosé-Hoover Langevin piston pressure control 92

8 User Defined Forces 95
8.1 Constant Forces . 95
8.2 External Electric Field . 95
8.3 Grid Forces . 96
8.4 Moving Constraints . 100
8.5 Rotating Constraints . 101
8.6 Symmetry Restraints . 102
8.7 Targeted Molecular Dynamics (TMD) . 104
8.8 Steered Molecular Dynamics (SMD) . 106
8.9 Interactive Molecular Dynamics (IMD) . 108
8.10 Tcl Forces and Analysis . 109
8.11 Tcl Boundary Forces . 112
8.12 External Program Forces . 115

9 Collective Variable-based Calculations (Colvars) 117
9.1 Writing a Colvars configuration: a crash course . 118
9.2 Enabling and controlling the Colvars module in NAMD 118

9.2.1 Units in the Colvars module . 118
9.2.2 NAMD parameters . 119
9.2.3 Using the cv command to control the Colvars module 119
9.2.4 Configuration syntax used by the Colvars module 123
9.2.5 Global keywords . 124
9.2.6 Input state file . 126
9.2.7 Output files . 127

9.3 Defining collective variables . 127
9.3.1 Choosing a function . 128
9.3.2 Distances . 130
9.3.3 Angles . 133
9.3.4 Contacts . 135
9.3.5 Collective metrics . 138
9.3.6 Rotations . 142
9.3.7 Protein structure descriptors . 145
9.3.8 Raw data: building blocks for custom functions 147
9.3.9 Geometric path collective variables . 148
9.3.10 Arithmetic path collective variables . 152
9.3.11 Volumetric map-based variables . 154
9.3.12 Shared keywords for all components . 157
9.3.13 Periodic components . 157
9.3.14 Non-scalar components . 158
9.3.15 Linear and polynomial combinations of components 159
9.3.16 Custom functions . 160
9.3.17 Scripted functions . 161
9.3.18 Defining grid parameters . 162
9.3.19 Trajectory output . 165
9.3.20 Extended Lagrangian . 166

8

9.3.21 Multiple time-step variables . 168
9.3.22 Backward-compatibility . 168
9.3.23 Statistical analysis . 168

9.4 Selecting atoms . 170
9.4.1 Atom selection keywords . 170
9.4.2 Moving frame of reference. 173
9.4.3 Treatment of periodic boundary conditions. 176
9.4.4 Performance of a Colvars calculation based on group size. 176

9.5 Biasing and analysis methods . 177
9.5.1 Thermodynamic integration . 178
9.5.2 Adaptive Biasing Force . 179
9.5.3 Extended-system Adaptive Biasing Force (eABF) 185
9.5.4 Metadynamics . 188
9.5.5 Harmonic restraints . 197
9.5.6 Computing the work of a changing restraint 201
9.5.7 Harmonic wall restraints . 201
9.5.8 Linear restraints . 204
9.5.9 Adaptive Linear Bias/Experiment Directed Simulation 205
9.5.10 Multidimensional histograms . 206
9.5.11 Probability distribution-restraints . 208
9.5.12 Defining scripted biases . 209
9.5.13 Performance of scripted biases . 210

9.6 Scripting interface (Tcl): list of commands . 210
9.6.1 Commands to manage the Colvars module . 210
9.6.2 Commands to manage individual collective variables 212
9.6.3 Commands to manage individual biases . 214

9.7 Syntax changes from older versions . 215

10 Alchemical Free Energy Methods 217
10.1 Theoretical Background . 217

10.1.1 The dual–topology paradigm . 217
10.1.2 Free Energy Perturbation . 219
10.1.3 Thermodynamic Integration . 219

10.2 Implementation of the free energy methods in NAMD 220
10.3 Examples of input files for running alchemical free energy calculations 225
10.4 Description of a free energy calculation output . 226

10.4.1 Free Energy Perturbation . 226
10.4.2 Thermodynamic Integration . 227

10.5 Hybrid single–dual topology approach for relative binding free energy calculation of
ligand to receptor . 227

11 Accelerated Sampling Methods 230
11.1 Accelerated Molecular Dynamics . 230

11.1.1 Theoretical background . 230
11.1.2 NAMD parameters . 231

11.2 Gaussian Accelerated Molecular Dynamics . 232
11.2.1 Theoretical background . 233

9

11.2.2 NAMD parameters . 234
11.3 Solute Scaling and REST2 . 236

11.3.1 NAMD parameters . 236
11.4 Adaptive Tempering . 237

11.4.1 NAMD parameters . 238
11.5 Locally enhanced sampling . 240

11.5.1 Structure generation . 240
11.5.2 Simulation . 240

11.6 Replica exchange simulations . 241
11.7 Random acceleration molecular dynamics simulations 243

12 Structure based simulations 246
12.1 Hybrid MD-Go Simulation . 246

12.1.1 Hybrid MD-Go model . 246
12.1.2 Hybrid MD-Go considerations . 246
12.1.3 Configuration file modifications . 246
12.1.4 GoParameter format . 247

12.2 Running SMOG simulations . 248
12.2.1 SMOG model considerations . 248
12.2.2 Configuration file modifications . 248

13 Constant-pH Simulations 250
13.1 Overview and Theoretical Background . 250
13.2 Implementation Details . 252
13.3 New Commands and Keywords . 255

13.3.1 Required Keywords . 255
13.3.2 Commonly Used Options . 255
13.3.3 Specialized Options . 257

13.4 Minimal Examples . 258

14 Hybrid QM/MM Simulations 260
14.1 Division of Labor . 260
14.2 Mechanical and Electrostatic Embedding . 262
14.3 Covalent Bonds Divided by the QM/MM Barrier . 262

14.3.1 Link Atoms . 265
14.3.2 Point Charge Alterations . 265
14.3.3 Link Atom Charge and Charge Groups . 265

14.4 Custom Quantum Chemistry Software . 266
14.5 Independent QM Regions . 266
14.6 Keywords . 269

15 Runtime Analysis 277
15.1 Pair interaction calculations . 277
15.2 Pressure profile calculations . 278

10

16 Performance Tuning 282
16.1 NAMD performance tuning concepts . 282

Measuring performance. 282
NAMD configuration and I/O performance. 282
Computational (arithmetic) performance. 282
Networking performance. 283

16.2 Non-bonded interaction distance-testing . 283

17 Translation between NAMD and X-PLOR configuration parameters 288

18 Sample configuration files 290

19 Running NAMD 295
19.1 Individual Windows, Linux, Mac OS X, or Other Unix Workstations 295
19.2 Windows Clusters and Workstation Networks . 295
19.3 Linux Clusters with InfiniBand or Other High-Performance Networks 295
19.4 Linux or Other Unix Workstation Networks . 296
19.5 Shared-Memory and Network-Based Parallelism (SMP Builds) 298
19.6 Cray XE/XK/XC . 298
19.7 Xeon Phi Processors (KNL) . 299
19.8 SGI Altix UV . 299
19.9 IBM POWER Clusters . 299
19.10CPU Affinity . 300
19.11CUDA GPU Acceleration . 300

19.11.1Keywords . 303
19.12Xeon Phi Acceleration . 303
19.13Memory Usage . 304
19.14Improving Parallel Scaling . 304

20 NAMD Availability and Installation 306
20.1 How to obtain NAMD . 306
20.2 Platforms on which NAMD will currently run . 306
20.3 Installing NAMD . 306
20.4 Compiling NAMD . 307
20.5 Documentation . 307

References 308

Index 317

11

List of Figures

1 Graph of van der Waals potential with and without switching 54
2 Graph of electrostatic potential with and without shifting function 55
3 Graph of electrostatic split between short and long range forces 55
4 Graph showing a slice of a ramp potential, showing the effect of mgridforcevoff . . 100
5 Graphical representation of a Colvars configuration. 125
6 Dual topology description for an alchemical simulation. Case example of the muta-

tion of alanine into serine. The lighter color denotes the non–interacting, alternate
state. 218

7 Convergence of an FEP calculation. If the ensembles representative of states a and
b are too disparate, equation (79) will not converge (a). If, in sharp contrast, the
configurations of state b form a subset of the ensemble of configurations characteristic
of state a, the simulation is expected to converge (b). The difficulties reflected in
case (a) may be alleviated by the introduction of mutually overlapping intermediate
states that connect a to b (c). It should be mentioned that in practice, the kinetic
contribution, T (px), is assumed to be identical for state a and state b. 219

8 Relationship of user-defined λ to coupling of electrostatic or vdW interactions to a
simulation, given specific values of alchElecLambdaStart or alchVdwLambdaEnd. . . 223

9 Sample TI data (log(
〈

∂U
∂λ

〉
) against λ). The blue shaded area shows the integral with

fine sampling close to the end point. The red area shows the difference when λ values
are more sparse. In this example, insufficient sampling before λ '0.1 can result in
a large overestimation of the integral. Beyond '0.2, sparser sampling is justified as
dE/dλ is not changing quickly. 228

10 Hybrid single–dual topology . 228
11 Schematics of the aMD method. When the original potential (thick line) falls below

a threshold energy E (dashed line), a boost potential is added. The modified energy
profiles (thin lines) have smaller barriers separating adjacent energy basins. 231

12 Schematic illustration of GaMD. When the threshold energy E is set to the maxi-
mum potential (iE = 1 mode), the system’s potential energy surface is smoothened
by adding a harmonic boost potential that follows a Gaussian distribution. The
coefficient k0, which falls in the range of 0 − 1.0, determines the magnitude of the
applied boost potential. 233

13 The core difference between conventional and constant-pH MD can be illustrated
by a simple enzyme E with four protonation states describing the occupancy of
two titratable residues, R1 and R2. A conventional MD simulation handles the
states separately (left panel). The relative importance of the states must be known
beforehand or computed by other means. Conversely, a constant-pH MD simulation
handles the states collectively and actively simulates interconversion (right panel).
Determining the relative importance of the states is a direct result of the simulation. 250

14 The basic constant-pH MD scheme in NAMD is to alternate equilibrium sampling
in a fixed protonation state followed by a nonequilibrium MD Monte Carlo move
to sample other protonation states. The latter move can be accepted or rejected.
If accepted, the simulation continues in the new protonation state. If the move is
rejected, sampling continues as if the move were never attempted at all. 252

15 Hybrid QM/MM NAMD . 261
16 Diagram of classical point charge options. 263

12

17 Treatment of QM/MM bonds . 264
18 Charge Groups and QM/MM Bonds . 267
19 Diagram of Multiple Grid Regions . 268
20 Example of cutoff and pairlist distance uses . 284

13

1 Introduction

NAMD is a parallel molecular dynamics program for UNIX platforms designed for high-performance
simulations in structural biology. This document describes how to use NAMD, its features, and
the platforms on which it runs. The document is divided into several sections:

Section 1 gives an overview of NAMD.

Section 2 lists the basics for getting started.

Section 3 describes NAMD file formats.

Section 4 explains PSF file generation with psfgen.

Section 5 presents the potential functions, non-bonded interactions, and full electrostatics.

Section 6 explains Generalized Born implicit solvent simulations.

Section 7 lists standard minimization and dynamics parameters.

Section 16 lists performance tuning parameters.

Section 8 explains user defined forces. conformation change calculations.

Section 9 describes collective variable-based calculations.

Section 10 explains alchemical free energy calculations.

Section 11 presents accelerated sampling methods.

Section 15 lists runtime analysis options.

Section 17 provides hints for X-PLOR users.

Section 18 provides sample configuration files.

Section 19 gives details on running NAMD.

Section 20 gives details on installing NAMD.

1.1 NAMD and molecular dynamics simulations

Molecular dynamics (MD) simulations compute atomic trajectories by solving equations of motion
numerically using empirical force fields, such as the CHARMM force field, that approximate the
actual atomic force in biopolymer systems. Detailed information about MD simulations can be
found in several books such as [1, 74]. In order to conduct MD simulations, various computer
programs have been developed including X-PLOR [14] and CHARMM [13]. These programs were
originally developed for serial machines. Simulation of large molecules, however, require enormous
computing power. One way to achieve such simulations is to utilize parallel computers. In recent
years, distributed memory parallel computers have been offering cost-effective computational power.
NAMD was designed to run efficiently on such parallel machines for simulating large molecules.
NAMD is particularly well suited to the increasingly popular Beowulf-class PC clusters, which are
quite similar to the workstation clusters for which is was originally designed. Future versions of
NAMD will also make efficient use of clusters of multi-processor workstations or PCs.

NAMD has several important features:

14

• Force Field Compatibility
The force field used by NAMD is the same as that used by the programs CHARMM [13]
and X-PLOR [14]. This force field includes local interaction terms consisting of bonded
interactions between 2, 3, and 4 atoms and pairwise interactions including electrostatic and
van der Waals forces. This commonality allows simulations to migrate between these three
programs.

• Efficient Full Electrostatics Algorithms
NAMD incorporates the Particle Mesh Ewald (PME) algorithm, which takes the full elec-
trostatic interactions into account. This algorithm reduces the computational complexity of
electrostatic force evaluation from O(N2) to O(N logN).

• Multiple Time Stepping
The velocity Verlet integration method [1] is used to advance the positions and velocities of
the atoms in time. To further reduce the cost of the evaluation of long-range electrostatic
forces, a multiple time step scheme is employed. The local interactions (bonded, van der
Waals and electrostatic interactions within a specified distance) are calculated at each time
step. The longer range interactions (electrostatic interactions beyond the specified distance)
are only computed less often. This amortizes the cost of computing the electrostatic forces
over several timesteps. A smooth splitting function is used to separate a quickly varying
short-range portion of the electrostatic interaction from a more slowly varying long-range
component. It is also possible to employ an intermediate timestep for the short-range non-
bonded interactions, performing only bonded interactions every timestep.

• Input and Output Compatibility
The input and output file formats used by NAMD are identical to those used by CHARMM
and X-PLOR. Input formats include coordinate files in PDB format [6], structure files in
X-PLOR PSF format, and energy parameter files in either CHARMM or X-PLOR formats.
Output formats include PDB coordinate files and binary DCD trajectory files. These similar-
ities assure that the molecular dynamics trajectories from NAMD can be read by CHARMM
or X-PLOR and that the user can exploit the many analysis algorithms of the latter packages.

• Dynamics Simulation Options
MD simulations may be carried out using several options, including

– Constant energy dynamics,

– Constant temperature dynamics via

∗ Velocity rescaling,
∗ Velocity reassignment,
∗ Langevin dynamics,

– Periodic boundary conditions,

– Constant pressure dynamics via

∗ Berendsen pressure coupling,
∗ Nosé-Hoover Langevin piston,

– Energy minimization,

– Fixed atoms,

15

– Rigid waters,

– Rigid bonds to hydrogen,

– Harmonic restraints,

– Spherical or cylindrical boundary restraints.

• Easy to Modify and Extend
Another primary design objective for NAMD is extensibility and maintainability. In order to
achieve this, it is designed in an object-oriented style with C++. Since molecular dynamics is a
new field, new algorithms and techniques are continually being developed. NAMD’s modular
design allows one to integrate and test new algorithms easily. If you are contemplating a
particular modification to NAMD you are encouraged to contact the developers for guidance.

• Interactive MD simulations
A system undergoing simulation in NAMD may be viewed and altered with VMD; for instance,
forces can be applied to a set of atoms to alter or rearrange part of the molecular structure.
For more information on VMD, see http://www.ks.uiuc.edu/Research/vmd/.

• Load Balancing
An important factor in parallel applications is the equal distribution of computational load
among the processors. In parallel molecular simulation, a spatial decomposition that evenly
distributes the computational load causes the region of space mapped to each processor to
become very irregular, hard to compute and difficult to generalize to the evaluation of many
different types of forces. NAMD addresses this problem by using a simple uniform spatial
decomposition where the entire model is split into uniform cubes of space called patches.
An initial load balancer assigns patches and the calculation of interactions among the atoms
within them to processors such that the computational load is balanced as much as possible.
During the simulation, an incremental load balancer monitors the load and performs necessary
adjustments.

1.2 Acknowledgments

NAMD development is supported by the National Institutes of Health (NIH P41-GM104601) and
relies on computational resources funded by the National Science Foundation and the Department
of Energy.

The authors would particularly like to thank the members of the Theoretical and Computational
Biophysics Group, past and present, who have helped tremendously in making suggestions, pushing
for new features, and testing bug-ridden code.

16

http://www.ks.uiuc.edu/Research/vmd/

2 Getting Started

2.1 What is needed

Before running NAMD, explained in section 19, the following are be needed:

• A CHARMM force field in either CHARMM or X-PLOR format.

• An X-PLOR format PSF file describing the molecular structure.

• The initial coordinates of the molecular system in the form of a PDB file.

• A NAMD configuration file.

NAMD provides the psfgen utility, documented in Section 4, which is capable of generating the
required PSF and PDB files by merging PDB files and guessing coordinates for missing atoms. If
psfgen is insufficient for your system, we recommend that you obtain access to either CHARMM
or X-PLOR, both of which are capable of generating the required files.

2.2 NAMD configuration file

Besides these input and output files, NAMD also uses a file referred to as the configuration file.
This file specifies what dynamics options and values that NAMD should use, such as the number
of timesteps to perform, initial temperature, etc. The options and values in this file control how
the system will be simulated. The NAMD configuration file is specified on the NAMD command
line, either before or after the various parallel execution options described in section 19.

A NAMD configuration file contains a set of options and values. The options and values
specified determine the exact behavior of NAMD, what features are active or inactive, how long the
simulation should continue, etc. Section 2.2.1 describes how options are specified within a NAMD
configuration file. Section 2.2.5 lists the parameters which are required to run a basic simulation.
Section 17 describes the relation between specific NAMD and X-PLOR dynamics options. Several
sample NAMD configuration files are shown in section 18.

During execution NAMD will change to the directory containing the configuration file so that
all file paths in the configuration file are relative to the configuration file directory. Multiple
configuration files may be specified on the command line and the will be read in order, but all file
paths will be relative to the first configuration file to call a “run” (or “minimize” or “startup”)
command, or to the last configuration file if “run” is not called.

Commands or parameters may also be specified directly on the command line
via --keyword value argument pairs, for example --outputenergies 100 --run 100
-- checkpoint. This may be used to include multiple configuration files without altering the
working directory via --source /path/to/second.conf. Note that escaping or quoting of com-
mand line parameter values containing spaces may be difficult or impossible on some systems due to
multiple levels of scripts called during the NAMD parallel launch process and because the keyword
and value are simply merged into a single string that is passed to the Tcl interpreter.

If the argument --tclmain is present, all following arguments will be passed to the Tcl inter-
preter as a script file and arguments accessible via the standard argc and argv variables. Note
that Charm++ arguments such as +pemap are processed during Charm++ startup and will not be
passed to Tcl.

17

If the first argument is +tclsh, Charm++ argument parsing and startup are not performed,
the Tcl interpreter is initialized without NAMD scripting features, and all following arguments are
passed to Tcl. Statically linked packages such as psfgen are available via “package require ...”.

2.2.1 Configuration parameter syntax

Each line in the configuration files consists of a keyword identifying the option being specified, and
a value which is a parameter to be used for this option. The keyword and value can be separated
by only white space:

keyword value

or the keyword and value can be separated by an equal sign and white space:

keyword = value

Blank lines in the configuration file are ignored. Comments are prefaced by a # and may appear
on the end of a line with actual values:

keyword value # This is a comment

or may be at the beginning of a line:

This entire line is a comment . . .

Some keywords require several lines of data. These are generally implemented to either allow the
data to be read from a file:

keyword filename

or to be included inline using Tcl-style braces:

keyword {
lots of data

}

The specification of the keywords is case insensitive so that any combination of upper and
lower case letters will have the same meaning. Hence, DCDfile and dcdfile are equivalent. The
capitalization in the values, however, may be important. Some values indicate file names, in which
capitalization is critical. Other values such as on or off are case insensitive.

2.2.2 Tcl scripting interface and features

When compiled with Tcl (all released binaries) the config file is parsed by Tcl in a fully backwards
compatible manner with the added bonus that any Tcl command may also be used. This alone
allows:

• the “source” command to include other files (works w/o Tcl too!),

• the “print” command to display messages (“puts” to stdout fails on some platforms),

• environment variables through the env array (“$env(USER)”), and

18

• user-defined variables (“set base sim23”, “dcdfile $base.dcd”).

Additional features include:

• The “run” command takes a number of steps to run (overriding the now optional numsteps
parameter, which defaults to 0) and can be called repeatedly. You can “run 0” just to get
energies. Normally the preceeding timestep is repeated to account for any modifications to
the energy function; this can be avoided with “run norepeat” followed by the next number of
steps to take.

• The “minimize” command is similar to “run” and performs minimization for the specified
number of force evaluations.

• The “callback” command takes a 2-parameter Tcl procedure which is then called with a list of
labels and a list of values, including but not limited to the current step, energies, temperature,
pressure and volume, after every “run” procedure, allowing analysis, formatting, whatever.
The following example illustrates using callbacks while clarifying use of the earlier commands.
A 100-step minimization is first performed, followed by running 1000 steps of dynamics, with
a Tcl callback function invoked every 100 steps.

minimize 100
proc my_callback_func {labels values} {

print $labels
print $values

}
callback my_callback_func
run 0
for {set i 0} {$i < 1000} {incr i 100} {

run norepeat 100
}

Note the use of “run norepeat” to avoid reevaluating each first step when the coordinates
have not changed.

• The “startup” command will trigger simulation startup as would the first “run” or “minimize”
command, but without any force/energy evaluation.

• Configuration file parameter introspection is supported by invoking a (case-insensitive) pa-
rameter keyword with no argument (e.g., “numsteps”) and by the helper commands “isset”
and “istrue”. Note that keywords are not parsed until the first “run” command, and before
this values are treated as unformatted strings, so for example “eFieldOn” and “eField” may
return “yes” and “1 2 3” before the first “run” command, but “1” and “1.0 2.0 3.0” after
parsing (“istrue eFieldOn” would return “1” in both cases). Similarly, “isset badparam” will
return “0” before parsing but raise an “unknown parameter” error after.

• Between “run” commands the reassignTemp, rescaleTemp, and langevinTemp parame-
ters can be changed to allow simulated annealing protocols within a single config file.

19

The useGroupPressure, useFlexibleCell, useConstantArea, useConstantRatio, LangevinPis-
ton, LangevinPistonTarget, LangevinPistonPeriod, LangevinPistonDecay, LangevinPiston-
Temp, SurfaceTensionTarget, BerendsenPressure, BerendsenPressureTarget, BerendsenPres-
sureCompressibility, and BerendsenPressureRelaxationTime parameters may be changed to
allow pressure equilibration. The fixedAtoms, constraintScaling, and nonbondedScaling pa-
rameters may be changed to preserve macromolecular conformation during minimization and
equilibration (fixedAtoms may only be disabled, and requires that fixedAtomsForces is en-
abled to do this). The consForceScaling parameter may be changed to vary steering forces or
to implement a time-varying electric field that affects specific atoms. The eField, eFieldFreq,
and eFieldPhase parameters may be changed to implement at time-varying electric field that
affects all atoms. The updateGridforceScale parameter may be called to change the scaling
factor applied to gridforces potentials. The alchLambda and alchLambda2 parameters may
be changed during alchemical free energy runs. The DCDfile may be changed to write binary
coordinate trajectory output to separate files. The restartname may be changed to write
restart output to separate files.

• The “checkpoint” and “revert” commands (no arguments) allow a scripted simulation to save
and restore (in memory) to a single prior state. The “output” and “reinitatoms” commands
support multiple saved states using files. Multiple saved states in memory are supported by
the commands “checkpointStore”, “checkpointLoad”, “checkpointSwap”, and “checkpoint-
Free”, all of which take a string key as an argument, plus an optional second argument that
is either replica index (the checkpoint is stored asynchronously on the target replica) or the
keyword “global” (the target replica is computed as a hash of the key).

• The “output” command takes an output file basename and causes .coor, .vel, and .xsc files to
be written with that name. Alternatively, “output withforces” and “output onlyforces” will
write a .force file either in addition to or instead of the regular files.

• The “reinitatoms” command reinitializes coordinates, velocities, and periodic cell dimensions
to those initially read in (random velocities are generated if they were not read from a file).
An optional file basename argument (matching that passed to the output command) causes
.coor, .vel, and .xsc files to be read, assuming the format indicated by the binaryoutput
parameter.

• The “move” command repositions individual atoms, including fixed atoms. Arguments are a
1-based atom ID, “to” or “by”, and a list of three numbers, e.g., “move 1 by {0.4 0.2 -0.1}”.
Atoms may not be moved by more than a single patch between “run” commands.

• The “exit” command writes output files and exits cleanly.

• The “abort” command concatenates its arguments into an error message and exits immedi-
ately without writing output files.

• The “numPes”, “numNodes”, and “numPhysicalNodes” commands allow performance-tuning
parameters to be set based on the parallel execution environment.

• The “reinitvels” command reinitializes velocities to a random distribution based on the given
temperature.

• The “rescalevels” command rescales velocities by the given factor.

20

• The “reloadCharges” command reads new atomic charges from the given file, which should
contain one number for each atom, separated by spaces and/or line breaks.

• The “consForceConfig” command takes a list of 0-based atom indices and a list of forces
which replace the existing set of constant forces (constantForce must be on).

• The “measure” command allows user-programmed calculations to be executed in order to
facilitate automated methods. (For example, to revert or change a parameter.) A number
of measure commands are included in the NAMD binary; the module has been designed to
make it easy for users to add additional measure commands.

• The “coorfile” command allows NAMD to perform force and energy analysis on trajectory
files. “coorfile open dcd filename” opens the specified DCD file for reading. “coorfile read”
reads the next frame in the opened DCD file, replacing NAMD’s atom coordinates with
the coordinates in the frame, and returns 0 if successful or -1 if end-of-file was reached.
“coorfile skip” skips past one frame in the DCD file; this is significantly faster than reading
coordinates and throwing them away. “coorfile close” closes the file. The “coorfile” command
is not available on the Cray T3E.

Force and energy analysis are especially useful in the context of pair interaction calculations;
see Sec. 15.1 for details, as well as the example scripts in Sec. 18.

Please note that while NAMD has traditionally allowed comments to be started by a # appear-
ing anywhere on a line, Tcl only allows comments to appear where a new statement could begin.
With Tcl config file parsing enabled (all shipped binaries) both NAMD and Tcl comments are
allowed before the first “run” command. At this point only pure Tcl syntax is allowed. In addition,
the “;#” idiom for Tcl comments will only work with Tcl enabled. NAMD has also traditionally
allowed parameters to be specified as “param=value”. This is supported, but only before the first
“run” command. Some examples:

this is my config file <- OK
reassignFreq 100 ; # how often to reset velocities <- only w/ Tcl
reassignTemp 20 # temp to reset velocities to <- OK before "run"
run 1000 <- now Tcl only
reassignTemp 40 ; # temp to reset velocities to <- ";" is required

NAMD has also traditionally allowed parameters to be specified as “param=value” as well as
“param value”. This is supported, but only before the first “run” command. For an easy life, use
“param value”.

2.2.3 Multiple-copy/replica-exchange scripting interface

Multiple-copy (or replica-based) algorithms are supported by the following commands, which utilize
two-sided semantics modeled on MPI:

• myReplica

• numReplicas

• replicaBarrier

21

• replicaSend data dest

• replicaRecv source

• replicaSendrecv data dest source

• replicaAtomSend dest

• replicaAtomRecv source

• replicaAtomSendrecv dest source

The replicaSend/Sendrecv data argument may be any string, and hence any Tcl object (e.g.,
a list) that can be represented as a string. Data received from the source replica is returned by
replicaRecv/Sendrecv. In order to ensure message ordering, replicaSend/Sendrecv will block until
the corresponding remote receive call (except when replicaSend is called from inside replicaEval,
as discussed below).

The parameter replicaUniformPatchGrids must be true for atom exchange (replicaAtom...) or
remote checkpointing (checkpoint... with a second argument, see below).

The following additional commands utilize one-sided semantics, and should provide a complete
feature set for running a simulation with fewer NAMD replica partitions than logical replicas:

• checkpointStore key ?replica or global?

• checkpointLoad key ?replica or global?

• checkpointSwap key ?replica or global?

• checkpointFree key ?replica or global?

• replicaEval replica script

• replicaYield ?seconds?

• replicaDcdFile index—off ?filename?

The key can be any string. By default the checkpoint is stored in the memory of the replica
the command is called on. If you specify a replica index the checkpoint is stored asynchronously
in that replica’s memory. If you specify “global” a hash is computed based on the key to select the
replica on which to store the checkpoint. You can have checkpoints with the same key stored on
multiple replicas at once if you really want to. The checkpoint... commands will not return until
the checkpoint operation has completed.

Storing checkpoints is not atomic. If two replicas try to store a checkpoint with the same
key on the same replica at the same time you may end up with a mix of the two (and probably
duplicate/missing atoms). If one replica tries to load a checkpoint while another replica is storing
it the same may happen. You cannot store a checkpoint on a replica until that replica has created
its own patch data structures. This can be guaranteed by calling “startup” and “replicaBarrier”
before any remote checkpoint calls.

The replicaEval command asynchronously executes its script in the top-level context of the
target replica’s Tcl interpreter and returns the result or error. This should be general enough to

22

build any kind of work scheduler or shared data structure you need. If you want to call replicaE-
val repeatedly, e.g., to check if some value has been set, you should call “replicaYield seconds” in
between, as this will introduce a delay but still enable processing of asynchronous calls from other
replicas. Potentially blocking functions such as replicaRecv should not be called from within repli-
caEval, nor should functions such as run, checkpointLoad/Store, and replicaAtomSend/Recv that
would require the simulation of the remote replica to be halted. It is allowed to call replicaSend
(but not replicaSendrecv) from within replicaEval, since replicaSend is non-blocking and one-sided
(but potentially overtaking) in this context. Rather than polling a remote replica (e.g., for work)
via replicaEval, it is more efficient to register a request via replicaEval and then call replicaRecv
to wait for notification.

The replicaDcdFile command is similar to the dcdFile command in that it changes the trajectory
output file, but the file is actually opened by a different replica partition and may be written to
by any other partition that calls replicaDcdFile with the same index but no filename argument. If
a filename argument is given, any file currently associated with the index is closed and a new file
created, even if the new and old filenames are the same. The new file is created only when the next
trajectory frame is written, not during the replicaDcdFile command itself. The caller must ensure
that an index is not used before it is associated with a filename, and that each index is in use by
only one replica at a time. The keyword “off” will return to writing the local trajectory file set by
the dcdFile command.

2.2.4 Python scripting interface and features

NAMD may be compiled with an embedded Python interpreter via the config script option
--with-python. Both Python 2.x and 3.x versions are supported, with 3.x the default if found.
The config script option --python-prefix can be used to specify the path to the python installation
to be used. The default embedded Tcl interpreter is also required to enable Python scripting.
Released NAMD binaries do not support Python scripting at this time due to portability issues
with the extensive Python library.

Python scripting is accessed via the Tcl “python” command, which functions in either expression
mode or script mode. When passed a single-line string, the Python interpreter will evaluate the
expression in the string and return the result. Python containers (tuples, lists, etc.) are converted
to Tcl lists and all other values are converted to their string representation, which is typically
compatible with Tcl. For example, “[python (1 + 1, ’abc’ + ’123’)]” evaluates to the Tcl list “2
abc123”.

When the python command is passed a single multi-line string (typically enclosed in braces),
the Python interpreter will execute the code in the string and return nothing. Because of Python’s
indentation-sensitive syntax the enclosed code can not be indented.

Calls to Tcl from Python code are supported by the tcl module functions tcl.call(), which takes
the Tcl command name and its arguments as separate arguments and performs limited container
and string conversions as described above, and tcl.eval(), which passes a single string unmodified
to the Tcl interpreter. Both functions return the result as a string, so numerical results must be
explicitly cast to float or int as appropriate.

NAMD simulation parameters and commands are wrapped for convenience by the “namd”
object. Any NAMD simulation parameter may be set by assigning to the corresponding case-
insensitive attribute of the namd object, e.g., “namd.timestep = 1.0”, and similarly read (as a
string) by access, e.g., “ts = float(namd.TimeStep)”. Assignment corresponds exactly to nor-
mal config file parsing, i.e., “timestep 1.0”, and hence multiple assignment will generate an error

23

just as would repeated parameters. For convenience, multiple parameters may be set at once by
passing them as keyword arguments, e.g., “namd(langevin=True, langevinDamping=5., langevin-
Temp=100.)”. NAMD (and other) commands in the Tcl interpreter may be called as a method of
the namd object, e.g., “namd.run(1000)” and “namd.output(’myfile’)”.

The NAMD 1-4scaling parameter is incompatible with Python syntax, but may be accessed
several other ways, e.g., “namd.param(’1-4scaling’,1.0)”, “tcl.call(’1-4scaling’,1.0)”, or “tcl.eval(’1-
4scaling 1.0’)”.

The namd object is available as the namd module, which can be accessed from user-written
Python modules by the standard import statement (i.e, “import namd”).

The following example illustrates various aspects of the Python scripting interface:

set a 1
cutoff 12.0
python {
do not indent
namd.pairlistDist = float(namd.Cutoff) + float(tcl.eval("set a")) # cast strings to float
b = 2
namd(switching=True, switchdist = float(namd.cutoff) - b) # case insensitive
}
set c [python $a + b]

2.2.5 Required NAMD configuration parameters

The following parameters are required for every NAMD simulation:

• numsteps (page 83),

• coordinates (page 26),

• structure (page 26),

• parameters (page 26),

• exclude (page 56),

• outputname (page 27),

• one of the following three:

– temperature (page 83),

– velocities (page 27),

– binvelocities (page 27).

These required parameters specify the most basic properties of the simulation. In addition, it is
highly recommended that pairlistdist be specified with a value at least one greater than cutoff.

24

3 Input and Output Files

NAMD was developed to be compatible with existing molecular dynamics packages, especially the
packages X-PLOR [14] and CHARMM [13]. To achieve this compatibility, the set of input files
which NAMD uses to define a molecular system are identical to the input files used by X-PLOR
and CHARMM. Thus it is trivial to move an existing simulation from X-PLOR or CHARMM to
NAMD. A description of these molecular system definition files is given in Section 3.1.

In addition, the output file formats used by NAMD were chosen to be compatible with X-
PLOR and CHARMM. In this way the output from NAMD can be analyzed using X-PLOR,
CHARMM, or a variety of the other tools that have been developed for the existing output file
formats. Descriptions of the output files formats are also given in Section 3.1.

3.1 File formats

3.1.1 PDB files

The PDB (Protein Data Bank) format is used for coordinate, velocity, force, or other data being
read or written by NAMD. This is the standard format for coordinate data for most other molecular
dynamics programs as well, including X-PLOR and CHARMM. A full description of this file format
can be obtained from the PDB web site at http://www.rcsb.org/pdb/. Positions in PDB files
are stored in Å. Velocities in PDB files are stored in Å/ps and may be divided by PDBVELFAC-
TOR=20.45482706 to convert to the NAMD internal units used in DCD and NAMD binary files.
Forces in PDB files are stored in kcal/mol/Å. NAMD binary files (below) should be preferred to
PDB files in most cases due to their higher precision.

3.1.2 X-PLOR format PSF files

NAMD uses the same protein structure files that X-PLOR does. These files may be generated with
psfgen, VMD, X-PLOR, or CHARMM. CHARMM can generate an X-PLOR format PSF file with
the command “write psf card xplor”.

3.1.3 CHARMM19, CHARMM22, and CHARMM27 parameter files

NAMD supports CHARMM19, CHARMM22, and CHARMM27 parameter files in both X-PLOR
and CHARMM formats. (X-PLOR format is the default, CHARMM format parameter files may be
used given the parameter “paraTypeCharmm on”.) For a full description of the format of commands
used in these files, see the X-PLOR and CHARMM User’s Manual [14].

3.1.4 DCD trajectory files

NAMD produces DCD trajectory files in the same format as X-PLOR and CHARMM. The DCD
files are single precision binary FORTRAN files, so are transportable between computer architec-
tures. The file readers in NAMD and VMD can detect and adapt to the endianness of the machine
on which the DCD file was written, and the utility program flipdcd is also provided to reformat
these files if needed. The exact format of these files is very ugly but supported by a wide range
of analysis and display programs. The timestep is stored in the DCD file in NAMD internal units
and must be multiplied by TIMEFACTOR=48.88821 to convert to fs. Positions in DCD files are
stored in Å. Velocities in DCD files are stored in NAMD internal units and must be multiplied by
PDBVELFACTOR=20.45482706 to convert to Å/ps. Forces in DCD files are stored in kcal/mol/Å.

25

http://www.rcsb.org/pdb/

3.1.5 NAMD binary files

NAMD uses a trivial double-precision binary file format for coordinates, velocities, and forces.
Due to its high precision this is the default output and restart format. VMD refers to these files
as the “namdbin” format. The file consists of the atom count as a 32-bit integer followed by all
three position or velocity components for each atom as 64-bit double-precision floating point, i.e.,
NXYZXYZXYZXYZ... where N is a 4-byte int and X, Y, and Z are 8-byte doubles. If the number
of atoms the file contains is known then the atom count can be used to determine endianness. The
file readers in NAMD and VMD can detect and adapt to the endianness of the machine on which
the binary file was written, and the utility program flipbinpdb is also provided to reformat these
files if needed. Positions in NAMD binary files are stored in Å. Velocities in NAMD binary files
are stored in NAMD internal units and must be multiplied by PDBVELFACTOR=20.45482706 to
convert to Å/ps. Forces in NAMD binary files are stored in kcal/mol/Å.

3.2 NAMD configuration parameters

3.2.1 Input files

• coordinates < coordinate PDB file >
Acceptable Values: UNIX filename
Description: The PDB file containing initial position coordinate data. Note that path
names can be either absolute or relative. Only one value may be specified.

• structure < PSF file >
Acceptable Values: UNIX filename
Description: The X-PLOR format PSF file describing the molecular system to be simu-
lated. Only one value may be specified.

• parameters < parameter file >
Acceptable Values: UNIX filename
Description: A CHARMM19, CHARMM22, or CHARMM27 parameter file that defines
all or part of the parameters necessary for the molecular system to be simulated. At least one
parameter file must be specified for each simulation. Multiple definitions (but only one file
per definition) are allowed for systems that require more than one parameter file. The files
will be read in the order that they appear in the configuration file. If duplicate parameters
are read, a warning message is printed and the last parameter value read is used. Thus, the
order that files are read can be important in cases where duplicate values appear in separate
files.

• paraTypeXplor < Is the parameter file in X-PLOR format? >
Acceptable Values: on or off
Default Value: on
Description: Specifies whether or not the parameter file(s) are in X-PLOR format. X-
PLOR format is the default for parameter files! Caveat: The PSF file should be also con-
structed with X-PLOR in case of an X-PLOR parameter file because X-PLOR stores in-
formation about the multiplicity of dihedrals in the PSF file. See the X-PLOR manual for
details.

• paraTypeCharmm < Is the parameter file in CHARMM format? >
Acceptable Values: on or off

26

Default Value: off
Description: Specifies whether or not the parameter file(s) are in CHARMM format. X-
PLOR format is the default for parameter files! Caveat: The information about multiplicity
of dihedrals will be obtained directly from the parameter file, and the full multiplicity will be
used (same behavior as in CHARMM). If the PSF file originates from X-PLOR, consecutive
multiple entries for the same dihedral (indicating the dihedral multiplicity for X-PLOR) will
be ignored.

• velocities < velocity PDB file >
Acceptable Values: UNIX filename
Description: The PDB file containing the initial velocities for all atoms in the simulation.
This is typically a restart file or final velocity file written by NAMD during a previous simu-
lation. Either the temperature or the velocities/binvelocities option must be defined
to determine an initial set of velocities. Both options cannot be used together.

• binvelocities < binary velocity file >
Acceptable Values: UNIX filename
Description: The binary file containing initial velocities for all atoms in the simulation.
A binary velocity file is created as output from NAMD by activating the binaryrestart
or binaryoutput options. The binvelocities option should be used as an alternative to
velocities. Either the temperature or the velocities/binvelocities option must be
defined to determine an initial set of velocities. Both options cannot be used together.

• bincoordinates < binary coordinate restart file >
Acceptable Values: UNIX filename
Description: The binary restart file containing initial position coordinate data.
A binary coordinate restart file is created as output from NAMD by activating the
binaryrestart or binaryoutput options. Note that, in the current implementation at least,
the bincoordinates option must be used in addition to the coordinates option, but the
positions specified by coordinates will then be ignored.

• cwd < default directory >
Acceptable Values: UNIX directory name
Description: The default directory for input and output files. If a value is given, all
filenames that do not begin with a / are assumed to be in this directory. For example, if
cwd is set to /scr, then a filename of outfile would be modified to /scr/outfile while a
filename of /tmp/outfile would remain unchanged. If no value for cwd is specified, than all
filenames are left unchanged but are assumed to be relative to the directory which contains
the configuration file given on the command line.

3.2.2 Output files

• outputname < output file prefix >
Acceptable Values: UNIX filename prefix
Description: At the end of every simulation, NAMD writes two files, one containing the
final coordinates and another containing the final velocities of all atoms in the simulation. This
option specifies the file prefix for these two files as well as the default prefix for trajectory and
restart files. The position coordinates will be saved to a file named as this prefix with .coor

27

appended. The velocities will be saved to a file named as this prefix with .vel appended. For
example, if the prefix specified using this option was /tmp/output, then the two files would
be /tmp/output.coor and /tmp/output.vel.

• binaryoutput < use binary output files? >
Acceptable Values: yes or no
Default Value: yes
Description: Enables the use of binary output files. If this option is not set to no, then
the final output files will be written in binary rather than PDB format. Binary files preserve
more accuracy between NAMD restarts than ASCII PDB files, but the binary files are not
guaranteed to be transportable between computer architectures. (The atom count record is
used to detect wrong-endian files, which works for most atom counts. The utility program
flipbinpdb is provided to reformat these files if necessary.)

• restartname < restart files prefix >
Acceptable Values: UNIX filename prefix
Default Value: outputname.restart
Description: The prefix to use for restart filenames. NAMD produces restart files that
store the current positions and velocities of all atoms at some step of the simulation. This
option specifies the prefix to use for restart files in the same way that outputname specifies
a filename prefix for the final positions and velocities. If restartname is defined then the
parameter restartfreq must also be defined.

• restartfreq < frequency of restart file generation >
Acceptable Values: positive integer
Description: The number of timesteps between the generation of restart files.

• restartsave < use timestep in restart filenames? >
Acceptable Values: yes or no
Default Value: no
Description: Appends the current timestep to the restart filename prefix, producing a
sequence of restart files rather than only the last version written.

• binaryrestart < use binary restart files? >
Acceptable Values: yes or no
Default Value: yes
Description: Enables the use of binary restart files. If this option is not set to no,
then the restart files will be written in binary rather than PDB format. Binary files preserve
more accuracy between NAMD restarts than ASCII PDB files, but the binary files are not
guaranteed to be transportable between computer architectures. (The atom count record is
used to detect wrong-endian files, which works for most atom counts. The utility program
flipbinpdb is provided to reformat these files if necessary.)

• DCDfile < coordinate trajectory output file >
Acceptable Values: UNIX filename
Default Value: outputname.dcd
Description: The binary DCD position coordinate trajectory filename. This file stores the
trajectory of all atom position coordinates using the same format (binary DCD) as X-PLOR.
If DCDfile is defined, then DCDfreq must also be defined.

28

• DCDfreq < timesteps between writing coordinates to trajectory file >
Acceptable Values: positive integer
Description: The number of timesteps between the writing of position coordinates to the
trajectory file. The initial positions will not be included in the trajectory file. Positions in
DCD files are stored in Å.

• DCDUnitCell < write unit cell data to dcd file? >
Acceptable Values: yes or no
Default Value: yes if periodic cell
Description: If this option is set to yes, then DCD files will contain unit cell information
in the style of Charmm DCD files. By default this option is enabled if the simulation cell is
periodic in all three dimensions and disabled otherwise.

• velDCDfile < velocity trajectory output file >
Acceptable Values: UNIX filename
Default Value: outputname.veldcd
Description: The binary DCD velocity trajectory filename. This file stores the trajectory
of all atom velocities using the same format (binary DCD) as X-PLOR. If velDCDfile is
defined, then velDCDfreq must also be defined.

• velDCDfreq < timesteps between writing velocities to trajectory file >
Acceptable Values: positive integer
Description: The number of timesteps between the writing of velocities to the trajectory
file. The initial velocities will not be included in the trajectory file. Velocities in DCD files are
stored in NAMD internal units and must be multiplied by PDBVELFACTOR=20.45482706
to convert to Å/ps.

• forceDCDfile < force trajectory output file >
Acceptable Values: UNIX filename
Default Value: outputname.forcedcd
Description: The binary DCD force trajectory filename. This file stores the trajectory of
all atom forces using the same format (binary DCD) as X-PLOR. If forceDCDfile is defined,
then forceDCDfreq must also be defined.

• forceDCDfreq < timesteps between writing force to trajectory file >
Acceptable Values: positive integer
Description: The number of timesteps between the writing of forces to the trajectory file.
The initial forces will not be included in the trajectory file. Forces in DCD files are stored
in kcal/mol/Å. In the current implementation only those forces that are evaluated during
the timestep that a frame is written are included in that frame. This is different from the
behavior of TclForces and is likely to change based on user feedback. For this reason it is
strongly recommended that forceDCDfreq be a multiple of fullElectFrequency.

3.2.3 Standard output

NAMD logs a variety of summary information to standard output. The standard units used by
NAMD are Angstroms for length, kcal/mol for energy, Kelvin for temperature, and bar for pressure.
Wallclock or CPU times are given in seconds unless otherwise noted.

29

BOUNDARY energy is from spherical boundary conditions and harmonic restraints, while MISC
energy is from external electric fields and various steering forces. TOTAL is the sum of the various
potential energies, and the KINETIC energy. TOTAL2 uses a slightly different kinetic energy
that is better conserved during equilibration in a constant energy ensemble. TOTAL3 is another
variation with much smaller short-time fluctuations that is also adjusted to have the same running
average as TOTAL2. Defects in constant energy simulations are much easier to spot in TOTAL3
than in TOTAL or TOTAL2.

PRESSURE is the pressure calculated based on individual atoms, while GPRESSURE incor-
porates hydrogen atoms into the heavier atoms to which they are bonded, producing smaller fluc-
tuations. The TEMPAVG, PRESSAVG, and GPRESSAVG are the average of temperature and
pressure values since the previous ENERGY output; for the first step in the simulation they will
be identical to TEMP, PRESSURE, and GPRESSURE.

• outputEnergies < timesteps between energy output >
Acceptable Values: positive integer
Default Value: 1
Description: The number of timesteps between each energy output of NAMD. This
value specifies how often NAMD should output the current energy values to stdout (which
can be redirected to a file). By default, this is done every step. For long simulations, the
amount of output generated by NAMD can be greatly reduced by outputting the energies
only occasionally.

• mergeCrossterms < add crossterm energy to dihedral? >
Acceptable Values: yes or no
Default Value: yes
Description: If crossterm (or CMAP) terms are present in the potential, the energy is
added to the dihedral energy to avoid altering the energy output format. Disable this feature
to add a separate “CROSS” field to the output.

• outputMomenta < timesteps between momentum output >
Acceptable Values: nonnegative integer
Default Value: 0
Description: The number of timesteps between each momentum output of NAMD. If
specified and nonzero, linear and angular momenta will be output to stdout.

• outputPressure < timesteps between pressure output >
Acceptable Values: nonnegative integer
Default Value: 0
Description: The number of timesteps between each pressure output of NAMD. If specified
and nonzero, atomic and group pressure tensors will be output to stdout.

• outputTiming < timesteps between timing output >
Acceptable Values: nonnegative integer
Default Value: the greater of firstLdbStep or 10× outputEnergies
Description: The number of timesteps between each timing output of NAMD. If nonzero,
CPU and wallclock times and memory usage will be output to stdout. These data are from
node 0 only; CPU times and memory usage for other nodes may vary.

30

3.3 AMBER file and force field support

AMBER format PARM file and coordinate file can be read by NAMD, which allows one to use
AMBER force field to carry out all types of simulations that NAMD has supported. NAMD can
read PARM files in either the format used in AMBER 6 or the new format defined in AMBER 7.
The output of the simulation (restart file, DCD file, etc.) will still be in traditional format that
has been used in NAMD.

• amber < use AMBER format force field? >
Acceptable Values: yes or no
Default Value: no
Description: If amber is set to on, then parmfile must be defined, and structure and
parameters should not be defined.

• parmfile < AMBER format PARM file >
Acceptable Values: UNIX filename
Description: This file contains complete topology and parameter information of the
system.

• ambercoor < AMBER format coordinate file >
Acceptable Values: UNIX filename
Description: This file contains the coordinates of all the atoms. Note that coordinates
can also be used for PDB format coordinate file. When amber is set to on, either ambercoor
or coordinates must be defined, but not both.

• readexclusions < Read exclusions from PARM file? >
Acceptable Values: yes or no
Default Value: yes
Description: PARM file explicitly gives complete exclusion (including 1-4 exclusions)
information. When readexclusions is set to on, NAMD will read all exclusions from PARM
file and will not add any more; alternatively, if readexclusions is set to off, NAMD will
ignore the exclusions in PARM file and will automatically generate them according to the
exclusion policy specified by exclude.

• scnb < VDW 1-4 scaling factor >
Acceptable Values: decimal ≥ 1.0
Default Value: 2.0
Description: Same meaning as SCNB in AMBER. Note that in NAMD, 1-4 vdw inter-
actions are DIVIDED by scnb, whereas 1-4 electrostatic interactions are MULTIPLIED by
1-4scaling. So 1-4scaling should be set to the inverse of SCEE value used in AMBER.

Caveat:
1. Polarizable parameters in AMBER are not supported.
2. NAMD does not support the 10-12 potential terms in some old AMBER versions. When non-zero
10-12 parameter is encountered in PARM file, NAMD will terminate.
3. NAMD has several exclusion policy options, defined by exclude. The way AMBER dealing with
exclusions corresponds to the “scaled1-4” in NAMD. So for simulations using AMBER force field,
one would specify “exclude scaled1-4” in the configuration file, and set 1-4scaling to the inverse
value of SCEE as would be used in AMBER.

31

4. NAMD does not read periodic box lengths in PARM or coordinate file. They must be explicitly
specified in NAMD configuration file.
5. By default, NAMD applies switching functions to the non-bond interactions within the cut-
off distance, which helps to improve energy conservation, while AMBER does not use switching
functions so it simply truncates the interactions at cutoff. However, if “authentic” AMBER cutoff
simulations are desired, the switching functions could be turned off by specifying “switching off”
in NAMD configuration file.
6. NAMD and AMBER may have different default values for some parameters (e.g., the tolerance
of SHAKE). One should check other sections of this manual for accurate descriptions of the NAMD
options.

Following are two examples of the NAMD configuration file to read AMBER force field and
carry out simulation. They may help users to select proper NAMD options for AMBER force field.
For the convenience of AMBER users, the AMBER 6 sander input files are given in the left for
comparison, which would accomplish similar tasks in AMBER.

Example 1: Non-periodic boundary system, cutoff simulation

---AMBER---- ---NAMD---

TITLE
&cntrl
ntb=0, igb=2, # non-periodic, use cutoff for non-bond
nstlim=1000, numsteps 1000 # Num of total steps
ntpr=50, outputEnergies 50 # Energy output frequency
ntwr=50, restartfreq 50 # Restart file frequency
ntwx=100, DCDfreq 100 # Trajectory file frequency
dt=0.001, timestep 1 # in unit of fs (This is default)
tempi=0., temperature 0 # Initial temp for velocity assignment
cut=10., cutoff 10

switching off # Turn off the switching functions
scee=1.2, exclude scaled1-4

1-4scaling 0.833333 # =1/1.2, default is 1.0
scnb=2.0 scnb 2 # This is default
&end

amber on # Specify this is AMBER force field
parmfile prmtop # Input PARM file
ambercoor inpcrd # Input coordinate file
outputname md # Prefix of output files

Example 2: Periodic boundary system, PME, NVE ensemble, using SHAKE algorithm

---AMBER---- ---NAMD---

TITLE
&cntrl
ntc=2, ntf=2, # SHAKE to the bond between each hydrogen and it mother atom

32

rigidBonds all
tol=0.0005, rigidTolerance 0.0005 # Default is 0.00001
nstlim=500, numsteps 500 # Num of total steps
ntpr=50, outputEnergies 50 # Energy output frequency
ntwr=100, restartfreq 100 # Restart file frequency
ntwx=100, DCDfreq 100 # Trajectory file frequency
dt=0.001, timestep 1 # in unit of fs (This is default)
tempi=300., temperature 300 # Initial temp for velocity assignment
cut=9., cutoff 9

switching off # Turn off the switching functions
&end
&ewald PME on # Use PME for electrostatic calculation

Orthogonal periodic box size
a=62.23, cellBasisVector1 62.23 0 0
b=62.23, cellBasisVector2 0 62.23 0
c=62.23, cellBasisVector3 0 0 62.23
nfft1=64, PMEGridSizeX 64
nfft2=64, PMEGridSizeY 64
nfft3=64, PMEGridSizeZ 64
ischrgd=1, # NAMD doesn’t force neutralization of charge
&end

amber on # Specify this is AMBER force field
parmfile FILENAME # Input PARM file
ambercoor FILENAME # Input coordinate file
outputname PREFIX # Prefix of output files
exclude scaled1-4
1-4scaling 0.833333 # =1/1.2, default is 1.0

3.4 GROMACS file support

NAMD has the ability to load GROMACS ASCII topology (.top) and coordinate (.gro) files, which
allows you to run most GROMACS simulations in NAMD. All simulation output will still be in
the traditional NAMD formats.

• gromacs < use GROMACS format force field? >
Acceptable Values: on or off
Default Value: off
Description: If gromacs is set to on, then grotopfile must be defined, and structure
and parameters should not be defined.

• grotopfile < GROMACS format topology/parameter file >
Acceptable Values: UNIX filename
Description: This file contains complete topology and parameter information of the
system.

• grocoorfile < GROMACS format coordinate file >
Acceptable Values: UNIX filename
Description: This file contains the coordinates of all the atoms. Note that coordinates

33

can also be used for PDB format coordinate file. When gromacs is set to on, either
grocoorfile or coordinates must be defined, but not both.

However, NAMD does not have support for many GROMACS-specific options:

• Dummies (fake atoms with positions generated from the positions of real atoms) are not
supported.

• The GROMACS pairs section, where explicit 1–4 parameters are given between pairs of
atoms, is not supported, since NAMD calculates its 1–4 interactions exclusively by type.

• Similarly, exclusions are not supported. The biggest problem here is that GROMACS RB
dihedrals are supposed to imply exclusions, but NAMD does not support this.

• Constraints, restraints, and settles are not implemented in NAMD.

• In some cases, it may not work to override some but not all of the parameters for a bond,
atom, etc. In this case, NAMD will generate an error and stop. The parser will sometimes
not tolerate correct GROMACS files or fail to detect errors in badly formatted files.

• NAMD does not support all the types of bond potentials that exist in GROMACS, but
approximates them with harmonic or sinusoidal potentials.

• NAMD does not read periodic box lengths in the coordinate file. They must be explicitly
specified in the NAMD configuration file.

34

4 Creating PSF Structure Files

The psfgen structure building tool consists of a portable library of structure and file manipulation
routines with a Tcl interface. Current capabilities include

• reading CHARMM topology files

• reading psf files in X-PLOR/NAMD format

• extracting sequence data from single segment PDB files

• generating a full molecular structure from sequence data

• applying patches to modify or link different segments

• writing NAMD and VMD compatible PSF structure files

• extracting coordinate data from PDB files

• constructing (guessing) missing atomic coordinates

• deleting selected atoms from the structure

• writing NAMD and VMD compatible PDB coordinate files

We are currently refining the interface of psfgen and adding features to create a complete
molecular building solution. We welcome your feedback on this new tool.

4.1 New commands and Functionalities

The version 2.0 of psfgen was extensively modified and improved to meet the current standards in
the size of the structures, and the modern versions of additive CHARMM force field, and polarizable
DRUDE force field (http://mackerell.umaryland.edu/charmm_ff.shtml).

New functionalities include:

• hydrogen mass repartition

• structure preparation for Drude force field

• structure preparation containing colinear lone pairs (halogen atoms in the latest additive
CHARMM force field version)

• psfgen log file to store all the information printed to the console

To use the Drude force field, one only needs to load the Drude topology files and prepare the
structures as per usual. Most commands are available for both lone pairs in the additive and
polarizable force fields, although some operations are not yet available for Drude particles. Atom
modification operations, e.g., psfset, and queries with the segment command on the drude particles,
are not implemented. We advise the user to use VMD to assign beta and occupancy values during
the structure preparation. writemol and readmol commands are not compatible with structure
preparation for Drude Force field.

35

http://mackerell.umaryland.edu/charmm_ff.shtml

The new psfgen log file allows the user to save all the information regularly printed out during
a psfgen execution script to a file. It is possible to open and close multiple log files in a psfgen
script, but only one file is active at any given moment. An example of an application of multiple
log files is to save the information of the loading process of the topology files to one log file and the
rest of information of structure preparation to another file, as demonstrated below:

psfgen_logfile "load_topoplogy.log"

topology top_all22_prot.rtf
topology top_all36_carb.rtf
topology top_all36_lipid.rtf
topology top_all36_prot.rtf
topology top_all36_cgenff.rtf
topology toppar_water_ions.str

psfgen_logfile close

psfgen_logfile "structure_preparation.log"

segment BPTI {
pdb output/6PTI_protein.pdb
}

patch DISU BPTI:5 BPTI:55
patch DISU BPTI:14 BPTI:38
patch DISU BPTI:30 BPTI:51

pdbalias atom ILE CD1 CD
coordpdb output/6PTI_protein.pdb BPTI

pdbalias residue HOH TIP3
segment SOLV {
auto none
pdb output/6PTI_water.pdb
}

pdbalias atom HOH O OH2
coordpdb output/6PTI_water.pdb SOLV

guesscoord

writepsf output/bpti.psf
writepdb output/bpti.pdb

psfgen_logfile close

36

4.2 Ordinary Usage

psfgen is currently distributed in two forms. One form is as a standalone program implemented as
a Tcl interpreter which reads commands from standard output. You may use loops, variables, etc.
as you would in a VMD or NAMD script. You may use psfgen interactively, but we expect it to be
run most often with a script file redirected to standard input. The second form is as a Tcl package
which can be imported into any Tcl application, including VMD. All the commands available to
the standalone version of psfgen are available to the Tcl package; using psfgen within VMD lets
you harness VMD’s powerful atom selection capability, as well as instantly view the result of your
structure building scripts. Examples of using psfgen both with and without VMD are provided in
this document.

Generating PSF and PDB files for use with NAMD will typically consist of the following steps:

1. Preparing separate PDB files containing individual segments of protein, solvent, etc. before
running psfgen.

2. Reading in the appropriate topology definition files and aliasing residue and atom names found
in the PDB file to those found in the topology files. This will generally include selecting a
default protonation state for histidine residues.

3. Generating the default structure using segment and pdb commands.

4. Applying additional patches to the structure.

5. Reading coordinates from the PDB files.

6. Deleting unwanted atoms, such as overlapping water molecules.

7. Guessing missing coordinates of hydrogens and other atoms.

8. Writing PSF and PDB files for use in NAMD.

4.2.1 Preparing separate PDB files

Many PDB files in the PDB databank contain multiple chains, corresponding to protein subunits,
water, and other miscellaneous groups. Protein subunits are often identified by their chain ID in
the PDB file. In psfgen, each of these groups must be assigned to their own segment. This applies
most strictly in the case of protein chains, each of which must be assigned to its own segment so
that N-terminal and C-terminal patches can be applied. You are free to group water molecules into
whatever segments you choose.

Chains can be split up into their own PDB files using your favorite text editor and/or Unix
shell commands, as illustrated in the BPTI example below. If you are using VMD you can also use
atom selections to write pieces of the structure to separate files:

Split a file containing protein and water into separate segments.
Creates files named myfile_water.pdb, myfile_frag0.pdb, myfile_frag1.pdb,...
Requires VMD.
mol load pdb myfile.pdb
set water [atomselect top water]
$water writepdb myfile_water.pdb

37

set protein [atomselect top protein]
set chains [lsort -unique [$protein get pfrag]]
foreach chain $chains {

set sel [atomselect top "pfrag $chain"]
$sel writepdb myfile_frag${chain}.pdb

}

4.2.2 Deleting unwanted atoms

The delatom command described below allows you to delete selected atoms from the structure.
It’s fine to remove atoms from your structure before building the PSF and PDB files, but you
should never edit the PSF and PDB files created by psfgen by hand as it will probably mess up
the internal numbering in the PSF file.

Very often the atoms you want to delete are water molecules that are either too far from the
solute, or else outside of the periodic box you are trying to prepare. In either case VMD atom
selections can be used to select the waters you want to delete. For example:

Load a pdb and psf file into both psfgen and VMD.
resetpsf
readpsf myfile.psf
coordpdb myfile.pdb
mol load psf myfile.psf pdb myfile.pdb
Select waters that are more than 10 Angstroms from the protein.
set badwater1 [atomselect top "name OH2 and not within 10 of protein"]
Alternatively, select waters that are outside our periodic cell.
set badwater2 [atomselect top "name OH2 and (x<-30 or x>30 or y<-30 or>30

or z<-30 or z>30)"]
Delete the residues corresponding to the atoms we selected.
foreach segid [$badwater1 get segid] resid [$badwater1 get resid] {

delatom $segid $resid
}
Have psfgen write out the new psf and pdb file (VMD’s structure and
coordinates are unmodified!).
writepsf myfile_chopwater.psf
writepdb myfile_chopwater.pdb

4.3 BPTI Example

To actually run this demo requires

• the program psfgen from any NAMD distribution,

• the CHARMM topology and parameter files top_all22_prot.inp and par_all22_prot.inp
from http://mackerell.umaryland.edu/charmm_ff.shtml, and

• the BPTI PDB file 6PTI.pdb available from the Protein Data Bank at http://www.pdb.org/
by searching for 6PTI and downloading the complete structure file in PDB format.

38

http://mackerell.umaryland.edu/charmm_ff.shtml
http://www.pdb.org/

Building the BPTI structure

In this demo, we create the files bpti.psf and bpti.pdb in the output directory which can then
be used for a simple NAMD simulation.

File: bpti_example.tcl
Requirements: topology file top_all22_prot.inp in directory toppar
PDB file 6PTI.pdb in current directory

Create working directory; remove old output files
mkdir -p output
rm -f output/6PTI_protein.pdb output/6PTI_water.pdb

(1) Split input PDB file into segments}
grep -v ’^HETATM’ 6PTI.pdb > output/6PTI_protein.pdb
grep ’HOH’ 6PTI.pdb > output/6PTI_water.pdb

(2) Embed the psfgen commands in this script
psfgen << ENDMOL

(3) Read topology file
topology toppar/top_all22_prot.inp

(4) Build protein segment
segment BPTI {
pdb output/6PTI_protein.pdb
}

(5) Patch protein segment
patch DISU BPTI:5 BPTI:55
patch DISU BPTI:14 BPTI:38
patch DISU BPTI:30 BPTI:51

(6) Read protein coordinates from PDB file
pdbalias atom ILE CD1 CD ; # formerly "alias atom ..."
coordpdb output/6PTI_protein.pdb BPTI

(7) Build water segment
pdbalias residue HOH TIP3 ; # formerly "alias residue ..."
segment SOLV {
auto none
pdb output/6PTI_water.pdb
}

(8) Read water coordinaes from PDB file
pdbalias atom HOH O OH2 ; # formerly "alias atom ..."
coordpdb output/6PTI_water.pdb SOLV

39

(9) Guess missing coordinates
guesscoord

(10) Write structure and coordinate files
writepsf output/bpti.psf
writepdb output/bpti.pdb

End of psfgen commands
ENDMOL

Step-by-step explanation of the script:

(1) Split input PDB file into segments. 6PTI.pdb is the original file from the Protein Data
Bank. It contains a single chain of protein and some PO4 and H2O HETATM records. Since each
segment must have a separate input file, we remove all non-protein atom records using grep. If
there were multiple chains we would have to split the file by hand. Create a second file containing
only waters.

(2) Embed the psfgen commands in this script. Run the psfgen program, taking everything
until “ENDMOL” as input. You may run psfgen interactively as well. Since psfgen is built on a
Tcl interpreter, you may use loops, variables, etc., but you must use $$ for variables when inside a
shell script. If you want, run psfgen and enter the following commands manually.

(3) Read topology file. Read in the topology definitions for the residues we will create. This
must match the parameter file used for the simulation as well. Multiple topology files may be read
in since psfgen and NAMD use atom type names rather than numbers in psf files.

(4) Build protein segment. Actually build a segment, calling it BPTI and reading the sequence
of residues from the stripped pdb file created above. In addition to the pdb command, we could
specify residues explicitly. Both angles and dihedrals are generated automatically unless “auto
none” is added (which is required to build residues of water). The commands “first” and “last”
may be used to change the default patches for the ends of the chain. The structure is built when
the closing } is encountered, and some errors regarding the first and last residue are normal.

(5) Patch protein segment. Some patch residues (those not used to begin or end a chain) are
applied after the segment is built. These contain all angle and dihedral terms explicitly since they
were already generated. In this case we apply the patch for a disulfide link three separate times.

(6) Read protein coordinates from PDB file. The same file used to generate the sequence
is now read to extract coordinates. In the residue ILE, the atom CD is called CD1 in the pdb file,
so we use “pdbalias atom” to define the correct name. If the segment names in the pdb file match
the name we gave in the segment statement, then we don’t need to specify it again; in this case we
do specify the segment, so that all atoms in the pdb file must belong to the segment.

40

(7) Build water segment. Build a segment for the crystal waters. The residue type for water
depends on the model, so here we alias HOH to TIP3. Because CHARMM uses an additional H-H
bond we must disable generation of angles and dihedrals for segments containing water. Then read
the pdb file.

(8) Read water coordinates from PDB file. Alias the atom type for water oxygen as well
and read coordinates from the file to the segment SOLV. Hydrogen doesn’t show up in crystal
structures so it is missing from this pdb file.

(9) Guessing missing coordinates. The tolopogy file contains default internal coordinates
which can be used to guess the locations of many atoms, hydrogens in particular. In the output
pdb file, the occupancy field of guessed atoms will be set to 0, atoms which are known are set
to 1, and atoms which could not be guessed are set to -1. Some atoms are “poorly guessed” if
needed bond lengths and angles were missing from the topology file. Similarly, waters with missing
hydrogen coordinates are given a default orientation.

Write structure and coordinate files. Now that all of the atoms and bonds have been created,
we can write out the psf structure file for the system. We also create the matching coordinate pdb
file. The psf and pdb files are a matched set with identical atom ordering as needed by NAMD.

Using generated files in NAMD.

The files bpti.pdb and bpti.psf can now be used with NAMD, but the initial coordinates require
minimization first. The following is an example NAMD configuration file for the BPTI example.

NAMD configuration file for BPTI

molecular system
structure output/bpti.psf

force field
paratypecharmm on
parameters toppar/par_all22_prot.inp
exclude scaled1-4
1-4scaling 1.0

approximations
switching on
switchdist 8
cutoff 12
pairlistdist 13.5
margin 0
stepspercycle 20

#integrator
timestep 1.0

41

#output
outputenergies 10
outputtiming 100
binaryoutput no

molecular system
coordinates output/bpti.pdb

#output
outputname output/bpti
dcdfreq 1000

#protocol
temperature 0
reassignFreq 1000
reassignTemp 25
reassignIncr 25
reassignHold 300

#script

minimize 1000

run 20000

4.4 Building solvent around a protein

The following script illustrates how psfgen and VMD can be used together to add water around a
protein structure. It assumes you already have a psf and pdb file for your protein, as well as a box
of water which is large enough to contain the protein. For more information on how atomselections
can be used within VMD scripts, see the VMD User’s Guide.

proc addwater { psffile pdbfile watpsf watpdb } {
Create psf/pdb files that contain both our protein as well as
a box of equilibrated water. The water box should be large enough
to easily contain our protein.
resetpsf
readpsf $psffile pdb $pdbfile
readpsf $watpsf pdb $watpdb

Load the combined structure into VMD
writepsf combine.psf
writepdb combine.pdb
mol load psf combine.psf pdb combine.pdb

Assume that the segid of the water in watpsf is QQQ
We want to delete waters outside of a box ten Angstroms

42

bigger than the extent of the protein.
set protein [atomselect top "not segid QQQ"]
set minmax [measure minmax $protein]
foreach {min max} $minmax { break }
foreach {xmin ymin zmin} $min { break }
foreach {xmax ymax zmax} $max { break }

set xmin [expr $xmin - 10]
set ymin [expr $ymin - 10]
set zmin [expr $zmin - 10]
set xmax [expr $xmax + 10]
set ymax [expr $ymax + 10]
set zmax [expr $zmax + 10]

Center the water on the protein. Also update the coordinates held
by psfgen.
set wat [atomselect top "segid QQQ"]
$wat moveby [vecsub [measure center $protein] [measure center $wat]]
foreach atom [$wat get {segid resid name x y z}] {
foreach {segid resid name x y z} $atom { break }
coord $segid $resid $name [list $x $y $z]
}

Select waters that we don’t want in the final structure.
set outsidebox [atomselect top "segid QQQ and (x <= $xmin or y <= $ymin \
or z <= $zmin or x >= $xmax or y >= $ymax or z >= $xmax)"]
set overlap [atomselect top "segid QQQ and within 2.4 of (not segid QQQ)"]

Get a list of all the residues that are in the two selections, and delete
those residues from the structure.
set reslist [concat [$outsidebox get resid] [$overlap get resid]]
set reslist [lsort -unique -integer $reslist]

foreach resid $reslist {
delatom QQQ $resid
}

That should do it - write out the new psf and pdb file.
writepsf solvate.psf
writepdb solvate.pdb

Delete the combined water/protein molecule and load the system that
has excess water removed.
mol delete top
mol load psf solvate.psf pdb solvate.pdb

Return the size of the water box

43

return [list [list $xmin $ymin $zmin] [list $xmax $ymax $zmax]]
}

4.5 New Commands in the version 2.0

• psfgen logfile <file name> [close]
Purpose: Open or close a log file to store all information printed to the console.
Arguments: <file name>: Valid file name in the current directory.
close: Close the active log file. The file name should not be included in the closing command.
Example above.
Context: Any part of the script, context independent. May call multiple times.

• hmassrepart [dowater <10>] [mass <target hydrogen mass>]
Purpose: Partition the mass of heavy atoms into the bonded hydrogen atoms.
Arguments: dowater: 1 for true, 0 for false. Partition the water molecules. Default value
0.
mass: Target for the hydrogen atoms’ mass. Default value 3.024 amu.
Context: After loading or preparing the structure.

• vpbonds [1 0]
Purpose: Print the bonds between the virtual particles (drude particles and lone pairs) and
their hosts.
Arguments: 1 for true, 0 for false. Default value 1.
Context: Before writing the psf file. May call multiple times. WARNING: To run simula-
tions containing lone pairs or Drude particles on NAMD 2.13, set vpbonds to 0.

4.6 List of Commands

• topology [list] <file name>
Purpose: Read in molecular topology definitions from file.
Arguments: <file name>: CHARMM format topology file.
list: Lists all currently specified topology files.
residues: Return a list of the known residue topologies.
patches: Return a list of the known residue patches.
Context: Beginning of script, before segment. May call multiple times.

• topology alias <alternate residue name> <existing residue name>
Purpose: Provide alternate names for residues found in topology file. An alternate name
used to generate a residue will be used on output. Compare to “pdbalias residue” below, in
which the real name is used on output.
Arguments: <alternate residue name>: Desired residue name.
<existing residue name>: Residue name found in topology file.
Context: Before reading sequence with pdb. May call multiple times.

• pdbalias residue <alternate name> <real name>
Purpose: Provide translations from residues found in PDB files to proper residue names read
in from topology definition files. Proper names from topology files will be used in generated
PSF and PDB files. Compare to “topology alias” above, in which the alias is is used as the
residue name in generated files. This command also exists under the deprecated name alias.

44

Arguments: <alternate name>: Residue name found in PDB file.
<real name>: Residue name found in topology file or aliases.
Context: Before reading sequence with pdb. May call multiple times.

• segment [segids] [resids] [residue] [first] [last] <segment ID> [resid] [atom name] {
<commands> }
Purpose: Build a segment of the molecule. A segment is typically a single chain of protein
or DNA, with default patches applied to the termini. Segments may also contain pure solvent
or lipid. Options [segids] [resids] [residue] [first] [last] are used to query information
about the specified segment.
Arguments: segids: Return a list of segids for the molecule in the current context.
resids: Return a list of resids for the given segment in the current context.
residue: Return the residue name of the residue in the given segment with the given resid.
atoms: Return a list of atoms for the given segment with the given resid.
coordinates: Return x, y, z coordinates for the given atom.
velocities: Return x, y, z velocities for the given atom.
mass: Return the mass of the given atom.
charge: Return the charge of the given atom.
atomid: Return the one-based atomid of the given atom. These are only assigned/updated
when writing a file. Therefore writepsf, writepdb, or writemol must be called to avoid
returning old atomid values or zero.
first: Returns the name of the patch that was applied to the beginning of the specified
segment.
last: Returns the name of the patch that was applied to the end of the specified segment.
<segment ID>: Unique name for segment, 1–4 characters.
<commands>: Sequence of commands in Tcl syntax to build the primary structure of the
segment, including auto, first, last, residue, pdb, etc.
Context: After topology definitions and residue aliases. May call multiple times. Structure
information is generated at the end of every segment command.

• auto [angles] [dihedrals] [none]
Purpose: Override default settings from topology file for automatic generation of angles and
dihedrals for the current segment.
Arguments: angles: Enable generation of angles from bonds.
dihedrals: Enable generation of dihedrals from angles.
none: Disable generation of angles and dihedrals.
Context: Anywhere within segment, does not affect later segments.

• first <patch name>
Purpose: Override default patch applied to first residue in segment. Default is read from
topology file and may be residue-specific.
Arguments: <patch name>: Single-target patch residue name or none.
Context: Anywhere within segment, does not affect later segments.

• last <patch name>
Purpose: Override default patch applied to last residue in segment. Default is read from
topology file and may be residue-specific.

45

Arguments: <patch name>: Single-target patch residue name or none.
Context: Anywhere within segment, does not affect later segments.

• residue <resid> <resname> [chain]
Purpose: Add a single residue to the end of the current segment.
Arguments: <resid>: Unique name for residue, 1–5 characters, usually numeric.
<resname>: Residue type name from topology file. <chain>: Single-character chain identi-
fier.
Context: Anywhere within segment.

• pdb <file name>
Purpose: Extract sequence information from PDB file when building segment. Residue IDs
will be preserved, residue names must match entries in the topology file or should be aliased
before pdb is called.
Arguments: <file name>: PDB file containing known or aliased residues.
Context: Anywhere within segment.

• mutate <resid> <resname>
Purpose: Change the type of a single residue in the current segment.
Arguments: <resid>: Unique name for residue, 1–5 characters, usually numeric.
<resname>: New residue type name from topology file.
Context: Within segment, after target residue has been created.

• patch [list] <patch residue name> <segid:resid> [...]
Purpose: Apply a patch to one or more residues. Patches make small modifications to the
structure of residues such as converting one to a terminus, changing the protonation state, or
creating disulphide bonds between a pair of residues.
Arguments: list: Lists all patches applied explicitey using the command ’patch’.
listall: Lists all currently applied patches including default patches.
<patch residue name>: Name of patch residue from topology definition file.
<segid:resid>: List of segment and residue pairs to which patch should be applied.
Context: After one or more segments have been built.

• regenerate [angles] [dihedrals]
Purpose: Remove all angles and/or dihedrals and completely regenerate them using the
segment automatic generation algorithms. This is only needed if patches were applied that
do not correct angles and bonds. Segment and file defaults are ignored, and angles/dihedrals
for the entire molecule are regenerated from scratch.
Arguments: angles: Enable generation of angles from bonds.
dihedrals: Enable generation of dihedrals from angles.
Context: After one or more segments have been built.

• regenerate [resids]
Purpose: Remove insertion codes and minimally modify resids to retain uniqueness. No
modifications will be made in segments that have monotonically increasing resids and do
not contain insertion codes. Within a segment, no modifications will be made to residues
preceeding the first non-increasing resid or residue with an insertion code.
Arguments: resids: Enable regeneration of resids to remove insertion codes.
Context: After one or more segments have been built.

46

• multiply <factor> <segid[:resid[:atomname]]> [...]
Purpose: Create multiple images of a set of atoms for use in locally enhanced sampling. The
beta column of the output pdb file is set to 1...<factor> for each image. Multiple copies of
bonds, angles, etc. are created. Atom, residue or segment names are not altered; images are
distinguished only by beta value. This is not a normal molecular structure and may confuse
other tools.
Arguments: <factor>:
<segid:resid:atomname>: segment, residue, or atom to be multiplied. If :resid is omitted the
entire segment is multiplied; if :atomname is omitted the entire residue is multiplied. May be
repeated as many times as necessary to include all atoms.
Context: After one or more segments have been built, all patches applied, and coordinates
guessed. The effects of this command may confuse other commands.

• delatom <segid> [resid] [atomname]
Purpose: Delete one or more atoms. If only segid is specified, all atoms from that segment
will be removed from the structure. If both segid and resid are specified, all atoms from
just that residue will be removed. If segid, resid, and atomname are all specified, just a
single atom will be removed.
Arguments: <segid>: Segment ID of target atom.
<resid>: Residue ID of target atom (optional).
<atomname>: Name of target atom (optional).
Context: After one or more segments have been built.

• resetpsf
Purpose: Delete all segments in the structure. The topology definitions and aliases are left
intact. If you want to clear the topology and aliases as well, use psfcontext reset instead.
Arguments:
Context: After one or more segments have been built.

• psfcontext [context] [new] [delete]
Purpose: Switches between complete contexts, including structure, topology definitions, and
aliases. If no arguments are provided, the current context is returned. If <context> or new is
specified, a new context is entered and the old context is returned. If delete is also specified,
the old context is destroyed and “deleted <old context>” is returned. An error is returned if
the specified context does not exist or if delete was specified and the current context would
still be in use. It may be possible to write robust, error-tolerant code with this interface, but
it would not be easy. Please employ the following revised psfcontext usage instead.
Arguments: <context>: Context ID returned by psfcontext.
Context: At any time.

• psfcontext mixedcase
Purpose: Make context case sensitive by preserving case of all segment, residue, atom, and
patch names on input.
Arguments:
Context: Before reading files requiring case sensitive behavior, normally as the first com-
mand.

• psfcontext allcaps
Purpose: Make context case insensitive by converting all segment, residue, atom, and patch

47

names to upper case characters on input. This is the default behavior and should match the
behavior of versions prior to 1.5.0.
Arguments:
Context: Before reading files requiring case insensitive behavior, not needed in normal use.

• psfcontext reset
Purpose: Clears the structure, topology definitions, and aliases, creating clean environment
just like a new context.
Arguments:
Context: At any time.

• psfcontext create
Purpose: Creates a new context and returns its ID, but does not switch to it. This is different
from psfcontext new above, which switches to the newly created context and returns the
current context’s ID.
Arguments:
Context: At any time.

• psfcontext delete <context>
Purpose: Deletes the specified context. An error is returned if the specified context does not
exist or would still be in use. This is different from psfcontext <context> delete above,
which switches to the specified context and deletes the current one.
Arguments: <context>: Context ID returned by psfcontext.
Context: At any time.

• psfcontext eval <context> { <commands> }
Purpose: Evaluates <commands> in the specified context, returning to the current context
on exit. This should be totally robust, returning to the orignal context in case of errors and
preventing its deletion when nested.
Arguments: <context>: Context ID returned by psfcontext create.
<commands>: Script to be executed in the specified context.
Context: At any time.

• psfcontext stats
Purpose: Returns the total numbers of contexts that have been created and destroyed. This
is useful for checking if a script is leaking contexts.
Arguments:
Context: At any time.

• writepsf [charmm] [x-plor] [cmap] [nocmap] [nopatches] <file name>
Purpose: Write out structure information as PSF file. A simplified session log is listed in
the REMARKS section of the PSF file.
Arguments: charmm: Use CHARMM format (numbers for atom types).
x-plor: Use X-PLOR format (names for atom types), the default format required by NAMD.
cmap: Write cross-term entries to PSF file if present, the default.
nocmap: Do not write cross-term entries to PSF file, even if present.
nopatches: Do not write list of applied patches to PSF file header.
<file name>: PSF file to be generated.
Context: After all segments have been built and patched.

48

• readpsf <file name> [pdb] [pdb file name] [namdbin] [namdbin file name] [velnamdbin]
[velocity file name]
Purpose: Read in structure information from PSF file and add it to the structure. Option-
ally also read coordinates and insertion codes from a PDB file, assuming that the atom order
is the same in both files. Optionally also read coordinates a NAMD binary file, assuming
that the atom order is the same as the psf file. It is an error if any segments in the PSF file
already exist.
Arguments: <file name>: PSF file in X-PLOR format (names for atom types).
pdb: Read coordinates and insertion codes from PDB file.
<pdb file name>: PDB file with atoms in same order as PSF file.
namdbin: Read coordinates from NAMD binary file.
<namdbin file name>: NAMD binary file with atoms in same order as PSF file.
velnamdbin: Read velocities from NAMD binary file.
<velocity file name>: NAMD binary velocity file with atoms in same order as PSF file.
Context: Anywhere but within segment.

• pdbalias atom <residue name> <alternate name> <real name>
Purpose: Provide translations from atom names found in PDB files to proper atom names
read in from topology definition files. Proper names from topology files will be used in
generated PSF and PDB files. This command also exists under the deprecated name alias.
Arguments: <residue name>: Proper or aliased residue name.
<alternate name>: Atom name found in PDB file.
<real name>: Atom name found in topology file.
Context: Before reading coordinates with coordpdb. May call multiple times.

• coordpdb <file name> [segid] [namdbin] [namdbin file name]
Purpose: Read coordinates from PDB file, matching segment, residue and atom names.
Arguments: <file name>: PDB file containing known or aliased residues and atoms.
<segid>: If specified override segment IDs in PDB file.
namdbin: Read coordinates from NAMD binary file.
<namdbin file name>: NAMD binary file with atoms in same order as PDB file.
Context: After segment has been generated and atom aliases defined.

• guesscoord
Purpose: Guesses coordinates of atoms for which they were not explicitly set. Calculation
is based on internal coordinate hints contained in toplogy definition files. When these are
insufficient, wild guesses are attempted based on bond lengths of 1 Å and angles of 109◦.
Arguments: None.
Context: After stucture has been generated and known coordinates read in.

• coord <segid> <resid> <atomname> <{ x y z }>
Purpose: WILL BE DEPRECATED AFTER VERSON 1.6 (use psfset coord in-
stead) Set coordinates for a single atom.
Arguments: <segid>: Segment ID of target atom.
<resid>: Residue ID of target atom.
<atomname>: Name of target atom.
<{ x y z }>: Coordinates to be assigned.
Context: After structure has been generated.

49

• psfset <attribute> <segid> [resid] [atomname] <value>
Purpose: Set an attribute for a given segment, residue, or atom.
Arguments: <attribute>: Segment attributes: segid: the name of the segment Residue
attributes: resname: the name of the residue Atom attributes: name: the name of the atom,
mass: the mass of the atom, charge: the charge of the atom, beta: the PDB bfactor of the
atom, coord: the coordinates of the atom as {x y z}, vel: the velocity of the atom as {vx
vy vz}
<segid>: Segment ID of target segment, residue, or atom.
<resid>: Residue ID of target residue or atom.
<atomname>: Name of target atom.
<value>: Value to be assigned.
Context: After structure has been generated or read from file.

• writepdb <file name>
Purpose: Writes PDB file containing coordinates. Atom order is identical to PSF file gener-
ated by writepsf (unless structure has been changed). The O field is set to 1 for atoms with
known coordinates, 0 for atoms with guessed coordinates, and -1 for atoms with no coordinate
data available (coordinates are set to 0 for these atoms).
Arguments: <file name>: PDB file to be written.
Context: After structure and coordinates are complete.

• writenamdbin <file name> [velnamdbin] [velocity file name]
Purpose: Writes NAMD binary file containing coordinates. Atom order is identical to PSF
file generated by writepsf (unless structure has been changed). Coordinates are set to 0 for
atoms with no coordinate data.
Arguments: <file name>: NAMD binary file to be written.
velnamdbin: Also write velocities to NAMD binary file.
<velocity file name>: NAMD binary velocity file to be written.
Context: After structure and coordinates are complete.

4.7 Example of a Session Log

The command “writepsf” prints a simple session log as “REMARKS” at the beginning of the PSF
file. The log contains information about applied patches and used topology files which not stored
in the standard records of PSF files. These informations are also available after a PSF file was read
by command “readpsf”. Here’a a simple axample:

PSF

1 !NTITLE
REMARKS original generated structure x-plor psf file
REMARKS 4 patches were applied to the molecule.
REMARKS topology 1LOV_autopsf-temp.top
REMARKS segment P1 { first NTER; last CTER; auto angles dihedrals }
REMARKS segment O1 { first NONE; last NONE; auto none }
REMARKS segment W1 { first NONE; last NONE; auto none }
REMARKS defaultpatch NTER P1:1
REMARKS defaultpatch CTER P1:104

50

REMARKS patch DISU P1:10 P1:2
REMARKS patch DISU P1:103 P1:6

1704 !NATOM
1 P1 1 ALA N NH3 -0.300000 14.0070 0

...

All patches that were applied explicitely using the “patch” command are listed following the
keyword “patch”, but the patches that result from default patching like the first and last patches
of a segment are marked as “defaultpatch”. Further the segment based patching rules are listed
along with the angle/dihedral autogeneration rules.

51

5 Force Field Parameters

5.1 Potential energy functions

Evaluating the force is the most computationally demanding part of molecular dynamics. The force
is the negative gradient of a scalar potential energy function,

~F (~r) = −∇U(~r), (1)

and, for systems of biomolecules, this potential function involves the summing,

U(~r) =
∑

Ubonded(~r) +
∑

Unonbonded(~r), (2)

over a large number of bonded and nonbonded terms. The bonded potential terms involve 2–
, 3–, and 4–body interactions of covalently bonded atoms, with O(N) terms in the summation.
The nonbonded potential terms involve interactions between all pairs of atoms (usually excluding
pairs of atoms already involved in a bonded term), with O(N2) terms in the summation, although
fast evaluation techniques are used to compute good approximations to their contribution to the
potential with O(N) or O(N logN) computational cost.

5.1.1 Bonded potential energy terms

The bonded potential terms involve 2–, 3–, and 4–body interactions of covalently bonded atoms.
The 2–body spring bond potential describes the harmonic vibrational motion between an (i, j)–

pair of covalently bonded atoms,
Ubond = k(rij − r0)2, (3)

where rij = ‖~rj −~ri‖ gives the distance between the atoms, r0 is the equilibrium distance, and k is
the spring constant.

The 3–body angular bond potential describes the angular vibrational motion occurring between
an (i, j, k)–triple of covalently bonded atoms,

Uangle = kθ(θ − θ0)2 + kub(rik − rub)2, (4)

where, in the first term, θ is the angle in radians between vectors ~rij = ~rj −~ri and ~rkj = ~rj −~rk, θ0
is the equilibrium angle, and kθ is the angle constant. The second term is the Urey–Bradley term
used to describe a (noncovalent) spring between the outer i and k atoms, active when constant
kub 6= 0, where, like the spring bond, rik = ‖~rk − ~ri‖ gives the distance between the pair of atoms
and rub is the equilibrium distance.

The 4–body torsion angle (also known as dihedral angle) potential describes the angular spring
between the planes formed by the first three and last three atoms of a consecutively bonded
(i, j, k, l)–quadruple of atoms,

Utors =

{
k(1 + cos(nψ + φ)) if n > 0,
k(ψ − φ)2 if n = 0,

(5)

where ψ is the angle in radians between the (i, j, k)–plane and the (j, k, l)–plane. The integer
constant n is nonnegative and indicates the periodicity. For n > 0, φ is the phase shift angle and k
is the multiplicative constant. For n = 0, φ acts as an equilibrium angle and the units of k change
to potential/rad2. A given (i, j, k, l)–quadruple of atoms might contribute multiple terms to the
potential, each with its own parameterization. The use of multiple terms for a torsion angle allows
for complex angular variation of the potential, effectively a truncated Fourier series.

52

5.1.2 Nonbonded potential energy terms

The nonbonded potential terms involve interactions between all (i, j)–pairs of atoms, usually ex-
cluding pairs of atoms already involved in a bonded term. Even using a fast evaluation methods
the cost of computing the nonbonded potentials dominates the work required for each time step of
an MD simulation.

The Lennard–Jones potential accounts for the weak dipole attraction between distant atoms
and the hard core repulsion as atoms become close,

ULJ = (−Emin)

[(
Rmin

rij

)12

− 2
(
Rmin

rij

)6
]
, (6)

where rij = ‖~rj−~ri‖ gives the distance between the pair of atoms. The parameter Emin = ULJ(Rmin)
is the minimum of the potential term (Emin < 0, which means that −Emin is the well-depth). The
Lennard–Jones potential approaches 0 rapidly as rij increases, so it is usually truncated (smoothly
shifted) to 0 past a cutoff radius, requiring O(N) computational cost.

The electrostatic potential is repulsive for atomic charges with the same sign and attractive for
atomic charges with opposite signs,

Uelec = ε14
Cqiqj
ε0rij

, (7)

where rij = ‖~rj − ~ri‖ gives the distance between the pair of atoms, and qi and qj are the charges
on the respective atoms. Coulomb’s constant C and the dielectric constant ε0 are fixed for all
electrostatic interactions. The parameter ε14 is a unitless scaling factor whose value is 1, except
for a modified 1–4 interaction, where the pair of atoms is separated by a sequence of three covalent
bonds (so that the atoms might also be involved in a torsion angle interaction), in which case
ε14 = ε, for a fixed constant 0 ≤ ε ≤ 1. Although the electrostatic potential may be computed with
a cutoff like the Lennard–Jones potential, the 1/r potential approaches 0 much more slowly than
the 1/r6 potential, so neglecting the long range electrostatic terms can degrade qualitative results,
especially for highly charged systems. There are other fast evaluation methods that approximate the
contribution to the long range electrostatic terms that require O(N) or O(N logN) computational
cost, depending on the method.

5.2 Non-bonded interactions

NAMD has a number of options that control the way that non-bonded interactions are calculated.
These options are interrelated and can be quite confusing, so this section attempts to explain the
behavior of the non-bonded interactions and how to use these parameters.

5.2.1 Van der Waals interactions

The simplest non-bonded interaction is the van der Waals interaction. In NAMD, van der Waals
interactions are always truncated at the cutoff distance, specified by cutoff. The main option
that effects van der Waals interactions is the switching parameter. With this option set to on, a
smooth switching function will be used to truncate the van der Waals potential energy smoothly at
the cutoff distance. A graph of the van der Waals potential with this switching function is shown
in Figure 1. If switching is set to off, the van der Waals energy is just abruptly truncated at the
cutoff distance, so that energy may not be conserved.

53

cutoff

0

distance

en
er

gy

switchdist

Figure 1: Graph of van der Waals potential with and without the application of the switching function.
With the switching function active, the potential is smoothly reduced to 0 at the cutoff distance. Without
the switching function, there is a discontinuity where the potential is truncated.

The switching function used is based on the X-PLOR switching function. The parameter
switchdist specifies the distance at which the switching function should start taking effect to bring
the van der Waals potential to 0 smoothly at the cutoff distance. Thus, the value of switchdist
must always be less than that of cutoff.

5.2.2 Electrostatic interactions

The handling of electrostatics is slightly more complicated due to the incorporation of multiple
timestepping for full electrostatic interactions. There are two cases to consider, one where full
electrostatics is employed and the other where electrostatics are truncated at a given distance.

First let us consider the latter case, where electrostatics are truncated at the cutoff distance.
Using this scheme, all electrostatic interactions beyond a specified distance are ignored, or assumed
to be zero. If switching is set to on, rather than having a discontinuity in the potential at the
cutoff distance, a shifting function is applied to the electrostatic potential as shown in Figure 2. As
this figure shows, the shifting function shifts the entire potential curve so that the curve intersects
the x-axis at the cutoff distance. This shifting function is based on the shifting function used by
X-PLOR.

Next, consider the case where full electrostatics are calculated. In this case, the electrostatic
interactions are not truncated at any distance. In this scheme, the cutoff parameter has a slightly
different meaning for the electrostatic interactions — it represents the local interaction distance,
or distance within which electrostatic pairs will be directly calculated every timestep. Outside of
this distance, interactions will be calculated only periodically. These forces will be applied using a
multiple timestep integration scheme as described in Section 7.3.4.

5.2.3 Non-bonded force field parameters

• cutoff < local interaction distance common to both electrostatic and van der Waals calcu-
lations (Å) >
Acceptable Values: positive decimal
Description: See Section 5.2 for more information.

54

cutoff
0

en
er

gy

distance

Figure 2: Graph showing an electrostatic potential with and without the application of the shifting function.

fma

0

en
er

gy

distance

cutoff

every step
direct at

Figure 3: Graph showing an electrostatic potential when full electrostatics are used within NAMD, with
one curve portion calculated directly and the other calculated using PME.

• switching < use switching function? >
Acceptable Values: on or off
Default Value: on
Description: If switching is specified to be off, then a truncated cutoff is performed.
If switching is turned on, then smoothing functions are applied to both the electrostatics
and van der Waals forces. For a complete description of the non-bonded force parameters see
Section 5.2. If switching is set to on, then switchdist must also be defined.

• vdwForceSwitching < use force switching for VDW? >
Acceptable Values: on or off
Default Value: off
Description: If both switching and vdwForceSwitching are set to on, then CHARMM
force switching is used for van der Waals forces.

• switchdist < distance at which to activate switching/splitting function for electrostatic
and van der Waals calculations (Å) >

55

Acceptable Values: positive decimal ≤ cutoff
Description: Distance at which the switching function should begin to take effect. This
parameter only has meaning if switching is set to on. The value of switchdist must be less
than or equal to the value of cutoff, since the switching function is only applied on the range
from switchdist to cutoff. For a complete description of the non-bonded force parameters
see Section 5.2.

• exclude < non-bonded exclusion policy to use >
Acceptable Values: none, 1-2, 1-3, 1-4, or scaled1-4
Description: This parameter specifies which pairs of bonded atoms should be excluded
from non-bonded interactions. With the value of none, no bonded pairs of atoms will be
excluded. With the value of 1-2, all atom pairs that are directly connected via a linear bond
will be excluded. With the value of 1-3, all 1-2 pairs will be excluded along with all pairs of
atoms that are bonded to a common third atom (i.e., if atom A is bonded to atom B and atom
B is bonded to atom C, then the atom pair A-C would be excluded). With the value of 1-4,
all 1-3 pairs will be excluded along with all pairs connected by a set of two bonds (i.e., if atom
A is bonded to atom B, and atom B is bonded to atom C, and atom C is bonded to atom D,
then the atom pair A-D would be excluded). With the value of scaled1-4, all 1-3 pairs are
excluded and all pairs that match the 1-4 criteria are modified. The electrostatic interactions
for such pairs are modified by the constant factor defined by 1-4scaling. The van der Waals
interactions are modified by using the special 1-4 parameters defined in the parameter files.
The value of scaled1-4 is necessary to enable the modified 1-4 VDW parameters present in
the CHARMM parameter files.

• 1-4scaling < scaling factor for 1-4 electrostatic interactions >
Acceptable Values: 0 ≤ decimal ≤ 1
Default Value: 1.0
Description: Scaling factor for 1-4 electrostatic interactions. This factor is only used when
the exclude parameter is set to scaled1-4. In this case, this factor is used to modify the
electrostatic interactions between 1-4 atom pairs. If the exclude parameter is set to anything
but scaled1-4, this parameter has no effect regardless of its value.

• dielectric < dielectric constant for system >
Acceptable Values: decimal ≥ 1.0
Default Value: 1.0
Description: Dielectric constant for the system. A value of 1.0 implies no modification of
the electrostatic interactions. Any larger value will lessen the electrostatic forces acting in
the system.

• nonbondedScaling < scaling factor for nonbonded forces >
Acceptable Values: decimal ≥ 0.0
Default Value: 1.0
Description: Scaling factor for electrostatic and van der Waals forces. A value of 1.0
implies no modification of the interactions. Any smaller value will lessen the nonbonded
forces acting in the system.

• vdwGeometricSigma < use geometric mean to combine L-J sigmas >
Acceptable Values: yes or no

56

Default Value: no
Description: Use geometric mean, as required by OPLS, rather than traditional arithmetic
mean when combining Lennard-Jones sigma parameters for different atom types.

• limitdist < maximum distance between pairs for limiting interaction strength(Å) >
Acceptable Values: non-negative decimal
Default Value: 0.
Description: The electrostatic and van der Waals potential functions diverge as the
distance between two atoms approaches zero. The potential for atoms closer than limitdist
is instead treated as ar2 + c with parameters chosen to match the force and potential at
limitdist. This option should primarily be useful for alchemical free energy perturbation
calculations, since it makes the process of creating and destroying atoms far less drastic
energetically. The larger the value of limitdist the more the maximum force between atoms
will be reduced. In order to not alter the other interactions in the simulation, limitdist
should be less than the closest approach of any non-bonded pair of atoms; 1.3 Å appears to
satisfy this for typical simulations but the user is encouraged to experiment. There should
be no performance impact from enabling this feature.

• LJcorrection < Apply long-range corrections to the system energy and virial to account
for neglected vdW forces? >
Acceptable Values: yes or no
Default Value: no
Description: Apply an analytical correction to the reported vdW energy and virial that
is equal to the amount lost due to switching and cutoff of the LJ potential. The correction
will use the average of vdW parameters for all particles in the system and assume a constant,
homogeneous distribution of particles beyond the switching distance. See [99] for details
(the equations used in the NAMD implementation are slightly different due to the use of a
different switching function). Periodic boundary conditions are required to make use of tail
corrections.

5.2.4 PME parameters

PME stands for Particle Mesh Ewald and is an efficient full electrostatics method for use with
periodic boundary conditions. None of the parameters should affect energy conservation, although
they may affect the accuracy of the results and momentum conservation.

• PME < Use particle mesh Ewald for electrostatics? >
Acceptable Values: yes or no
Default Value: no
Description: Turns on particle mesh Ewald.

• PMETolerance < PME direct space tolerance >
Acceptable Values: positive decimal
Default Value: 10−6

Description: Affects the value of the Ewald coefficient and the overall accuracy of the
results.

• PMEInterpOrder < PME interpolation order >
Acceptable Values: positive integer

57

Default Value: 4 (cubic)
Description: Charges are interpolated onto the grid and forces are interpolated off using
this many points, equal to the order of the interpolation function plus one.

• PMEGridSpacing < maximum space between grid points >
Acceptable Values: positive real
Description: The grid spacing partially determines the accuracy and efficiency of PME.
If any of the grid sizes below are not set, then PMEGridSpacing must be set (recommended
value is 1.0 Å) and will be used to calculate them. If a grid size is set, then the grid spacing
must be at least PMEGridSpacing (if set, or a very large default of 1.5).

• PMEGridSizeX < number of grid points in x dimension >
Acceptable Values: positive integer
Description: The grid size partially determines the accuracy and efficiency of PME. For
speed, PMEGridSizeX should have only small integer factors (2, 3 and 5).

• PMEGridSizeY < number of grid points in y dimension >
Acceptable Values: positive integer
Description: The grid size partially determines the accuracy and efficiency of PME. For
speed, PMEGridSizeY should have only small integer factors (2, 3 and 5).

• PMEGridSizeZ < number of grid points in z dimension >
Acceptable Values: positive integer
Description: The grid size partially determines the accuracy and efficiency of PME. For
speed, PMEGridSizeZ should have only small integer factors (2, 3 and 5).

• PMEProcessors < processors for FFT and reciprocal sum >
Acceptable Values: positive integer
Default Value: larger of x and y grid sizes up to all available processors
Description: For best performance on some systems and machines, it may be necessary
to restrict the amount of parallelism used. Experiment with this parameter if your parallel
performance is poor when PME is used.

• FFTWEstimate < Use estimates to optimize FFT? >
Acceptable Values: yes or no
Default Value: no
Description: Do not optimize FFT based on measurements, but on FFTW rules of thumb.
This reduces startup time, but may affect performance.

• FFTWUseWisdom < Use FFTW wisdom archive file? >
Acceptable Values: yes or no
Default Value: yes
Description: Try to reduce startup time when possible by reading FFTW “wisdom” from
a file, and saving wisdom generated by performance measurements to the same file for future
use. This will reduce startup time when running the same size PME grid on the same number
of processors as a previous run using the same file.

• FFTWWisdomFile < name of file for FFTW wisdom archive >
Acceptable Values: file name
Default Value: FFTW NAMD version platform.txt

58

Description: File where FFTW wisdom is read and saved. If you only run on one platform
this may be useful to reduce startup times for all runs. The default is likely sufficient, as it
is version and platform specific.

5.2.5 MSM parameters

The multilevel summation method (MSM) [44] is an alternative to PME for calculating full elec-
trostatic interactions. The use of the FFT in PME has two drawbacks: (1) it generally requires the
use of periodic boundary conditions, in which the simulation describes an infinite three-dimensional
lattice, with each lattice cell containing a copy of the simulated system, and (2) calculation of the
FFT becomes a considerable performance bottleneck to the parallel scalability of MD simulations,
due to the many-to-many communication pattern employed. MSM avoids the use of the FFT in
its calculation, instead employing the nested interpolation in real space of softened pair potentials,
which permits in addition to periodic boundary conditions the use of semi-periodic boundaries, in
which there is periodicity along just one or two basis vectors, or non-periodic boundaries, in which
the simulation is performed in a vacuum. Also, better parallel scaling has been observed with MSM
when scaling a sufficiently large system to a large number of processors. See the MSM research
web page (http://www.ks.uiuc.edu/Research/msm/) for more information.

In order to use the MSM, one need only specify “MSM on” in the configuration file. For
production use, we presently recommend using the default “MSMQuality 0” (C1 cubic interpolation
with C2 Taylor splitting), which has been validated to correctly reproduce the PME results [44].
At this time, we discourage use of the higher order interpolation schemes (Hermite, quintic, etc.),
as they are still under development. With cubic interpolation, MSM now gets roughly half the
performance of PME. Comparable performance and better scaling for MSM have been observed
with the optimizations described in Ref. [44], which will be available shortly.

For now, NAMD’s implementation of the MSM does not calculate the long-range electrostatic
contribution to the virial, so use with a barostat for constant pressure simulation is inappropriate.
(Note that the experiments in Ref. [44] involving constant pressure simulation with MSM made use
of a custom version that is incompatible with some other NAMD features, so is not yet available.)
The performance of PME is generally still better for smaller systems with smaller processor counts.
MSM is the only efficient method in NAMD for calculating full electrostatics for simulations with
semi-periodic or non-periodic boundaries.

The periodicity is defined through setting the cell basis vectors appropriately, as discussed in
Sec. 7. The cutoff distance, discussed earlier in this section, also determines the splitting distance
between the MSM short-range part, calculated exactly, and long-range part, interpolated from the
grid hierarchy; this splitting distance is the primary control for accuracy for a given interpolation
and splitting, although most simulations will likely want to keep the cutoff set to the CHARMM-
prescribed value of 12 Å.

The configuration options specific to MSM are listed below. A simulation employing non-
periodic boundaries in one or more dimensions might have atoms that attempt to drift beyond the
predetermined extent of the grid. In the case that an atom does drift beyond the grid, the simulation
will be halted prematurely with an error message. Several options listed below deal with defining
the extent of the grid along non-periodic dimensions beyond what can be automatically determined
by the initial coordinates. It is also recommended for non-periodic simulation to configure boundary
restraints to contain the atoms, for instance, through Tcl boundary forces in Sec. 8.11.

• MSM < Use multilevel summation method for electrostatics? >

59

http://www.ks.uiuc.edu/Research/msm/

Acceptable Values: yes or no
Default Value: no
Description: Turns on multilevel summation method.

• MSMGridSpacing < spacing between finest level grid points (Å) >
Acceptable Values: positive real
Default Value: 2.5
Description: The grid spacing determines in part the accuracy and efficiency of MSM. An
error versus cost analysis shows that the best tradeoff is setting the grid spacing to a value
close to the inter-particle spacing. The default value works well in practice for atomic scale
simulation. This value will be exact along non-periodic dimensions. For periodic dimensions,
the grid spacing must evenly divide the basis vector length; the actual spacing for a desired
grid spacing h is guaranteed to be within the interval

[
4
5h,

6
5h
)
.

• MSMQuality < select the approximation quality >
Acceptable Values: 0, 1, 2, 3, 4
Default Value: 0
Description: This parameter offers a simplified way to select higher order interpolation
and splitting for MSM. The available choices are:

– 0 sets C1 cubic (p = 3) interpolation with C2 Taylor splitting,

– 1 sets C1 Hermite (p = 4) interpolation with C3 Taylor splitting,

– 2 sets C1 quintic (p = 5) interpolation with C3 Taylor splitting,

– 3 sets C1 septic (p = 7) interpolation with C4 Taylor splitting,

– 4 sets C1 nonic (p = 9) interpolation with C5 Taylor splitting.

We presently recommend using the default selection, which has been validated to correctly
reproduce the PME results [44], and discourage use of the higher order interpolation schemes,
as they are still under development. With cubic interpolation, MSM now gets roughly half
the performance of PME. Comparable performance and better scaling for MSM have been
observed with the optimizations described in Ref. [44], which will be available shortly.

There is generally a tradeoff between quality and performance. Empirical results show that
the C1 interpolation schemes offer a little better accuracy than the alternative interpolation
schemes that have greater continuity. Also, better accuracy has been observed by using a
splitting function with Cd(p+1)/2e continuity where p is the order of the interpolant.

• MSMApprox < select the interpolant >
Acceptable Values: 0, 1, . . . , 7
Default Value: 0
Description: Select the interpolation scheme:

– 0 sets C1 cubic (p = 3) interpolation,

– 1 sets C1 quintic (p = 5) interpolation,

– 2 sets C2 quintic (p = 5) interpolation,

– 3 sets C1 septic (p = 7) interpolation,

– 4 sets C3 septic (p = 7) interpolation,

60

– 5 sets C1 nonic (p = 9) interpolation,

– 6 sets C4 nonic (p = 9) interpolation,

– 7 sets C1 Hermite (p = 4) interpolation.

• MSMSplit < select the splitting >
Acceptable Values: 0, 1, . . . , 6
Default Value: 0
Description: Select the splitting function:

– 0 sets C2 Taylor splitting,

– 1 sets C3 Taylor splitting,

– 2 sets C4 Taylor splitting,

– 3 sets C5 Taylor splitting,

– 4 sets C6 Taylor splitting,

– 5 sets C7 Taylor splitting,

– 6 sets C8 Taylor splitting.

• MSMLevels < maximum number of levels >
Acceptable Values: non-negative integer
Default Value: 0
Description: Set the maximum number of levels to use in the grid hierarchy. Although
setting slightly lower than the default might (or might not) improve performance and/or
accuracy for non-periodic simulation, it is generally best to leave this at the default value ”0”
which will then automatically adjust the levels to the size of the given system.

• MSMPadding < grid padding (Å) >
Acceptable Values: non-negative real
Default Value: 2.5
Description: The grid padding applies only to non-periodic dimensions, for which the
extent of the grid is automatically determined by the maximum and minimum of the initial
coordinates plus the padding value.

• MSMxmin, MSMymin, MSMzmin < minimum x-, y-, z-coordinate (Å) >
Acceptable Values: real
Description: Set independently the minimum x-, y-, or z-coordinates of the simulation.
This parameter is applicable only to non-periodic dimensions. It is useful in conjunction with
setting a boundary restraining force with Tcl boundary forces in Sec. 8.11.

• MSMxmax, MSMymax, MSMzmax < maximum x-, y-, z-coordinate (Å) >
Acceptable Values: real
Description: Set independently the maximum x-, y-, or z-coordinates of the simulation.
This parameter is applicable only to non-periodic dimensions. It is useful in conjunction with
setting a boundary restraining force with Tcl boundary forces in Sec. 8.11.

• MSMBlockSizeX, MSMBlockSizeY, MSMBlockSizeZ < block size for grid decomposition >
Acceptable Values: positive integer
Default Value: 8

61

Description: Tune parallel performance by adjusting the block size used for parallel domain
decomposition of the grid. Recommended to keep the default.

• MSMSerial < Use serial long-range solver? >
Acceptable Values: yes or no
Default Value: no
Description: Enable instead the slow serial long-range solver. Intended to be used only
for testing and diagnostic purposes.

5.2.6 Full direct parameters

The direct computation of electrostatics is not intended to be used during real calculations, but
rather as a testing or comparison measure. Because of the O(N2) computational complexity for
performing direct calculations, this is much slower than using PME or MSM to compute full electro-
statics for large systems. In the case of periodic boundary conditions, the nearest image convention
is used rather than a full Ewald sum.

• FullDirect < calculate full electrostatics directly? >
Acceptable Values: yes or no
Default Value: no
Description: Specifies whether or not direct computation of full electrostatics should be
performed.

5.2.7 Tabulated nonbonded interaction parameters

In order to support coarse grained models and semiconductor force fields, the tabulated energies
feature replaces the normal van der Waals potential for specified pairs of atom types with one
interpolated from user-supplied energy tables. The electrostatic potential is not altered.

Pairs of atom types to which the modified interactions apply are specified in a CHARMM
parameter file by an NBTABLE section consisting of lines with two atom types and a corresponding
interaction type name. For example, tabulated interactions for SI-O, O-O, and SI-SI pairs would
be specified in a parameter file as:

NBTABLE
SI O SIO
O O OO
SI SI SISI

Each interaction type must correspond to an entry in the energy table file. The table file consists
of a header formatted as:

multiple comment lines
<number_of_tables> <table_spacing (A)> <maximum_distance (A)>

followed by number of tables energy tables formatted as:

TYPE <interaction type name>
0 <energy (kcal/mol)> <force (kcal/mol/A)>
<table_spacing> <energy (kcal/mol)> <force (kcal/mol/A)>
<2*table_spacing> <energy (kcal/mol)> <force (kcal/mol/A)>

62

<3*table_spacing> <energy (kcal/mol)> <force (kcal/mol/A)>
...
<maximum_distance - 3*table_spacing> <energy (kcal/mol)> <force (kcal/mol/A)>
<maximum_distance - 2*table_spacing> <energy (kcal/mol)> <force (kcal/mol/A)>
<maximum_distance - table_spacing> <energy (kcal/mol)> <force (kcal/mol/A)>

The table entry at maximum distance will match the energy of the previous entry but have a
force of zero. The maximum distance must be at least equal to the nonbonded cutoff distance and
entries beyond the cutoff distance will be ignored. For the above example with a cutoff of 12 Å the
table file could look like:

parameters for silicon dioxide
3 0.01 14.0
TYPE SIO
0 5.092449e+26 3.055469e+31
0.01 5.092449e+14 3.055469e+17
0.02 7.956951e+12 2.387085e+15
0.03 6.985526e+11 1.397105e+14
...
13.98 0.000000e+00 -0.000000e+00
13.99 0.000000e+00 -0.000000e+00
TYPE OO
0 1.832907e+27 1.099744e+32
0.01 1.832907e+15 1.099744e+18
0.02 2.863917e+13 8.591751e+15
0.03 2.514276e+12 5.028551e+14
...
13.98 0.000000e+00 -0.000000e+00
13.99 0.000000e+00 -0.000000e+00
TYPE SISI
0 0.000000e+00 -0.000000e+00
0.01 0.000000e+00 -0.000000e+00
...
13.98 0.000000e+00 -0.000000e+00
13.99 0.000000e+00 -0.000000e+00

The following three parameters are required for tabulated energies.

• tabulatedEnergies < use tabulated energies >
Acceptable Values: yes or no
Default Value: no
Description: Specifies whether or not tabulated energies will be used for van der Waals
interactions between specified pairs of atom types.

• tabulatedEnergiesFile < file containing energy table >
Acceptable Values: file name
Description: Provides one energy table for each interaction type in parameter file. See
format above.

63

• tableInterpType < cubic or linear interpolation >
Acceptable Values: cubic or linear
Description: Specifies the order for interpolating between energy table entries.

5.3 Water Models

NAMD currently supports the 3-site TIP3P water model, the 4-site TIP4P water model, and the
5-site SWM4-NDP water model (from the Drude force field) [61]. TIP3P is the current default
water model. Usage of alternative water models is described below.

• waterModel < using which water model? >
Acceptable Values: tip3, tip4, swm4
Default Value: tip3
Description: Specifies the water model to be used. When using the TIP3P water model,
the ordering of atoms within each TIP3P water molecule must be oxygen, hydrogen, hydro-
gen. When using the TIP4P water model, the ordering of atoms within each TIP4P water
molecule must be oxygen, hydrogen, hydrogen, lone pair. When using the SWM4-NDP water
model, the ordering of atoms within each SWM4-NDP water molecule must be oxygen, Drude
particle, lone pair, hydrogen, hydrogen. Alternative orderings will fail.

5.4 Drude polarizable force field

The Drude oscillator model represents induced electronic polarization by introducing an auxiliary
particle attached to each polarizable atom via a zero-length harmonic spring. The advantage with
the Drude model is that it preserves the simple particle-particle Coulomb electrostatic interaction
employed in nonpolarizable force fields, thus its implementation in NAMD is more straightforward
than alternative models for polarization. NAMD performs the integration of Drude oscillators by
employing a novel dual Langevin thermostat to “freeze” the Drude oscillators while maintaining the
normal “warm” degrees of freedom at the desired temperature [51]. Use of the Langevin thermostat
enables better parallel scalability than the earlier reported implementation which made use of a
dual Nosé-Hoover thermostat acting on, and within, each nucleus-Drude pair [62]. Performance
results show that the NAMD implementation of the Drude model maintains good parallel scalability
with an increase in computational cost by not more than twice that of using a nonpolarizable force
field [51].

Excessive “hyperpolarization” of Drude oscillators can be prevented by two different schemes.
The default “hard wall” option reflects elongated springs back towards the nucleus using a simple
collision model. Alternatively, the Drude oscillators can be supplemented by a flat-bottom quartic
restraining potential (usually with a large force constant).

The Drude polarizable force field requires some extensions to the CHARMM force field. An
anisotropic spring term is added to account for out-of-plane forces from a polarized atom and
its covalently bonded neighbor with two more covalently bonded neighbors (similar in structure
to an improper bond). The screened Coulomb correction of Thole is calculated between pairs of
Drude oscillators that would otherwise be excluded from nonbonded interaction and optionally
between non-excluded, nonbonded pairs of Drude oscillators that are within a prescribed cutoff
distance [110, 111]. Also included in the Drude force field are the use of off-centered massless
interaction sites, so called “lone pairs” (LPs), to avoid the limitations of centrosymmetric-based
Coulomb interactions [43]. The coordinate of each LP site is constructed based on three “host”

64

atoms. The calculated forces on the massless LP must be transferred to the host atoms, preserving
total force and torque. After an integration step of velocities and positions, the position of the LP
is updated based on the three host atoms, along with additional geometry parameters that give
displacement and in-plane and out-of-plane angles. See our research web page (http://www.ks.
uiuc.edu/Research/Drude/) for additional details and parallel performance results.

5.4.1 Required input files

No additional files are required by NAMD to use the Drude polarizable force field. However, it is
presently beyond the capability of the psfgen tool to generate the PSF file needed to perform a
simulation using the Drude model. For now, CHARMM is needed to generate correct input files.

The CHARMM force field parameter files specific to the Drude model are required. The PDB
file must also include the Drude particles (mass between 0.05 and 1.0) and the LPs (mass 0). The
Drude particles always immediately follow their parent atom. The PSF file augments the “atom”
section with additional columns that include the “Thole” and “alpha” parameters for the screened
Coulomb interactions of Thole. The PSF file also requires additional sections that list the LPs,
including their host atoms and geometry parameters, and list the anisotropic interaction terms,
including their parameters. A Drude-compatible PSF file is denoted by the keyword “DRUDE”
given along the top line.

5.4.2 Standard output

The NAMD logging to standard output is extended to provide additional temperature data on the
cold and warm degrees of freedom. Four additional quantities are listed on the ETITLE and ENERGY
lines:

DRUDECOM gives the temperature for the warm center-of-mass degrees of freedom,

DRUDEBOND gives the temperature for the cold Drude oscillator degrees of freedom,

DRCOMAVG gives the average temperature (averaged since the previously reported temperature) for
the warm center-of-mass degrees of freedom,

DRBONDAVG gives the average temperature (averaged since the previously reported temperature) for
the cold Drude oscillator degrees of freedom.

The energies resulting from the Drude oscillators and the anisotropic interactions are summed into
the BOND energy. The energies resulting from the LPs and the screened Coulomb interactions of
Thole are summed into the ELECT energy.

5.4.3 Drude force field parameters

The Drude model should be used with the Langevin thermostat enabled (Langevin=on). Doing
so permits the use of normal sized time steps (e.g., 1 fs). The Drude model is also compatible
with constant pressure simulation using the Langevin piston. Long-range electrostatics may be
calculated using PME. The nonbonded exclusions should generally be set to use either the 1-3
exclusion policy (exclude=1-3) or the scaled 1-4 exclusion policy (exclude=scaled1-4).

The Drude water model (SWM4-NDP) is a 5-site model with four charge sites and a nega-
tively charged Drude particle [61], with the particles ordered in the input files as oxygen, Drude
particle, LP, hydrogen, hydrogen. The atoms in the water molecules should be constrained

65

http://www.ks.uiuc.edu/Research/Drude/
http://www.ks.uiuc.edu/Research/Drude/

(rigidBonds=water), with use of the SETTLE algorithm recommended (useSettle=on). Ex-
plicitly setting the water model (waterModel=swm4) is optional.

• drude < Perform integration of Drude oscillators? >
Acceptable Values: on or off
Default Value: off
Description: The integration uses a dual Langevin thermostat to freeze the Drude
oscillators while maintaining the warm degrees of freedom at the desired temperature. Must
also enable the Langevin thermostat. If drude is set to on, then drudeTemp must also be
defined.

• drudeTemp < temperature for freezing the Drude oscillators (K) >
Acceptable Values: non-negative decimal
Description: For stability, the Drude oscillators must be kept at a very cold termpature.
Using a Langevin thermostat, it is possible to set this temperature to 0 K.

• drudeDamping < damping coefficient for Drude oscillators (1/ps) >
Acceptable Values: positive decimal
Description: The Langevin coupling coefficient to be applied to the Drude oscillators. If
not given, drudeDamping is set to the value of langevinDamping, but values of as much as
an order of magnitude greater may be appropriate.

• drudeNbTholeCut < nonbonded Thole interaction radius (Å) >
Acceptable Values: positive decimal
Default Value: 5.0
Description: If drudeNbTholeCut is non-zero, the screened Coulomb correction of Thole
is also calculated for non-excluded, nonbonded pairs of Drude oscillators that are within this
radius of interaction.

• drudeHardWall < use collisions to correct hyperpolarization? >
Acceptable Values: on or off
Default Value: on
Description: Excessively elongated Drude oscillator bonds are avoided by reflective
collisions induced at a fixed cutoff, drudeBondLen. A large number of such events is usually
indicative of unstable/unphysical dynamics and a simulation will stop if double the cutoff is
exceeded.

• drudeBondLen < hyperpolarization cutoff (Å) >
Acceptable Values: positive decimal
Default Value: 0.25
Description: If using drudeHardWall on, this is the distance at which collisions occur.
Otherwise, this is the distance at which an additional quartic restraining potential is applied
to each Drude oscillator. In this latter case, a value of 0.2 Å (slightly smaller than default)
is recommended.

• drudeBondConst < Drude oscillator restraining force constant >
Acceptable Values: positive decimal
Default Value: 40000.0
Description: If drudeHardWall off and drudeBondConst is non-zero, an additional quar-
tic restraining potential is applied to a Drude oscillator if its length exceeds drudeBondLen.

66

5.5 MARTINI Residue-Based Coarse-Grain Forcefield

The MARTINI forcefield for residue-based coarse-grain models allows simulation of several tens
of atoms as only several large coarse-grained particles [72, 73, 78]. In the MARTINI model, each
protein residue is represented by a backbone bead and usually one or more sidechain beads.

When preparing MARTINI simulations it is important to include only those dihedrals specified
by the forcefield. Using the “auto dihedrals” or “regenerate dihedrals” feature of psfgen will create
dihedrals for all possible sets of four bonded atoms. This is incorrect for MARTINI and will result
in energy jumps because the dihedral potential function is degenerate for the angles of 180 degrees
allowed by cosine-based angles.

When using MARTINI the following configuration parameters should be set as indicated:

cosAngles on
martiniSwitching on
dielectric 15.0
PME off

• cosAngles < enable the MARTINI cosine-based angle potential function >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not the MARTINI forcefield is being used, specifically
cosine-based angle potential function. The cosine-based potential will only be used for angles
in CHARMM parameter files that specify the cos keyword.

• martiniSwitching < enable the MARTINI Lennard-Jones switching function? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not the MARTINI forcefield is being used, specifically
the Lennard-Jones switching function.

• martiniDielAllow < Allow dielectrics != 15.0 for use with MARTINI >
Acceptable Values: on or off
Description: off Allows user to specify a dielectric not equal to 15.0, ie a non-standard
dielectric for MARTINI.

5.6 Constraints and Restraints

5.6.1 Bond constraint parameters

• rigidBonds < controls if and how ShakeH is used >
Acceptable Values: none, water, all
Default Value: none
Description: When water is selected, the hydrogen-oxygen and hydrogen-hydrogen dis-
tances in waters are constrained to the nominal length or angle given in the parameter file,
making the molecules completely rigid. When rigidBonds is all, waters are made rigid
as described above and the bond between each hydrogen and the (one) atom to which it is
bonded is similarly constrained. For the default case none, no lengths are constrained.

• rigidTolerance < allowable bond-length error for ShakeH (Å) >
Acceptable Values: positive decimal

67

Default Value: 1.0e-8
Description: The ShakeH algorithm is assumed to have converged when all constrained
bonds differ from the nominal bond length by less than this amount.

• rigidIterations < maximum ShakeH iterations >
Acceptable Values: positive integer
Default Value: 100
Description: The maximum number of iterations ShakeH will perform before giving up
on constraining the bond lengths. If the bond lengths do not converge, a warning message is
printed, and the atoms are left at the final value achieved by ShakeH. Although the default
value is 100, convergence is usually reached after fewer than 10 iterations.

• rigidDieOnError < maximum ShakeH iterations >
Acceptable Values: on or off
Default Value: on
Description: Exit and report an error if rigidTolerance is not achieved after rigidItera-
tions.

• useSettle < Use SETTLE for waters. >
Acceptable Values: on or off
Default Value: on
Description: If rigidBonds are enabled then use the non-iterative SETTLE algorithm to
keep waters rigid rather than the slower SHAKE algorithm.

5.6.2 Position restraint parameters

The following describes the parameters for the position restraints feature of NAMD. For historical
reasons the term “constraints” has been carried over from X-PLOR. This feature allows a restraining
potential to each atom of an arbitrary set during the simulation.

• constraints < are position restraints active? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not position restraints are active. If it is set to off, then
no position restraints are computed. If it is set to on, the potential k × (x − x0)p is applied
to each atom. Per-atom values for k can be defined by either conskfile or conskcol, for x0

by consref, and for p by consexp.

• consexp < exponent for position restraint energy function >
Acceptable Values: positive, even integer
Default Value: 2
Description: Exponent to be use in the position restraint energy function. This value must
be a positive integer, and only even values really make sense. This parameter is used only if
constraints is set to on.

• consref < PDB file containing restraint reference positions >
Acceptable Values: UNIX file name
Description: PDB file to use for reference positions for position restraints. Each atom that
has a positive force constant will be restrained about the position specified in this file.

68

• conskfile < PDB file containing force constant values >
Acceptable Values: UNIX filename
Description: PDB file to use for force constants for position restraints.

• conskcol < column of PDB file containing force constant >
Acceptable Values: X, Y, Z, O, or B
Description: Column of the PDB file to use for the position restraint force constant.
This parameter may specify any of the floating point fields of the PDB file, either X, Y, Z,
occupancy, or beta-coupling (temperature-coupling). Regardless of which column is used, a
value of 0 indicates that the atom qshould not be restrained. Otherwise, the value specified
is used as the force constant for that atom’s restraining potential.

• constraintScaling < scaling factor for position restraint energy function >
Acceptable Values: positive
Default Value: 1.0
Description: The position restraint energy function is multiplied by this parameter, making
it possible to gradually turn off restraints during equilibration. This parameter is used only
if constraints is set to on.

• selectConstraints < Restrain only selected Cartesian components of the coordinates? >
Acceptable Values: on or off
Default Value: off
Description: This option is useful to restrain the positions of atoms to a plane or a line
in space. If active, this option will ensure that only selected Cartesian components of the
coordinates are restrained. E.g.: Restraining the positions of atoms to their current z values
with no restraints in x and y will allow the atoms to move in the x-y plane while retaining
their original z-coordinate. Restraining the x and y values will lead to free motion only along
the z coordinate.

• selectConstrX < Restrain X components of coordinates >
Acceptable Values: on or off
Default Value: off
Description: Restrain the Cartesian x components of the positions.

• selectConstrY < Restrain Y components of coordinates >
Acceptable Values: on or off
Default Value: off
Description: Restrain the Cartesian y components of the positions.

• selectConstrZ < Restrain Z components of coordinates >
Acceptable Values: on or off
Default Value: off
Description: Restrain the Cartesian z components of the positions.

5.6.3 Fixed atoms parameters

Atoms may be held fixed during a simulation. NAMD avoids calculating most interactions in which
all affected atoms are fixed unless fixedAtomsForces is specified.

69

• fixedAtoms < are there fixed atoms? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not fixed atoms are present.

• fixedAtomsForces < are forces between fixed atoms calculated? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not forces between fixed atoms are calculated. This
option is required to turn fixed atoms off in the middle of a simulation. These forces will
affect the pressure calculation, and you should leave this option off when using constant
pressure if the coordinates of the fixed atoms have not been minimized. The use of constant
pressure with significant numbers of fixed atoms is not recommended.

• fixedAtomsFile < PDB file containing fixed atom parameters >
Acceptable Values: UNIX filename
Default Value: coordinates
Description: PDB file to use for the fixed atom flags for each atom. If this parameter is
not specified, then the PDB file specified by coordinates is used.

• fixedAtomsCol < column of PDB containing fixed atom parameters >
Acceptable Values: X, Y, Z, O, or B
Default Value: O
Description: Column of the PDB file to use for the containing fixed atom parameters for
each atom. The coefficients can be read from any floating point column of the PDB file. A
value of 0 indicates that the atom is not fixed.

5.6.4 Extra bond, angle, and dihedral restraints

Additional bond, angle, and dihedral energy terms may be applied to system, allowing secondary
or tertiary structure to be restrained, for example. Extra bonded terms are not considered part
of the molecular structure and hence do not alter nonbonded exclusions. The energies from extra
bonded terms are included with the normal bond, angle, and dihedral energies in NAMD output.

All extra bonded terms are harmonic potentials of the form U(x) = k(x−xref)2 except dihedrals
and impropers with a non-zero periodicity specified, which use U(x) = k(1 + cos(nx− xref)). The
only difference between dihedrals and impropers is the output field that their potential energy is
added to.

Due to a very old bug all NAMD releases prior to 2.13 have used the MARTINI cosine-based
angle potential function for all extra angles. Since workflows may unknowingly depend on this
undocumented behavior, cosine-based angles remain the default, but a warning is printed unless
the desired behavior is specified via the new option extraBondsCosAngles (defaults to “on”, set to
“off” to use the normal harmonic angle potential function for all extra angles).

The extra bonded term implementation shares the parallel implementation of regular bonded
terms in NAMD, allowing large numbers of extra terms to be specified with minimal impact on
parallel scalability. Extra bonded terms do not have to duplicate normal bonds/angles/dihedrals,
but each extra bond/angle/dihedral should only involve nearby atoms. If the atoms involved are
too far apart a bad global bond count will be reported in parallel runs.

Extra bonded terms are enabled via the following options:

70

• extraBonds < enable extra bonded terms? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not extra bonded terms are present.

• extraBondsCosAngles < are extra angles cosine-based? >
Acceptable Values: on or off
Default Value: on
Description: Specifies whether or not all extra angles are cosine-based for consistency with
previous versions. Set to off to use normal harmonic angle potential for all extra angles.

• extraBondsFile < file containing extra bonded terms >
Acceptable Values: file
Description: File containing extra bonded terms. May be repeated for multiple files.

The extra bonds file(s) should contain lines of the following formats:

• bond <atom> <atom> <k> <ref>

• angle <atom> <atom> <atom> <k> <ref>

• dihedral <atom> <atom> <atom> <atom> <k> <ref>

• dihedral <atom> <atom> <atom> <atom> <k> <n> <ref>

• improper <atom> <atom> <atom> <atom> <k> <ref>

• improper <atom> <atom> <atom> <atom> <k> <n> <ref>

• wall <atom> <atom> <k> <lower> <upper>

• # <comment ...>

In all cases <atom> is a zero-based atom index (the first atom has index 0), <ref> is a reference
distance in Å (bond) or angle in degrees (others), and <k> is a spring constant in the potential
energy function U(x) = k(x− xref)2 or, for dihedrals and impropers with periodicity <n> specified
and not 0, U(x) = k(1 + cos(nx − xref)). Note that xref is only a minimum for the harmonic
potential; the sinusoidal potential has minima at (xref + 180)/n+ i× 360/n.

Use of wall implements a harmonic wall potential similar to the Colvars harmonic wall restraint.
The potential function is

U(x) =


k(x− xupper)2, if x > xupper

0, if xlower ≤ x ≤ xupper

k(x− xlower)2, if x < xlower

.

71

6 Generalized Born Implicit Solvent

Generalized Born implicit solvent (GBIS) is a fast but approximate method for calculating molecular
electrostatics in solvent as described by the Poisson Boltzmann equation which models water as a
dielectric continuum. GBIS enables the simulation of atomic structures without including explicit
solvent water. The elimination of explicit solvent greatly accelerates simulations; this speedup is
lessed by the increased computational complexity of the implicit solvent electrostatic calculation
and a longer interaction cutoff. These are discussed in greater detail below.

6.1 Theoretical Background

Water has many biologically necessary properties, one of which is as a dielectric. As a dielectric,
water screens (lessens) electrostatic interactions between charged particles. Water can therefore be
crudely modeled as a dielectric continuum. In this manner, the electrostatic forces of a biological
system can be expressed as a system of differential equations which can be solved for the electric
field caused by a collection of charges.

6.1.1 Poisson Boltzmann Equation

The Poisson Boltzmann equation (PBE),

~∇ ·
[
ε(~r)~∇Ψ(~r)

]
= −4πρf (~r)− 4π

∑
i

c∞i qiλ(~r) · exp
[
−qiΨ(~r)
kBT

]
is a nonlinear equation which solves for the electrostatic field, Ψ(~r), based on the position dependent
dielectric, ε(~r), the position-dependent accessibility of position ~r to the ions in solution, λ(~r), the
solute charge distribution, ρf (~r), and the bulk charge density, c∞i , of ion qi. While this equation
does exactly solve for the electrostic field of a charge distribution in a dielectric, it is very expensive
to solve, and therefore not suitable for molecular dynamics.

6.1.2 Generalized Born

The Generalized Born (GB) equation is an approximation of the PBE. It models atoms as charged
spheres whose internal dielectric is lower than that of the environment. The screening which each
atom, i, experiences is determined by the local environment; the more atom i is surrounded by other
atoms, the less it’s electrostatics will be screened since it is more surrounded by low dielectric; this
property is called one atom descreening another. Different GB models calculate atomic descreening
differently. Descreening is used to calculate the Born radius, αi, of each atom. The Born radius of
an atom measures the degree of descreening. A large Born radius represents small screening (strong
electric field) as if the atom were in vacuum. A small Born radius represents large screening (weak
electric field) as if the atom were in bulk water. The next section describes how the Born radius is
calculated and how it is used to calculate electrostatics.

6.1.3 Generalized Born Equations

In a GB simulation, the total electrostatic force on an atom, i, is the net Coulomb force on atom i
(from nearby atoms) minus the GB force on atom i (also caused by nearby atoms):

~Fi = ~FCoulomb
i − ~FGB

i .

72

Forces are contributed by other nearby atoms within a cutoff. The GB force on atom i is the
derivative of the total GB energy with respect to relative atom distances rij ,

~FGB
i = −

∑
j

[
dEGB

T

drij

]
r̂ji (8)

= −
∑

j

[∑
k

∂EGB
T

∂αk

dαk

drij
+
∂EGB

ij

∂rij

]
r̂ji (9)

= −
∑

j

[
∂EGB

T

∂αi

dαi

drij
+
∂EGB

T

∂αj

dαj

drij
+
∂EGB

ij

∂rij

]
r̂ji . (10)

where the partial derivatives are included since the Born radius, α, is a function of all relative atom
distances. The total GB energy of the system is

EGB
T =

∑
i

∑
j>i

EGB
ij +

∑
i

EGB
ii , (11)

where EGB
ii is the Born radius dependent self energy of atom i, and the GB energy between atoms

i and j is given by
EGB

ij = −keDij
qiqj
fij

. (12)

The dielectric term [104] is

Dij =
(

1
εp
− exp (−κfij)

εs

)
, (13)

and the GB function [107] is

fij =

√√√√r2ij + αiαj exp

(
−r2ij
4αiαj

)
. (14)

As the Born radii of atoms i and j decrease (increasing screening), the effective distance between
the atoms (fij) increases. The implicit solvent implemented in NAMD is the model of Onufriev,
Bashford and Case [83, 84] which calculates the Born radius as

αk =
[

1
ρk0

− 1
ρk

tanh
(
δψk − βψ2

k + γψ3
k

)]−1

(15)

where
ψk = ρk0

∑
l

Hkl . (16)

Hij is the piecewise descreening function [84, 45, 95]; the seven piecewise regimes are

Regimes =



0 rij > rc + ρjs (sphere j beyond cutoff)
I rij > rc − ρjs (sphere j partially within cutoff)

II rij > 4ρjs (artificial regime for smoothing)
III rij > ρi0 + ρjs (spheres not overlapping)
IV rij > |ρi0 − ρjs| (spheres overlapping)
V ρi0 < ρjs (sphere i inside sphere j)

VI otherwise (sphere j inside sphere j)

(17)

73

and the values of Hij are

Hij =



0 0
I 1

8rij

[
1 + 2rij

rij−ρjs
+ 1

r2
c

(
r2ij − 4rcrij − ρ2

js

)
+ 2 ln rij−ρjs

rc

]
II

ρ2
js

r2
ij

ρjs

r2
ij

[
a+

ρ2
js

r2
ij

(
b+

ρ2
js

r2
ij

(
c+

ρ2
js

r2
ij

(
d+

ρ2
js

r2
ij
e

)))]
III 1

2

[
ρjs

r2
ij−ρ2

js
+ 1

2rij
ln rij−ρjs

rij+ρjs

]
IV 1

4

[
1

ρi0

(
2− 1

2rijρi0

(
r2ij + ρ2

i0 − ρ2
js

))
− 1

rij+ρjs
+ 1

rij
ln ρi0

rij+ρjs

]
V 1

2

[
ρjs

r2
ij−ρ2

js
+ 2

ρi0
+ 1

2rij
ln ρjs−rij

rij+ρjs

]
VI 0

(18)

Below are defined the derivatives of the above functions which are required for force calculations.

∂Eij

∂rij
= −ke

[
qiqj
fij

∂Dij

∂rij
− qiqjDij

f2
ij

∂fij

∂rij

]
(19)

∂Dij

∂rij
=
κ

εs
exp (−κfij)

∂fij

∂rij
(20)

∂fij

∂rij
=
rij
fij

[
1− 1

4
exp

(
−r2ij
4αiαj

)]
(21)

dαk

drij
=
α2

k

ρk

(
1− tanh2

(
δψk − βψ2

k + γψ3
k

)) (
δ − 2βψk + 3βψ2

k

) dψk

drij
(22)

dψk

drij
= ρk0

∑
l

dHkl

drij
(23)

= ρk0

∑
l

∂Hkl

∂rkl

drkl

drij
(24)

= ρk0

[
∂Hkj

∂rkj
δki +

∂Hki

∂rki
δkj

]
(25)

dαk

drij
= α2

i ρi0

ρi

(
1− tanh2

(
δψi − βψ2

i + γψ3
i

)) (
δ − 2βψi + 3βψ2

i

) ∂Hij

∂rij
δki

+
α2

jρj0

ρj

(
1− tanh2

(
δψj − βψ2

j + γψ3
j

))(
δ − 2βψj + 3βψ2

j

)
∂Hji

∂rij
δkj (26)

∂Eij

∂αi
= − 1

αi

keqiqj
2f2

ij

(
κ

εs
exp (−κfij)−

Dij

fij

)(
αiαj +

r2ij
4

)
exp

(
−r2ij
4αiαj

)
(27)

∂Eij

∂αj
= − 1

αj

keqiqj
2f2

ij

(
κ

εs
exp (−κfij)−

Dij

fij

)(
αiαj +

r2ij
4

)
exp

(
−r2ij
4αiαj

)
(28)

74

∂Hij

∂rij
=



0 0

I
[
− (rc+ρjs−rij)(rc−ρjs+rij)(ρ2

js+r2
ij)

8r2
cr2

ij(ρjs−rij)
2 − 1

4r2
ij

ln rij−ρjs

rc

]
II

[
−4a

ρ3
js

r5
ij
− 6b

ρ5
js

r7
ij
− 8c

ρ7
js

r9
ij
− 10d

ρ9
js

r11
ij
− 12e

ρ11
js

r13
ij

]
III 1

2

[
− ρjs(r2

ij+ρ2
js)

rij(r2
ij−ρ2

js)
2 − 1

2r2
ij

ln rij−ρjs

rij+ρjs

]
IV 1

4

[
− 1

2ρ2
i0

+
r2
ij(ρ2

i0−ρ2
js)−2rijρ3

js+ρ2
js(ρ2

i0−ρ2
js)

2r2
ijρ2

i0(rij+ρjs)
2 − 1

r2
ij

ln ρi0

rij+ρjs

]
V 1

2

[
− ρjs(r2

ij+ρ2
js)

rij(r2
ij−ρ2

js)
2 − 1

2r2
ij

ln ρjs−rij

rij+ρjs

]
VI 0

(29)

Other variables referenced in the above GB equations are

• rij - distance between atoms i and j; calculated from atom coordinates.

• κ - debye screening length; calculated from ion concentration, κ−1 =
√

ε0εpkT
2NAe2I

; κ−1 = 10 Å for
0.1 M monovalent salt.

• εs - dielectric constant of solvent.

• εp - dielectric constant of protein.

• αi - Born radius of atom i.

• ρi - intrinsic radius of atom i taken from Bondi [10].

• ρ0 - intrinsic radius offset; ρ0 = 0.09 Å by default [84].

• ρi0 = ρi − ρ0

• ρis = ρi0Sij

• Sij - atom radius scaling factor [45, 104].

• ke - Coulomb’s constant, 1
4πε0

, 332.063711 kcal Å / e2.

• {δ, β, γ} = {0.8, 0, 2.91} or {1.0, 0.8, 4.85} [84]

6.2 3-Phase Calculation

The GBIS algorithm requires three phases of calculation, with each phase containing an iteration
over all atom pairs with the cutoff. In phase 1, the screening of atom pairs is summed; at the

conclusion of phase 1, the Born radii are calculated. In phase 2, the
∂EGB

ij

∂rij
force contribution

(hereafter called the dEdr force) is calculated as well as the partial derivative of the Born radii with

respect to the atom positions, dαi
drij

. In phase 3, the ∂EGB
T

∂αi

dαi
drij

force contribution (hereafter called
the dEda force) is calculated.

75

6.3 Configuration Parameters

When using GBIS, user’s should not use PME (because it is not compatible with GBIS). Periodic
boundary conditions are supported but are optional. User’s will need to increase cutoff; 16-18 Å is
a good place to start but user’s will have to check their system’s behavior and increase cutoff
accordingly. GBIS interactions are never excluded regardless of the type of force field used, thus
user’s can choose any value for exclude without affecting GBIS; user’s should still choose exclude
based on the force field as if using explicit solvent. When using GBIS, multiple timestepping behaves
as follows: the dEdr force is calculated every nonbondedFreq steps (as with explicit solvent, 2 is a
reasonable frequency) and the dEda force is calculated every fullElectFrequency steps (because
dEda varies more slowly than dEdr, 4 is a reasonable frequency).

• GBIS < Use Generalized Born Implicit Solvent? >
Acceptable Values: on or off
Default Value: off
Description: Turns on GBIS method in NAMD.

• solventDielectric < dielectric of water >
Acceptable Values: positive decimal
Default Value: 78.5
Description: Defines the dielectric of the solvent, usually 78.5 or 80.

• intrinsicRadiusOffset < shrink the intrinsic radius of atoms (Å) >
Acceptable Values: positive decimal
Default Value: 0.09
Description: This offset shrinks the intrinsic radius of atoms (used only for calculating
Born radius) to give better agreement with Poisson Boltzmann calculations. Most users
should not change this parameter.

• ionConcentration < concentration of ions in solvent (Molar) >
Acceptable Values: positive decimal
Default Value: 0.2
Description: An ion concentration of 0 M represents distilled water. Increasing the ion
concentration increases the electrostatic screening.

• GBISDelta < GBOBC parameter for calculating Born radii >
Acceptable Values: decimal
Default Value: 1.0
Description: Use {GBISDelta, GBISBeta, GBISGamma} = {1.0, 0.8, 4.85} for GBOBCII and
{0.8, 0.0, 2.90912} for GBOBCI. See {α, β, γ} in [84] for more information.

• GBISBeta < GBOBC parameter for calculating Born radii >
Acceptable Values: decimal
Default Value: 0.8
Description: See GBISDelta.

• GBISGamma < GBOBC parameter for calculating Born radii >
Acceptable Values: decimal
Default Value: 4.85
Description: See GBISDelta.

76

• alphaCutoff < cutoff used in calculating Born radius and derivatives (phases 1 and 3) (Å)
>
Acceptable Values: positive decimal
Default Value: 15
Description: Cutoff used for calculating Born radius. Only atoms within this cutoff de-
screen an atom. Though alphaCutoff can bet set to be larger or shorter than cutoff, since
atom forces are more sensitive to changes in position than changes in Born radius, user’s
should generally set alphaCutoff to be shorter than cutoff.

• SASA < whether or not to calculate SASA >
Acceptable Values: on or off
Default Value: off
Description: The nonpolar / hydrophobic energy contribution from implicit solvent is
calculated; it is proportional to the solvent-accessible surface area (SASA) which is calculated
by the Linear Combination of Pairwise Overlap (LCPO) method [116]. It evaluated every
nonbondedFreq steps and its energy is added into the reported ELECT energy.

• surfaceTension < surface tension of SASA energy >
Acceptable Values: positive decimal
Default Value: 0.005 kcal/mol/Å2

Description: Surface tension used when calculating hydrophobic SASA energy; Enonpolar =
surfaceTension× surfaceArea.

Below is a sample excerpt from a NAMD config file for nonbonded and multistep parameters
when using GBIS and SASA:

#GBIS parameters
GBIS on
ionConcentration 0.3
alphaCutoff 14
#nonbonded parameters
switching on
switchdist 15
cutoff 16
pairlistdist 18
#hydrophobic energy
sasa on
surfaceTension 0.006
#multistep parameters
timestep 1
nonbondedFreq 2
fullElectFrequency 4

77

7 Standard Minimization and Dynamics Parameters

7.1 Boundary Conditions

In addition to periodic boundary conditions, NAMD provides spherical and cylindrical boundary
potentials to contain atoms in a given volume. To apply more general boundary potentials written
in Tcl, use tclBC as described in Sec. 8.11.

7.1.1 Periodic boundary conditions

NAMD provides periodic boundary conditions in 1, 2 or 3 dimensions. The following parameters
are used to define these boundary conditions.

• cellBasisVector1 < basis vector for periodic boundaries (Å) >
Acceptable Values: vector
Default Value: 0 0 0
Description: Specifies a basis vector for periodic boundary conditions.

• cellBasisVector2 < basis vector for periodic boundaries (Å) >
Acceptable Values: vector
Default Value: 0 0 0
Description: Specifies a basis vector for periodic boundary conditions.

• cellBasisVector3 < basis vector for periodic boundaries (Å) >
Acceptable Values: vector
Default Value: 0 0 0
Description: Specifies a basis vector for periodic boundary conditions.

• cellOrigin < center of periodic cell (Å) >
Acceptable Values: position
Default Value: 0 0 0
Description: When position rescaling is used to control pressure, this location will remain
constant. Also used as the center of the cell for wrapped output coordinates.

• extendedSystem < XSC file to read cell parameters from >
Acceptable Values: file name
Description: In addition to .coor and .vel output files, NAMD generates a .xsc (eXtended
System Configuration) file which contains the periodic cell parameters and extended system
variables, such as the strain rate in constant pressure simulations. Periodic cell parameters
will be read from this file if this option is present, ignoring the above parameters.

• XSTfile < XST file to write cell trajectory to >
Acceptable Values: file name
Default Value: outputname.xst
Description: NAMD can also generate a .xst (eXtended System Trajectory) file which
contains a record of the periodic cell parameters and extended system variables during the
simulation. If XSTfile is defined, then XSTfreq must also be defined.

• XSTfreq < how often to append state to XST file >
Acceptable Values: positive integer

78

Description: Like the DCDfreq option, controls how often the extended system configura-
tion will be appended to the XST file.

• wrapAll < wrap all coordinates around periodic boundaries? >
Acceptable Values: on or off
Default Value: off
Description: Coordinates are normally output relative to the way they were read in.
Hence, if part of a molecule crosses a periodic boundary it is not translated to the other
side of the cell on output. This option applies a translation to the center-of-mass of each
molecule or contiguous cluster of bonded atoms to keep it within the periodic unit cell. The
translation has usually no effect on the physical trajectory, because the force field potentials
used in NAMD follow the minimum-image convention for interatomic distances. However,
some complex quantities, for example the center of mass of a multimeric protein, will be
undefined as a result of this option. If you plan on applying external forces (SMD, tclForces
or Colvars) to such quantities, it is recommended to keep this option off, and to possibly
replace it with a custom restraint.

• wrapWater < wrap water coordinates around periodic boundaries? >
Acceptable Values: on or off
Default Value: off
Description: This option is similar to the wrapAll option, but its effect is restricted to
water molecules only.

• wrapNearest < use nearest image to cell origin when wrapping coordinates? >
Acceptable Values: on or off
Default Value: off
Description: Coordinates are normally wrapped to the diagonal unit cell centered on the
origin. This option, combined with wrapWater or wrapAll, wraps coordinates to the nearest
image to the origin, providing hexagonal or other cell shapes.

7.1.2 Spherical harmonic boundary conditions

NAMD provides spherical harmonic boundary conditions. These boundary conditions can consist
of a single potential or a combination of two potentials. The following parameters are used to define
these boundary conditions.

• sphericalBC < use spherical boundary conditions? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not spherical boundary conditions are to be applied to
the system. If set to on, then sphericalBCCenter, sphericalBCr1 and sphericalBCk1 must
be defined, and sphericalBCexp1, sphericalBCr2, sphericalBCk2, and sphericalBCexp2
can optionally be defined.

• sphericalBCCenter < center of sphere (Å) >
Acceptable Values: position
Description: Location around which sphere is centered.

79

• sphericalBCr1 < radius for first boundary condition (Å) >
Acceptable Values: positive decimal
Description: Distance at which the first potential of the boundary conditions takes effect.
This distance is a radius from the center.

• sphericalBCk1 < force constant for first potential >
Acceptable Values: non-zero decimal
Description: Force constant for the first harmonic potential. A positive value will push
atoms toward the center, and a negative value will pull atoms away from the center.

• sphericalBCexp1 < exponent for first potential >
Acceptable Values: positive, even integer
Default Value: 2
Description: Exponent for first boundary potential. The only likely values to use are 2
and 4.

• sphericalBCr2 < radius for second boundary condition (Å) >
Acceptable Values: positive decimal
Description: Distance at which the second potential of the boundary conditions takes effect.
This distance is a radius from the center. If this parameter is defined, then spericalBCk2
must also be defined.

• sphericalBCk2 < force constant for second potential >
Acceptable Values: non-zero decimal
Description: Force constant for the second harmonic potential. A positive value will push
atoms toward the center, and a negative value will pull atoms away from the center.

• sphericalBCexp2 < exponent for second potential >
Acceptable Values: positive, even integer
Default Value: 2
Description: Exponent for second boundary potential. The only likely values to use are 2
and 4.

7.1.3 Cylindrical harmonic boundary conditions

NAMD provides cylindrical harmonic boundary conditions. These boundary conditions can consist
of a single potential or a combination of two potentials. The following parameters are used to define
these boundary conditions.

• cylindricalBC < use cylindrical boundary conditions? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not cylindrical boundary conditions are to be applied to
the system. If set to on, then cylindricalBCCenter, cylindricalBCr1, cylindricalBCl1
and cylindricalBCk1 must be defined, and cylindricalBCAxis, cylindricalBCexp1,
cylindricalBCr2, cylindricalBCl2, cylindricalBCk2, and cylindricalBCexp2 can op-
tionally be defined.

80

• cylindricalBCCenter < center of cylinder (Å) >
Acceptable Values: position
Description: Location around which cylinder is centered.

• cylindricalBCAxis < axis of cylinder (Å) >
Acceptable Values: x, y, or z
Description: Axis along which cylinder is aligned.

• cylindricalBCr1 < radius for first boundary condition (Å) >
Acceptable Values: positive decimal
Description: Distance at which the first potential of the boundary conditions takes effect
along the non-axis plane of the cylinder.

• cylindricalBCl1 < distance along cylinder axis for first boundary condition (Å) >
Acceptable Values: positive decimal
Description: Distance at which the first potential of the boundary conditions takes effect
along the cylinder axis.

• cylindricalBCk1 < force constant for first potential >
Acceptable Values: non-zero decimal
Description: Force constant for the first harmonic potential. A positive value will push
atoms toward the center, and a negative value will pull atoms away from the center.

• cylindricalBCexp1 < exponent for first potential >
Acceptable Values: positive, even integer
Default Value: 2
Description: Exponent for first boundary potential. The only likely values to use are 2
and 4.

• cylindricalBCr2 < radius for second boundary condition (Å) >
Acceptable Values: positive decimal
Description: Distance at which the second potential of the boundary conditions takes effect
along the non-axis plane of the cylinder. If this parameter is defined, then cylindricalBCl2
and spericalBCk2 must also be defined.

• cylindricalBCl2 < radius for second boundary condition (Å) >
Acceptable Values: positive decimal
Description: Distance at which the second potential of the boundary conditions takes
effect along the cylinder axis. If this parameter is defined, then cylindricalBCr2 and
spericalBCk2 must also be defined.

• cylindricalBCk2 < force constant for second potential >
Acceptable Values: non-zero decimal
Description: Force constant for the second harmonic potential. A positive value will push
atoms toward the center, and a negative value will pull atoms away from the center.

• cylindricalBCexp2 < exponent for second potential >
Acceptable Values: positive, even integer
Default Value: 2
Description: Exponent for second boundary potential. The only likely values to use are 2
and 4.

81

7.2 Energy Minimization

7.2.1 Conjugate gradient parameters

The default minimizer uses a sophisticated conjugate gradient and line search algorithm with much
better performance than the older velocity quenching method. The method of conjugate gradients
is used to select successive search directions (starting with the initial gradient) which eliminate
repeated minimization along the same directions. Along each direction, a minimum is first bracketed
(rigorously bounded) and then converged upon by either a golden section search, or, when possible,
a quadratically convergent method using gradient information.

For most systems, it just works.

• minimization < Perform conjugate gradient energy minimization? >
Acceptable Values: on or off
Default Value: off
Description: Turns efficient energy minimization on or off.

• minTinyStep < first initial step for line minimizer >
Acceptable Values: positive decimal
Default Value: 1.0e-6
Description: If your minimization is immediately unstable, make this smaller.

• minBabyStep < max initial step for line minimizer >
Acceptable Values: positive decimal
Default Value: 1.0e-2
Description: If your minimization becomes unstable later, make this smaller.

• minLineGoal < gradient reduction factor for line minimizer >
Acceptable Values: positive decimal
Default Value: 1.0e-4
Description: Varying this might improve conjugate gradient performance.

7.2.2 Velocity quenching parameters

You can perform energy minimization using a simple quenching scheme. While this algorithm is not
the most rapidly convergent, it is sufficient for most applications. There are only two parameters
for minimization: one to activate minimization and another to specify the maximum movement of
any atom.

• velocityQuenching < Perform old-style energy minimization? >
Acceptable Values: on or off
Default Value: off
Description: Turns slow energy minimization on or off.

• maximumMove < maximum distance an atom can move during each step (Å) >
Acceptable Values: positive decimal
Default Value: 0.75× cutoff/stepsPerCycle
Description: Maximum distance that an atom can move during any single timestep of
minimization. This is to insure that atoms do not go flying off into space during the first few
timesteps when the largest energy conflicts are resolved.

82

7.3 Dynamics

7.3.1 Timestep parameters

• numsteps < number of timesteps >
Acceptable Values: positive integer
Description: The number of simulation timesteps to be performed. An integer greater
than 0 is acceptable. The total amount of simulation time is numsteps× timestep.

• timestep < timestep size (fs) >
Acceptable Values: non-negative decimal
Default Value: 1.0
Description: The timestep size to use when integrating each step of the simulation. The
value is specified in femtoseconds.

• firsttimestep < starting timestep value >
Acceptable Values: non-negative integer
Default Value: 0
Description: The number of the first timestep. This value is typically used only when a
simulation is a continuation of a previous simulation. In this case, rather than having the
timestep restart at 0, a specific timestep number can be specified.

7.3.2 Initialization

• temperature < initial temperature (K) >
Acceptable Values: positive decimal
Description: Initial temperature value for the system. Using this option will generate a
random velocity distribution for the initial velocities for all the atoms such that the system
is at the desired temperature. Either the temperature or the velocities/binvelocities
option must be defined to determine an initial set of velocities. Both options cannot be used
together.

• COMmotion < allow initial center of mass motion? >
Acceptable Values: yes or no
Default Value: no
Description: Specifies whether or not motion of the center of mass of the entire system
is allowed. If this option is set to no, the initial velocities of the system will be adjusted to
remove center of mass motion of the system. Note that this does not preclude later center-
of-mass motion due to external forces such as random noise in Langevin dynamics, boundary
potentials, and harmonic restraints.

• seed < random number seed >
Acceptable Values: positive integer
Default Value: pseudo-random value based on current UNIX clock time
Description: Number used to seed the random number generator if temperature or
langevin is selected. This can be used so that consecutive simulations produce the same
results. If no value is specified, NAMD will choose a pseudo-random value based on the
current UNIX clock time. The random number seed will be output during the simulation
startup so that its value is known and can be reused for subsequent simulations. Note that if

83

Langevin dynamics are used in a parallel simulation (i.e., a simulation using more than one
processor) even using the same seed will not guarantee reproducible results.

7.3.3 Conserving momentum

• zeroMomentum < remove center of mass drift due to PME >
Acceptable Values: yes or no
Default Value: no
Description: If enabled, the net momentum of the simulation and any resultant drift
is removed before every full electrostatics step. This correction should conserve energy and
have minimal impact on parallel scaling. This feature should only be used for simulations that
would conserve momentum except for the slight errors in PME. (Features such as fixed atoms,
harmonic restraints, steering forces, and Langevin dynamics do not conserve momentum; use
in combination with these features should be considered experimental.) Since the momentum
correction is delayed, enabling outputMomenta will show a slight nonzero linear momentum
but there should be no center of mass drift.

7.3.4 Multiple timestep parameters

To further reduce the cost of computing full electrostatics, NAMD uses a multiple timestepping
integration scheme. In this scheme, the total force acting on each atom is broken into two pieces, a
quickly varying local component and a slower long range component. The local force component is
defined in terms of a splitting function. The local force component consists of all bonded and van der
Waals interactions as well as that portion of electrostatic interactions for pairs that are separated
by less than the local interaction distance determined by the splitting function. The long range
component consists only of electrostatic interactions outside of the local interaction distance. Since
the long range forces are slowly varying, they are not evaluated every timestep. Instead, they are
evaluated every k timesteps, specified by the NAMD parameter fullElectFrequency. An impulse
of k times the long range force is applied to the system every k timesteps (i.e., the r-RESPA
integrator is used). For appropriate values of k, it is believed that the error introduced by this
infrequent evaluation is modest compared to the error already incurred by the use of the numerical
(Verlet) integrator. Improved methods for incorporating these long range forces are currently being
investigated, with the intention of improving accuracy as well as reducing the frequency of long
range force evaluations.

In the scheme described above, the van der Waals forces are still truncated at the local interac-
tion distance. Thus, the van der Waals cutoff distance forms a lower limit to the local interaction
distance. While this is believed to be sufficient, there are investigations underway to remove this
limitation and provide full van der Waals calculations in O(N) time as well.

One of the areas of current research being studied using NAMD is the exploration of better
methods for performing multiple timestep integration. Currently the only available method is the
impulse-based Verlet-I or r-RESPA method which is stable for timesteps up to 4 fs for long-range
electrostatic forces, 2 fs for short-range nonbonded forces, and 1 fs for bonded forces Setting rigid
all (i.e., using SHAKE) increases these timesteps to 6 fs, 2 fs, and 2 fs respectively but eliminates
bond motion for hydrogen. The mollified impulse method (MOLLY) reduces the resonance which
limits the timesteps and thus increases these timesteps to 6 fs, 2 fs, and 1 fs while retaining all
bond motion.

84

• fullElectFrequency < number of timesteps between full electrostatic evaluations >
Acceptable Values: positive integer factor of stepspercycle
Default Value: nonbondedFreq
Description: This parameter specifies the number of timesteps between each full elec-
trostatics evaluation. It is recommended that fullElectFrequency be chosen so that the
product of fullElectFrequency and timestep does not exceed 4.0 unless rigidBonds all
or molly on is specified, in which case the upper limit is perhaps doubled.

• nonbondedFreq < timesteps between nonbonded evaluation >
Acceptable Values: positive integer factor of fullElectFrequency
Default Value: 1
Description: This parameter specifies how often short-range nonbonded interactions should
be calculated. Setting nonbondedFreq between 1 and fullElectFrequency allows triple
timestepping where, for example, one could evaluate bonded forces every 1 fs, short-range
nonbonded forces every 2 fs, and long-range electrostatics every 4 fs.

• MTSAlgorithm < MTS algorithm to be used >
Acceptable Values: impulse/verletI or constant/naive
Default Value: impulse
Description: Specifies the multiple timestep algorithm used to integrate the long and short
range forces. impulse/verletI is the same as r-RESPA. constant/naive is the stale force
extrapolation method.

• longSplitting < how should long and short range forces be split? >
Acceptable Values: c1, c2
Default Value: c1
Description: Specifies the method used to split electrostatic forces between long and short
range potentials. The c1 option uses a cubic polynomial splitting function,

S3(r) = 1− 3
2

(
r

rcut

)
+

1
2

(
r

rcut

)3

,

to affect C1 continuity in the splitting of the electrostatic potential [103]. The c2 option uses
a quintic polynomial splitting function,

S5(r) = 1− 10
(

r

rcut

)3

+ 15
(

r

rcut

)4

− 6
(

r

rcut

)5

,

to affect C2 continuity in the splitting of the electrostatic potential. The S5 splitting func-
tion, contributed by Bruce Berne, Ruhong Zhou, and Joe Morrone, produces demonstrably
better long time stability than S3 without requiring any additional computational cost during
simulation, since the nonbonded forces are calculated via a lookup table. Note that earlier
options xplor and sharp are no longer supported.

• molly < use mollified impulse method (MOLLY)? >
Acceptable Values: on or off
Default Value: off
Description: This method eliminates the components of the long range electrostatic forces
which contribute to resonance along bonds to hydrogen atoms, allowing a fullElectFrequency

85

of 6 (vs. 4) with a 1 fs timestep without using rigidBonds all. You may use rigidBonds
water but using rigidBonds all with MOLLY makes no sense since the degrees of freedom
which MOLLY protects from resonance are already frozen.

• mollyTolerance < allowable error for MOLLY >
Acceptable Values: positive decimal
Default Value: 0.00001
Description: Convergence criterion for MOLLY algorithm.

• mollyIterations < maximum MOLLY iterations >
Acceptable Values: positive integer
Default Value: 100
Description: Maximum number of iterations for MOLLY algorithm.

7.4 Temperature Control and Equilibration

7.4.1 Langevin dynamics parameters

NAMD is capable of performing Langevin dynamics, where additional damping and random forces
are introduced to the system. This capability is based on that implemented in X-PLOR which is
detailed in the X-PLOR User’s Manual [14], although a different integrator is used.

• langevin < use Langevin dynamics? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not Langevin dynamics active. If set to on, then the
parameter langevinTemp must be set and the parameters langevinFile and langevinCol
can optionally be set to control the behavior of this feature.

• langevinTemp < temperature for Langevin calculations (K) >
Acceptable Values: positive decimal
Description: Temperature to which atoms affected by Langevin dynamics will be adjusted.
This temperature will be roughly maintained across the affected atoms through the addition
of friction and random forces.

• langevinDamping < damping coefficient for Langevin dynamics (1/ps) >
Acceptable Values: positive decimal
Default Value: per-atom values from PDB file
Description: Langevin coupling coefficient to be applied to all atoms (unless
langevinHydrogen is off, in which case only non-hydrogen atoms are affected). If not given,
a PDB file is used to obtain coefficients for each atom (see langevinFile and langevinCol
below).

• langevinHydrogen < Apply Langevin dynamics to hydrogen atoms? >
Acceptable Values: on or off
Default Value: on
Description: If langevinDamping is set then setting langevinHydrogen to off will turn
off Langevin dynamics for hydrogen atoms. This parameter has no effect if Langevin coupling
coefficients are read from a PDB file.

86

• langevinFile < PDB file containing Langevin parameters >
Acceptable Values: UNIX filename
Default Value: coordinates
Description: PDB file to use for the Langevin coupling coefficients for each atom. If this
parameter is not specified, then the PDB file specified by coordinates is used.

• langevinCol < column of PDB from which to read coefficients >
Acceptable Values: X, Y, Z, O, or B
Default Value: O
Description: Column of the PDB file to use for the Langevin coupling coefficients for each
atom. The coefficients can be read from any floating point column of the PDB file. A value
of 0 indicates that the atom will remain unaffected.

7.4.2 Temperature coupling parameters

NAMD is capable of performing temperature coupling, in which forces are added or reduced to
simulate the coupling of the system to a heat bath of a specified temperature. This capability is
based on that implemented in X-PLOR which is detailed in the X-PLOR User’s Manual [14].

• tCouple < perform temperature coupling? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not temperature coupling is active. If set to on, then
the parameter tCoupleTemp must be set and the parameters tCoupleFile and tCoupleCol
can optionally be set to control the behavior of this feature.

• tCoupleTemp < temperature for heat bath (K) >
Acceptable Values: positive decimal
Description: Temperature to which atoms affected by temperature coupling will be ad-
justed. This temperature will be roughly maintained across the affected atoms through the
addition of forces.

• tCoupleFile < PDB file with tCouple parameters >
Acceptable Values: UNIX filename
Default Value: coordinates
Description: PDB file to use for the temperature coupling coefficient for each atom. If
this parameter is not specified, then the PDB file specified by coordinates is used.

• tCoupleCol < column of PDB from which to read coefficients >
Acceptable Values: X, Y, Z, O, or B
Default Value: O
Description: Column of the PDB file to use for the temperature coupling coefficient for
each atom. This value can be read from any floating point column of the PDB file. A value
of 0 indicates that the atom will remain unaffected.

7.4.3 Stochastic velocity rescaling parameters

The stochastic velocity rescaling method originated by [15] can be viewed as an extension (and
correction) of the Berendsen method. The implementation in NAMD is based on that from GRO-
MACS, with some slight performance modifications during random number generation.

87

• stochRescale < perform stochastic rescaling? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not stochastic rescaling is active. If set to on, then the
parameters stochRescaleTemp and stochRescalePeriod must be set.

• stochRescaleTemp < temperature for heat bath (K) >
Acceptable Values: positive decimal
Description: Temperature to which all atoms will be periodically readjusted toward. This
temperature will be correctly maintained (in the canonical sense) over all atoms by rescaling
the velocities with both deterministic (using the instantaneous temperature) and stochastic
components.

• stochRescalePeriod < time parameter (ps) for temperature coupling >
Acceptable Values: positive decimal
Description: The stochastic rescaling algorithm holds for an arbitrary time parameter
introduced when solving the Fokker-Planck equation. For systems predominantly composed
of liquid water a value near 2 ps is appropriate and values between 0.5 and 2 ps are com-
mon in the literature for simulations of biomolecules. Larger values will generally result in
weaker coupling and thus more NVE-like dynamics, but may also lead to slow (i.e. incorrect)
convergence to the correct ensemble.

• stochRescaleFreq < number of timesteps between rescalings >
Acceptable Values: positive integer
Default Value: stepsPerCycle
Description: The stochastic rescaling algorithm is invoked at fixed intervals. The effec-
tive time parameter is technically the ratio stochRescaleFreq/stochRescalePeriod (after
converting into proper units using the value of timestep). The default should be adequate
for most applications, but a smaller value closer to the frequency at which the nonbonded
list is rebuilt would also be appropriate. When using multiple time stepping, it is important
that rescaling occurs at timesteps that are integer multiples of the slowest interaction type
(usually fullElectFrequency).

• stochRescaleHeat < Should heat transfer and work be computed? >
Acceptable Values: yes or no
Default Value: no
Description: When active, the cumulative heat transfer with the thermostat will be
reported as HEAT. The work due to the thermostat and integrator can then be computed
as the change in total energy less the heat transfer and is reported as WORK. Note that the
work includes all sources, including non-conservative elements of the Hamiltonian, but should
otherwise approach zero for simulations at or near equilibrium. The accumulation starts
at firstTimestep and can be reset from Tcl by re-setting this to zero. This is an
experimental option and not yet guaranteed for any specific purpose.

7.4.4 Temperature rescaling parameters

NAMD allows equilibration of a system by means of temperature rescaling. Using this method,
all of the velocities in the system are periodically rescaled so that the entire system is set to the

88

desired temperature. The following parameters specify how often and to what temperature this
rescaling is performed.

• rescaleFreq < number of timesteps between temperature rescaling >
Acceptable Values: positive integer
Description: The equilibration feature of NAMD is activated by specifying the number of
timesteps between each temperature rescaling. If this value is given, then the rescaleTemp
parameter must also be given to specify the target temperature.

• rescaleTemp < temperature for equilibration (K) >
Acceptable Values: positive decimal
Description: The temperature to which all velocities will be rescaled every rescaleFreq
timesteps. This parameter is valid only if rescaleFreq has been set.

7.4.5 Temperature reassignment parameters

NAMD allows equilibration of a system by means of temperature reassignment. Using this method,
all of the velocities in the system are periodically reassigned so that the entire system is set to the
desired temperature. The following parameters specify how often and to what temperature this
reassignment is performed.

• reassignFreq < number of timesteps between temperature reassignment >
Acceptable Values: positive integer
Description: The equilibration feature of NAMD is activated by specifying the num-
ber of timesteps between each temperature reassignment. If this value is given, then the
reassignTemp parameter must also be given to specify the target temperature.

• reassignTemp < temperature for equilibration (K) >
Acceptable Values: positive decimal
Default Value: temperature if set, otherwise none
Description: The temperature to which all velocities will be reassigned every reassignFreq
timesteps. This parameter is valid only if reassignFreq has been set.

• reassignIncr < temperature increment for equilibration (K) >
Acceptable Values: decimal
Default Value: 0
Description: In order to allow simulated annealing or other slow heating/cooling protocols,
reassignIncr will be added to reassignTemp after each reassignment. (Reassignment is
carried out at the first timestep.) The reassignHold parameter may be set to limit the final
temperature. This parameter is valid only if reassignFreq has been set.

• reassignHold < holding temperature for equilibration (K) >
Acceptable Values: positive decimal
Description: The final temperature for reassignment when reassignIncr is set;
reassignTemp will be held at this value once it has been reached. This parameter is valid
only if reassignIncr has been set.

89

7.4.6 Lowe-Andersen dynamics parameters

NAMD can perform Lowe-Andersen dynamics, a variation of Andersen dynamics whereby the
radial relative velocities of atom pairs are randomly modified based on a thermal distribution.
The Lowe-Andersen thermostat is Galilean invariant, therefore conserving momentum, and is thus
independent of absolute atom velocities. Forces are applied only between non-bonded, non-hydrogen
pairs of atoms. When using rigid bonds, forces are applied to the center of mass of hydrogen groups.
The implementation is based on Koopman and Lowe [58].

• loweAndersen < use Lowe-Andersen dynamics? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not Lowe-Andersen dynamics are active. If set to on,
then the parameter loweAndersenTemp must be set and the parameters loweAndersenCutoff
and loweAndersenRate can optionally be set.

• loweAndersenTemp < temperature for Lowe-Andersen calculations (K) >
Acceptable Values: positive decimal
Description: Temperature of the distribution used to set radial relative velocities. This
determines the target temperature of the system.

• loweAndersenCutoff < cutoff radius for Lowe-Andersen collisions (Å) >
Acceptable Values: positive decimal
Default Value: 2.7
Description: Forces are only applied to atoms within this distance of one another.

• loweAndersenRate < rate for Lowe-Andersen collisions (1/ps) >
Acceptable Values: positive decimal
Default Value: 50
Description: Determines the probability of a collision between atoms within the cutoff
radius. The probability is the rate specified by this keyword times the non-bonded timestep.

7.5 Pressure Control

Constant pressure simulation (and pressure calculation) require periodic boundary conditions. Pres-
sure is controlled by dynamically adjusting the size of the unit cell and rescaling all atomic coordi-
nates (other than those of fixed atoms) during the simulation.

Pressure values in NAMD output are in bar. PRESSURE is the pressure calculated based on
individual atoms, while GPRESSURE incorporates hydrogen atoms into the heavier atoms to which
they are bonded, producing smaller fluctuations. The TEMPAVG, PRESSAVG, and GPRESSAVG
are the average of temperature and pressure values since the previous ENERGY output; for the
first step in the simulation they will be identical to TEMP, PRESSURE, and GPRESSURE.

The phenomenological pressure of bulk matter reflects averaging in both space and time of the
sum of a large positive term (the kinetic pressure, nRT/V), and a large cancelling negative term
(the static pressure). The instantaneous pressure of a simulation cell as simulated by NAMD will
have mean square fluctuations (according to David Case quoting Section 114 of Statistical Physics
by Landau and Lifshitz) of kT/(V β), where β is the compressibility, which is RMS of roughly 100
bar for a 10,000 atom biomolecular system. Much larger fluctuations are regularly observed in
practice.

90

The instantaneous pressure for a biomolecular system is well defined for “internal” forces that
are based on particular periodic images of the interacting atoms, conserve momentum, and are
translationally invariant. When dealing with externally applied forces such as harmonic constraints,
fixed atoms, and various steering forces, NAMD bases its pressure calculation on the relative
positions of the affected atoms in the input coordinates and assumes that the net force will average
to zero over time. For time periods during with the net force is non-zero, the calculated pressure
fluctuations will include a term proportional to the distance to the affected from the user-defined
cell origin. A good way to observe these effects and to confirm that pressure for external forces
is handled reasonably is to run a constant volume cutoff simulation in a cell that is larger than
the molecular system by at least the cutoff distance; the pressure for this isolated system should
average to zero over time.

Because NAMD’s impluse-basd multiple timestepping system alters the balance between bonded
and non-bonded forces from every timestep to an average balance over two steps, the calculated
pressure on even and odd steps will be different. The PRESSAVG and GPRESSAVG fields provide
the average over the non-printed intermediate steps. If you print energies on every timestep you
will see the effect clearly in the PRESSURE field.

The following options affect all pressure control methods.

• useGroupPressure < group or atomic quantities >
Acceptable Values: yes or no
Default Value: no
Description: Pressure can be calculated using either the atomic virial and kinetic energy
(the default) or a hydrogen-group based pseudo-molecular virial and kinetic energy. The
latter fluctuates less and is required in conjunction with rigidBonds (SHAKE).

• useFlexibleCell < anisotropic cell fluctuations >
Acceptable Values: yes or no
Default Value: no
Description: NAMD allows the three orthogonal dimensions of the periodic cell to fluctuate
independently when this option is enabled.

• useConstantRatio < constant shape in first two cell dimensions >
Acceptable Values: yes or no
Default Value: no
Description: When enabled, NAMD keeps the ratio of the unit cell in the x-y plane
constant while allowing fluctuations along all axes. The useFlexibleCell option is required
for this option.

• useConstantArea < constant area and normal pressure conditions >
Acceptable Values: yes or no
Default Value: no
Description: When enabled, NAMD keeps the dimension of the unit cell in the x-y plane
constant while allowing fluctuations along the z axis. This is not currently implemented in
Berendsen’s method.

7.5.1 Berendsen pressure bath coupling

NAMD provides constant pressure simulation using Berendsen’s method. The following parameters
are used to define the algorithm.

91

• BerendsenPressure < use Berendsen pressure bath coupling? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not Berendsen pressure bath coupling
is active. If set to on, then the parameters BerendsenPressureTarget,
BerendsenPressureCompressibility and BerendsenPressureRelaxationTime must
be set and the parameter BerendsenPressureFreq can optionally be set to control the
behavior of this feature.

• BerendsenPressureTarget < target pressure (bar) >
Acceptable Values: positive decimal
Description: Specifies target pressure for Berendsen’s method. A typical value would be
1.01325 bar, atmospheric pressure at sea level.

• BerendsenPressureCompressibility < compressibility (bar−1) >
Acceptable Values: positive decimal
Description: Specifies compressibility for Berendsen’s method. A typical value would
be 4.57E-5 bar−1, corresponding to liquid water. The higher the compressibility, the more
volume will be adjusted for a given pressure difference. The compressibility and the relaxation
time appear only as a ratio in the dynamics, so a larger compressibility is equivalent to a
smaller relaxation time.

• BerendsenPressureRelaxationTime < relaxation time (fs) >
Acceptable Values: positive decimal
Description: Specifies relaxation time for Berendsen’s method. If the instantaneous pres-
sure did not fluctuate randomly during a simulation and the compressibility estimate was
exact then the inital pressure would decay exponentially to the target pressure with this time
constant. Having a longer relaxation time results in more averaging over pressure measure-
ments and hence smaller fluctuations in the cell volume. A reasonable choice for relaxation
time would be 100 fs. The compressibility and the relaxation time appear only as a ratio in
the dynamics, so a larger compressibility is equivalent to a smaller relaxation time.

• BerendsenPressureFreq < how often to rescale positions >
Acceptable Values: positive multiple of nonbondedFrequency and fullElectFrequency
Default Value: nonbondedFrequency or fullElectFrequency if used
Description: Specifies number of timesteps between position rescalings for Berendsen’s
method. Primarily to deal with multiple timestepping integrators, but also to reduce cell
volume fluctuations, cell rescalings can occur on a longer interval. This could reasonably be
between 1 and 20 timesteps, but the relaxation time should be at least ten times larger.

7.5.2 Nosé-Hoover Langevin piston pressure control

NAMD provides constant pressure simulation using a modified Nosé-Hoover method in which
Langevin dynamics is used to control fluctuations in the barostat. This method should be combined
with a method of temperature control, such as Langevin dynamics, in order to simulate the NPT
ensemble.

The Langevin piston Nose-Hoover method in NAMD is a combination of the Nose-Hoover
constant pressure method as described in GJ Martyna, DJ Tobias and ML Klein, ”Constant pressure

92

molecular dynamics algorithms”, J. Chem. Phys 101(5), 1994, with piston fluctuation control
implemented using Langevin dynamics as in SE Feller, Y Zhang, RW Pastor and BR Brooks,
”Constant pressure molecular dynamics simulation: The Langevin piston method”, J. Chem. Phys.
103(11), 1995.

The equations of motion are:

r′ = p/m+ e′r

p′ = F − e′p− gp+R

V ′ = 3V e′

e′′ = 3V/W (P − P0)− gee
′ +Re/W

W = 3Nτ2kT

< R2 > = 2mgkT/h
τ = oscillationperiod

< R2
e > = 2WgekT/h

Here, W is the mass of piston, R is noise on atoms, and Re is the noise on the piston.
The user specifies the desired pressure, oscillation and decay times of the piston, and tempera-

ture of the piston. The compressibility of the system is not required. In addition, the user specifies
the damping coefficients and temperature of the atoms for Langevin dynamics.

The following parameters are used to define the algorithm.

• LangevinPiston < use Langevin piston pressure control? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not Langevin piston pressure control is ac-
tive. If set to on, then the parameters LangevinPistonTarget, LangevinPistonPeriod,
LangevinPistonDecay and LangevinPistonTemp must be set.

• LangevinPistonTarget < target pressure (bar) >
Acceptable Values: positive decimal
Description: Specifies target pressure for Langevin piston method. A typical value would
be 1.01325 bar, atmospheric pressure at sea level.

• LangevinPistonPeriod < oscillation period (fs) >
Acceptable Values: positive decimal
Description: Specifies barostat oscillation time scale for Langevin piston method. If
the instantaneous pressure did not fluctuate randomly during a simulation and the decay
time was infinite (no friction) then the cell volume would oscillate with this angular period.
Having a longer period results in more averaging over pressure measurements and hence slower
fluctuations in the cell volume. A reasonable choice for the piston period would be 200 fs.

• LangevinPistonDecay < damping time scale (fs) >
Acceptable Values: positive decimal
Description: Specifies barostat damping time scale for Langevin piston method. A value
larger than the piston period would result in underdamped dynamics (decaying ringing in the
cell volume) while a smaller value approaches exponential decay as in Berendsen’s method
above. A smaller value also corresponds to larger random forces with increased coupling to

93

the Langevin temperature bath. Typically this would be chosen equal to or smaller than the
piston period, such as 100 fs.

• LangevinPistonTemp < noise temperature (K) >
Acceptable Values: positive decimal
Description: Specifies barostat noise temperature for Langevin piston method. This should
be set equal to the target temperature for the chosen method of temperature control.

• SurfaceTensionTarget < Surface tension target (dyn/cm) >
Acceptable Values: decimal
Default Value: 0.0
Description: Specifies surface tension target. Must be used with useFlexibleCell and
periodic boundary conditions. The pressure specified in LangevinPistonTarget becomes the
pressure along the z axis, and surface tension is applied in the x-y plane.

• StrainRate < initial strain rate >
Acceptable Values: decimal triple (x y z)
Default Value: 0. 0. 0.
Description: Optionally specifies the initial strain rate for pressure control. Is overridden
by value read from file specified with extendedSystem. There is typically no reason to set
this parameter.

• ExcludeFromPressure < Should some atoms be excluded from pressure rescaling? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not to exclude some atoms from pressure rescaling. The
coordinates and velocites of such atoms are not rescaled during constant pressure simulations,
though they do contribute to the virial calculation. May be useful for membrane protein
simulation. EXPERIMENTAL.

• ExcludeFromPressureFile < File specifying excluded atoms >
Acceptable Values: PDB file
Default Value: coordinates file
Description: PDB file with one column specifying which atoms to exclude from pressure
rescaling. Specify 1 for excluded and 0 for not excluded.

• ExcludeFromPressureCol < Column in PDB file for specifying excluded atoms >
Acceptable Values: O, B, X, Y, or Z
Default Value: O
Description: Specifies which column of the pdb file to check for excluded atoms.

94

8 User Defined Forces

There are several ways to apply external forces to simulations with NAMD. These are described
below.

8.1 Constant Forces

NAMD provides the ability to apply constant forces to some atoms. There are three parameters
that control this feature.

• constantForce < Apply constant forces? >
Acceptable Values: yes or no
Default Value: no
Description: Specifies whether or not constant forces are applied.

• consForceFile < PDB file containing forces to be applied >
Acceptable Values: UNIX filename
Description: The X, Y, Z and occupancy (O) fields of this file are read to determine
the constant force vector of each atom, which is (X,Y,Z)*O, in unit of kcal/(mol*Å). The
occupancy (O) serves as a scaling factor, which could expand the range of the force applied.
(One may be unable to record very large or very small numbers in the data fields of a PDB
file due to limited space). Zero forces are ignored.

Specifying consforcefile is optional; constant forces may be specified or updated between
runs by using the consForceConfig command.

• consForceScaling < Scaling factor for constant forces >
Acceptable Values: decimal
Default Value: 1.0
Description: Scaling factor by which constant forces are multiplied. May be changed
between run commands.

8.2 External Electric Field

NAMD provides the ability to apply a constant electric field to the molecular system being simu-
lated. Energy due to the external field will be reported in the MISC column and will be continuous
even in simulations using periodic boundary conditions as unwrapped coordinates are used to cal-
culate energy and pressure, resulting in linearly increasing pressure over time for systems with free
ions. To avoid this effect, for periodic simulations the new eFieldNormalized option should be
used with the electric field vector multiplied by the cell dimension. There are three parameters
that control this feature.

• eFieldOn < apply electric field? >
Acceptable Values: yes or no
Default Value: no
Description: Specifies whether or not an electric field is applied.

• eField < electric field vector >
Acceptable Values: vector of decimals (x y z)
Description: Vector which describes the electric field to be applied. Units are

95

kcal/(mol Å e), which is natural for simulations. This parameter may be changed between
run commands, allowing a square wave or other approximate wave form to be applied.

• eFieldNormalized < electric field vector scaled by cell basis vectors? >
Acceptable Values: yes or no
Default Value: no
Description: Specifies whether or not that eField vector has been scaled by the cell basis
vectors, thus indicating the voltage drop across the cell in units of kcal/(mol e). The eField
vector is then scaled by the reciprocal lattice vectors at each timestep. When eFieldNormal-
ized is true the eField forces do not contribute to the pressure calculation.

8.3 Grid Forces

NAMD provides the ability to specify grids describing a potential in the simulation space. Each
atom is affected by the potential based on its charge and its position, using the potential function
interpolated from the specified grid(s). Energy due to the grid-defined field will be reported in the
MISC column of the output, unless a scaling factor not proportional to (1,1,1) is used.

NAMD allows the definition of multiple grids, each with a separate set of defining parame-
ters. This is specified using a tag field in each of the mgridforceXXX commands. The tag is an
alphanumeric string without spaces which identifies to which grid the specified field applies.

The grid file format is a subset of the DataExplorer DX file format, as shown below:

Lines at the beginning of the file starting with a # symbol
are ignored as comments
Variables (replaced by numbers in an actual file):
xn, yn, and zn are the number of data points along each dimension;
xorg, yorg, and zorg is the origin of the grid, in angstroms;
x[1-3]del, y[1-3]del, and z[1-3]del are the basis vectors which transform
grid indices to coordinates in angstroms:
x(i,j,k) = xorg + i * x1del + j * y1del + k * z1del
y(i,j,k) = yorg + i * x2del + j * y2del + k * z2del
z(i,j,k) = zorg + i * x3del + j * y3del + k * z3del
#
Grid data follows, with three values per line, ordered z fast, y medium,
and x slow. Exactly xn*yn*zn values should be given. Grid data is then
terminated with a field object.
#
Note: Other features of the DX file format are not handled by this code
#
object 1 class gridpositions counts xn yn zn
origin xorg yorg zorg
delta x1del y1del z1del
delta x2del y2del z2del
delta x3del y3del z3del
object 2 class gridconnections counts xn yn zn
object 3 class array type double rank 0 items [xn*yn*zn] data follows
f1 f2 f3
f4 f5 f6

96

.

.

.
object 4 class field
component "positions" value 1
component "connections" value 2
component "data" value 3

Each dimension of the grid may be specified as continuous or not. If the grid is not continuous in
a particular dimension, the potential grid is padded with one border slices on each non-continuous
face of the grid, and border grid values are computed so that the force felt by an atom outside the
grid goes to zero. If the grid is continuous along a particular dimension, atoms outside the grid
are affected by a potential that is interpolated from the grid and its corresponding periodic image
along that dimension.

To calculate the force on an atom due to the grid, the atom’s coordinates are transformed
according to the current basis vectors of the simulation box to a coordinate frame that is centered
at the center of the specified grid. Note that the size and spatial coordinates of the grid remain
fixed, and are not scaled as the size of the simulation box fluctuates. For atoms within the grid,
the force is computed by analytically determining the gradient of the tricubic polynomial used to
interpolate the potential from surrounding grid values. For atoms outside the grid, the state of the
mgridforcecont[1,2,3] determine whether the force is zero, or computed from the images of the
grid as described above. Note that if the grid is ever larger than the periodic box, it is truncated
at the edge of that box. The consequence of this is that the computed potential will not vary
smoothly at the edges, introducing numerical instability.

NAMD also supports non-uniform grids, allowing regions of a grid to be defined at higher
resolution. Non-uniform grids are structured hierarchically, with a single maingrid which has one
or more subgrids. Each subgrid spans a number of maingrid cells in each of the three dimensions, and
effectively redefines the data in that region. The subgrids are usually defined at higher resolution,
with the restriction that the number of cells along each dimension is an integral number of the
original number in the maingrid. Note that the maingrid still has data points in regions where
subgrids are defined, and that, on the boundary of a subgrid, they must agree with the values in
the subgrid. Subgrids, in turn, may have subgrids of their own, which may have subgrids of their
own, etc.

A non-uniform grid file takes the form of a special comment block followed by multiple normal
grid definitions. The special comment block defines the grid hierarchy, and consists of comments
beginning with # namdnugrid. An example follows:

namdnugrid version 1.0
namdnugrid maingrid subgrids count 2
namdnugrid subgrid 1 generation 1 min x1 y1 z1 max x2 y2 z2 subgrids count 2
namdnugrid subgrid 2 generation 2 min x3 y3 z3 max x4 y4 z4 subgrids count 0
namdnugrid subgrid 3 generation 2 min x5 y5 z5 max x6 y6 z6 subgrids count 0
namdnugrid subgrid 4 generation 1 min x7 y7 z7 max x8 y8 z8 subgrids count 0

The maingrid is described by the number of subgrids. Subgrids are additionally described by a
subgrid number; a generation number, which should be one higher than the generation of its super-
grid; and min and max attributes, which describe the location of the subgrid within its supergrid.
In this example, the maingrid has two subgrids, subgrid 1 and subgrid 4, labeled generation 1.

97

The first of these subgrids has two subgrids of its own (generation 2). Notice that subgrids are
described immediately after their supergrid. The min and max attributes are given in units of grid
cells of the supergrid. For example, a subgrid with min 0 0 0 max 1 1 1 would redefine 8 cells
of its supergrid, the space between gridpoints (0, 0, 0) and (2, 2, 2) in grid coordinates. Following
the comment block, the maingrid and subgrids are defined in the format described above, in the
same order as the comment block.

The following parameters describe the grid-based potentials.

• mgridforce < apply grid forces? >
Acceptable Values: yes or no
Default Value: no
Description: Specifies whether or not any grid forces are being applied.

• mgridforcefile < tag > < PDB file specifying force multipliers and charges for each atomd
>
Acceptable Values: UNIX file name
Description: The force on each atom is scaled by the corresponding value in this PDB file.
By setting the force multiplier to zero for an atom, it will not be affected by the grid force.

• mgridforcecol < tag > < column of PDB from which to read force multipliers >
Acceptable Values: X, Y, Z, O, or B
Default Value: B
Description: Which column in the PDB file specified by mgridforcefile contains the
scaling factor

• mgridforcechargecol < tag > < column of PDB from which to read atom charges >
Acceptable Values: X, Y, Z, O, or B
Default Value: Atom charge used for electrostatics.
Description: Which column in the PDB file specified by mgridforcefile contains the
atom charge. By default, the charge value specified for the short-range Columb interactions
are also used for the grid force. Both mgridforcecol and mgridforceqcol can be specified,
in which case the apparent charge of the atom will be the product of the two values.

• mgridforcepotfile < tag > < grid potential file name >
Acceptable Values: UNIX file name
Description: File specifying the grid size, coordinates, and potential values.

• mgridforcevolts < tag > < grid potential units in eV/charge >
Acceptable Values: yes or no
Default Value: no
Description: If set, the grid potential values are expressed in eV. Otherwise, values are in
kcal/(mol charge)

• mgridforcescale < tag > < scale factor for grid potential >
Acceptable Values: Vector of decimals scalex scaley scalez

Default Value: 1 1 1
Description: Defines the scale factors that modulate the amplitude of the grid potential
forces in each dimension. When the three values are the same number, the grid potential’s
value is also included in the MISC column of the energy output. After initialization, the

98

three scale factors may be updated between “run” commands by the updategridforcescale
command. In the special case when “0 0 0” is given for this option, the corresponding grid
potential can be used a collective variable in the Colvars module (Sec. 9), allowing the use of
restraint potentials and fully time-dependent forces.

• updategridforcescale < tag > < scale factor for grid potential >
Acceptable Values: Vector of decimals scalex scaley scalez

Default Value: 1 1 1
Description: Provides new scale factors to be applied to the grid potential values. This
comand can be issued between “run” commands to modify the amplitude of the grid potential.
The values provided remain constant for the duration of each “run” command.

• mgridforcecont1 < tag > < Is grid continuous in the direction of the first basis vector >
Acceptable Values: yes or no
Default Value: no
Description: By specifying that the grid is continuous in a direction, atoms outside of the
grid will be affected by a force determined by interpolating based on the values at the edge
of the grid with the values of the corresponding edge of the periodic image of the grid. The
current size of the simulation box is taken into account, so that as the simulation box size
fluctuates, the force on an atom outside of the grid varies continuously until it re-enters the
opposite edge of the grid. If the grid is not continuous in this direction, the interpolated force
on atoms near the edge of the grid is calculated so that it continuously approaches zero as an
atom approaches the edge of the grid.

• mgridforcecont2 < tag > < Is grid continuous in the direction of the second basis vector
>
Acceptable Values: yes or no
Default Value: no
Description: Operates the same as mgridforcecont1 except applies in the direction of
the second basis vector

• mgridforcecont3 < tag > < Is grid continuous in the direction of the third basis vector >
Acceptable Values: yes or no
Default Value: no
Description: Operates the same as mgridforcecont1 except applies in the direction of
the third basis vector

• mgridforcevoff < tag > < Offset periodic images of the grid by specified amounts >
Acceptable Values: vector of decimals (x y z)
Default Value: (0 0 0)
Description: If a continuous grid is used along a particular basis vector, it may be desirable
to shift the potentials in the image to manipulate the potential outside the grid. For example,
consider the case where the potential is a ramp in the x direction and the grid is defined for
points [0, N), with a potential f(i, j, k) given by f(i, j, k) = f0 + i(f1 − f0)/N . By shifting
the images of the grid, the potential can be transformed as illustrated in Fig. 4.

• mgridforcelite < tag > < Is grid to use Gridforce Lite interpolation? >
Acceptable Values: yes or no
Default Value: no

99

 6

 8

 10

 12

 14

 16

 18

 20

 22

4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3

Po
te

nt
ia

l

Grid index

Unshifted
Shifted

Figure 4: Graph showing a slice of a ramp potential, with eight grid points along the axis, and a periodic
cell size which just contains the grid. The Unshifted case shows how the pontential is not smooth when
mgridforcevoff is not specified, or set to zero. The Shifted potential shows the grid that results when
mgridfocevoff is set so that the wrapped potential is offset so that the potential has constant slope at the
periodic boundaries.

Description: When Gridforce Lite is enabled, a faster but less accurate interpolation
method is used to compute forces. Specifically, rather than computing a tri-cubic interpolation
of the potential, from which the force is then computed analytically, Gridforce Lite computes
force as a linear interpolation. This method also increases the memory required by Gridforce.
Note that Gridforce Lite is incompatible with use of the mgridforcecont[123] keywords and
with non-uniform grids.

8.4 Moving Constraints

Moving constraints feature works in conjunction with the Harmonic Constraints (see an appropriate
section of the User’s guide). The reference positions of all constraints will move according to

~r(t) = ~r0 + ~vt . (30)

A velocity vector ~v (movingConsVel) needs to be specified.
The way the moving constraints work is that the moving reference position is calculated ev-

ery integration time step using Eq. 30, where ~v is in Å/timestep, and t is the current timestep
(i.e., firstTimestep plus however many timesteps have passed since the beginning of NAMD
run). Therefore, one should be careful when restarting simulations to appropriately update the

100

firstTimestep parameter in the NAMD configuration file or the reference position specified in the
reference PDB file.
NOTE: NAMD actually calculates the constraints potential with U = k(x − x0)d and the force
with F = dk(x − x0), where d is the exponent consexp. The result is that if one specifies some
value for the force constant k in the PDB file, effectively, the force constant is 2k in calculations.
This caveat was removed in SMD feature.

The following parameters describe the parameters for the moving harmonic constraint feature
of NAMD.

• movingConstraints < Are moving constraints active >
Acceptable Values: on or off
Default Value: off
Description: Should moving restraints be applied to the system. If set to on, then
movingConsVel must be defined. May not be used with rotConstraints.

• movingConsVel < Velocity of the reference position movement >
Acceptable Values: vector in Å/timestep
Description: The velocity of the reference position movement. Gives both absolute value
and direction

8.5 Rotating Constraints

The constraints parameters are specified in the same manner as for usual (static) harmonic con-
straints. The reference positions of all constrained atoms are then rotated with a given angular
velocity about a given axis. If the force constant of the constraints is sufficiently large, the con-
strained atoms will follow their reference positions.

A rotation matrix M about the axis unit vector v is calculated every timestep for the angle
of rotation corresponding to the current timestep. angle = Ωt, where Ω is the angular velocity of
rotation.

From now on, all quantities are 3D vectors, except the matrix M and the force constant K.
The current reference position R is calculated from the initial reference position R0 (at t = 0),

R = M(R0 − P) + P , where P is the pivot point.
Coordinates of point N can be found as N = P + ((R− P) · v)v. Normal from the atom pos to

the axis is, similarly, normal = (P + ((X − P) · v)v) −X The force is, as usual, F = K(R −X);
This is the force applied to the atom in NAMD (see below). NAMD does not know anything
about the torque applied. However, the torque applied to the atom can be calculated as a vector
product torque = F × normal Finally, the torque applied to the atom with respect to the axis is
the projection of the torque on the axis, i.e., torqueproj = torque · v

If there are atoms that have to be constrained, but not moved, this implementation is not
suitable, because it will move all reference positions.

Only one of the moving and rotating constraints can be used at a time.
Using very soft springs for rotating constraints leads to the system lagging behind the reference

positions, and then the force is applied along a direction different from the ”ideal” direction along
the circular path.

Pulling on N atoms at the same time with a spring of stiffness K amounts to pulling on the
whole system by a spring of stiffness NK, so the overall behavior of the system is as if you are
pulling with a very stiff spring if N is large.

101

In both moving and rotating constraints the force constant that you specify in the constraints
pdb file is multiplied by 2 for the force calculation, i.e., if you specified K = 0.5 kcal/mol/Å2 in the
pdb file, the force actually calculated is F = 2K(R −X) = 1 kcal/mol/Å2 (R −X). SMD feature
of namd2 does the calculation without multiplication of the force constant specified in the config
file by 2.

• rotConstraints < Are rotating constraints active >
Acceptable Values: on or off
Default Value: off
Description: Should rotating restraints be applied to the system. If set to on, then
rotConsAxis, rotConsPivot and rotConsVel must be defined. May not be used with
movingConstraints.

• rotConsAxis < Axis of rotation >
Acceptable Values: vector (may be unnormalized)
Description: Axis of rotation. Can be any vector. It gets normalized before use. If the
vector is 0, no rotation will be performed, but the calculations will still be done.

• rotConsPivot < Pivot point of rotation >
Acceptable Values: position in Å
Description: Pivot point of rotation. The rotation axis vector only gives the direction of
the axis. Pivot point places the axis in space, so that the axis goes through the pivot point.

• rotConsVel < Angular velocity of rotation >
Acceptable Values: rate in degrees per timestep
Description: Angular velocity of rotation, degrees/timestep.

8.6 Symmetry Restraints

Symmetry restraints are based on symmetrical relationships between monomers. Defined monomers
are transformed to overlap and an average position for each atom is calculated. After the average
structure is transformed back, a harmonic force is calculated which drives each monomer to the
average.

• symmetryRestraints < Are symmetry restraints active? >
Acceptable Values: on or off
Default Value: off
Description: Should Symmetry constraining forces be applied to the system. If symmetry
restraints are enabled, symmetryk* and symmetryFile must be defined in the input file as
well. *See symmetryk entry for details.

• symmetryFirstFullStep < First step to apply full harmonic force >
Acceptable Values: Non-negative integer
Default Value: symmetryFirstStep
Description: Force constant symmetryk linearly increased from symmetryFirstStep to
symmetryFirstFullStep

• symmetryLastFullStep < Last step to apply full harmonic force >
Acceptable Values: Non-negative integer

102

Default Value: symmetryLastStep
Description: Force constant symmetryk linearly decreased from symmetryLastFullStep
to symmetryLastStep

• symmetryk < Constant for harmonic restraining forces >
Acceptable Values: Positive value
Description: Harmonic force constant. Scaled down by number of atoms in the monomer.
If this setting is omitted, the value in the occupancy column of the pdb file specified by
symmetrykFile will be used as the constant for that atom. This allows the user to specify
the constant on a per-atom basis.

• symmetrykFile < pdb containing per atom force constants >
Acceptable Values: Path to pdb file
Description: pdb where the occupancy column specifies the per atom force constants.
If using overlapping symmetry groups, you must include one additional symmetrykfile per
symmetryFile

• symmetryScaleForces < Scale symmetry restraints over time >
Acceptable Values: on or off
Default Value: off
Description: If turned on, the harmonic force applied by the symmetry re-
straints will linearly evolve with each time step based on symmetryFirstFullStep and
symmetryLastFullStep.

• symmetryFile < File for symmetry information >
Acceptable Values: Path to PDB file
Description: Restrained atoms are those whose occupancy (O) is nonzero in the symmetry
pdb file. The file must contain no more atoms than the structure file and those atoms present
must have the exact same index as the structure file (i.e., the file may contain a truncated atom
selection “index < N” but not an arbitrary selection). The value in the occupancy column
represent the ”symmetry group” the atom belongs to. These symmetry groups are used for
denoting monomers of the same type. These groups will be transformed by the matrices in
their own symmetryMatrixFile and averaged separetely from other groups. The designation
in the occupancy column should be an integer value starting at 1 and proceeding in ascending
order, mirroring the order of the corresponding matrix file within the configuration file (e.g.
the first symmetryMatrixFile contains the matrices for symmetry group 1). The value in the
atom’s beta column represents its monomer designation. This should be an integer value
starting at 1 and proceeding in ascending order, relative to the order of the corresponding
transformation matrix found in the symmetry group’s symmetryMatrixFile. If an atom is
contained in more than one symmetry group, additional pdb files can be listed. These pdb
files should follow the same rules as the first one (unique group and monomer identifiers in
increasing order).

• symmetryMatrixFile < File for transformation matrices >
Acceptable Values: Path to matrix file
Description: The symmetryMatrixFile is a path to a file that contains a list of trans-
formation matrices to make the monomers overlap. The file should contain one (and only
one) matrix for each monomer in the order of monomer ID designated in the symmetryFile.

103

Each symmetry group should have its own symmetryMatrixFile file containing only the ma-
trices used by the monomers in that group. These should be formatted with spaces between
columns and NO spaces between rows as follows:

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

with different matrices separated by a single blank line (and no line before the first or after
the last matrix). This file is OPTIONAL. Leave this line out to have namd generate the
transformations for you.

• symmetryFirstStep < first symmetry restraint timestep >
Acceptable Values: Non-negative integer
Default Value: 0
Description:

• symmetryLastStep < last symmetry restraint timestep >
Acceptable Values: Positive integer
Default Value: infinity
Description: Symmetry restraints are applied only between symmetryFirstStep and
symmetryLastStep. Use these settings with caution and ensure restraints are only being
applied when necessary (e.g. not during equilibration).

8.7 Targeted Molecular Dynamics (TMD)

In TMD, subset of atoms in the simulation is guided towards a final ’target’ structure by means
of steering forces. At each timestep, the RMS distance between the current coordinates and the
target structure is computed (after first aligning the target structure to the current coordinates).
The force on each atom is given by the gradient of the potential

UTMD =
1
2
k

N
[RMS(t)−RMS∗(t)]2 (31)

where RMS(t) is the instantaneous best-fit RMS distance of the current coordinates from the
target coordinates, and RMS∗(t) evolves linearly from the initial RMSD at the first TMD step to
the final RMSD at the last TMD step. The spring constant k is scaled down by the number N of
targeted atoms.

Atoms can be separated into non-overlapping constraint domains by assigning integer values
in the beta column of the TMDFile. Forces on the atoms will be calculated for each domain
independently of the other domains.

Within each domain, the set of atoms used to fit the target structure can be different from the
set of atoms that are biased towards the target structure. If the altloc field in the TMDFile is not
‘ ’ or ‘0’ then the atom is fitted. If the occupancy is non-zero then the atom is biased. If none of
the atoms in a domain have altloc set then all biased atoms are fitted.

Note that using different atoms for fitting and biasing or not using the same spring constant for
all target atoms within a domain will result in forces conserving neither energy nor momentum. In
this case harmonic restraints and Langevin dynamics are likely needed.

104

• TMD < Is TMD active >
Acceptable Values: on or off
Default Value: off
Description: Should TMD steering forces be applied to the system. If TMD is enabled,
TMDk, TMDFile, and TMDLastStep must be defined in the input file as well.

• TMDk < Elastic constant for TMD forces >
Acceptable Values: Positive value in kcal/mol/Å2.
Description: The value of k in Eq. 31. A value of 200 seems to work well in many cases. If
this setting is omitted, the value in the occupancy column of the pdb file specified by TMDFile
will be used as the constant for that atom. This allows the user to specify the constant on a
per-atom basis.

• TMDOutputFreq < How often to print TMD output >
Acceptable Values: Positive integer
Default Value: 1
Description: TMD output consists of lines of the form TMD ts targetRMS currentRMS
where ts is the timestep, targetRMS is the target RMSD at that timestep, and currentRMS
is the actual RMSD.

• TMDFile < File for TMD information >
Acceptable Values: Path to PDB file
Description: Biased atoms are those whose occupancy (O) is nonzero in the TMD PDB
file. Fitted atoms are those whose altloc field is not ‘ ’ or ‘0’, if present, otherwise all biased
atoms are fitted. The file must contain no more atoms than the structure file and those
atoms present must have the exact same index as the structure file (i.e., the file may contain
a truncated atom selection “index < N” but not an arbitrary selection). The coordinates
for the target structure are also taken from the targeted atoms in this file. Non-targeted
atoms are ignored. The beta column of targetted atoms is used to designate non-overlapping
constraint domains. Forces will be calculated for atoms within a domain separately from
atoms of other domains.

• TMDFirstStep < first TMD timestep >
Acceptable Values: Positive integer
Default Value: 0
Description:

• TMDLastStep < last TMD timestep >
Acceptable Values: Positive integer
Description: TMD forces are applied only between TMDFirstStep and TMDLastStep. The
target RMSD evolves linearly in time from the initial to the final target value.

• TMDInitialRMSD < target RMSD at first TMD step >
Acceptable Values: Non-negative value in Å
Default Value: from coordinates
Description: In order to perform TMD calculations that involve restarting a previous
NAMD run, be sure to specify TMDInitialRMSD with the same value in each NAMD input
file, and use the NAMD parameter firstTimestep in the continuation runs so that the target
RMSD continues from where the last run left off.

105

• TMDFinalRMSD < target RMSD at last TMD step >
Acceptable Values: Non-negative value in Å
Default Value: 0
Description: If no TMDInitialRMSD is given, the initial RMSD will be calculated at the
first TMD step. TMDFinalRMSD may be less than or greater than TMDInitialRMSD, depending
on whether the system is to be steered towards or away from a target structure, respectively.
Forces are applied only if RMS(t) is betwween TMDInitialRMSD and RMS ∗ (t); in other
words, only if the current RMSD fails to keep pace with the target value.

• TMDDiffRMSD < Is double-sided TMD active? >
Acceptable Values: on or off
Default Value: off
Description: Turns on the double-sided TMD feature which targets the transition between
two structures. This is accomplished by modifying the TMD force such that the potential is
based on the difference of RMSD’s from the two structures:

UTMD =
1
2
k

N
[DRMS(t)−DRMS∗(t)]2 (32)

where DRMS(t) is RMS1(t) - RMS2(2) (RMS1 being the RMSD from structure 1 and RMS2
the RMSD from structure 2). The first structure is specified as normal in TMDFile and the
second structure should be specified in TMDFile2, preserving any domain designations found
in TMDFile.

• TMDFile2 < Second structure file for double-sided TMD >
Acceptable Values: Path to PDB file
Description: PDB file defining the second structure of a double sided TMD. This file should
contain the same number of atoms as TMDFile along with the same domain designations if
any are specified.

8.8 Steered Molecular Dynamics (SMD)

The SMD feature is independent from the harmonic constraints, although it follows the same ideas.
In both SMD and harmonic constraints, one specifies a PDB file which indicates which atoms are
’tagged’ as constrained. The PDB file also gives initial coordinates for the constraint positions.
One also specifies such parameters as the force constant(s) for the constraints, and the velocity
with which the constraints move.

There are two major differences between SMD and harmonic constraints:

• In harmonic constraints, each tagged atom is harmonically constrained to a reference point
which moves with constant velocity. In SMD, it is the center of mass of the tagged atoms
which is constrained to move with constant velocity.

• In harmonic constraints, each tagged atom is constrained in all three spatial dimensions. In
SMD, tagged atoms are constrained only along the constraint direction (unless the optional
SMDk2 keyword is used.)

The center of mass of the SMD atoms will be harmonically constrained with force constant k
(SMDk) to move with velocity v (SMDVel) in the direction ~n (SMDDir). SMD thus results in the

106

following potential being applied to the system:

U(~r1, ~r2, ..., t) =
1
2
k
[
vt− (~R(t)− ~R0) · ~n

]2
. (33)

Here, t ≡ Ntsdt where Nts is the number of elapsed timesteps in the simulation and dt is the size
of the timestep in femtoseconds. Also, ~R(t) is the current center of mass of the SMD atoms and
R0 is the initial center of mass as defined by the coordinates in SMDFile. Vector ~n is normalized
by NAMD before being used.

Optionally, one may also specify a transverse force constant k2 (SMDk2). The potential then
becomes

U(~r1, ~r2, ..., t) =
1
2
k
[
vt− (~R(t)− ~R0) · ~n

]2
+

1
2
k2

[(
~R(t)− ~R0

)2
−
(
(~R(t)− ~R0) · ~n

)2
]
. (34)

In this case, the force constant k controls the potential parallel to the pulling direction ~n, while the
transverse force constant k2 controls the potential perpendicular to ~n.

Output NAMD provides output of the current SMD data. The frequency of output is specified
by the SMDOutputFreq parameter in the configuration file. Every SMDOutputFreq timesteps NAMD
will print the current timestep, current position of the center of mass of the restrained atoms, and
the current force applied to the center of mass (in piconewtons, pN). The output line starts with
word SMD

Parameters The following parameters describe the parameters for the SMD feature of NAMD.

• SMD < Are SMD features active >
Acceptable Values: on or off
Default Value: off
Description: Should SMD harmonic constraint be applied to the system. If set to on, then
SMDk, SMDFile, SMDVel, and SMDDir must be defined. Specifying SMDOutputFreq is optional.

• SMDFile < SMD constraint reference position >
Acceptable Values: UNIX filename
Description: File to use for the initial reference position for the SMD harmonic constraints.
All atoms in this PDB file with a nonzero value in the occupancy column will be tagged as
SMD atoms. The coordinates of the tagged SMD atoms will be used to calculate the initial
center of mass. During the simulation, this center of mass will move with velocity SMDVel
in the direction SMDDir. The actual atom order in this PDB file must match that in the
structure or coordinate file, since the atom number field in this PDB file will be ignored.

• SMDk < force constant to use in SMD simulation >
Acceptable Values: positive real
Description: SMD harmonic constraint force constant. Must be specified in kcal/mol/Å2.
The conversion factor is 1 kcal/mol = 69.479 pN Å.

• SMDk2 < force constant for transverse direction to use in SMD simulation >
Acceptable Values: positive real
Default Value: 0
Description: SMD transverse harmonic constraint force constant. Must be specified in
kcal/mol/Å2. The conversion factor is 1 kcal/mol = 69.479 pN Å.

107

• SMDVel < Velocity of the SMD reference position movement >
Acceptable Values: nonzero real, Å/timestep
Description: The velocity of the SMD center of mass movement. Gives the absolute value.

• SMDDir < Direction of the SMD center of mass movement >
Acceptable Values: non-zero vector
Description: The direction of the SMD reference position movement. The vector does not
have to be normalized, it is normalized by NAMD before being used.

• SMDOutputFreq < frequency of SMD output >
Acceptable Values: positive integer
Default Value: 1
Description: The frequency in timesteps with which the current SMD data values are
printed out.

8.9 Interactive Molecular Dynamics (IMD)

NAMD now works directly with VMD to allow you to view and interactively steer your simulation.
With IMD enabled, you can connect to NAMD at any time during the simulation to view the
current state of the system or perform interactive steering.

• IMDon < is IMD active? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not to listen for an IMD connection.

• IMDport < port number to expect a connection on >
Acceptable Values: positive integer
Description: This is a free port number on the machine that node 0 is running on. This
number will have to be entered into VMD.

• IMDfreq < timesteps between sending coordinates >
Acceptable Values: positive integer
Description: This allows coordinates to be sent less often, which may increase NAMD
performance or be necessary due to a slow network.

• IMDwait < wait for an IMD connection? >
Acceptable Values: yes or no
Default Value: no
Description: If no, NAMD will proceed with calculations whether a connection is present
or not. If yes, NAMD will pause at startup until a connection is made, and pause when the
connection is lost.

• IMDignore < ignore interactive steering forces >
Acceptable Values: yes or no
Default Value: no
Description: If yes, NAMD will ignore any steering forces generated by VMD to allow a
simulation to be monitored without the possibility of perturbing it.

108

8.10 Tcl Forces and Analysis

NAMD provides a limited Tcl scripting interface designed for applying forces and performing on-
the-fly analysis. This interface is efficient if only a few coordinates, either of individual atoms or
centers of mass of groups of atoms, are needed. In addition, information must be requested one
timestep in advance. To apply forces individually to a potentially large number of atoms, use tclBC
instead as described in Sec. 8.11. The following configuration parameters are used to enable the
Tcl interface:

• tclForces < is Tcl interface active? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not Tcl interface is active. If it is set to off, then no Tcl
code is executed. If it is set to on, then Tcl code specified in tclForcesScript parameters
is executed.

• tclForcesScript < input for Tcl interface >
Acceptable Values: file or {script}
Description: Must contain either the name of a Tcl script file or the script itself between {
and } (may include multiple lines). This parameter may occur multiple times and scripts will
be executed in order of appearance. The script(s) should perform any required initialization
on the Tcl interpreter, including requesting data needed during the first timestep, and define
a procedure calcforces { } to be called every timestep.

At this point only low-level commands are defined. In the future this list will be expanded.
Current commands are:

• print <anything>
This command should be used instead of puts to display output. For example,
“print Hello World”.

• atomid <segname> <resid> <atomname>
Determines atomid of an atom from its segment, residue, and name. For example, “atomid
br 2 N”.

• addatom <atomid>
Request coordinates of this atom for next force evaluation, and the calculated total force on
this atom for current force evaluation. Request remains in effect until clearconfig is called.
For example, “addatom 4” or “addatom [atomid br 2 N]”.

• addgroup <atomid list>
Request center of mass coordinates of this group for next force evaluation. Returns a group
ID which is of the form gN where N is a small integer. This group ID may then be used to
find coordinates and apply forces just like a regular atom ID. Aggregate forces may then be
applied to the group as whole. Request remains in effect until clearconfig is called. For
example, “set groupid [addgroup { 14 10 12 }]”.

• clearconfig
Clears the current list of requested atoms. After clearconfig, calls to addatom and addgroup
can be used to build a new configuration.

109

• getstep
Returns the current step number.

• loadcoords <varname>
Loads requested atom and group coordinates (in Å) into a local array. loadcoords should
only be called from within the calcforces procedure. For example, “loadcoords p” and
“print $p(4)”.

• loadforces <varname>
Loads the forces applied in the previous timestep (in kcal mol−1 Å−1) into a local array.
loadforces should only be called from within the calcforces procedure. For example,
“loadforces f” and “print $f(4)”.

• enabletotalforces/disabletotalforces
Enables/disables the “loadtotalforces” command, described below, which is disabled by
default to avoid unneeded work and communication.

• loadtotalforces <varname>
Loads the total forces on each requested atom and group in the previous time step (in kcal
mol−1Å−1) into a local array. The total force also includes external forces. Note that the
“loadforces” command returns external forces applied by the user. Therefore, one can
subtract the external force on an atom from the total force on this atom to get the pure force
arising from the simulation system. Note that “enabletotalforces” must be called first.

• loadmasses <varname>
Loads requested atom and group masses (in amu) into a local array. loadmasses should only
be called from within the calcforces procedure. For example, “loadcoords m” and “print
$m(4)”.

• addforce <atomid|groupid> <force vector>
Applies force (in kcal mol−1 Å−1) to atom or group. addforce should only be called from
within the calcforces procedure. For example, “addforce $groupid { 1. 0. 2. }”.

• addenergy <energy (kcal/mol)>
This command adds the specified energy to the MISC column (and hence the total energy) in
the energy output. For normal runs, the command does not affect the simulation trajectory
at all, and only has an artificial effect on its energy output. However, it can indeed affect
minimizations.

With the commands above and the functionality of the Tcl language, one should be able to
perform any on-the-fly analysis and manipulation. To make it easier to perform certain tasks, some
Tcl routines are provided below.

Several vector routines (vecadd, vecsub, vecscale) from the VMD Tcl interface are defined.
Please refer to VMD manual for their usage.

The following routines take atom coordinates as input, and return some geometry parameters
(bond, angle, dihedral).

• getbond <coor1> <coor2>
Returns the length of the bond between the two atoms. Actually the return value is simply
the distance between the two coordinates. “coor1” and “coor2” are coordinates of the atoms.

110

• getangle <coor1> <coor2> <coor3>
Returns the angle (from 0 to 180) defined by the three atoms. “coor1”, “coor2” and “coor3”
are coordinates of the atoms.

• getdihedral <coor1> <coor2> <coor3> <coor4>
Returns the dihedral (from -180 to 180) defined by the four atoms. “coor1”, “coor2”, “coor3”
and “coor4” are coordinates of the atoms.

The following routines calculate the derivatives (gradients) of some geometry parameters (angle,
dihedral).

• anglegrad <coor1> <coor2> <coor3>
An angle defined by three atoms is a function of their coordinates: θ (~r1, ~r2, ~r3) (in radian).
This command takes the coordinates of the three atoms as input, and returns a list of { ∂θ

∂ ~r1
∂θ
∂ ~r2

∂θ
∂ ~r3
}. Each element of the list is a 3-D vector in the form of a Tcl list.

• dihedralgrad <coor1> <coor2> <coor3> <coor4>
A dihedral defined by four atoms is a function of their coordinates: φ (~r1, ~r2, ~r3, ~r4) (in radian).
This command takes the coordinates of the four atoms as input, and returns a list of { ∂φ

∂ ~r1
∂φ
∂ ~r2

∂φ
∂ ~r3

∂φ
∂ ~r4
}. Each element of the list is a 3-D vector in the form of a Tcl list.

As an example, here’s a script which applies a harmonic constraint (reference position being 0)
to a dihedral. Note that the “addenergy” line is not really necessary – it simply adds the calculated
constraining energy to the MISC column, which is displayed in the energy output.

tclForcesScript {
The IDs of the four atoms defining the dihedral
set aid1 112
set aid2 123
set aid3 117
set aid4 115

The "spring constant" for the harmonic constraint
set k 3.0

addatom $aid1
addatom $aid2
addatom $aid3
addatom $aid4

set PI 3.1416

proc calcforces {} {

global aid1 aid2 aid3 aid4 k PI

loadcoords p

111

Calculate the current dihedral
set phi [getdihedral $p($aid1) $p($aid2) $p($aid3) $p($aid4)]
Change to radian
set phi [expr $phi*$PI/180]

(optional) Add this constraining energy to "MISC" in the energy output
addenergy [expr $k*$phi*$phi/2.0]

Calculate the "force" along the dihedral according to the harmonic constraint
set force [expr -$k*$phi]

Calculate the gradients
foreach {g1 g2 g3 g4} [dihedralgrad $p($aid1) $p($aid2) $p($aid3) $p($aid4)] {}

The force to be applied on each atom is proportional to its
corresponding gradient
addforce $aid1 [vecscale $g1 $force]
addforce $aid2 [vecscale $g2 $force]
addforce $aid3 [vecscale $g3 $force]
addforce $aid4 [vecscale $g4 $force]

}
}

8.11 Tcl Boundary Forces

While the tclForces interface described above is very flexible, it is only efficient for applying
forces to a small number of pre-selected atoms. Applying forces individually to a potentially large
number of atoms, such as applying boundary conditions, is much more efficient with the tclBC
facility described below.

• tclBC < are Tcl boundary forces active? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not Tcl interface is active. If it is set to off, then no
Tcl code is executed. If it is set to on, then Tcl code specified in the tclBCScript parameter
is executed.

• tclBCScript < input for Tcl interface >
Acceptable Values: {script}
Description: Must contain the script itself between { and } (may include multiple lines).
This parameter may occur only once. The script(s) should perform any required initialization
on the Tcl interpreter and define a procedure calcforces <step> <unique> [args...] to
be called every timestep.

• tclBCArgs < extra args for tclBC calcforces command >
Acceptable Values: {args...}
Description: The string (or Tcl list) provided by this option is appended to the tclBC

112

calcforces command arguments. This parameter may appear multiple times during a run in
order to alter the parameters of the boundary potential function.

The script provided in tclBCScript and the calcforces procedure it defines are executed in
multiple Tcl interpreters, one for every processor that owns patches. These tclBC interpreters do
not share state with the Tcl interpreter used for tclForces or config file parsing. The calcforces
procedure is passed as arguments the current timestep, a “unique” flag which is non-zero for exactly
one Tcl interpreter in the simulation (that on the processor of patch zero), and any arguments
provided to the most recent tclBCArgs option. The “unique” flag is useful to limit printing of
messages, since the command is invoked on multiple processors.

The print, vecadd, vecsub, vecscale, getbond, getangle, getdihedral, anglegrad, and
dihedralgrad commands described under tclForces are available at all times.

The wrapmode <mode> command, available in the tclBCScript or the calcforces procedure,
determines how coordinates obtained in the calcforces procedure are wrapped around periodic
boundaries. The options are:

• patch, (default) the position in NAMD’s internal patch data structure, requires no extra
calculation and is almost the same as cell

• input, the position corresponding to the input files of the simulation

• cell, the equivalent position in the unit cell centered on the cellOrigin

• nearest, the equivalent position nearest to the cellOrigin

The following commands are available from within the calcforces procedure:

• nextatom
Sets the internal counter to a new atom and return 1, or return 0 if all atoms have been
processed (this may even happen the first call). This should be called as the condition of a
while loop, i.e., while {[nextatom]} { ... } to iterate over all atoms. One one atom may
be accessed at a time.

• dropatom
Excludes the current atom from future iterations on this processor until cleardrops is called.
Use this to eliminate extra work when an atom will not be needed for future force calculations.
If the atom migrates to another processor it may reappear, so this call should be used only
as an optimization.

• cleardrops
All available atoms will be iterated over by nextatom as if dropatom had never been called.

• getcoord
Returns a list {x y z} of the position of the current atom wrapped in the periodic cell (if
there is one) in the current wrapping mode as specified by wrapmode.

• getcell
Returns a list of 1–4 vectors containing the cell origin (center) and as many basis vectors
as exist, i.e., {{ox oy oz} {ax ay az} {bx by bz} {cx cy cz}}. It is more efficient to set
the wrapping mode than to do periodic image calculations in Tcl.

113

• getmass
Returns the mass of the current atom.

• getcharge
Returns the charge of the current atom.

• getid
Returns the 1-based ID of the current atom.

• addforce {<fx> <fy> <fz>}
Adds the specified force to the current atom for this step.

• addenergy <energy>
Adds potential energy to the BOUNDARY column of NAMD output.

As an example, these spherical boundary condition forces:

sphericalBC on
sphericalBCcenter 0.0,0.0,0.0
sphericalBCr1 48
sphericalBCk1 10
sphericalBCexp1 2

Are replicated in the following script:

tclBC on
tclBCScript {

proc veclen2 {v1} {
foreach {x1 y1 z1} $v1 { break }
return [expr $x1*$x1 + $y1*$y1 + $z1*$z1]

}

wrapmode input
wrapmode cell
wrapmode nearest
wrapmode patch ;# the default

proc calcforces {step unique R K} {
if { $step % 20 == 0 } {

cleardrops
if $unique { print "clearing dropped atom list at step $step" }

}
set R [expr 1.*$R]
set R2 [expr $R*$R]
set tol 2.0
set cut2 [expr ($R-$tol)*($R-$tol)]

while {[nextatom]} {
addenergy 1 ; # monitor how many atoms are checked

114

set rvec [getcoord]
set r2 [veclen2 $rvec]
if { $r2 < $cut2 } {

dropatom
continue

}
if { $r2 > $R2 } {

addenergy 1 ; # monitor how many atoms are affected
set r [expr sqrt($r2)]
addenergy [expr $K*($r - $R)*($r - $R)]
addforce [vecscale $rvec [expr -2.*$K*($r-$R)/$r]]

}
}

}
}

tclBCArgs {48.0 10.0}

8.12 External Program Forces

This feature allows an external program to be called to calculate forces at every force evaluation,
taking all atom coordinates as input.

• extForces < Apply external program forces? >
Acceptable Values: yes or no
Default Value: no
Description: Specifies whether or not external program forces are applied.

• extForcesCommand < Force calculation command >
Acceptable Values: UNIX shell command
Description: This string is the argument to the system() function at every forces evaluation
and should read coordinates from the file specified by extCoordFilename and write forces to
the file specified by extForceFilename.

• extCoordFilename < Temporary coordinate file >
Acceptable Values: UNIX filename
Description: Atom coordinates are written to this file, which should be read by the
extForcesCommand. The format is one line of “atomid charge x y z” for every atom followed
by three lines with the periodic cell basis vectors “a.x a.y a.z”, “b.x b.y b.z”, and “c.x c.y
c.z”. The atomid starts at 1 (not 0). For best performance the file should be in /tmp and
not on a network-mounted filesystem.

• extForceFilename < Temporary force file >
Acceptable Values: UNIX filename
Description: Atom forces are read from this file after extForcesCommand in run. The
format is one line of “atomid replace fx fy fz” for every atom followed by the energy on a line
by itself and then, optionally, three lines of the virial “v.xx v.xy v.xz”, “v.yx v.yy v.yz”, “v.zx
v.zy v.zz” where, e.g., v.xy = - fx * y for a non-periodic force. The atomid starts at 1 (not 0)

115

and all atoms must be present and in order. The energy is added to the MISC output field.
The replace flag should be 1 if the external program force should replace the forces calculated
by NAMD for that atom and 0 if the forces should be added. For best performance the file
should be in /tmp and not on a network-mounted filesystem.

116

9 Collective Variable-based Calculations (Colvars)

The features described in this section were originally contributed to NAMD by Giacomo Fiorin
(NIH) and Jérôme Hénin (CNRS, France) and are currently developed at this external repository:
https://github.com/Colvars/colvars
An updated version of this section can also be downloaded as a separate manual:
HTML: https://colvars.github.io/colvars-refman-namd/colvars-refman-namd.html
PDF: https://colvars.github.io/pdf/colvars-refman-namd.pdf

See section 9.7 for specific changes that affect compatibility between versions. Please ask any
usage questions through the NAMD mailing list, and development questions through GitHub.

Overview

In molecular dynamics simulations, it is often useful to reduce the large number of degrees of
freedom of a physical system into few parameters whose statistical distributions can be analyzed
individually, or used to define biasing potentials to alter the dynamics of the system in a controlled
manner. These have been called ‘order parameters’, ‘collective variables’, ‘(surrogate) reaction
coordinates’, and many other terms.

Here we use primarily the term ‘collective variable’, often shortened to colvar, to indicate any
differentiable function of atomic Cartesian coordinates, xi, with i between 1 and N , the total
number of atoms:

ξ(t) = ξ(X(t)) = ξ (xi(t),xj(t),xk(t), . . .) , 1 ≤ i, j, k . . . ≤ N (35)

The module is designed to perform multiple tasks concurrently during or after a simulation, the
most common of which are:

• apply restraints or biasing potentials to multiple variables, tailored on the system by choosing
from a wide set of basis functions, without limitations on their number or on the number of
atoms involved; while this can in principle be done through a TclForces script, using the
Colvars module is both easier and computationally more efficient;

• calculate potentials of mean force (PMFs) along any set of variables, using different enhanced
sampling methods, such as Adaptive Biasing Force (ABF), metadynamics, steered MD and
umbrella sampling; variants of these methods that make use of an ensemble of replicas are
supported as well;

• calculate statistical properties of the variables, such as running averages and standard de-
viations, correlation functions of pairs of variables, and multidimensional histograms: this
can be done either at run-time without the need to save very large trajectory files, or after a
simulation has been completed using VMD and the cv command or NAMD and the coorfile
read command as illustrated in 18.

Detailed explanations of the design of the Colvars module are provided in reference [33]. Please
cite this reference whenever publishing work that makes use of this module.

117

https://github.com/Colvars/colvars
https://colvars.github.io/colvars-refman-namd/colvars-refman-namd.html
https://colvars.github.io/pdf/colvars-refman-namd.pdf

9.1 Writing a Colvars configuration: a crash course

The Colvars configuration is a plain text file or string that defines collective variables, biases,
and general parameters of the Colvars module. It is passed to the module using back-end-specific
commands documented in section 9.2.

Now let us look at a complete, non-trivial configuration. Suppose that we want to run a steered
MD experiment where a small molecule is pulled away from a protein binding site. In Colvars
terms, this is done by applying a moving restraint to the distance between the two objects. The
configuration will contain two blocks, one defining the distance variable (see section 9.3 and 9.3.2),
and the other the moving harmonic restraint (9.5.5).

colvar {
name dist
distance {

group1 { atomNumbersRange 42-55 }
group2 {
psfSegID PR
atomNameResidueRange CA 15-30

}
}

}

harmonic {
colvars dist
forceConstant 20.0
centers 4.0 # initial distance
targetCenters 15.0 # final distance
targetNumSteps 500000

}

Reading this input in plain English: the variable here named dist consists in a distance function
between the centers of two groups: the ligand (atoms 42 to 55) and the α-carbon atoms of residues
15 to 30 in the protein (segment name PR). To the “dist” variable, we apply a harmonic potential
of force constant 20 kcal/mol/Å2, initially centered around a value of 4 Å, which will increase to
15 Å over 500,000 simulation steps.

The atom selection keywords are detailed in section 9.4.

9.2 Enabling and controlling the Colvars module in NAMD

Here, we document the syntax of the commands and parameters used to set up and use the Colvars
module in NAMD. One of these parameters is the configuration file or the configuration text for
the module itself, whose syntax is described in 9.2.4 and in the following sections.

9.2.1 Units in the Colvars module

The “internal units” of the Colvars module are the units in which values are expected to be in
the configuration file, and in which collective variable values, energies, etc. are expressed in the
output and colvars trajectory files. Generally the Colvars module uses internally the same

118

units as its back-end MD engine, with the exception of VMD, where different unit sets
are supported to allow for easy setup, visualization and analysis of Colvars simulations performed
with any simulation engine.

Note that angles are expressed in degrees, and derived quantites such as force constants are
based on degrees as well. Atomic coordinates read from XYZ files (and PDB files where applicable)
are expected to be expressed in Ångström, no matter what unit system is in use by the back-end
or the Colvars Module.

To avoid errors due to reading configuration files written in a different unit system, it can be
specified within the input:

• units < Unit system to be used >
Context: global
Acceptable Values: string
Description: A string defining the units to be used internally by Colvars. In NAMD the
only allowed value is NAMD’s native units: real (Å, kcal/mol).

9.2.2 NAMD parameters

To enable a Colvars-based calculation, the colvars on command must be added to the NAMD
script. Two optional commands, colvarsConfig and colvarsInput can be used to define the
module’s configuration or continue a previous simulation. Because these are static parameters, it
is typically more convenient to use the cv command in the rest of the NAMD script.

• colvars < Enable the Colvars module >
Context: NAMD configuration file
Acceptable Values: boolean
Default Value: off
Description: If this flag is on, the Colvars module within NAMD is enabled.

• colvarsConfig < Configuration file for the collective variables >
Context: NAMD configuration file
Acceptable Values: UNIX filename
Description: Name of the Colvars configuration file (9.2.4, 9.2.5 and following sections).
This file can also be provided by the Tcl command cv configfile. Alternatively, the con-
tents of the file (as opposed to the file itself) can be given as a string argument to the command
cv config.

• colvarsInput < Input state file for the collective variables >
Context: NAMD configuration file
Acceptable Values: UNIX filename
Description: Keyword used to specify the input state file’s name (9.2.6). If the input file is
meant to be loaded within a Tcl script section, the cv load command may be used instead.

9.2.3 Using the cv command to control the Colvars module

At any moment after the first initialization of the Colvars module, several options can be read or
modified by the Tcl command cv, with the following syntax:
cv <subcommand> [args ...]

119

The most frequent uses of the cv command are discussed here. For a complete list of all sub-
commands of cv, see section 9.6.

Setting up the Colvars module If the NAMD configuration parameter colvars is on, the cv
command can be used anywhere in the NAMD script, and will be invoked as soon as NAMD begins
processing Tcl commands.

To define collective variables and biases, configuration can be loaded using either:
cv configfile colvars-file.in
to load configuration from a file, or:
cv config "keyword { ... }"
to load configuration as a string argument.

The latter version is particularly useful to dynamically define the Colvars configuration. For
example, when running an ensemble of umbrella sampling simulations in NAMD, it may be
convenient to use an identical NAMD script, and let the queuing system assist in defining the
window. In this example, in a Slurm array job an environment variable is used to define the
window’s numeric index (starting at zero), and the umbrella restraint center (starting at 2 for the
first window, and increasing in increments of 0.25 for all other windows):
cv configfile colvars-definition.in
set window $env(SLURM ARRAY TASK ID)
cv config "harmonic {
name us ${window}
colvars xi
centers [expr 2.0 + 0.25 * ${window}]
...

}"

Using the Colvars version in scripts The vast majority of the syntax in Colvars is backward-
compatible, adding keywords when new features are introduced. However, when using multiple
versions simultaneously it may be useful to test within the script whether the version is recent
enough to support the desired feature. cv version can be used to get the Colvars version for this
use:
if { [cv version] >= "2020-02-25" } {

cv config "(use a recent feature)"
}

Loading and saving the Colvars state and other information After a configuration is fully
defined, cv load may be used to load a state file from a previous simulation that contains e.g. data
from history-dependent biases), to either continue that simulation or analyze its results:
cv load <oldjob>.colvars.state
or more simply using the prefix of the state file itself:
cv load <oldjob>
The latter is much more convenient in combination with the NAMD reinitatoms command, for
example:

120

reinitatoms <oldjob>
cv load <oldjob>
The step number contained by the loaded file will be used internally by Colvars to control time-
dependent biases, unless firstTimestep is issued, in which case that value will be used.

When the system’s topology is changed during simulation via the structure command (e.g.
in constant-pH simulations), it is generally best to reset and re-initalize the module from scratch
before loading the corresponding snapshot:
structure newsystem.psf
reinitatoms <snapshot>
cv reset
cv configfile ...
cv load <snapshot>

cv save, analogous to cv load, saves all restart information to a state file. This is normally not
required during a simulation if colvarsRestartFrequency (see 9.2.5) is defined (either directly or
indirectly by the NAMD restart frequency), but it is necessary in post-processing e.g. with VMD.
Because not only a state file (used to continue simulations) but also other data files (used to analyze
the trajectory) are written, it is generally clearer to use cv save with a prefix rather than a file
name:
cv save <job>

See 9.6.1 for a complete list of scripting commands used to manage the Colvars module.

Managing collective variables After one or more collective variables are defined, they can be
accessed via cv colvar [args ...]. For example, to recompute the collective variable xi the
following command can be used:
cv colvar xi update
This ordinarily is not needed during a simulation run, where all variables are recomputed at every
step (along with biasing forces acting on them). However, when analyzing an existing trajectory a
call to update is generally required.

While in all typical cases all configuration of the variables is done with cv config or cv
configfile, a limited set of changes can be enacted at runtime using cv colvar <name>
modifycvcs [args ...]. Each argument is a string passed to the function or functions that
are used to compute the variable, and are called colvar components, or CVCs (9.3.1). For example,
a variable DeltaZ made of a single distanceZ CVC can be made periodic with a period equal to
the unit cell dimension along the Z-axis:
cv colvar DeltaZ modifycvcs "period $Lz"
where $Lz is obtained outside Colvars.
This option is currently limited to changing the values of componentCoeff (see 9.3.15) and
componentExp (see 9.3.15) (e.g. to update the polynomial superposition parameters on the fly), of
period (see 9.3.13) and wrapAround (see 9.3.13), and of the forceNoPBC option for all components
that support it.

If the variable is computed using more than one CVC, it is possible to selectively turn some of
them on or off:
cv colvar xi cvcflags <flags>
where <flags> is a list of 0/1 values, one per component. This is useful for example when
Tcl script-based path collective variables in Cartesian coordinates (9.3.10) are used, to minimize

121

computational cost by disabling the computation of terms that are very close to zero.
Important: None of the changes enacted by modifycvcs or cvcflags will be saved to state

files, and will be lost when restarting a simulation, deleting the corresponding collective variable,
or resetting the module with cv reset.

Applying and analyzing forces on collective variables As soon as a collective variable is
up to date (during a MD run or after its update method has been called), forces can be applied to
it, e.g. as part of a custom restraint implemented by scriptedColvarForces (see 9.5.12):
cv colvar xi addforce $force
where $force is a scalar or a vector (depending on the type of variable xi) and is defined by
the user’s function. The force will be physically applied to the corresponding atoms during the
simulation after Colvars communicates all forces to the rest of NAMD. Until then, the total force
applied to xi from all biases can be retrieved by:
cv colvar xi getappliedforce
(see also the use of the outputAppliedForce (see 9.3.19) option).

To obtain the total force projected on the variable xi:
cv colvar xi gettotalforce
Note that not all types of variable support this option, and the value of the total force may not be
available immediately: see outputTotalForce (see 9.3.19) for more details.

See 9.6.2 for a complete list of scripting commands used to manage collective variables.

Managing collective variable biases Because biases depend only upon data internal to the
Colvars module (i.e. they do not need atomic coordinates from NAMD), it is generally easy to
create them or update their configuration at any time. For example, given the most current value
of the variable xi, an already-defined restraint on it named harmonic xi can be updated as:
cv bias harmonic xi update
Again, this is not generally needed during a running simulation, when an automat ic update of
each bias is already carried out.

Calling update for a bias is most useful for just-defined biases or when changing their config-
uration. When update is called e.g. as part of the function invoked by scriptedColvarForces
(see 9.5.12), it is executed before any biasing forces are applied to the variables, thus allowing
to modify them. This use of update is often used e.g. in the definition of custom bias-exchange
algorithms as part of the NAMD script. Because a bias is a relatively light-weight object, the
easiest way to change the configuration of an existing bias is deleting it and re-creating it:

Delete the restraint "harmonic xi"
cv bias harmonic xi delete
Re-define it, but using an updated restraint center
cv config "harmonic {

name harmonic xi
centers ${new center}]
...

}"
Now update it (based on the current value of "xi")
cv bias harmonic xi update
It is also possible to make the change subject to a condition on the energy of the new bias:

122

...
cv bias harmonic xi update
if { [cv bias harmonic xi energy] < ${E accept} } {

...
}

Loading and saving the state of individual biases Some types of bias are history-dependent,
and the magnitude of their forces depends not only on the values of their corresponding variables,
but also on previous simulation history. It is thus useful to load information from a state file that
contains information specifically for one bias only, for example:
cv bias metadynamics1 load old.colvars.state
or alternatively, using the prefix of the file instead of its full name:
cv bias metadynamics1 load old
A corresponding save function is also available:
cv bias metadynamics1 save new
This pair of functions is also used internally by Colvars to implement e.g. multiple-walker metady-
namics (9.5.4), but they can be called from a scripted function to implement alternative coupling
schemes.

See 9.6.3 for a complete list of scripting commands used to manage biases.

9.2.4 Configuration syntax used by the Colvars module

All the parameters defining variables and their biasing or analysis algorithms are read from the
file specified by the configuration option colvarsConfig, or by the Tcl commands cv config and
cv configfile. None of the keywords described in the remainder of this manual are recognized
directly in the NAMD configuration file, unless as arguments of cv config. Each configuration
line follows the format “keyword value”, where the keyword and its value are separated by any
white space. The following rules apply:

• keywords are case-insensitive (upperBoundary is the same as upperboundary and
UPPERBOUNDARY): their string values are however case-sensitive (e.g. file names);

• a long value, or a list of multiple values, can be distributed across multiple lines by using
curly braces, “{” and “}”: the opening brace “{” must occur on the same line as the keyword,
following a space character or other white space; the closing brace “}” can be at any position
after that; any keywords following the closing brace on the same line are not valid (they
should appear instead on a different line);

• many keywords are nested, and are only meaningful within a specific context: for every
keyword documented in the following, the “parent” keyword that defines such context is also
indicated in parentheses;

• the ‘=’ sign between a keyword and its value, deprecated in the NAMD main configuration
file, is not allowed;

• Tcl syntax is generally not available, but it is possible to use Tcl variables or bracket expansion
of commands within a configuration string, when this is passed via the command cv config

123

...; this is particularly useful when combined with parameter introspection (see 2.2.2), e.g.
cv config "colvarsTrajFrequency [DCDFreq]";

• if a keyword requiring a boolean value (yes|on|true or no|off|false) is provided without
an explicit value, it defaults to ‘yes|on|true’; for example, ‘outputAppliedForce’ may be
used as shorthand for ‘outputAppliedForce on’;

• the hash character # indicates a comment: all text in the same line following this character
will be ignored.

9.2.5 Global keywords

The following keywords are available in the global context of the Colvars configuration, i.e. they
are not nested inside other keywords:

• colvarsTrajFrequency < Colvar value trajectory frequency >
Context: global
Acceptable Values: positive integer
Default Value: 100
Description: The values of each colvar (and of other related quantities, if requested)
are written to the file outputName.colvars.traj every these many steps throughout the
simulation. If the value is 0, such trajectory file is not written. For optimization the output
is buffered, and synchronized with the disk only when the restart file is being written.

• colvarsRestartFrequency < Colvar module restart frequency >
Context: global
Acceptable Values: positive integer
Default Value: NAMD parameter restartFreq
Description: The state file and any other output files produced by Colvars are written
every these many steps (the trajectory file is still written every colvarsTrajFrequency (see
9.2.5) steps). It is generally a good idea to leave this parameter at its default value, unless
needed for special cases or to disable automatic writing of output files altogether. Writing
can still be invoked at any time via the command cv save.

• indexFile < Index file for atom selection (GROMACS “ndx” format) >
Context: global
Acceptable Values: UNIX filename
Description: This option reads an index file (usually with a .ndx extension) as produced
by the make ndx tool of GROMACS. This keyword may be repeated to load multiple index
files. A group with the same name may appear multiple times, as long as it contains the same
indices in identical order each time: an error is raised otherwise. The names of index groups
contained in this file can then be used to define atom groups with the indexGroup keyword.
Other supported methods to select atoms are described in 9.4.

• smp < Whether SMP parallelism should be used >
Context: global
Acceptable Values: boolean
Default Value: on
Description: If this flag is enabled (default), SMP parallelism over threads will be used to
compute variables and biases, provided that this is supported by the NAMD build in use.

124

To illustrate the flexibility of the Colvars module, a non-trivial setup is represented in Figure 5.
The corresponding configuration is given below. The options within the colvar blocks are
described in 9.3, those within the harmonic and histogram blocks in 9.5. Note: except colvar,
none of the keywords shown is mandatory.

Figure 5: Graphical representation of a Colvars configuration. The colvar called “d” is defined as
the difference between two distances: the first distance (d1) is taken between the center of mass of
atoms 1 and 2 and that of atoms 3 to 5, the second (d2) between atom 7 and the center of mass
of atoms 8 to 10. The difference d = d1 − d2 is obtained by multiplying the two by a coefficient
C = +1 or C = −1, respectively. The colvar called “c” is the coordination number calculated
between atoms 1 to 10 and atoms 11 to 20. A harmonic restraint is applied to both d and c: to
allow using the same force constant K, both d and c are scaled by their respective fluctuation
widths wd and wc. A third colvar “alpha” is defined as the α-helical content of residues 1 to 10.
The values of “c” and “alpha” are also recorded throughout the simulation as a joint 2-dimensional
histogram.

colvar {
difference of two distances
name d
width 0.2 # 0.2 Å of estimated fluctuation width
distance {

componentCoeff 1.0
group1 { atomNumbers 1 2 }
group2 { atomNumbers 3 4 5 }

}
distance {

componentCoeff -1.0

125

group1 { atomNumbers 7 }
group2 { atomNumbers 8 9 10 }

}
}

colvar {
name c
coordNum {

cutoff 6.0
group1 { atomNumbersRange 1-10 }
group2 { atomNumbersRange 11-20 }

}
}

colvar {
name alpha
alpha {

psfSegID PROT
residueRange 1-10

}
}

harmonic {
colvars d c
centers 3.0 4.0
forceConstant 5.0

}

histogram {
colvars c alpha

}

Section 9.3 explains how to define a colvar and its behavior, regardless of its specific functional
form. To define colvars that are appropriate to a specific physical system, Section 9.4 documents
how to select atoms, and section 9.3 lists all of the available functional forms, which we call “colvar
components”. Finally, section 9.5 lists the available methods and algorithms to perform biased
simulations and multidimensional analysis of colvars.

9.2.6 Input state file

Because many of the methods implemented in Colvars are history-dependent, a state file is often
needed to continue a long simulation over consecutive runs. Such state file is written automatically
at the end of any simulation with Colvars, and contains data accumulated during that simulation
along with the step number at the end of it. The step number read from the state file is then used
to control such time-dependent biases: because of this essential role, the step number internal to
Colvars may not always match the step number reported by the MD program that carried during
the simulation (which may instead restart from zero each time). If a state file is not given, the

126

NAMD command firstTimestep may be used to control the Colvars step number.
Depending on the configuration, a state file may need to be loaded issued at the beginning of

a new simulation when time-dependent biasing methods are applied (moving restraints, metady-
namics, ABF, ...). When the Colvars module is initialized in NAMD, the colvarsInput keyword
can be used to give the name of the state file. After initialization, a state file may be loaded at
any time with the Tcl command cv load.

It is possible to load a state file even if the configuration has changed: for example, new variables
may be defined or restraints be added in between consecutive runs. For each newly defined variable
or bias, no information will be read from the state file if this is unavailable: such new objects will
remain uninitialized until the first compute step. Conversely, any information that the state file has
about variables or biases that are not defined any longer is silently ignored. Because these checks
are done by the names of variables or biases, it is the user’s responsibility to ensure that these are
consistent between runs.

9.2.7 Output files

During a simulation with collective variables defined, the following three output files are written:

• A state file, named outputName.colvars.state; this file is in ASCII (plain text) format,
regardless of the value of binaryOutput in the NAMD configuration. This file is written at
the end of the specified run, but can also be written at any time with the command cv save
(9.2.3).
This is the only Colvars output file needed to continue a simulation.

• If the parameter colvarsRestartFrequency (see 9.2.5) is larger than zero, a restart file is
written every that many steps: this file is fully equivalent to the final state file. The name of
this file is restartName.colvars.state.

• If the parameter colvarsTrajFrequency (see 9.2.5) is greater than 0 (default: 100), a trajec-
tory file is written during the simulation: its name is outputName.colvars.traj; unlike the
state file, it is not needed to restart a simulation, but can be used later for post-processing
and analysis.

Other output files may also be written by specific methods, e.g. the ABF or metadynamics
methods (9.5.2, 9.5.4). Like the trajectory file, they are needed only for analyzing, not continuing
a simulation. All such files’ names also begin with the prefix outputName.

Lastly, the total energy of all biases or restraints applied to the colvars appears under the
NAMD standard output, under the MISC column.

9.3 Defining collective variables

A collective variable is defined by the keyword colvar followed by its configuration options con-
tained within curly braces:

colvar {
name xi
<other options>
function name {
<parameters>

127

<atom selection>
}

}

There are multiple ways of defining a variable:

• The simplest and most common way way is using one of the precompiled functions (here
called “components”), which are listed in section 9.3.1. For example, using the keyword rmsd
(section 9.3.5) defines the variable as the root mean squared deviation (RMSD) of the selected
atoms.

• A new variable may also be constructed as a linear or polynomial combination of the compo-
nents listed in section 9.3.1 (see 9.3.15 for details).

• A user-defined mathematical function of the existing components (see list in section 9.3.1),
or of the atomic coordinates directly (see the cartesian keyword in 9.3.8). The function is
defined through the keyword customFunction (see 9.3.16) (see 9.3.16 for details).

• A user-defined Tcl function of the existing components (see list in section 9.3.1), or of the
atomic coordinates directly (see the cartesian keyword in 9.3.8). The function is provided
by a separate Tcl script, and referenced through the keyword scriptedFunction (see 9.3.17)
(see 9.3.17 for details).

Choosing a component (function) is the only parameter strictly required to define a collective
variable. It is also highly recommended to specify a name for the variable:

• name < Name of this colvar >
Context: colvar
Acceptable Values: string
Default Value: “colvar” + numeric id
Description: The name is an unique case-sensitive string which allows the Colvars module
to identify this colvar unambiguously; it is also used in the trajectory file to label to the
columns corresponding to this colvar.

9.3.1 Choosing a function

In this context, the function that computes a colvar is called a component. A component’s choice
and definition consists of including in the variable’s configuration a keyword indicating the type of
function (e.g. rmsd), followed by a definition block specifying the atoms involved (see 9.4) and any
additional parameters (cutoffs, “reference” values, . . .). At least one component must be chosen to
define a variable: if none of the keywords listed below is found, an error is raised.

The following components implement functions with a scalar value (i.e. a real number):

• distance (see 9.3.2): distance between two groups;

• distanceZ (see 9.3.2): projection of a distance vector on an axis;

• distanceXY (see 9.3.2): projection of a distance vector on a plane;

• distanceInv (see 9.3.2): mean distance between two groups of atoms (e.g. NOE-based dis-
tance);

128

• angle (see 9.3.3): angle between three groups;

• dihedral (see 9.3.3): torsional (dihedral) angle between four groups;

• dipoleAngle (see 9.3.3): angle between two groups and dipole of a third group;

• dipoleMagnitude (see 9.3.5): magnitude of the dipole of a group of atoms;

• polarTheta (see 9.3.3): polar angle of a group in spherical coordinates;

• polarPhi (see 9.3.3): azimuthal angle of a group in spherical coordinates;

• coordNum (see 9.3.4): coordination number between two groups;

• selfCoordNum (see 9.3.4): coordination number of atoms within a group;

• hBond (see 9.3.4): hydrogen bond between two atoms;

• rmsd (see 9.3.5): root mean square deviation (RMSD) from a set of reference coordinates;

• eigenvector (see 9.3.5): projection of the atomic coordinates on a vector;

• mapTotal (see 9.3.11): total value of a volumetric map;

• orientationAngle (see 9.3.6): angle of the best-fit rotation from a set of reference coordi-
nates;

• orientationProj (see 9.3.6): cosine of orientationProj (see 9.3.6);

• spinAngle (see 9.3.6): projection orthogonal to an axis of the best-fit rotation from a set of
reference coordinates;

• tilt (see 9.3.6): projection on an axis of the best-fit rotation from a set of reference coordi-
nates;

• gyration (see 9.3.5): radius of gyration of a group of atoms;

• inertia (see 9.3.5): moment of inertia of a group of atoms;

• inertiaZ (see 9.3.5): moment of inertia of a group of atoms around a chosen axis;

• alpha (see 9.3.7): α-helix content of a protein segment.

• dihedralPC (see 9.3.7): projection of protein backbone dihedrals onto a dihedral principal
component.

Some components do not return scalar, but vector values:

• distanceVec (see 9.3.2): distance vector between two groups (length: 3);

• distanceDir (see 9.3.2): unit vector parallel to distanceVec (length: 3);

• cartesian (see 9.3.8): vector of atomic Cartesian coordinates (length: N times the number
of Cartesian components requested, X, Y or Z);

• distancePairs (see 9.3.8): vector of mutual distances (length: N1 ×N2);

129

• orientation (see 9.3.6): best-fit rotation, expressed as a unit quaternion (length: 4).

The types of components used in a colvar (scalar or not) determine the properties of that colvar,
and particularly which biasing or analysis methods can be applied.

What if “X” is not listed? If a function type is not available on this list, it may be possible
to define it as a polynomial superposition of existing ones (see 9.3.15), a custom function (see
9.3.16), or a scripted function (see 9.3.17).

In the rest of this section, all available component types are listed, along with their physical
units and the ranges of values, if limited. Such limiting values can be used to define lowerBoundary
(see 9.3.18) and upperBoundary (see 9.3.18) in the parent colvar.

For each type of component, the available configurations keywords are listed: when two com-
ponents share certain keywords, the second component references to the documentation of the first
one that uses that keyword. The very few keywords that are available for all types of components
are listed in a separate section 9.3.12.

9.3.2 Distances

distance: center-of-mass distance between two groups. The distance {...} block defines
a distance component between the two atom groups, group1 and group2.
List of keywords (see also 9.3.15 for additional options):

• group1 < First group of atoms >
Context: distance
Acceptable Values: Block group1 {...}
Description: First group of atoms.

• group2: analogous to group1

• forceNoPBC < Calculate absolute rather than minimum-image distance? >
Context: distance
Acceptable Values: boolean
Default Value: no
Description: By default, in calculations with periodic boundary conditions, the distance
component returns the distance according to the minimum-image convention. If this parame-
ter is set to yes, PBC will be ignored and the distance between the coordinates as maintained
internally will be used. This is only useful in a limited number of special cases, e.g. to de-
scribe the distance between remote points of a single macromolecule, which cannot be split
across periodic cell boundaries, and for which the minimum-image distance might give the
wrong result because of a relatively small periodic cell.

• oneSiteTotalForce < Measure total force on group 1 only? >
Context: angle, dipoleAngle, dihedral
Acceptable Values: boolean
Default Value: no
Description: If this is set to yes, the total force is measured along a vector field (see
equation (61) in section 9.5.2) that only involves atoms of group1. This option is only useful
for ABF, or custom biases that compute total forces. See section 9.5.2 for details.

130

The value returned is a positive number (in Å), ranging from 0 to the largest possible interatomic
distance within the chosen boundary conditions (with PBCs, the minimum image convention is used
unless the forceNoPBC option is set).

distanceZ: projection of a distance vector on an axis. The distanceZ {...} block defines
a distance projection component, which can be seen as measuring the distance between two groups
projected onto an axis, or the position of a group along such an axis. The axis can be defined using
either one reference group and a constant vector, or dynamically based on two reference groups.
One of the groups can be set to a dummy atom to allow the use of an absolute Cartesian coordinate.
List of keywords (see also 9.3.15 for additional options):

• main < Main group of atoms >
Context: distanceZ
Acceptable Values: Block main {...}
Description: Group of atoms whose position r is measured.

• ref < Reference group of atoms >
Context: distanceZ
Acceptable Values: Block ref {...}
Description: Reference group of atoms. The position of its center of mass is noted r1

below.

• ref2 < Secondary reference group >
Context: distanceZ
Acceptable Values: Block ref2 {...}
Default Value: none
Description: Optional group of reference atoms, whose position r2 can be used to define
a dynamic projection axis: e = (‖r2 − r1‖)−1 × (r2 − r1). In this case, the origin is rm =
1/2(r1 + r2), and the value of the component is e · (r − rm).

• axis < Projection axis (Å) >
Context: distanceZ
Acceptable Values: (x, y, z) triplet
Default Value: (0.0, 0.0, 1.0)
Description: The three components of this vector define a projection axis e for the distance
vector r−r1 joining the centers of groups ref and main. The value of the component is then
e · (r − r1). The vector should be written as three components separated by commas and
enclosed in parentheses.

• forceNoPBC: see definition of forceNoPBC in sec. 9.3.2 (distance component)

• oneSiteTotalForce: see definition of oneSiteTotalForce in sec. 9.3.2 (distance compo-
nent)

This component returns a number (in Å) whose range is determined by the chosen boundary
conditions. For instance, if the z axis is used in a simulation with periodic boundaries, the returned
value ranges between −bz/2 and bz/2, where bz is the box length along z (this behavior is disabled
if forceNoPBC is set).

131

distanceXY: modulus of the projection of a distance vector on a plane. The
distanceXY {...} block defines a distance projected on a plane, and accepts the same keywords
as the component distanceZ, i.e. main, ref, either ref2 or axis, and oneSiteTotalForce. It
returns the norm of the projection of the distance vector between main and ref onto the plane
orthogonal to the axis. The axis is defined using the axis parameter or as the vector joining ref
and ref2 (see distanceZ above).
List of keywords (see also 9.3.15 for additional options):

• main: see definition of main in sec. 9.3.2 (distanceZ component)

• ref: see definition of ref in sec. 9.3.2 (distanceZ component)

• ref2: see definition of ref2 in sec. 9.3.2 (distanceZ component)

• axis: see definition of axis in sec. 9.3.2 (distanceZ component)

• forceNoPBC: see definition of forceNoPBC in sec. 9.3.2 (distance component)

• oneSiteTotalForce: see definition of oneSiteTotalForce in sec. 9.3.2 (distance compo-
nent)

distanceVec: distance vector between two groups. The distanceVec {...} block defines a
distance vector component, which accepts the same keywords as the component distance: group1,
group2, and forceNoPBC. Its value is the 3-vector joining the centers of mass of group1 and group2.
List of keywords (see also 9.3.15 for additional options):

• group1: see definition of group1 in sec. 9.3.2 (distance component)

• group2: analogous to group1

• forceNoPBC: see definition of forceNoPBC in sec. 9.3.2 (distance component)

• oneSiteTotalForce: see definition of oneSiteTotalForce in sec. 9.3.2 (distance compo-
nent)

distanceDir: distance unit vector between two groups. The distanceDir {...} block
defines a distance unit vector component, which accepts the same keywords as the component
distance: group1, group2, and forceNoPBC. It returns a 3-dimensional unit vector d = (dx, dy, dz),
with |d| = 1.
List of keywords (see also 9.3.15 for additional options):

• group1: see definition of group1 in sec. 9.3.2 (distance component)

• group2: analogous to group1

• forceNoPBC: see definition of forceNoPBC in sec. 9.3.2 (distance component)

• oneSiteTotalForce: see definition of oneSiteTotalForce in sec. 9.3.2 (distance compo-
nent)

132

distanceInv: mean distance between two groups of atoms. The distanceInv {...} block
defines a generalized mean distance between two groups of atoms 1 and 2, weighted with exponent
1/n:

d
[n]
1,2 =

 1
N1N2

∑
i,j

(
1

‖dij‖

)n
−1/n

(36)

where ‖dij‖ is the distance between atoms i and j in groups 1 and 2 respectively, and n is an even
integer.
List of keywords (see also 9.3.15 for additional options):

• group1: see definition of group1 in sec. 9.3.2 (distance component)

• group2: analogous to group1

• oneSiteTotalForce: see definition of oneSiteTotalForce in sec. 9.3.2 (distance compo-
nent)

• exponent < Exponent n in equation 36 >
Context: distanceInv
Acceptable Values: positive even integer
Default Value: 6
Description: Defines the exponent to which the individual distances are elevated before
averaging. The default value of 6 is useful for example to applying restraints based on NOE-
measured distances.

This component returns a number in Å, ranging from 0 to the largest possible distance within the
chosen boundary conditions.

9.3.3 Angles

angle: angle between three groups. The angle {...} block defines an angle, and contains
the three blocks group1, group2 and group3, defining the three groups. It returns an angle (in
degrees) within the interval [0 : 180].
List of keywords (see also 9.3.15 for additional options):

• group1: see definition of group1 in sec. 9.3.2 (distance component)

• group2: analogous to group1

• group3: analogous to group1

• forceNoPBC: see definition of forceNoPBC in sec. 9.3.2 (distance component)

• oneSiteTotalForce: see definition of oneSiteTotalForce in sec. 9.3.2 (distance compo-
nent)

133

dipoleAngle: angle between two groups and dipole of a third group. The
dipoleAngle {...} block defines an angle, and contains the three blocks group1, group2 and
group3, defining the three groups, being group1 the group where dipole is calculated. It returns
an angle (in degrees) within the interval [0 : 180].
List of keywords (see also 9.3.15 for additional options):

• group1: see definition of group1 in sec. 9.3.2 (distance component)

• group2: analogous to group1

• group3: analogous to group1

• forceNoPBC: see definition of forceNoPBC in sec. 9.3.2 (distance component)

• oneSiteTotalForce: see definition of oneSiteTotalForce in sec. 9.3.2 (distance compo-
nent)

dihedral: torsional angle between four groups. The dihedral {...} block defines a tor-
sional angle, and contains the blocks group1, group2, group3 and group4, defining the four groups.
It returns an angle (in degrees) within the interval [−180 : 180]. The Colvars module calculates all
the distances between two angles taking into account periodicity. For instance, reference values for
restraints or range boundaries can be defined by using any real number of choice.
List of keywords (see also 9.3.15 for additional options):

• group1: see definition of group1 in sec. 9.3.2 (distance component)

• group2: analogous to group1

• group3: analogous to group1

• group4: analogous to group1

• forceNoPBC: see definition of forceNoPBC in sec. 9.3.2 (distance component)

• oneSiteTotalForce: see definition of oneSiteTotalForce in sec. 9.3.2 (distance compo-
nent)

polarTheta: polar angle in spherical coordinates. The polarTheta {...} block defines the
polar angle in spherical coordinates, for the center of mass of a group of atoms described by the
block atoms. It returns an angle (in degrees) within the interval [0 : 180]. To obtain spherical
coordinates in a frame of reference tied to another group of atoms, use the fittingGroup (9.4.2)
option within the atoms block. An example is provided in file examples/11 polar angles.in of
the Colvars public repository.
List of keywords (see also 9.3.15 for additional options):

• atoms < Atom group >
Context: polarPhi
Acceptable Values: atoms {...} block
Description: Defines the group of atoms for the COM of which the angle should be
calculated.

134

polarPhi: azimuthal angle in spherical coordinates. The polarPhi {...} block defines
the azimuthal angle in spherical coordinates, for the center of mass of a group of atoms described
by the block atoms. It returns an angle (in degrees) within the interval [−180 : 180]. The Colvars
module calculates all the distances between two angles taking into account periodicity. For instance,
reference values for restraints or range boundaries can be defined by using any real number of
choice. To obtain spherical coordinates in a frame of reference tied to another group of atoms,
use the fittingGroup (9.4.2) option within the atoms block. An example is provided in file
examples/11 polar angles.in of the Colvars public repository.
List of keywords (see also 9.3.15 for additional options):

• atoms < Atom group >
Context: polarPhi
Acceptable Values: atoms {...} block
Description: Defines the group of atoms for the COM of which the angle should be
calculated.

9.3.4 Contacts

coordNum: coordination number between two groups. The coordNum {...} block defines
a coordination number (or number of contacts), which calculates the function (1 − (d/d0)n)/(1 −
(d/d0)m), where d0 is the “cutoff” distance, and n and m are exponents that can control its long
range behavior and stiffness [49]. This function is summed over all pairs of atoms in group1 and
group2:

C(group1, group2) =
∑

i∈group1

∑
j∈group2

1− (|xi − xj |/d0)n

1− (|xi − xj |/d0)m
(37)

List of keywords (see also 9.3.15 for additional options):

• group1: see definition of group1 in sec. 9.3.2 (distance component)

• group2: analogous to group1

• cutoff < “Interaction” distance (Å) >
Context: coordNum
Acceptable Values: positive decimal
Default Value: 4.0
Description: This number defines the switching distance to define an interatomic contact:
for d� d0, the switching function (1− (d/d0)n)/(1− (d/d0)m) is close to 1, at d = d0 it has
a value of n/m (1/2 with the default n and m), and at d� d0 it goes to zero approximately
like dm−n. Hence, for a proper behavior, m must be larger than n.

• cutoff3 < Reference distance vector (Å) >
Context: coordNum
Acceptable Values: “(x, y, z)” triplet of positive decimals
Default Value: (4.0, 4.0, 4.0)
Description: The three components of this vector define three different cutoffs d0 for each
direction. This option is mutually exclusive with cutoff.

• expNumer < Numerator exponent >
Context: coordNum

135

Acceptable Values: positive even integer
Default Value: 6
Description: This number defines the n exponent for the switching function.

• expDenom < Denominator exponent >
Context: coordNum
Acceptable Values: positive even integer
Default Value: 12
Description: This number defines the m exponent for the switching function.

• group2CenterOnly < Use only group2’s center of mass >
Context: coordNum
Acceptable Values: boolean
Default Value: off
Description: If this option is on, only contacts between each atoms in group1 and the
center of mass of group2 are calculated (by default, the sum extends over all pairs of atoms
in group1 and group2). If group2 is a dummyAtom, this option is set to yes by default.

• tolerance < Pairlist control >
Context: coordNum
Acceptable Values: decimal
Default Value: 0.0
Description: This controls the pairlist feature, dictating the minimum value for each
summation element in Eq. 37 such that the pair that contributed the summation element is
included in subsequent simulation timesteps until the next pairlist recalculation. For most
applications, this value should be small (eg. 0.001) to avoid missing important contributions
to the overall sum. Higher values will improve performance by reducing the number of
pairs that contribute to the sum. Values above 1 will exclude all possible pair interactions.
Similarly, values below 0 will never exclude a pair from consideration. To ensure continuous
forces, Eq. 37 is further modified by subtracting the tolerance and then rescaling so that each
pair covers the range [0, 1].

• pairListFrequency < Pairlist regeneration frequency >
Context: coordNum
Acceptable Values: positive integer
Default Value: 100
Description: This controls the pairlist feature, dictating how many steps are taken between
regenerating pairlists if the tolerance is greater than 0.

This component returns a dimensionless number, which ranges from approximately 0 (all in-
teratomic distances are much larger than the cutoff) to Ngroup1 × Ngroup2 (all distances are less
than the cutoff), or Ngroup1 if group2CenterOnly is used. For performance reasons, at least one
of group1 and group2 should be of limited size or group2CenterOnly should be used: the cost of
the loop over all pairs grows as Ngroup1×Ngroup2. Setting tolerance > 0 ameliorates this to some
degree, although every pair is still checked to regenerate the pairlist.

selfCoordNum: coordination number between atoms within a group. The selfCoordNum
{...} block defines a coordination number similarly to the component coordNum, but the function

136

is summed over atom pairs within group1:

C(group1) =
∑

i∈group1

∑
j>i

1− (|xi − xj |/d0)n

1− (|xi − xj |/d0)m
(38)

The keywords accepted by selfCoordNum are a subset of those accepted by coordNum, namely
group1 (here defining all of the atoms to be considered), cutoff, expNumer, and expDenom.
List of keywords (see also 9.3.15 for additional options):

• group1: see definition of group1 in sec. 9.3.4 (coordNum component)

• cutoff: see definition of cutoff in sec. 9.3.4 (coordNum component)

• cutoff3: see definition of cutoff3 in sec. 9.3.4 (coordNum component)

• expNumer: see definition of expNumer in sec. 9.3.4 (coordNum component)

• expDenom: see definition of expDenom in sec. 9.3.4 (coordNum component)

• tolerance: see definition of tolerance in sec. 9.3.4 (coordNum component)

• pairListFrequency: see definition of pairListFrequency in sec. 9.3.4 (coordNum compo-
nent)

This component returns a dimensionless number, which ranges from approximately 0 (all inter-
atomic distances much larger than the cutoff) to Ngroup1× (Ngroup1− 1)/2 (all distances within the
cutoff). For performance reasons, group1 should be of limited size, because the cost of the loop
over all pairs grows as N2

group1.

hBond: hydrogen bond between two atoms. The hBond {...} block defines a hydrogen
bond, implemented as a coordination number (eq. 37) between the donor and the acceptor atoms.
Therefore, it accepts the same options cutoff (with a different default value of 3.3 Å), expNumer
(with a default value of 6) and expDenom (with a default value of 8). Unlike coordNum, it requires
two atom numbers, acceptor and donor, to be defined. It returns an adimensional number, with
values between 0 (acceptor and donor far outside the cutoff distance) and 1 (acceptor and donor
much closer than the cutoff).
List of keywords (see also 9.3.15 for additional options):

• acceptor < Number of the acceptor atom >
Context: hBond
Acceptable Values: positive integer
Description: Number that uses the same convention as atomNumbers.

• donor: analogous to acceptor

• cutoff: see definition of cutoff in sec. 9.3.4 (coordNum component)
Note: default value is 3.3 Å.

• expNumer: see definition of expNumer in sec. 9.3.4 (coordNum component)
Note: default value is 6.

• expDenom: see definition of expDenom in sec. 9.3.4 (coordNum component)
Note: default value is 8.

137

9.3.5 Collective metrics

rmsd: root mean square displacement (RMSD) from reference positions. The block
rmsd {...} defines the root mean square replacement (RMSD) of a group of atoms with respect
to a reference structure. For each set of coordinates {x1(t),x2(t), . . .xN (t)}, the colvar component
rmsd calculates the optimal rotation U{xi(t)}→{x(ref)

i } that best superimposes the coordinates {xi(t)}
onto a set of reference coordinates {x(ref)

i }. Both the current and the reference coordinates are
centered on their centers of geometry, xcog(t) and x(ref)

cog . The root mean square displacement is
then defined as:

RMSD({xi(t)}, {x(ref)
i }) =

√√√√ 1
N

N∑
i=1

∣∣∣U (xi(t)− xcog(t))−
(
x(ref)

i − x(ref)
cog

)∣∣∣2 (39)

The optimal rotation U{xi(t)}→{x(ref)
i } is calculated within the formalism developed in reference [26],

which guarantees a continuous dependence of U{xi(t)}→{x(ref)
i } with respect to {xi(t)}.

List of keywords (see also 9.3.15 for additional options):

• atoms < Atom group >
Context: rmsd
Acceptable Values: atoms {...} block
Description: Defines the group of atoms of which the RMSD should be calculated. Optimal
fit options (such as refPositions and rotateReference) should typically NOT be set within
this block. Exceptions to this rule are the special cases discussed in the Advanced usage
paragraph below.

• refPositions < Reference coordinates >
Context: rmsd
Acceptable Values: space-separated list of (x, y, z) triplets
Description: This option (mutually exclusive with refPositionsFile) sets the reference
coordinates for RMSD calculation, and uses these to compute the roto-translational fit. It is
functionally equivalent to the option refPositions (see 9.4.2) in the atom group definition,
which also supports more advanced fitting options.

• refPositionsFile < Reference coordinates file >
Context: rmsd
Acceptable Values: UNIX filename
Description: This option (mutually exclusive with refPositions) sets the reference co-
ordinates for RMSD calculation, and uses these to compute the roto-translational fit. It
is functionally equivalent to the option refPositionsFile (see 9.4.2) in the atom group
definition, which also supports more advanced fitting options.

• refPositionsCol < PDB column containing atom flags >
Context: rmsd
Acceptable Values: O, B, X, Y, or Z
Description: If refPositionsFile is a PDB file that contains all the atoms in the topology,
this option may be provided to set which PDB field is used to flag the reference coordinates
for atoms.

138

• refPositionsColValue < Atom selection flag in the PDB column >
Context: rmsd
Acceptable Values: positive decimal
Description: If defined, this value identifies in the PDB column refPositionsCol of the
file refPositionsFile which atom positions are to be read. Otherwise, all positions with a
non-zero value are read.

• atomPermutation < Alternate ordering of atoms for RMSD computation >
Context: rmsd
Acceptable Values: List of atom numbers
Description: If defined, this parameter defines a re-ordering (permutation) of the 1-based
atom numbers that can be used to compute the RMSD, typically due to molecular symmetry.
This parameter can be specified multiple times, each one defining a new permutation: the
returned RMSD value is the minimum over the set of permutations. For example, if the atoms
making up the group are 6, 7, 8, 9, and atoms 7, 8, and 9 are invariant by circular permutation
(as the hydrogens in a CH3 group), a symmetry-adapted RMSD would be obtained by adding:
atomPermutation 6 8 9 7
atomPermutation 6 9 7 8
Note that this does not affect the least-squares roto-translational fit, which is done using the
topology ordering of atoms, and the reference positions in the order provided. Therefore, this
feature is mostly useful when using custom fitting parameters within the atom group, such
as fittingGroup (see 9.4.2), or when fitting is disabled altogether.

This component returns a positive real number (in Å).

Advanced usage of the rmsd component. In the standard usage as described above, the rmsd
component calculates a minimum RMSD, that is, current coordinates are optimally fitted onto the
same reference coordinates that are used to compute the RMSD value. The fit itself is handled
by the atom group object, whose parameters are automatically set by the rmsd component. For
very specific applications, however, it may be useful to control the fitting process separately from
the definition of the reference coordinates, to evaluate various types of non-minimal RMSD values.
This can be achieved by setting the related options (refPositions, etc.) explicitly in the atom
group block. This allows for the following non-standard cases:

1. applying the optimal translation, but no rotation (rotateReference off), to bias or restrain
the shape and orientation, but not the position of the atom group;

2. applying the optimal rotation, but no translation (centerReference off), to bias or restrain
the shape and position, but not the orientation of the atom group;

3. disabling the application of optimal roto-translations, which lets the RMSD component de-
scribe the deviation of atoms from fixed positions in the laboratory frame: this allows for
custom positional restraints within the Colvars module;

4. fitting the atomic positions to different reference coordinates than those used in the RMSD
calculation itself (by specifying refPositions (see 9.4.2) or refPositionsFile (see 9.4.2)
within the atom group as well as within the rmsd block);

139

5. applying the optimal rotation and/or translation from a separate atom group, defined through
fittingGroup: the RMSD then reflects the deviation from reference coordinates in a separate,
moving reference frame (see example in the section on fittingGroup (see 9.4.2)).

eigenvector: projection of the atomic coordinates on a vector. The block
eigenvector {...} defines the projection of the coordinates of a group of atoms (or more pre-
cisely, their deviations from the reference coordinates) onto a vector in R3n, where n is the number
of atoms in the group. The computed quantity is the total projection:

p({xi(t)}, {x(ref)
i }) =

n∑
i=1

vi ·
(
U(xi(t)− xcog(t))− (x(ref)

i − x(ref)
cog)

)
, (40)

where, as in the rmsd component, U is the optimal rotation matrix, xcog(t) and x(ref)
cog are the

centers of geometry of the current and reference positions respectively, and vi are the components
of the vector for each atom. Example choices for (vi) are an eigenvector of the covariance matrix
(essential mode), or a normal mode of the system. It is assumed that

∑
i vi = 0: otherwise, the

Colvars module centers the vi automatically when reading them from the configuration.
List of keywords (see also 9.3.15 for additional options):

• atoms: see definition of atoms in sec. 9.3.5 (rmsd component)

• refPositions: see definition of refPositions in sec. 9.3.5 (rmsd component)

• refPositionsFile: see definition of refPositionsFile in sec. 9.3.5 (rmsd component)

• refPositionsCol: see definition of refPositionsCol in sec. 9.3.5 (rmsd component)

• refPositionsColValue: see definition of refPositionsColValue in sec. 9.3.5 (rmsd com-
ponent)

• vector < Vector components >
Context: eigenvector
Acceptable Values: space-separated list of (x, y, z) triplets
Description: This option (mutually exclusive with vectorFile) sets the values of the
vector components.

• vectorFile < file containing vector components >
Context: eigenvector
Acceptable Values: UNIX filename
Description: This option (mutually exclusive with vector) sets the name of a coordinate
file containing the vector components; the file is read according to the same format used for
refPositionsFile. For a PDB file specifically, the components are read from the X, Y and
Z fields. Note: The PDB file has limited precision and fixed-point numbers: in some cases,
the vector components may not be accurately represented; a XYZ file should be used instead,
containing floating-point numbers.

• vectorCol < PDB column used to flag participating atoms >
Context: eigenvector
Acceptable Values: O or B
Description: Analogous to atomsCol.

140

• vectorColValue < Value used to flag participating atoms in the PDB file >
Context: eigenvector
Acceptable Values: positive decimal
Description: Analogous to atomsColValue.

• differenceVector < The 3n-dimensional vector is the difference between vector and
refPositions >
Context: eigenvector
Acceptable Values: boolean
Default Value: off
Description: If this option is on, the numbers provided by vector or vectorFile are
interpreted as another set of positions, x′i: the vector vi is then defined as vi =

(
x′i − x(ref)

i

)
.

This allows to conveniently define a colvar ξ as a projection on the linear transformation
between two sets of positions, “A” and “B”. For convenience, the vector is also normalized so
that ξ = 0 when the atoms are at the set of positions “A” and ξ = 1 at the set of positions
“B”.

This component returns a number (in Å), whose value ranges between the smallest and largest abso-
lute positions in the unit cell during the simulations (see also distanceZ). Due to the normalization
in eq. 40, this range does not depend on the number of atoms involved.

gyration: radius of gyration of a group of atoms. The block gyration {...} defines the pa-
rameters for calculating the radius of gyration of a group of atomic positions {x1(t),x2(t), . . .xN (t)}
with respect to their center of geometry, xcog(t):

Rgyr =

√√√√ 1
N

N∑
i=1

|xi(t)− xcog(t)|2 (41)

This component must contain one atoms {...} block to define the atom group, and returns a
positive number, expressed in Å.
List of keywords (see also 9.3.15 for additional options):

• atoms: see definition of atoms in sec. 9.3.5 (rmsd component)

inertia: total moment of inertia of a group of atoms. The block inertia {...} de-
fines the parameters for calculating the total moment of inertia of a group of atomic positions
{x1(t),x2(t), . . .xN (t)} with respect to their center of geometry, xcog(t):

I =
N∑

i=1

|xi(t)− xcog(t)|2 (42)

Note that all atomic masses are set to 1 for simplicity. This component must contain one
atoms {...} block to define the atom group, and returns a positive number, expressed in Å2.
List of keywords (see also 9.3.15 for additional options):

• atoms: see definition of atoms in sec. 9.3.5 (rmsd component)

141

dipoleMagnitude: dipole magnitude of a group of atoms. The dipoleMagnitude {...}
block defines the dipole magnitude of a group of atoms (norm of the dipole moment’s vector),
being atoms the group where dipole magnitude is calculated. It returns the magnitude in elementary
charge e times Å.
List of keywords (see also 9.3.15 for additional options):

• atoms: see definition of atoms in sec. 9.3.5 (rmsd component)

inertiaZ: total moment of inertia of a group of atoms around a chosen axis. The
block inertiaZ {...} defines the parameters for calculating the component along the axis e of
the moment of inertia of a group of atomic positions {x1(t),x2(t), . . .xN (t)} with respect to their
center of geometry, xcog(t):

Ie =
N∑

i=1

((xi(t)− xcog(t)) · e)2 (43)

Note that all atomic masses are set to 1 for simplicity. This component must contain one
atoms {...} block to define the atom group, and returns a positive number, expressed in Å2.
List of keywords (see also 9.3.15 for additional options):

• atoms: see definition of atoms in sec. 9.3.5 (rmsd component)

• axis < Projection axis (Å) >
Context: inertiaZ
Acceptable Values: (x, y, z) triplet
Default Value: (0.0, 0.0, 1.0)
Description: The three components of this vector define (when normalized) the projection
axis e.

9.3.6 Rotations

orientation: orientation from reference coordinates. The block orientation {...} re-
turns the same optimal rotation used in the rmsd component to superimpose the coordinates {xi(t)}
onto a set of reference coordinates {x(ref)

i }. Such component returns a four dimensional vector
q = (q0, q1, q2, q3), with

∑
i q

2
i = 1; this quaternion expresses the optimal rotation {xi(t)} → {x(ref)

i }
according to the formalism in reference [26]. The quaternion (q0, q1, q2, q3) can also be written as
(cos(θ/2), sin(θ/2)u), where θ is the angle and u the normalized axis of rotation; for example,
a rotation of 90◦ around the z axis is expressed as “(0.707, 0.0, 0.0, 0.707)”. The script
quaternion2rmatrix.tcl provides Tcl functions for converting to and from a 4× 4 rotation ma-
trix in a format suitable for usage in VMD.

As for the component rmsd, the available options are atoms, refPositionsFile,
refPositionsCol and refPositionsColValue, and refPositions.

Note: refPositionsand refPositionsFile define the set of positions from which the optimal
rotation is calculated, but this rotation is not applied to the coordinates of the atoms involved: it
is used instead to define the variable itself.
List of keywords (see also 9.3.15 for additional options):

• atoms: see definition of atoms in sec. 9.3.5 (rmsd component)

• refPositions: see definition of refPositions in sec. 9.3.5 (rmsd component)

142

• refPositionsFile: see definition of refPositionsFile in sec. 9.3.5 (rmsd component)

• refPositionsCol: see definition of refPositionsCol in sec. 9.3.5 (rmsd component)

• refPositionsColValue: see definition of refPositionsColValue in sec. 9.3.5 (rmsd com-
ponent)

• closestToQuaternion < Reference rotation >
Context: orientation
Acceptable Values: “(q0, q1, q2, q3)” quadruplet
Default Value: (1.0, 0.0, 0.0, 0.0) (“null” rotation)
Description: Between the two equivalent quaternions (q0, q1, q2, q3) and
(−q0,−q1,−q2,−q3), the closer to (1.0, 0.0, 0.0, 0.0) is chosen. This simplifies
the visualization of the colvar trajectory when sampled values are a smaller subset of all
possible rotations. Note: this only affects the output, never the dynamics.

Tip: stopping the rotation of a protein. To stop the rotation of an elongated macro-
molecule in solution (and use an anisotropic box to save water molecules), it is possible to define
a colvar with an orientation component, and restrain it through the harmonic bias around the
identity rotation, (1.0, 0.0, 0.0, 0.0). Only the overall orientation of the macromolecule is
affected, and not its internal degrees of freedom. The user should also take care that the macro-
molecule is composed by a single chain, or disable wrapAll otherwise.

orientationAngle: angle of rotation from reference coordinates. The block
orientationAngle {...} accepts the same base options as the component orientation: atoms,
refPositions, refPositionsFile, refPositionsCol and refPositionsColValue. The returned
value is the angle of rotation θ between the current and the reference positions. This angle is
expressed in degrees within the range [0◦:180◦].
List of keywords (see also 9.3.15 for additional options):

• atoms: see definition of atoms in sec. 9.3.5 (rmsd component)

• refPositions: see definition of refPositions in sec. 9.3.5 (rmsd component)

• refPositionsFile: see definition of refPositionsFile in sec. 9.3.5 (rmsd component)

• refPositionsCol: see definition of refPositionsCol in sec. 9.3.5 (rmsd component)

• refPositionsColValue: see definition of refPositionsColValue in sec. 9.3.5 (rmsd com-
ponent)

orientationProj: cosine of the angle of rotation from reference coordinates. The block
orientationProj {...} accepts the same base options as the component orientation: atoms,
refPositions, refPositionsFile, refPositionsCol and refPositionsColValue. The returned
value is the cosine of the angle of rotation θ between the current and the reference positions. The
range of values is [-1:1].
List of keywords (see also 9.3.15 for additional options):

• atoms: see definition of atoms in sec. 9.3.5 (rmsd component)

• refPositions: see definition of refPositions in sec. 9.3.5 (rmsd component)

143

• refPositionsFile: see definition of refPositionsFile in sec. 9.3.5 (rmsd component)

• refPositionsCol: see definition of refPositionsCol in sec. 9.3.5 (rmsd component)

• refPositionsColValue: see definition of refPositionsColValue in sec. 9.3.5 (rmsd com-
ponent)

spinAngle: angle of rotation around a given axis. The complete rotation described by
orientation can optionally be decomposed into two sub-rotations: one is a “spin” rotation around
e, and the other a “tilt” rotation around an axis orthogonal to e. The component spinAngle
measures the angle of the “spin” sub-rotation around e.
List of keywords (see also 9.3.15 for additional options):

• atoms: see definition of atoms in sec. 9.3.5 (rmsd component)

• refPositions: see definition of refPositions in sec. 9.3.5 (rmsd component)

• refPositionsFile: see definition of refPositionsFile in sec. 9.3.5 (rmsd component)

• refPositionsCol: see definition of refPositionsCol in sec. 9.3.5 (rmsd component)

• refPositionsColValue: see definition of refPositionsColValue in sec. 9.3.5 (rmsd com-
ponent)

• axis < Special rotation axis (Å) >
Context: tilt
Acceptable Values: (x, y, z) triplet
Default Value: (0.0, 0.0, 1.0)
Description: The three components of this vector define (when normalized) the special
rotation axis used to calculate the tilt and spinAngle components.

The component spinAngle returns an angle (in degrees) within the periodic interval [−180 : 180].
Note: the value of spinAngle is a continuous function almost everywhere, with the exception

of configurations with the corresponding “tilt” angle equal to 180◦ (i.e. the tilt component is
equal to −1): in those cases, spinAngle is undefined. If such configurations are expected, consider
defining a tilt colvar using the same axis e, and restraining it with a lower wall away from −1.

tilt: cosine of the rotation orthogonal to a given axis. The component tilt measures
the cosine of the angle of the “tilt” sub-rotation, which combined with the “spin” sub-rotation
provides the complete rotation of a group of atoms. The cosine of the tilt angle rather than the tilt
angle itself is implemented, because the latter is unevenly distributed even for an isotropic system:
consider as an analogy the angle θ in the spherical coordinate system. The component tilt relies
on the same options as spinAngle, including the definition of the axis e. The values of tilt are
real numbers in the interval [−1 : 1]: the value 1 represents an orientation fully parallel to e (tilt
angle = 0◦), and the value −1 represents an anti-parallel orientation.
List of keywords (see also 9.3.15 for additional options):

• atoms: see definition of atoms in sec. 9.3.5 (rmsd component)

• refPositions: see definition of refPositions in sec. 9.3.5 (rmsd component)

144

• refPositionsFile: see definition of refPositionsFile in sec. 9.3.5 (rmsd component)

• refPositionsCol: see definition of refPositionsCol in sec. 9.3.5 (rmsd component)

• refPositionsColValue: see definition of refPositionsColValue in sec. 9.3.5 (rmsd com-
ponent)

• axis: see definition of axis in sec. 9.3.6 (spinAngle component)

9.3.7 Protein structure descriptors

alpha: α-helix content of a protein segment. The block alpha {...} defines the parameters
to calculate the helical content of a segment of protein residues. The α-helical content across the
N + 1 residues N0 to N0 +N is calculated by the formula:

α
(
C(N0)

α ,O(N0),C(N0+1)
α ,O(N0+1), . . .N(N0+5),C(N0+5)

α ,O(N0+5), . . .N(N0+N),C(N0+N)
α

)
= (44)

1
2(N − 2)

N0+N−2∑
n=N0

angf
(
C(n)

α ,C(n+1)
α ,C(n+2)

α

)
+

1
2(N − 4)

N0+N−4∑
n=N0

hbf
(
O(n),N(n+4)

)
,

(45)

where the score function for the Cα − Cα − Cα angle is defined as:

angf
(
C(n)

α ,C(n+1)
α ,C(n+2)

α

)
=

1−
(
θ(C(n)

α ,C(n+1)
α ,C(n+2)

α)− θ0

)2
/ (∆θtol)

2

1−
(
θ(C(n)

α ,C(n+1)
α ,C(n+2)

α)− θ0

)4
/ (∆θtol)

4
, (46)

and the score function for the O(n) ↔ N(n+4) hydrogen bond is defined through a hBond colvar
component on the same atoms.
List of keywords (see also 9.3.15 for additional options):

• residueRange < Potential α-helical residues >
Context: alpha
Acceptable Values: “<Initial residue number>-<Final residue number>”
Description: This option specifies the range of residues on which this component should
be defined. The Colvars module looks for the atoms within these residues named “CA”, “N”
and “O”, and raises an error if any of those atoms is not found.

• psfSegID < PSF segment identifier >
Context: alpha
Acceptable Values: string (max 4 characters)
Description: This option sets the PSF segment identifier for the residues specified in
residueRange. This option is only required when PSF topologies are used.

• hBondCoeff < Coefficient for the hydrogen bond term >
Context: alpha
Acceptable Values: positive between 0 and 1
Default Value: 0.5
Description: This number specifies the contribution to the total value from the hydrogen
bond terms. 0 disables the hydrogen bond terms, 1 disables the angle terms.

145

• angleRef < Reference Cα − Cα − Cα angle >
Context: alpha
Acceptable Values: positive decimal
Default Value: 88◦

Description: This option sets the reference angle used in the score function (46).

• angleTol < Tolerance in the Cα − Cα − Cα angle >
Context: alpha
Acceptable Values: positive decimal
Default Value: 15◦

Description: This option sets the angle tolerance used in the score function (46).

• hBondCutoff < Hydrogen bond cutoff >
Context: alpha
Acceptable Values: positive decimal
Default Value: 3.3 Å
Description: Equivalent to the cutoff option in the hBond component.

• hBondExpNumer < Hydrogen bond numerator exponent >
Context: alpha
Acceptable Values: positive integer
Default Value: 6
Description: Equivalent to the expNumer option in the hBond component.

• hBondExpDenom < Hydrogen bond denominator exponent >
Context: alpha
Acceptable Values: positive integer
Default Value: 8
Description: Equivalent to the expDenom option in the hBond component.

This component returns positive values, always comprised between 0 (lowest α-helical score)
and 1 (highest α-helical score).

dihedralPC: protein dihedral principal component The block dihedralPC {...} de-
fines the parameters to calculate the projection of backbone dihedral angles within a pro-
tein segment onto a dihedral principal component, following the formalism of dihedral princi-
pal component analysis (dPCA) proposed by Mu et al.[79] and documented in detail by Al-
tis et al.[2]. Given a peptide or protein segment of N residues, each with Ramachandran
angles φi and ψi, dPCA rests on a variance/covariance analysis of the 4(N − 1) variables
cos(ψ1), sin(ψ1), cos(φ2), sin(φ2) · · · cos(φN), sin(φN). Note that angles φ1 and ψN have little impact
on chain conformation, and are therefore discarded, following the implementation of dPCA in the
analysis software Carma.[39]

For a given principal component (eigenvector) of coefficients (ki)1≤i≤4(N−1), the projection of
the current backbone conformation is:

ξ =
N−1∑
n=1

k4n−3 cos(ψn) + k4n−2 sin(ψn) + k4n−1 cos(φn+1) + k4n sin(φn+1) (47)

146

dihedralPC expects the same parameters as the alpha component for defining the relevant
residues (residueRange and psfSegID) in addition to the following:
List of keywords (see also 9.3.15 for additional options):

• residueRange: see definition of residueRange in sec. 9.3.7 (alpha component)

• psfSegID: see definition of psfSegID in sec. 9.3.7 (alpha component)

• vectorFile < File containing dihedral PCA eigenvector(s) >
Context: dihedralPC
Acceptable Values: file name
Description: A text file containing the coefficients of dihedral PCA eigenvectors on the
cosine and sine coordinates. The vectors should be arranged in columns, as in the files output
by Carma.[39]

• vectorNumber < File containing dihedralPCA eigenvector(s) >
Context: dihedralPC
Acceptable Values: positive integer
Description: Number of the eigenvector to be used for this component.

9.3.8 Raw data: building blocks for custom functions

cartesian: vector of atomic Cartesian coordinates. The cartesian {...} block defines a
component returning a flat vector containing the Cartesian coordinates of all participating atoms,
in the order (x1, y1, z1, · · · , xn, yn, zn).
List of keywords (see also 9.3.15 for additional options):

• atoms < Group of atoms >
Context: cartesian
Acceptable Values: Block atoms {...}
Description: Defines the atoms whose coordinates make up the value of the component.
If rotateReference or centerReference are defined, coordinates are evaluated within the
moving frame of reference.

distancePairs: set of pairwise distances between two groups. The distancePairs {...}
block defines a N1×N2-dimensional variable that includes all mutual distances between the atoms
of two groups. This can be useful, for example, to develop a new variable defined over two groups,
by using the scriptedFunction feature.
List of keywords (see also 9.3.15 for additional options):

• group1: see definition of group1 in sec. 9.3.2 (distance component)

• group2: analogous to group1

• forceNoPBC: see definition of forceNoPBC in sec. 9.3.2 (distance component)

This component returns a N1 × N2-dimensional vector of numbers, each ranging from 0 to the
largest possible distance within the chosen boundary conditions.

147

9.3.9 Geometric path collective variables

The geometric path collective variables define the progress along a path, s, and the distance from
the path, z. These CVs are proposed by Leines and Ensing[63] , which differ from that[12] proposed
by Branduardi et al., and utilize a set of geometric algorithms. The path is defined as a series of
frames in the atomic Cartesian coordinate space or the CV space. s and z are computed as

s =
m

M
± 1

2M

(√
(v1 · v3)2 − |v3|2(|v1|2 − |v2|2)− (v1 · v3)

|v3|2
− 1

)
(48)

z =

√√√√(v1 +
1
2

(√
(v1 · v3)2 − |v3|2(|v1|2 − |v2|2)− (v1 · v3)

|v3|2
− 1

)
v4

)2

(49)

where v1 = sm − z is the vector connecting the current position to the closest frame, v2 =
z− sm−1 is the vector connecting the second closest frame to the current position, v3 = sm+1− sm

is the vector connecting the closest frame to the third closest frame, and v4 = sm − sm−1 is the
vector connecting the second closest frame to the closest frame. m and M are the current index
of the closest frame and the total number of frames, respectively. If the current position is on the
left of the closest reference frame, the ± in s turns to the positive sign. Otherwise it turns to the
negative sign.

The equations above assume: (i) the frames are equidistant and (ii) the second and the third
closest frames are neighbouring to the closest frame. When these assumptions are not satisfied,
this set of path CV should be used carefully.

gspath: progress along a path defined in atomic Cartesian coordinate space. In the
gspath {...} and the gzpath {...} block all vectors, namely z and sk are defined in atomic
Cartesian coordinate space. More specifically, z = [r1, · · · , rn], where ri is the i-th atom specified
in the atoms block. sk = [rk,1, · · · , rk,n], where rk,i means the i-th atom of the k-th reference frame.
List of keywords (see also 9.3.15 for additional options):

• atoms < Group of atoms >
Context: gspath and gzpath
Acceptable Values: Block atoms {...}
Description: Defines the atoms whose coordinates make up the value of the component.

• refPositionsCol < PDB column containing atom flags >
Context: gspath and gzpath
Acceptable Values: O, B, X, Y, or Z
Description: If refPositionsFileN is a PDB file that contains all the atoms in the
topology, this option may be provided to set which PDB field is used to flag the reference
coordinates for atoms.

• refPositionsFileN < File containing the reference positions for fitting >
Context: gspath and gzpath
Acceptable Values: UNIX filename
Description: The path is defined by multiple refPositionsFiles which are similiar to
refPositionsFile in the rmsd CV. If your path consists of 10 nodes, you can list the coor-
dinate file (in PDB or XYZ format) from refPositionsFile1 to refPositionsFile10.

148

• useSecondClosestFrame < Define sm−1 as the second closest frame? >
Context: gspath and gzpath
Acceptable Values: boolean
Default Value: on
Description: The definition assumes the second closest frame is neighbouring to the closest
frame. This is not always true especially when the path is crooked. If this option is set to
on (default), sm−1 is defined as the second closest frame. If this option is set to off, sm−1 is
defined as the left or right neighbouring frame of the closest frame.

• useThirdClosestFrame < Define sm+1 as the third closest frame? >
Context: gspath and gzpath
Acceptable Values: boolean
Default Value: off
Description: The definition assumes the third closest frame is neighbouring to the closest
frame. This is not always true especially when the path is crooked. If this option is set to
on, sm+1 is defined as the third closest frame. If this option is set to off (default), sm+1 is
defined as the left or right neighbouring frame of the closest frame.

• fittingAtoms < The atoms that are used for alignment >
Context: gspath and gspath
Acceptable Values: Group of atoms
Description: Before calculating v1, v2, v3 and v4, the current frame need to be aligned
to the corresponding reference frames. This option specifies which atoms are used to do
alignment.

gzpath: distance from a path defined in atomic Cartesian coordinate space. List of
keywords (see also 9.3.15 for additional options):

• useZsquare < Compute z2 instead of z >
Context: gzpath
Acceptable Values: boolean
Default Value: off
Description: z is not differentiable when it is zero. This implementation workarounds it
by setting the derivative of z to zero when z = 0. Another workaround is set this option to
on, which computes z2 instead of z, and then z2 is differentiable when it is zero.

The usage of gzpath and gspath is illustrated below:

colvar {
Progress along the path
name gs
The path is defined by 5 reference frames (from string-00.pdb to

string-04.pdb)
Use atomic coordinate from atoms 1, 2 and 3 to compute the path
gspath {

atoms {atomnumbers { 1 2 3 }}
refPositionsFile1 string-00.pdb
refPositionsFile2 string-01.pdb

149

refPositionsFile3 string-02.pdb
refPositionsFile4 string-03.pdb
refPositionsFile5 string-04.pdb

}
}
colvar {

Distance from the path
name gz
The path is defined by 5 reference frames (from string-00.pdb to

string-04.pdb)
Use atomic coordinate from atoms 1, 2 and 3 to compute the path
gzpath {

atoms {atomnumbers { 1 2 3 }}
refPositionsFile1 string-00.pdb
refPositionsFile2 string-01.pdb
refPositionsFile3 string-02.pdb
refPositionsFile4 string-03.pdb
refPositionsFile5 string-04.pdb

}
}

linearCombination: Helper CV to define a linear combination of other CVs This is a
helper CV which can be defined as a linear combination of other CVs. It maybe useful when you
want to define the gspathCV {...} and the gzpathCV {...} as combinations of other CVs.

gspathCV: progress along a path defined in CV space. In the gspathCV {...} and the
gzpathCV {...} block all vectors, namely z and sk are defined in CV space. More specifically,
z = [ξ1, · · · , ξn], where ξi is the i-th CV. sk = [ξk,1, · · · , ξk,n], where ξk,i means the i-th CV of the
k-th reference frame. It should be note that these two CVs requires the pathFile option, which
specifies a path file. Each line in the path file contains a set of space-seperated CV value of the
reference frame. The sequence of reference frames matches the sequence of the lines.
List of keywords (see also 9.3.15 for additional options):

• useSecondClosestFrame < Define sm−1 as the second closest frame? >
Context: gspathCV and gzpathCV
Acceptable Values: boolean
Default Value: on
Description: The definition assumes the second closest frame is neighbouring to the closest
frame. This is not always true especially when the path is crooked. If this option is set to
on (default), sm−1 is defined as the second closest frame. If this option is set to off, sm−1 is
defined as the left or right neighbouring frame of the closest frame.

• useThirdClosestFrame < Define sm+1 as the third closest frame? >
Context: gspathCV and gzpathCV
Acceptable Values: boolean
Default Value: off
Description: The definition assumes the third closest frame is neighbouring to the closest

150

frame. This is not always true especially when the path is crooked. If this option is set to
on, sm+1 is defined as the third closest frame. If this option is set to off (default), sm+1 is
defined as the left or right neighbouring frame of the closest frame.

• pathFile < The file name of the path file. >
Context: gspathCV and gzpathCV
Acceptable Values: UNIX filename
Description: Defines the nodes or images that constitutes the path in CV space. The CVs
of an image are listed in a line of pathFile using space-seperated format. Lines from top to
button in pathFile corresponds images from initial to last.

gzpathCV: distance from a path defined in CV space. List of keywords (see also 9.3.15
for additional options):

• useZsquare < Compute z2 instead of z >
Context: gzpathCV
Acceptable Values: boolean
Default Value: off
Description: z is not differentiable when it is zero. This implementation workarounds it
by setting the derivative of z to zero when z = 0. Another workaround is set this option to
on, which computes z2 instead of z, and then z2 is differentiable when it is zero.

The usage of gzpathCV and gspathCV is illustrated below:

colvar {
Progress along the path
name gs
Path defined by the CV space of two dihedral angles
gspathCV {

pathFile ./path.txt
dihedral {
name 001
group1 {atomNumbers {5}}
group2 {atomNumbers {7}}
group3 {atomNumbers {9}}
group4 {atomNumbers {15}}

}
dihedral {
name 002
group1 {atomNumbers {7}}
group2 {atomNumbers {9}}
group3 {atomNumbers {15}}
group4 {atomNumbers {17}}

}
}

}
colvar {

Distance from the path

151

name gz
gzpathCV {

pathFile ./path.txt
dihedral {
name 001
group1 {atomNumbers {5}}
group2 {atomNumbers {7}}
group3 {atomNumbers {9}}
group4 {atomNumbers {15}}

}
dihedral {
name 002
group1 {atomNumbers {7}}
group2 {atomNumbers {9}}
group3 {atomNumbers {15}}
group4 {atomNumbers {17}}

}
}

}

9.3.10 Arithmetic path collective variables

The arithmetic path collective variable in CV space uses the same formula as the one proposed by
Branduardi[12] et al., except that it computes s and z in CV space instead of RMSDs in Cartesian
space. Moreover, this implementation allows different coefficients for each CV components as
described in [59]. Assuming a path is composed of N reference frames and defined in an M -
dimensional CV space, then the equations of s and z of the path are

s =

∑N
i=1 i exp

(
−λ
∑M

j=1 c
2
j (xj − xi,j)

2
)

∑N
i=1 exp

(
−λ
∑M

j=1 c
2
j (xj − xi,j)

2
) (50)

z = − 1
λ

ln

 N∑
i=1

exp

−λ M∑
j=1

c2j (xj − xi,j)

 (51)

where cj is the coefficient(weight) of the j-th CV, xi,j is the value of j-th CV of i-th reference frame
and xj is the value of j-th CV of current frame. λ is a parameter to smooth the variation of s and
z.

aspathCV: progress along a path defined in CV space. This colvar component computes
the s variable.
List of keywords (see also 9.3.15 for additional options):

• weights < Coefficients of the collective variables >
Context: aspathCV and azpathCV
Acceptable Values: space-separated numbers in a {...} block
Default Value: {1.0 ...}

152

Description: Define the coefficients. The j-th value in the {...} block corresponds the cj
in the equations.

• lambda < Smoothness of the variation of s and z >
Context: aspathCV and azpathCV
Acceptable Values: decimal
Default Value: inverse of the mean square displacements of successive reference frames
Description: The value of λ in the equations.

• pathFile < The file name of the path file. >
Context: aspathCV and azpathCV
Acceptable Values: UNIX filename
Description: Defines the nodes or images that constitutes the path in CV space. The CVs
of an image are listed in a line of pathFile using space-seperated format. Lines from top to
button in pathFile corresponds images from initial to last.

azpathCV: distance from a path defined in CV space. This colvar component computes the
z variable. Options are the same as in 9.3.10.

The usage of azpathCV and aspathCV is illustrated below:

colvar {
Progress along the path
name as
Path defined by the CV space of two dihedral angles
aspathCV {

pathFile ./path.txt
weights {1.0 1.0}
lambda 0.005
dihedral {
name 001
group1 {atomNumbers {5}}
group2 {atomNumbers {7}}
group3 {atomNumbers {9}}
group4 {atomNumbers {15}}

}
dihedral {
name 002
group1 {atomNumbers {7}}
group2 {atomNumbers {9}}
group3 {atomNumbers {15}}
group4 {atomNumbers {17}}

}
}

}
colvar {

Distance from the path
name az

153

azpathCV {
pathFile ./path.txt
weights {1.0 1.0}
lambda 0.005
dihedral {
name 001
group1 {atomNumbers {5}}
group2 {atomNumbers {7}}
group3 {atomNumbers {9}}
group4 {atomNumbers {15}}

}
dihedral {
name 002
group1 {atomNumbers {7}}
group2 {atomNumbers {9}}
group3 {atomNumbers {15}}
group4 {atomNumbers {17}}

}
}

}

Path collective variables in Cartesian coordinates The path collective variables defined by
Branduardi et al. [12] are based on RMSDs in Cartesian coordinates. Noting di the RMSD between
the current set of Cartesian coordinates and those of image number i of the path:

s =
1

N − 1

∑N
i=1(i− 1) exp

(
−λd2

i

)∑N
i=1 exp

(
−λd2

i

) (52)

z = − 1
λ

ln

(
N∑

i=1

exp(−λd2
i)

)
(53)

where λ is the smoothing parameter.
These coordinates are implemented as Tcl-scripted combinations of rmsd components. The

implementation is available as file colvartools/pathCV.tcl, and an example is provided in file
examples/10 pathCV.namd of the Colvars public repository. It implements an optimization pro-
cedure, whereby the distance to a given image is only calculated if its contribution to the sum is
larger than a user-defined tolerance parameter. All distances are calculated every freq timesteps
to update the list of nearby images.

9.3.11 Volumetric map-based variables

Volumetric maps of the Cartesian coordinates, typically defined as mesh grid along the three Carte-
sian axes, may be used to define collective variables. This feature is currently available in NAMD,
implemented as an interface between Colvars and GridForces (see section 8). Please cite [34] when
using this implementation of collective variables based on volumetric maps.

154

mapTotal: total value of a volumetric map Given a function of the Cartesian coordinates
φ(x) = φ(x, y, z), a mapTotal collective variable component Φ(X) is defined as the sum of the
values of the function φ(x) evaluated at the coordinates of each atom, xi:

Φ(X) =
N∑

i=1

φ(xi) (54)

This formulation allows, for example, to “count” the number of atoms within a region of space
by using a positive-valued function φ(x), such as for example the number of water molecules in a
hydrophobic cavity [34].

Because the volumetric map itself and the atoms affected by it are defined externally to Colvars,
this component has a very limited number of keywords. List of keywords (see also 9.3.15 for
additional options):

• mapName < Specify the name of the volumetric map to use as a colvar >
Context: mapTotal
Acceptable Values: string
Description: The value of this option specifies the label of the volumetric map to use for
this collective variable component. This label must identify a map already loaded in NAMD
via mGridForcePotFile, and its value of mGridForceScale needs to be set to (0, 0, 0), so
that its collective force can be computed dynamically.

Example: biasing the number of molecules inside a cavity using a volumetric map.
Firstly, a volumetric map that has a value of 1 inside the cavity and 0 outside should be

prepared. A reasonable starting point may be obtained, for example, with VMD: using an
existing trajectory where the cavity is occupied by solvent and a spatial selection that identifies
all the molecules within the cavity, volmap occupancy -allframes -combine max computes
the occupancy map as a step function (values 1 or 0), and volutil -smooth ... makes it a
continuous map, suitable for use as a MD simulation bias. A PDB file defining the selection
(for example, where all water oxygens and ions have an occupancy of 1 and other atoms 0) is
also prepared using VMD. Both the map file and the atom selection file are then loaded via the
mGridForcePotFile and related NAMD commands:

mGridForce yes
mGridForcePotFile Cavity cavity.dx # OpenDX map file
mGridForceFile Cavity water-sel.pdb # PDB file used for atom selection
mGridForceCol Cavity O # Use the occupancy column of the PDB file
mGridForceChargeCol Cavity B # Use beta as ‘‘charge’’ (default: electric
charge)
mGridForceScale Cavity 0.0 0.0 0.0 # Do not use GridForces for this map

The value of mGridForceScale is particularly important, because it determines the GridForces
force constant for the “Cavity” map. A non-zero value enables a conventional GridForces
calculation, where the force constant remains fixed within each run command and the forces on
the atoms depend only on their positions in space. However, setting mGridForceScale to zero
signals to NAMD that the force acting through the volumetric map may be computed dynamically,
as part of a collective-variable biasing scheme. To do so, the map labeled “Cavity” needs to be

155

referred to in the Colvars configuration:

cv config "
colvar {
name n waters
mapTotal {

mapName Cavity # Same label as the GridForce map
}

}"

The variable “n waters” may then be used with any of the enhanced sampling methods available
(9.5): new forces applied to it at each simulation step will be transmitted to the corresponding
atoms within the same step.

Multiple volumetric maps collective variables To study processes that involve changes in
shape of a macromolecular aggregate (for example, deformations of lipid membranes) it is useful to
define collective variables based on more than one volumetric map at a time, measuring the relative
similarity with each map while still achieving correct thermodynamic sampling of each state.

This is achieved by combining multiple mapTotal components, each based on a differently-
shaped volumetric map, into a single collective variable ξ. To track transitions between states, the
contribution of each map to ξ should be discriminated from the others, for example by assigning to it
a different weight. The “Multi-Map” progress variable [34] uses a weight sum of these components,
using linearly-increasing weights:

ξ(X) =
K∑

k=1

Φk(X) =
K∑

k=1

k

N∑
i=1

φk(xi) (55)

where K is the number of maps employed and each Φk is a mapTotal component.

Example: transitions between macromolecular shapes using volumetric maps.
A series of map files, each representing a different shape, is loaded into NAMD:
mGridForce yes
for { set k 1 } { $k <= $K } { incr k } {
mGridForcePotFile Shape $k map $k.dx # Density map of the k-th state
mGridForceFile Shape $k atoms.pdb # PDB file used for atom selection
mGridForceCol Shape $k O # Use the occupancy column of the PDB file atoms.pdb
mGridForceChargeCol Shape $k B # Use beta as ‘‘charge’’ (default: electric

charge)
mGridForceScale Shape $k 0.0 0.0 0.0 # Do not use GridForces for this map

}
The GridForces maps thus loaded are then used to define the Multi-Map collective variable, with
coefficients ξk = k [34]:
Collect the definition of all components into one string
set components "
for { set k 1 } { $k <= $K } { incr k } {

set components "${components}
mapTotal {

156

mapName Shape $k
componentCoeff $k

}
"
}
Use this string to define the variable
cv config "
colvar {
name shapes
${components}

}"

The above example illustrates a use case where a weighted sum (i.e. a linear combination)
is used to define a single variable from multiple components. Depending on the problem under
study, non-linear functions may be more appropriate. These may be defined a custom functions if
implemented (see 9.3.16), or scripted functions (see 9.3.17).

9.3.12 Shared keywords for all components

The following options can be used for any of the above colvar components in order to obtain a
polynomial combination or any user-supplied function provided by scriptedFunction (see 9.3.15).

• name < Name of this component >
Context: any component
Acceptable Values: string
Default Value: type of component + numeric id
Description: The name is an unique case-sensitive string which allows the Colvars module
to identify this component. This is useful, for example, when combining multiple components
via a scriptedFunction. It also defines the variable name representing the component’s
value in a customFunction (see 9.3.16) expression.

• scalable < Attempt to calculate this component in parallel? >
Context: any component
Acceptable Values: boolean
Default Value: on, if available
Description: If set to on (default), the Colvars module will attempt to calculate this com-
ponent in parallel to reduce overhead. Whether this option is available depends on the type
of component: currently supported are distance, distanceZ, distanceXY, distanceVec,
distanceDir, angle and dihedral. This flag influences computational cost, but does not
affect numerical results: therefore, it should only be turned off for debugging or testing pur-
poses.

9.3.13 Periodic components

The following components returns real numbers that lie in a periodic interval:

• dihedral: torsional angle between four groups;

157

• spinAngle: angle of rotation around a predefined axis in the best-fit from a set of reference
coordinates.

In certain conditions, distanceZ can also be periodic, namely when periodic boundary conditions
(PBCs) are defined in the simulation and distanceZ’s axis is parallel to a unit cell vector.

In addition, a custom or scripted scalar colvar may be periodic depending on its user-defined
expression. It will only be treated as such by the Colvars module if the period is specified using
the period keyword, while wrapAround is optional.

The following keywords can be used within periodic components, or within custom variables
(9.3.16), or wthin scripted variables 9.3.17).

• period < Period of the component >
Context: distanceZ, custom colvars
Acceptable Values: positive decimal
Default Value: 0.0
Description: Setting this number enables the treatment of distanceZ as a periodic com-
ponent: by default, distanceZ is not considered periodic. The keyword is supported, but
irrelevant within dihedral or spinAngle, because their period is always 360 degrees.

• wrapAround < Center of the wrapping interval for periodic variables >
Context: distanceZ, dihedral, spinAngle, custom colvars
Acceptable Values: decimal
Default Value: 0.0
Description: By default, values of the periodic components are centered around zero,
ranging from −P/2 to P/2, where P is the period. Setting this number centers the interval
around this value. This can be useful for convenience of output, or to set the walls for a
harmonicWalls in an order that would not otherwise be allowed.

Internally, all differences between two values of a periodic colvar follow the minimum image
convention: they are calculated based on the two periodic images that are closest to each other.

Note: linear or polynomial combinations of periodic components (see 9.3.15) may become mean-
ingless when components cross the periodic boundary. Use such combinations carefully: estimate
the range of possible values of each component in a given simulation, and make use of wrapAround
to limit this problem whenever possible.

9.3.14 Non-scalar components

When one of the following components are used, the defined colvar returns a value that is not a
scalar number:

• distanceVec: 3-dimensional vector of the distance between two groups;

• distanceDir: 3-dimensional unit vector of the distance between two groups;

• orientation: 4-dimensional unit quaternion representing the best-fit rotation from a set of
reference coordinates.

The distance between two 3-dimensional unit vectors is computed as the angle between them. The
distance between two quaternions is computed as the angle between the two 4-dimensional unit

158

vectors: because the orientation represented by q is the same as the one represented by−q, distances
between two quaternions are computed considering the closest of the two symmetric images.

Non-scalar components carry the following restrictions:

• Calculation of total forces (outputTotalForce option) is currently not implemented.

• Each colvar can only contain one non-scalar component.

• Binning on a grid (abf, histogram and metadynamics with useGrids enabled) is currently
not implemented for colvars based on such components.

Note: while these restrictions apply to individual colvars based on non-scalar components, no
limit is set to the number of scalar colvars. To compute multi-dimensional histograms and PMFs,
use sets of scalar colvars of arbitrary size.

Calculating total forces In addition to the restrictions due to the type of value computed (scalar
or non-scalar), a final restriction can arise when calculating total force (outputTotalForce option
or application of a abf bias). total forces are available currently only for the following components:
distance, distanceZ, distanceXY, angle, dihedral, rmsd, eigenvector and gyration.

9.3.15 Linear and polynomial combinations of components

To extend the set of possible definitions of colvars ξ(r), multiple components qi(r) can be summed
with the formula:

ξ(r) =
∑

i

ci[qi(r)]ni (56)

where each component appears with a unique coefficient ci (1.0 by default) the positive integer
exponent ni (1 by default).

Any set of components can be combined within a colvar, provided that they return the same
type of values (scalar, unit vector, vector, or quaternion). By default, the colvar is the sum of
its components. Linear or polynomial combinations (following equation (56)) can be obtained by
setting the following parameters, which are common to all components:

• componentCoeff < Coefficient of this component in the colvar >
Context: any component
Acceptable Values: decimal
Default Value: 1.0
Description: Defines the coefficient by which this component is multiplied (after being
raised to componentExp) before being added to the sum.

• componentExp < Exponent of this component in the colvar >
Context: any component
Acceptable Values: integer
Default Value: 1
Description: Defines the power at which the value of this component is raised before being
added to the sum. When this exponent is different than 1 (non-linear sum), total forces and
the Jacobian force are not available, making the colvar unsuitable for ABF calculations.

Example: To define the average of a colvar across different parts of the system, simply define
within the same colvar block a series of components of the same type (applied to different atom
groups), and assign to each component a componentCoeff of 1/N .

159

9.3.16 Custom functions

Collective variables may be defined by specifying a custom function as an analytical expression.
The expression is parsed by Lepton, the lightweight expression parser written by Peter Eastman
(https://simtk.org/projects/lepton). Lepton produces efficient evaluation routines for the
function and its derivatives.

• customFunction < Compute colvar as a custom function of its components >
Context: colvar
Acceptable Values: string
Description: Mathematical expression to define the colvar as a closed-form function of
its colvar components. See below for the detailed syntax of Lepton expressions. Multiple
mentions of this keyword can be used to define a vector variable (as in the example below).

• customFunctionType < Type of value returned by the scripted colvar >
Context: colvar
Acceptable Values: string
Default Value: scalar
Description: With this flag, the user may specify whether the colvar is a scalar or one of
the following vector types: vector3 (a 3D vector), unit vector3 (a normalized 3D vector),
or unit quaternion (a normalized quaternion), or vector. Note that the scalar and vector
cases are not necessary, as they are detected automatically.

The expression may use the collective variable components as variables, referred to by their
user-defined name. Scalar elements of vector components may be accessed by appending a 1-
based index to their name, as in the example below. When implementing generic functions of
Cartesian coordinates rather than functions of existing components, the cartesian component
may be particularly useful. A scalar-valued custom variable may be manually defined as periodic
by providing the keyword period, and the optional keyword wrapAround, with the same meaning
as in periodic components (see 9.3.13 for details). A vector variable may be defined by specifying
the customFunction parameter several times: each expression defines one scalar element of the
vector colvar, as in this example:

colvar {
name custom

A 2-dimensional vector function of a scalar x and a 3-vector r
customFunction cos(x) * (r1 + r2 + r3)
customFunction sqrt(r1 * r2)

distance {
name x
group1 { atomNumbers 1 }
group2 { atomNumbers 50 }

}
distanceVec {

name r
group1 { atomNumbers 10 11 12 }

160

https://simtk.org/projects/lepton

group2 { atomNumbers 20 21 22 }
}

}
Numeric constants may be given in either decimal or exponential form (e.g. 3.12e-2). An

expression may be followed by definitions for intermediate values that appear in the expression,
separated by semicolons. For example, the expression:
a^2 + a*b + b^2; a = a1 + a2; b = b1 + b2
is exactly equivalent to:
(a1 + a2)^2 + (a1 + a2) * (b1 + b2) + (b1 + b2)^2.
The definition of an intermediate value may itself involve other intermediate values. All uses of a
value must appear before that value’s definition.

Lepton supports the usual arithmetic operators +, -, *, /, and ˆ (power), as well as the following
functions:

sqrt Square root
exp Exponential
log Natural logarithm
erf Error function
erfc Complementary error function
sin Sine (angle in radians)
cos Cosine (angle in radians)
sec Secant (angle in radians)
csc Cosecant (angle in radians)
tan Tangent (angle in radians)
cot Cotangent (angle in radians)
asin Inverse sine (in radians)
acos Inverse cosine (in radians)
atan Inverse tangent (in radians)
atan2 Two-argument inverse tangent (in radians)
sinh Hyperbolic sine
cosh Hyperbolic cosine
tanh Hyperbolic tangent
abs Absolute value
floor Floor
ceil Ceiling
min Minimum of two values
max Maximum of two values
delta delta(x) = 1 if x = 0, 0 otherwise
step step(x) = 0 if x < 0, 1 if x >= 0
select select(x, y, z) = z if x = 0, y otherwise

9.3.17 Scripted functions

When scripting is supported (default in NAMD), a colvar may be defined as a scripted function
of its components, rather than a linear or polynomial combination. When implementing generic
functions of Cartesian coordinates rather than functions of existing components, the cartesian
component may be particularly useful. A scalar-valued scripted variable may be manually defined

161

as periodic by providing the keyword period, and the optional keyword wrapAround, with the same
meaning as in periodic components (see 9.3.13 for details).

An example of elaborate scripted colvar is given in example 10, in the form of path-based
collective variables as defined by Branduardi et al[12] (Section 9.3.10).

• scriptedFunction < Compute colvar as a scripted function of its components >
Context: colvar
Acceptable Values: string
Description: If this option is specified, the colvar will be computed as a scripted function
of the values of its components. To that effect, the user should define two Tcl procedures:
calc <scriptedFunction> and calc <scriptedFunction> gradient, both accepting as
many parameters as the colvar has components. Values of the components will be passed to
those procedures in the order defined by their sorted name strings. Note that if all components
are of the same type, their default names are sorted in the order in which they are defined,
so that names need only be specified for combinations of components of different types.
calc <scriptedFunction> should return one value of type <scriptedFunctionType>, cor-
responding to the colvar value. calc <scriptedFunction> gradient should return a Tcl
list containing the derivatives of the function with respect to each component. If both the
function and some of the components are vectors, the gradient is really a Jacobian ma-
trix that should be passed as a linear vector in row-major order, i.e. for a function fi(xj):
∇xf1∇xf2 · · · .

• scriptedFunctionType < Type of value returned by the scripted colvar >
Context: colvar
Acceptable Values: string
Default Value: scalar
Description: If a colvar is defined as a scripted function, its type is not constrained by the
types of its components. With this flag, the user may specify whether the colvar is a scalar
or one of the following vector types: vector3 (a 3D vector), unit vector3 (a normalized 3D
vector), or unit quaternion (a normalized quaternion), or vector (a vector whose size is
specified by scriptedFunctionVectorSize). Non-scalar values should be passed as space-
separated lists.

• scriptedFunctionVectorSize < Dimension of the vector value of a scripted colvar >
Context: colvar
Acceptable Values: positive integer
Description: This parameter is only valid when scriptedFunctionType is set to vector.
It defines the vector length of the colvar value returned by the function.

9.3.18 Defining grid parameters

Many algorithms require the definition of boundaries and/or characteristic spacings that can be
used to define discrete “states” in the collective variable, or to combine variables with very different
units. The parameters described below offer a way to specify these parameters only once for each
variable, while using them multiple times in restraints, time-dependent biases or analysis methods.

• width < Unit of the variable, or grid spacing >
Context: colvar

162

Acceptable Values: positive decimal
Default Value: 1.0
Description: This number defines the effective unit of measurement for the collective
variable, and is used by the biasing methods for the following purposes. Harmonic (9.5.5),
harmonic walls (9.5.7) and linear restraints (9.5.8) use it to set the physical unit of the force
constant, which is useful for multidimensional restraints involving multiple variables with
very different units (for examples, Å or degrees ◦) with a single, scaled force constant. The
values of the scaled force constant in the units of each variable are printed at initialization
time. Histograms (9.5.10), ABF (9.5.2) and metadynamics (9.5.4) all use this number as the
initial choice for the grid spacing along this variable: for this reason, width should generally
be no larger than the standard deviation of the colvar in an unbiased simulation. Unless it is
required to control the spacing, it is usually simplest to keep the default value of 1, so that
restraint force constants are provided with their full physical unit.

• lowerBoundary < Lower boundary of the colvar >
Context: colvar
Acceptable Values: decimal
Default Value: natural boundary of the function
Description: Defines the lowest end of the interval of “relevant” values for the variable.
This number can be, for example, a true physical boundary imposed by the choice of function
(e.g. the distance function is always larger than zero): if this is the case, and only one
function is used to define the variable, the default value of this number is set to the lowest
end of the range of values of that function, if available (see Section 9.3.1). Alternatively, this
value may be provided by the user, to represent for example the left-most point of a PMF
calculation along this variable. In the latter case, it is the user’s responsibility to either (a)
ensure the variable does not go significantly beyond the boundary (for example by adding a
harmonicWalls restraint, 9.5.7), or (b) instruct the code that this is a true physical boundary
by setting hardLowerBoundary (see 9.3.18).

• upperBoundary < Upper boundary of the colvar >
Context: colvar
Acceptable Values: decimal
Default Value: natural boundary of the function
Description: Similarly to lowerBoundary, defines the highest of the “relevant” values of
the variable.

• hardLowerBoundary < Whether the lower boundary is the physical lower limit >
Context: colvar
Acceptable Values: boolean
Default Value: provided by the component
Description: When the colvar has a “natural” boundary (for example, a distance colvar
cannot go below 0) this flag is automatically enabled. For more complex variable definitions,
or when lowerBoundary (see 9.3.18) is provided directly by the user, it may be useful to set
this flag explicitly. This option does not affect simulation results, but enables some internal
optimizations by letting the code know that the variable is unable to cross the lower boundary,
regardless of whether restraints are applied to it.

163

• hardUpperBoundary < Whether the upper boundary is the physical upper limit of the
colvar’s values >
Context: colvar
Acceptable Values: boolean
Default Value: provided by the component
Description: Analogous to hardLowerBoundary.

• expandBoundaries < Allow to expand the two boundaries if needed >
Context: colvar
Acceptable Values: boolean
Default Value: off
Description: If defined, lowerBoundary and upperBoundary may be automatically ex-
panded to accommodate colvar values that do not fit in the initial range. Currently, this
option is used by the metadynamics bias (9.5.4) to keep all of its hills fully within the grid.
This option cannot be used when the initial boundaries already span the full period of a
periodic colvar.

Grid files: multicolumn text format Many simulation methods and analysis tools write files
that contain functions of the collective variables tabulated on a grid (e.g. potentials of mean force
or multidimentional histograms) for the purpose of analyzing results. Such files are produced by
ABF (9.5.2), metadynamics (9.5.4), multidimensional histograms (9.5.10), as well as any restraint
with optional thermodynamic integration support (9.5.1).

In some cases, these files may also be read as input of a new simulation. Suitable input files
for this purpose are typically generated as output files of previous simulations, or directly by
the user in the specific case of ensemble-biased metadynamics (9.5.4). This section explains the
“multicolumn” format used by these files. For a multidimensional function f(ξ1, ξ2, . . .) the
multicolumn grid format is defined as follows:

Ncv

min(ξ1) width(ξ1) npoints(ξ1) periodic(ξ1)
min(ξ2) width(ξ2) npoints(ξ2) periodic(ξ2)
.
min(ξNcv) width(ξNcv) npoints(ξNcv) periodic(ξNcv)

ξ11 ξ12 . . . ξ1Ncv
f(ξ11 , ξ

1
2 , . . . , ξ1Ncv

)
ξ11 ξ12 . . . ξ2Ncv

f(ξ11 , ξ
1
2 , . . . , ξ2Ncv

)
.

Lines beginning with the character “#” are the header of the file. Ncv is the number of collective
variables sampled by the grid. For each variable ξi, min(ξi) is the lowest value sampled by the grid
(i.e. the left-most boundary of the grid along ξi), width(ξi) is the width of each grid step along ξi,
npoints(ξi) is the number of points and periodic(ξi) is a flag whose value is 1 or 0 depending on
whether the grid is periodic along ξi. In most situations:

• min(ξi) is given by the lowerBoundary (see 9.3.18) keyword of the variable ξi;

• width(ξi) is given by the width (see 9.3.18) keyword;

164

• npoints(ξi) is calculated from the two above numbers and the upperBoundary (see 9.3.18)
keyword;

• periodic(ξi) is set to 1 if and only if ξi is periodic and the grids’ boundaries cover its period.

Exception: there is a slightly different header in PMF files computed by ABF (9.5.2) or by other
biases with an optional thermodynamic integration (TI) estimator (9.5.1). In this case, free-energy
gradients are accumulated on an (npoints)-long grid along each variable ξ: after these gradients are
integrated, the resulting PMF is discretized on a grid with (npoints+1) points along ξ. Therefore,
the edges of the PMF’s grid extend width/2 above and below the original boundaries (unless these
are periodic). The format of the file’s header is otherwise unchanged.

After the header, the rest of the file contains values of the tabulated function f(ξ1, ξ2, . . . ξNcv),
one for each line. The first Ncv columns contain values of ξ1, ξ2, . . . ξNcv and the last column
contains the value of the function f . Points are sorted in ascending order with the fastest-changing
values at the right (“C-style” order). Each sweep of the right-most variable ξNcv is terminated by
an empty line. For two dimensional grid files, this allows quick visualization by programs such as
GNUplot.

Example 1: multicolumn text file for a one-dimensional histogram with lowerBoundary = 15,
upperBoundary = 48 and width = 0.1.

1
15 0.1 330 0

15.05 6.14012e-07
15.15 7.47644e-07
.
47.85 1.65944e-06
47.95 1.46712e-06

Example 2: multicolumn text file for a two-dimensional histogram of two dihedral angles (periodic
interval with 6◦ bins):

2
-180.0 6.0 30 1
-180.0 6.0 30 1

-177.0 -177.0 8.97117e-06
-177.0 -171.0 1.53525e-06
.
-177.0 177.0 2.442956-06

-171.0 -177.0 2.04702e-05
.

9.3.19 Trajectory output

• outputValue < Output a trajectory for this colvar >

165

Context: colvar
Acceptable Values: boolean
Default Value: on
Description: If colvarsTrajFrequency is non-zero, the value of this colvar is written to
the trajectory file every colvarsTrajFrequency steps in the column labeled “<name>”.

• outputVelocity < Output a velocity trajectory for this colvar >
Context: colvar
Acceptable Values: boolean
Default Value: off
Description: If colvarsTrajFrequency is defined, the finite-difference calculated velocity
of this colvar are written to the trajectory file under the label “v <name>”.

• outputEnergy < Output an energy trajectory for this colvar >
Context: colvar
Acceptable Values: boolean
Default Value: off
Description: This option applies only to extended Lagrangian colvars. If
colvarsTrajFrequency is defined, the kinetic energy of the extended degree and freedom
and the potential energy of the restraining spring are are written to the trajectory file under
the labels “Ek <name>” and “Ep <name>”.

• outputTotalForce < Output a total force trajectory for this colvar >
Context: colvar
Acceptable Values: boolean
Default Value: off
Description: If colvarsTrajFrequency is defined, the total force on this colvar (i.e. the
projection of all atomic total forces onto this colvar — see equation (61) in section 9.5.2)
are written to the trajectory file under the label “fs <name>”. For extended Lagrangian
colvars, the “total force” felt by the extended degree of freedom is simply the force from the
harmonic spring. Due to design constraints, the total force reported by NAMD to Colvars
was computed at the previous simulation step. Note: not all components support this
option. The physical unit for this force is kcal/mol, divided by the colvar unit U.

• outputAppliedForce < Output an applied force trajectory for this colvar >
Context: colvar
Acceptable Values: boolean
Default Value: off
Description: If colvarsTrajFrequency is defined, the total force applied on this colvar
by Colvars biases are written to the trajectory under the label “fa <name>”. For extended
Lagrangian colvars, this force is actually applied to the extended degree of freedom rather
than the geometric colvar itself. The physical unit for this force is kcal/mol divided by the
colvar unit.

9.3.20 Extended Lagrangian

The following options enable extended-system dynamics, where a colvar is coupled to an additional
degree of freedom (fictitious particle) by a harmonic spring. This extended coordinate masks the

166

colvar and replaces it transparently from the perspective of biasing and analysis methods. Biasing
forces are then applied to the extended degree of freedom, and the actual geometric colvar (function
of Cartesian coordinates) only feels the force from the harmonic spring. This is particularly useful
when combined with an abf (see 9.5.2) bias to perform eABF simulations (9.5.3).

Note that for some biases (harmonicWalls (see 9.5.7), histogram (see 9.5.10)), this mask-
ing behavior is controlled by the keyword bypassExtendedLagrangian (see 9.5). Specifically for
harmonicWalls, the default behavior is to bypass extended Lagrangian coordinates and act directly
on the actual colvars.

• extendedLagrangian < Add extended degree of freedom >
Context: colvar
Acceptable Values: boolean
Default Value: off
Description: Adds a fictitious particle to be coupled to the colvar by a harmonic spring.
The fictitious mass and the force constant of the coupling potential are derived from the
parameters extendedTimeConstant and extendedFluctuation, described below. Biasing
forces on the colvar are applied to this fictitious particle, rather than to the atoms directly.
This implements the extended Lagrangian formalism used in some metadynamics simula-
tions [49]. The energy associated with the extended degree of freedom is reported along with
bias energies under the MISC title in NAMD’s energy output.

• extendedFluctuation < Standard deviation between the colvar and the fictitious particle
(colvar unit) >
Context: colvar
Acceptable Values: positive decimal
Description: Defines the spring stiffness for the extendedLagrangian mode, by setting
the typical deviation between the colvar and the extended degree of freedom due to thermal
fluctuation. The spring force constant is calculated internally as kBT/σ

2, where σ is the value
of extendedFluctuation.

• extendedTimeConstant < Oscillation period of the fictitious particle (fs) >
Context: colvar
Acceptable Values: positive decimal
Default Value: 200
Description: Defines the inertial mass of the fictitious particle, by setting the oscillation
period of the harmonic oscillator formed by the fictitious particle and the spring. The period
should be much larger than the MD time step to ensure accurate integration of the extended
particle’s equation of motion. The fictitious mass is calculated internally as kBT (τ/2πσ)2,
where τ is the period and σ is the typical fluctuation (see above).

• extendedTemp < Temperature for the extended degree of freedom (K) >
Context: colvar
Acceptable Values: positive decimal
Default Value: thermostat temperature
Description: Temperature used for calculating the coupling force constant of the extended
variable (see extendedFluctuation) and, if needed, as a target temperature for extended
Langevin dynamics (see extendedLangevinDamping). This should normally be left at its
default value.

167

• extendedLangevinDamping < Damping factor for extended Langevin dynamics (ps−1) >
Context: colvar
Acceptable Values: positive decimal
Default Value: 1.0
Description: If this is non-zero, the extended degree of freedom undergoes Langevin dy-
namics at temperature extendedTemp. The friction force is minus extendedLangevinDamping
times the velocity. This is useful because the extended dynamics coordinate may heat up in
the transient non-equilibrium regime of ABF. Use moderate damping values, to limit viscous
friction (potentially slowing down diffusive sampling) and stochastic noise (increasing the
variance of statistical measurements). In doubt, use the default value.

9.3.21 Multiple time-step variables

• timeStepFactor < Compute this colvar once in a certain number of timesteps >
Context: colvar
Acceptable Values: positive integer
Default Value: 1
Description: Instructs this colvar to activate at a time interval equal to the base (MD)
timestep times timeStepFactor.[32] At other time steps, the value of the variable is not
updated, and no biasing forces are applied. Any forces exerted by biases are accumulated
over the given time interval, then applied as an impulse at the next update.

9.3.22 Backward-compatibility

• subtractAppliedForce < Do not include biasing forces in the total force for this colvar >
Context: colvar
Acceptable Values: boolean
Default Value: off
Description: If the colvar supports total force calculation (see 9.3.14), all forces applied to
this colvar by biases will be removed from the total force. This keyword allows to recover some
of the “system force” calculation available in the Colvars module before version 2016-08-10.
Please note that removal of all other external forces (including biasing forces applied to a
different colvar) is no longer supported, due to changes in the underlying simulation engines
(primarily NAMD). This option may be useful when continuing a previous simulation where
the removal of external/applied forces is essential. For all new simulations, the use of this
option is not recommended.

9.3.23 Statistical analysis

Run-time calculations of statistical properties that depend explicitly on time can be performed for
individual collective variables. Currently, several types of time correlation functions, running aver-
ages and running standard deviations are implemented. For run-time computation of histograms,
please see the histogram bias (9.5.10).

• corrFunc < Calculate a time correlation function? >
Context: colvar
Acceptable Values: boolean
Default Value: off

168

Description: Whether or not a time correlaction function should be calculated for this
colvar.

• corrFuncWithColvar < Colvar name for the correlation function >
Context: colvar
Acceptable Values: string
Description: By default, the auto-correlation function (ACF) of this colvar, ξi, is cal-
culated. When this option is specified, the correlation function is calculated instead with
another colvar, ξj , which must be of the same type (scalar, vector, or quaternion) as ξi.

• corrFuncType < Type of the correlation function >
Context: colvar
Acceptable Values: velocity, coordinate or coordinate p2
Default Value: velocity
Description: With coordinate or velocity, the correlation function Ci,j(t) =
〈Π (ξi(t0), ξj(t0 + t))〉 is calculated between the variables ξi and ξj , or their velocities. Π(ξi, ξj)
is the scalar product when calculated between scalar or vector values, whereas for quater-
nions it is the cosine between the two corresponding rotation axes. With coordinate p2, the
second order Legendre polynomial, (3 cos(θ)2 − 1)/2, is used instead of the cosine.

• corrFuncNormalize < Normalize the time correlation function? >
Context: colvar
Acceptable Values: boolean
Default Value: on
Description: If enabled, the value of the correlation function at t = 0 is normalized to 1;
otherwise, it equals to 〈O (ξi, ξj)〉.

• corrFuncLength < Length of the time correlation function >
Context: colvar
Acceptable Values: positive integer
Default Value: 1000
Description: Length (in number of points) of the time correlation function.

• corrFuncStride < Stride of the time correlation function >
Context: colvar
Acceptable Values: positive integer
Default Value: 1
Description: Number of steps between two values of the time correlation function.

• corrFuncOffset < Offset of the time correlation function >
Context: colvar
Acceptable Values: positive integer
Default Value: 0
Description: The starting time (in number of steps) of the time correlation function
(default: t = 0). Note: the value at t = 0 is always used for the normalization.

• corrFuncOutputFile < Output file for the time correlation function >
Context: colvar
Acceptable Values: UNIX filename

169

Default Value: outputName.<name>.corrfunc.dat
Description: The time correlation function is saved in this file.

• runAve < Calculate the running average and standard deviation >
Context: colvar
Acceptable Values: boolean
Default Value: off
Description: Whether or not the running average and standard deviation should be cal-
culated for this colvar.

• runAveLength < Length of the running average window >
Context: colvar
Acceptable Values: positive integer
Default Value: 1000
Description: Length (in number of points) of the running average window.

• runAveStride < Stride of the running average window values >
Context: colvar
Acceptable Values: positive integer
Default Value: 1
Description: Number of steps between two values within the running average window.

• runAveOutputFile < Output file for the running average and standard deviation >
Context: colvar
Acceptable Values: UNIX filename
Default Value: outputName.<name>.runave.traj
Description: The running average and standard deviation are saved in this file.

9.4 Selecting atoms

To define collective variables, atoms are usually selected as groups. Each group is defined using
an identifier that is unique in the context of the specific colvar component (e.g. for a distance
component, the two groups are group1 and group2). The identifier is followed by a brace-delimited
block containing selection keywords and other parameters, including an optional name:

• name < Unique name for the atom group >
Context: atom group
Acceptable Values: string
Description: This parameter defines a unique name for this atom group, which can be
referred to in the definition of other atom groups (including in other colvars) by invoking
atomsOfGroup as a selection keyword.

9.4.1 Atom selection keywords

Selection keywords may be used individually or in combination with each other, and each can
be repeated any number of times. Selection is incremental: each keyword adds the corre-
sponding atoms to the selection, so that different sets of atoms can be combined. However,
atoms included by multiple keywords are only counted once. Below is an example configuration
for an atom group called “atoms”. Note: this is an unusually varied combination of selection

170

keywords, demonstrating how they can be combined together: most simulations only use one of them.

atoms {

add atoms 1 and 3 to this group (note: the first atom in the system is 1)
atomNumbers {

1 3
}

add atoms starting from 20 up to and including 50
atomNumbersRange 20-50

add all the atoms with occupancy 2 in the file atoms.pdb
atomsFile atoms.pdb
atomsCol O
atomsColValue 2.0

add all the C-alphas within residues 11 to 20 of segments "PR1" and "PR2"
psfSegID PR1 PR2
atomNameResidueRange CA 11-20
atomNameResidueRange CA 11-20

add index group (requires a .ndx file to be provided globally)
indexGroup Water

}

The resulting selection includes atoms 1 and 3, those between 20 and 50, the Cα atoms between
residues 11 and 20 of the two segments PR1 and PR2, and those in the index group called “Water”.
The indices of this group are read from the file provided by the global keyword indexFile (see
9.2.5).

The complete list of selection keywords available in NAMD is:

• atomNumbers < List of atom numbers >
Context: atom group
Acceptable Values: space-separated list of positive integers
Description: This option adds to the group all the atoms whose numbers are in the list.
The number of the first atom in the system is 1: to convert from a VMD selection, use
“atomselect get serial”.

• indexGroup < Name of index group to be used (GROMACS format) >
Context: atom group
Acceptable Values: string
Description: If the name of an index file has been provided by indexFile, this option
allows to select one index group from that file: the atoms from that index group will be used
to define the current group.

• atomsOfGroup < Name of group defined previously >
Context: atom group

171

Acceptable Values: string
Description: Refers to a group defined previously using its user-defined name. This adds
all atoms of that named group to the current group.

• atomNumbersRange < Atoms within a number range >
Context: atom group
Acceptable Values: <Starting number>-<Ending number>
Description: This option includes in the group all atoms whose numbers are within the
range specified. The number of the first atom in the system is 1.

• atomNameResidueRange < Named atoms within a range of residue numbers >
Context: atom group
Acceptable Values: <Atom name> <Starting residue>-<Ending residue>
Description: This option adds to the group all the atoms with the provided name, within
residues in the given range.

• psfSegID < PSF segment identifier >
Context: atom group
Acceptable Values: space-separated list of strings (max 4 characters)
Description: This option sets the PSF segment identifier for atomNameResidueRange.
Multiple values may be provided, which correspond to multiple instances of
atomNameResidueRange, in order of their occurrence. This option is only necessary if a
PSF topology file is used.

• atomsFile < PDB file name for atom selection >
Context: atom group
Acceptable Values: UNIX filename
Description: This option selects atoms from the PDB file provided and adds them to the
group according to numerical flags in the column atomsCol. Note: the sequence of atoms in
the PDB file provided must match that in the system’s topology.

• atomsCol < PDB column to use for atom selection flags >
Context: atom group
Acceptable Values: O, B, X, Y, or Z
Description: This option specifies which PDB column in atomsFile is used to determine
which atoms are to be included in the group.

• atomsColValue < Atom selection flag in the PDB column >
Context: atom group
Acceptable Values: positive decimal
Description: If defined, this value in atomsCol identifies atoms in atomsFile that are
included in the group. If undefined, all atoms with a non-zero value in atomsCol are included.

• dummyAtom < Dummy atom position (Å) >
Context: atom group
Acceptable Values: (x, y, z) triplet
Description: Instead of selecting any atom, this option makes the group a virtual particle
at a fixed position in space. This is useful e.g. to replace a group’s center of geometry with a
user-defined position.

172

9.4.2 Moving frame of reference.

The following options define an automatic calculation of an optimal translation (centerReference)
or optimal rotation (rotateReference), that superimposes the positions of this group to a provided
set of reference coordinates. This can allow, for example, to effectively remove from certain colvars
the effects of molecular tumbling and of diffusion. Given the set of atomic positions xi, the colvar
ξ can be defined on a set of roto-translated positions x′i = R(xi − xC) + xref . xC is the geometric
center of the xi, R is the optimal rotation matrix to the reference positions and xref is the geometric
center of the reference positions.

Components that are defined based on pairwise distances are naturally invariant under global
roto-translations. Other components are instead affected by global rotations or translations: how-
ever, they can be made invariant if they are expressed in the frame of reference of a chosen group
of atoms, using the centerReference and rotateReference options. Finally, a few components
are defined by convention using a roto-translated frame (e.g. the minimal RMSD): for these com-
ponents, centerReference and rotateReference are enabled by default. In typical applications,
the default settings result in the expected behavior.

Warning on rotating frames of reference and periodic boundary conditions.
rotateReference affects coordinates that depend on minimum-image distances in periodic bound-
ary conditions (PBC). After rotation of the coordinates, the periodic cell vectors become irrelevant:
the rotated system is effectively non-periodic. A safe way to handle this is to ensure that the rel-
evant inter-group distance vectors remain smaller than the half-size of the periodic cell. If this is
not desirable, one should avoid the rotating frame of reference, and apply orientational restraints
to the reference group instead, in order to keep the orientation of the reference group consistent
with the orientation of the periodic cell.

Warning on rotating frames of reference and ABF. Note that centerReference and
rotateReference may affect the Jacobian derivative of colvar components in a way that is not
taken into account by default. Be careful when using these options in ABF simulations or when
using total force values.

• centerReference < Implicitly remove translations for this group >
Context: atom group
Acceptable Values: boolean
Default Value: off
Description: If this option is on, the center of geometry of the group will be aligned
with that of the reference positions provided by either refPositions or refPositionsFile.
Colvar components will only have access to the aligned positions. Note: unless otherwise
specified, rmsd and eigenvector set this option to on by default.

• rotateReference < Implicitly remove rotations for this group >
Context: atom group
Acceptable Values: boolean
Default Value: off
Description: If this option is on, the coordinates of this group will be optimally super-
imposed to the reference positions provided by either refPositions or refPositionsFile.
The rotation will be performed around the center of geometry if centerReference is on, or

173

around the origin otherwise. The algorithm used is the same employed by the orientation
colvar component [26]. Forces applied to the atoms of this group will also be implicitly ro-
tated back to the original frame. Note: unless otherwise specified, rmsd and eigenvector
set this option to on by default.

• refPositions < Reference positions for fitting (Å) >
Context: atom group
Acceptable Values: space-separated list of (x, y, z) triplets
Description: This option provides a list of reference coordinates for centerReference
and/or rotateReference, and is mutually exclusive with refPositionsFile. If only
centerReference is on, the list may contain a single (x, y, z) triplet; if also rotateReference
is on, the list should be as long as the atom group, and its order must match the order in
which atoms were defined.

• refPositionsFile < File containing the reference positions for fitting >
Context: atom group
Acceptable Values: UNIX filename
Description: This option provides a list of reference coordinates for centerReference
and/or rotateReference, and is mutually exclusive with refPositions. The acceptable
file format is XYZ, which is read in double precision, or PDB; the latter is discouraged if
the precision of the reference coordinates is a concern. Atomic positions are read differently
depending on the following scenarios: (i) the file contains exactly as many records as the
atoms in the group: all positions are read in sequence; (ii) (most common case) the file
contains coordinates for the entire system: only the positions corresponding to the numeric
indices of the atom group are read; (iii) if the file is a PDB file and refPositionsCol is
specified, positions are read according to the value of the column refPositionsCol (which
may be the same as atomsCol). In each case, atoms are read from the file in order of increasing
number.

• refPositionsCol < PDB column containing atom flags >
Context: atom group
Acceptable Values: O, B, X, Y, or Z
Description: Like atomsCol for atomsFile, indicates which column to use to identify the
atoms in refPositionsFile (if this is a PDB file).

• refPositionsColValue < Atom selection flag in the PDB column >
Context: atom group
Acceptable Values: positive decimal
Description: Analogous to atomsColValue, but applied to refPositionsCol.

• fittingGroup < Use an alternate set of atoms to define the roto-translation >
Context: atom group
Acceptable Values: Block fittingGroup { ... }
Default Value: This atom group itself
Description: If either centerReference or rotateReference is defined, this keyword
defines an alternate atom group to calculate the optimal roto-translation. Use this option
to define a continuous rotation if the structure of the group involved changes significantly (a
typical symptom would be the message “Warning: discontinuous rotation!”).

174

The following example illustrates the use of fittingGroup as part of a Distance to
Bound Configuration (DBC) coordinate for use in ligand restraints for binding affinity
calculations.[94] The group called “atoms” describes coordinates of a ligand’s atoms, ex-
pressed in a moving frame of reference tied to a binding site (here within a protein). An
optimal roto-translation is calculated automatically by fitting the Cα trace of the rest of the
protein onto the coordinates provided by a PDB file. To define a DBC coordinate, this atom
group would be used within an rmsd (see 9.3.5) function.

Example: defining a group "atoms" (the ligand) whose coordinates are
expressed
in a roto-translated frame of reference defined by a second group (the
receptor)
atoms {

atomNumbers 1 2 3 4 5 6 7 # atoms of the ligand (1-based)

centerReference yes
rotateReference yes
fittingGroup {

define the frame by fitting alpha carbon atoms
in 2 protein segments close to the site
psfSegID PROT PROT
atomNameResidueRange CA 1-40
atomNameResidueRange CA 59-100

}
refPositionsFile all.pdb # can be the entire system

}

The following two options have default values appropriate for the vast majority of applications,
and are only provided to support rare, special cases.

• enableFitGradients < Include the roto-translational contribution to colvar gradients >
Context: atom group
Acceptable Values: boolean
Default Value: on
Description: When either centerReference or rotateReference is on, the gradients
of some colvars include terms proportional to ∂R/∂xi (rotational gradients) and ∂xC/∂xi

(translational gradients). By default, these terms are calculated and included in the total
gradients; if this option is set to off, they are neglected. In the case of a minimum RMSD
component, this flag is automatically disabled because the contributions of those derivatives
to the gradients cancel out.

• enableForces < Apply forces from this colvar to this group >
Context: atom group
Acceptable Values: boolean
Default Value: on
Description: If this option is off, no forces are applied the atoms in the group. Other

175

forces are not affected (i.e. those from the MD engine, from other colvars, and other external
forces). For dummy atoms, this option is off by default.

9.4.3 Treatment of periodic boundary conditions.

In simulations with periodic boundary conditions, NAMD maintains the coordinates of all the atoms
within a molecule contiguous to each other (i.e. there are no spurious “jumps” in the molecular
bonds). The Colvars module relies on this when calculating a group’s center of geometry, but this
condition may fail if the group spans different molecules. In that case, writing the NAMD output
and restart files using wrapAll or wrapWater could produce wrong results when a simulation run is
continued from a previous one. The user should then determine, according to which type of colvars
are being calculated, whether wrapAll or wrapWater can be enabled.

In general, internal coordinate wrapping by NAMD does not affect the calculation of colvars if
each atom group satisfies one or more of the following:

i) it is composed by only one atom;

ii) it is used by a colvar component which does not make use of its center of geometry, but only
of pairwise distances (distanceInv, coordNum, hBond, alpha, dihedralPC);

iii) it is used by a colvar component that ignores the ill-defined Cartesian components of its
center of mass (such as the x and y components of a membrane’s center of mass modeled
with distanceZ);

iv) it has all of its atoms within the same molecular fragment.

9.4.4 Performance of a Colvars calculation based on group size.

In simulations performed with message-passing programs (such as NAMD or LAMMPS), the cal-
culation of energy and forces is distributed (i.e., parallelized) across multiple nodes, as well as over
the processor cores of each node. When Colvars is enabled, certain atomic coordinates are col-
lected on a single node, where the calculation of collective variables and of their biases is executed.
This means that for simulations over large numbers of nodes, a Colvars calculation may produce a
significant overhead, coming from the costs of transmitting atomic coordinates to one node and of
processing them. The latency-tolerant design and dynamic load balancing of NAMD may alleviate
both factors, but a noticeable performance impact may be observed.

Performance can be improved in multiple ways:

• The calculation of variables, components and biases can be distributed over the processor cores
of the node where the Colvars module is executed. Currently, an equal weight is assigned to
each colvar, or to each component of those colvars that include more than one component. The
performance of simulations that use many colvars or components is improved automatically.
For simulations that use a single large colvar, it may be advisable to partition it in multiple
components, which will be then distributed across the available cores. In NAMD, this feature
is enabled in all binaries compiled using SMP builds of Charm++ with the CkLoop extension.
If printed, the message “SMP parallelism is available.” indicates the availability of the option.
If available, the option is turned on by default, but may be disabled using the keyword smp
(see 9.2.5) if required for debugging.

176

• NAMD also offers a parallelized calculation of the centers of mass of groups of atoms. This
option is on by default for all components that are simple functions of centers of mass, and is
controlled by the keyword scalable (see 9.3.12). When supported, the message “Will enable
scalable calculation for group . . . ” is printed for each group.

• As a general rule, the size of atom groups should be kept relatively small (up to a few
thousands of atoms, depending on the size of the entire system in comparison). To gain an
estimate of the computational cost of a large colvar, one can use a test calculation of the same
colvar in VMD (hint: use the time Tcl command to measure the cost of running cv update).

9.5 Biasing and analysis methods

A biasing or analysis method can be applied to existing collective variables by using the following
configuration:

<biastype> {
name <name>
colvars <xi1> <xi2> ...
<parameters>

}

The keyword <biastype> indicates the method of choice. There can be multiple instances of the
same method, e.g. using multiple harmonic blocks allows defining multiple restraints.

All biasing and analysis methods implemented recognize the following options:

• name < Identifier for the bias >
Context: colvar bias
Acceptable Values: string
Default Value: <type of bias><bias index>
Description: This string is used to identify the bias or analysis method in the output, and
to name some output files. Tip: because the default name depends on the order of definition,
but the outcome of the simulation does not, it may be convenient to assign consistent names
for certain biases; for example, you may want to name a moving harmonic restraint smd, so
that it can always be identified regardless of the presence of other restraints.

• colvars < Collective variables involved >
Context: colvar bias
Acceptable Values: space-separated list of colvar names
Description: This option selects by name all the variables to which this bias or analysis
will be applied.

• outputEnergy < Write the current bias energy to the trajectory file >
Context: colvar bias
Acceptable Values: boolean
Default Value: off
Description: If this option is chosen and colvarsTrajFrequency is not zero, the current
value of the biasing energy will be written to the trajectory file during the simulation. The
total energy of all Colvars biases is also reported by NAMD, as part of the MISC title.

177

• outputFreq < Frequency (number of steps) at which output files are written >
Context: colvar bias
Acceptable Values: positive integer
Default Value: colvarsRestartFrequency (see 9.2.5)
Description: If this bias produces aggregated data that needs to be written to disk (for
example, a PMF), this number specifies the number of steps after which these data are written
to files. A value of zero disables writing files for this bias during the simulation (except for
outputEnergy (see 9.5), which is controlled by colvarsTrajFrequency (see 9.2.5)). All
output files are also written at the end of a simulation run, regardless of the value of this
number.

• bypassExtendedLagrangian < Apply bias to actual colvars, bypassing extended coordinates
>
Context: colvar bias
Acceptable Values: boolean
Default Value: off
Description: This option is implemented by the harmonicWalls (see 9.5.7) and histogram
(see 9.5.10) biases. It is only relevant if the bias is applied to one or several extended-
Lagrangian colvars (9.3.20), for example within an eABF (9.5.3) simulation. Usually, biases
use the value of the extended coordinate as a proxy for the actual colvar, and their biasing
forces are applied to the extended coordinates as well. If bypassExtendedLagrangian is
enabled, the bias behaves as if there were no extended coordinates, and accesses the value of
the underlying colvars, applying any biasing forces along the gradients of those variables.

• stepZeroData < Accumulate data starting at step 0 of a simulation run >
Context: colvar bias
Acceptable Values: boolean
Default Value: off
Description: This option is meaningful for biases that record and accumulate data during
a simulation, such as ABF (9.5.2), metadynamics (9.5.4), histograms (9.5.10) and in general
any bias that accumulates free-energy samples with thermodynamic integration, or TI (9.5.1).
When this option is disabled (default), data will only be recorded into the bias after the first
coordinate update: this is generally the correct choice in simulation runs. Biasing energy
and forces will always be computed for all active biases, regardless of this option. Note that
in some cases the bias may require data from previous simulation steps: for example, TI
requires total atomic forces (see outputTotalForce (see 9.3.19)) which are only available at
the following step in NAMD; turning on this flag in those cases will raise an error.

9.5.1 Thermodynamic integration

The methods implemented here provide a variety of estimators of conformational free-energies.
These are carried out at run-time, or with the use of post-processing tools over the generated
output files. The specifics of each estimator are discussed in the documentation of each biasing or
analysis method.

A special case is the traditional thermodynamic integration (TI) method, used for example to
compute potentials of mean force (PMFs). Most types of restraints (9.5.5, 9.5.7, 9.5.8, ...) as well as
metadynamics (9.5.4) can optionally use TI alongside their own estimator, based on the keywords
documented below.

178

• writeTIPMF < Write the PMF computed by thermodynamic integration >
Context: colvar bias
Acceptable Values: boolean
Default Value: off
Description: If the bias is applied to a variable that supports the calculation of total forces
(see outputotalForce (see 9.3) and 9.3.14), this option allows calculating the corresponding
PMF by thermodynamic integration, and writing it to the file outputName.<name>.ti.pmf,
where <name> is the name of the bias and the contents of the file are in multicolumn text
format (9.3.18). The total force includes the forces applied to the variable by all bias, except
those from this bias itself. If any bias applies time-dependent forces besides the one using
this option, an error is raised.

• writeTISamples < Write the free-energy gradient samples >
Context: colvar bias
Acceptable Values: boolean
Default Value: off
Description: This option allows to compute total forces for use with thermodynamic
integration as done by the keyword writeTIPMF (see 9.5). The names of the files containing the
variables’ histogram and mean thermodynamic forces are outputName.<name>.ti.count
and outputName.<name>.ti.force, respectively: these can be used by abf integrate (see
9.5.2) or similar utility. Note that because the .force file contains mean forces instead of
free-energy gradients, abf integrate <filename> -s -1.0 should be used. This option is
on by default when writeTIPMF is on, but can be enabled separately if the bias is applied to
more than one variable, making not possible the direct integration of the PMF at runtime. If
any bias applies time-dependent forces besides the one using this option, an error is raised.

In adaptive biasing force (ABF) (9.5.2) the above keywords are not recognized, because their
functionality is either included already (conventional ABF) or not available (extended-system ABF).

9.5.2 Adaptive Biasing Force

For a full description of the Adaptive Biasing Force method, see reference [28]. For details about
this implementation, see references [46] and [47]. When publishing research that makes use
of this functionality, please cite references [28] and [47].

An alternate usage of this feature is the application of custom tabulated biasing potentials to
one or more colvars. See inputPrefix and updateBias below.

Combining ABF with the extended Lagrangian feature (9.3.20) of the variables produces the
extended-system ABF variant of the method (9.5.3).

ABF is based on the thermodynamic integration (TI) scheme for computing free energy profiles.
The free energy as a function of a set of collective variables ξ = (ξi)i∈[1,n] is defined from the
canonical distribution of ξ, P(ξ):

A(ξ) = − 1
β

lnP(ξ) +A0 (57)

In the TI formalism, the free energy is obtained from its gradient, which is generally calculated
in the form of the average of a force F ξ exerted on ξ, taken over an iso-ξ surface:

∇ξA(ξ) = 〈−F ξ〉ξ (58)

179

Several formulae that take the form of (58) have been proposed. This implementation relies
partly on the classic formulation [18], and partly on a more versatile scheme originating in a work
by Ruiz-Montero et al. [93], generalized by den Otter [29] and extended to multiple variables by
Ciccotti et al. [23]. Consider a system subject to constraints of the form σk(x) = 0. Let (vi)i∈[1,n]

be arbitrarily chosen vector fields (R3N → R3N) verifying, for all i, j, and k:

vi ·∇x ξj = δij (59)
vi ·∇x σk = 0 (60)

then the following holds [23]:

∂A

∂ξi
= 〈vi ·∇x V − kBT∇x · vi〉ξ (61)

where V is the potential energy function. vi can be interpreted as the direction along which the
force acting on variable ξi is measured, whereas the second term in the average corresponds to the
geometric entropy contribution that appears as a Jacobian correction in the classic formalism [18].
Condition (59) states that the direction along which the total force on ξi is measured is orthogonal
to the gradient of ξj , which means that the force measured on ξi does not act on ξj .

Equation (60) implies that constraint forces are orthogonal to the directions along which the
free energy gradient is measured, so that the measurement is effectively performed on unconstrained
degrees of freedom. In NAMD, constraints are typically applied to the lengths of bonds involving
hydrogen atoms, for example in TIP3P water molecules (parameter rigidBonds, section 5.6.1).

In the framework of ABF, Fξ is accumulated in bins of finite size δξ, thereby providing an
estimate of the free energy gradient according to equation (58). The biasing force applied along
the collective variables to overcome free energy barriers is calculated as:

FABF = α(Nξ)×∇x Ã(ξ) (62)

where ∇x Ã denotes the current estimate of the free energy gradient at the current point ξ in
the collective variable subspace, and α(Nξ) is a scaling factor that is ramped from 0 to 1 as the
local number of samples Nξ increases to prevent nonequilibrium effects in the early phase of the
simulation, when the gradient estimate has a large variance. See the fullSamples parameter below
for details.

As sampling of the phase space proceeds, the estimate ∇x Ã is progressively refined. The
biasing force introduced in the equations of motion guarantees that in the bin centered around ξ,
the forces acting along the selected collective variables average to zero over time. Eventually, as
the undelying free energy surface is canceled by the adaptive bias, evolution of the system along ξ
is governed mainly by diffusion. Although this implementation of ABF can in principle be used in
arbitrary dimension, a higher-dimension collective variable space is likely to be difficult to sample
and visualize. Most commonly, the number of variables is one or two, sometimes three.

ABF requirements on collective variables The following conditions must be met for an ABF
simulation to be possible and to produce an accurate estimate of the free energy profile. Note that
these requirements do not apply when using the extended-system ABF method (9.5.3).

1. Only linear combinations of colvar components can be used in ABF calculations.

180

2. Availability of total forces is necessary. The following colvar components can be used in ABF
calculations: distance, distance xy, distance z, angle, dihedral, gyration, rmsd and
eigenvector. Atom groups may not be replaced by dummy atoms, unless they are excluded
from the force measurement by specifying oneSiteTotalForce, if available.

3. Mutual orthogonality of colvars. In a multidimensional ABF calculation, equation (59) must
be satisfied for any two colvars ξi and ξj . Various cases fulfill this orthogonality condition:

• ξi and ξj are based on non-overlapping sets of atoms.

• atoms involved in the force measurement on ξi do not participate in the definition of
ξj . This can be obtained using the option oneSiteTotalForce of the distance, angle,
and dihedral components (example: Ramachandran angles φ, ψ).

• ξi and ξj are orthogonal by construction. Useful cases are the sum and difference of two
components, or distance z and distance xy using the same axis.

4. Mutual orthogonality of components: when several components are combined into a colvar, it
is assumed that their vectors vi (equation (61)) are mutually orthogonal. The cases described
for colvars in the previous paragraph apply.

5. Orthogonality of colvars and constraints: equation 60 can be satisfied in two simple ways,
if either no constrained atoms are involved in the force measurement (see point 3 above) or
pairs of atoms joined by a constrained bond are part of an atom group which only intervenes
through its center (center of mass or geometric center) in the force measurement. In the latter
case, the contributions of the two atoms to the left-hand side of equation 60 cancel out. For
example, all atoms of a rigid TIP3P water molecule can safely be included in an atom group
used in a distance component.

Parameters for ABF ABF depends on parameters from collective variables to define the grid
on which free energy gradients are computed. In the direction of each colvar, the grid ranges from
lowerBoundary to upperBoundary, and the bin width (grid spacing) is set by the width (see 9.3.18)
parameter. The following specific parameters can be set in the ABF configuration block:

• name: see definition of name in sec. 9.5 (biasing and analysis methods)

• colvars: see definition of colvars in sec. 9.5 (biasing and analysis methods)

• outputEnergy: see definition of outputEnergy in sec. 9.5 (biasing and analysis methods)

• outputFreq: see definition of outputFreq in sec. 9.5 (biasing and analysis methods)

• stepZeroData: see definition of stepZeroData in sec. 9.5 (biasing and analysis methods)

• fullSamples < Number of samples in a bin prior to application of the ABF >
Context: abf
Acceptable Values: positive integer
Default Value: 200
Description: To avoid nonequilibrium effects due to large fluctuations of the force exerted
along the colvars, it is recommended to apply a biasing force only after a the estimate has
started converging. If fullSamples is non-zero, the applied biasing force is scaled by a factor

181

α(Nξ) between 0 and 1. If the number of samples Nξ in the current bin is higher than
fullSamples, the factor is one. If it is less than half of fullSamples, the factor is zero and
no bias is applied. Between those two thresholds, the factor follows a linear ramp from 0 to
1: α(Nξ) = (2Nξ/fullSamples)− 1.

• maxForce < Maximum magnitude of the ABF force >
Context: abf
Acceptable Values: positive decimals (one per colvar)
Default Value: disabled
Description: This option enforces a cap on the magnitude of the biasing force effectively
applied by this ABF bias on each colvar. This can be useful in the presence of singularities
in the PMF such as hard walls, where the discretization of the average force becomes very
inaccurate, causing the colvar’s diffusion to get “stuck” at the singularity. To enable this cap,
provide one non-negative value for each colvar. The unit of force is kcal/mol divided by the
colvar unit.

• hideJacobian < Remove geometric entropy term from calculated free energy gradient? >
Context: abf
Acceptable Values: boolean
Default Value: no
Description: In a few special cases, most notably distance-based variables, an alternate
definition of the potential of mean force is traditionally used, which excludes the Jacobian term
describing the effect of geometric entropy on the distribution of the variable. This results, for
example, in particle-particle potentials of mean force being flat at large separations. Setting
this parameter to yes causes the output data to follow that convention, by removing this
contribution from the output gradients while applying internally the corresponding correction
to ensure uniform sampling. It is not allowed for colvars with multiple components.

• historyFreq < Frequency (in timesteps) at which ABF history files are accumulated >
Context: abf
Acceptable Values: positive integer
Default Value: 0
Description: If this number is non-zero, the free energy gradient estimate and sampling
histogram (and the PMF in one-dimensional calculations) are written to files on disk at the
given time interval. History file names use the same prefix as output files, with “.hist”
appended (outputName.hist.pmf). historyFreq must be a multiple of outputFreq (see
9.5).

• inputPrefix < Filename prefix for reading ABF data >
Context: abf
Acceptable Values: list of strings
Description: If this parameter is set, for each item in the list, ABF tries to read a gradient
and a sampling files named <inputPrefix>.grad and <inputPrefix>.count. This is done
at startup and sets the initial state of the ABF algorithm. The data from all provided files
is combined appropriately. Also, the grid definition (min and max values, width) need not
be the same that for the current run. This command is useful to piece together data from
simulations in different regions of collective variable space, or change the colvar boundary
values and widths. Note that it is not recommended to use it to switch to a smaller width, as

182

that will leave some bins empty in the finer data grid. This option is NOT compatible with
reading the data from a restart file (colvarsInput option of the NAMD config file).

• applyBias < Apply the ABF bias? >
Context: abf
Acceptable Values: boolean
Default Value: yes
Description: If this is set to no, the calculation proceeds normally but the adaptive
biasing force is not applied. Data is still collected to compute the free energy gradient. This
is mostly intended for testing purposes, and should not be used in routine simulations.

• updateBias < Update the ABF bias? >
Context: abf
Acceptable Values: boolean
Default Value: yes
Description: If this is set to no, the initial biasing force (e.g. read from a restart file or
through inputPrefix) is not updated during the simulation. As a result, a constant bias is
applied. This can be used to apply a custom, tabulated biasing potential to any combination
of colvars. To that effect, one should prepare a gradient file containing the gradient of the
potential to be applied (negative of the bias force), and a count file containing only values
greater than fullSamples. These files must match the grid parameters of the colvars.

Multiple-replica ABF

• shared < Apply multiple-replica ABF, sharing force samples among the replicas? >
Context: abf
Acceptable Values: boolean
Default Value: no
Description: This is command requires that NAMD be compiled and executed with
multiple-replica support. If shared is set to yes, the total force samples will be synchronized
among all replicas at intervals defined by sharedFreq. This implements the multiple-walker
ABF scheme described in [77]; this implementation is documented in [25]. Thus, it is as if
total force samples among all replicas are gathered in a single shared buffer, which why the
algorithm is referred to as shared ABF. Shared ABF allows all replicas to benefit from the
sampling done by other replicas and can lead to faster convergence of the biasing force.

• sharedFreq < Frequency (in timesteps) at which force samples are synchronized among the
replicas >
Context: abf
Acceptable Values: positive integer
Default Value: outputFreq (see 9.5)
Description: In the current implementation of shared ABF, each replica maintains a sep-
arate buffer of total force samples that determine the biasing force. Every sharedFreq steps,
the replicas communicate the samples that have been gathered since the last synchronization
time, ensuring all replicas apply a similar biasing force.

Output files The ABF bias produces the following files, all in multicolumn text format (9.3.18):

• outputName.grad: current estimate of the free energy gradient (grid), in multicolumn;

183

• outputName.count: histogram of samples collected, on the same grid;

• outputName.pmf: integrated free energy profile or PMF (for dimensions 1, 2 or 3).

Also in the case of one-dimensional calculations, the ABF bias can report its current energy
via outputEnergy; in higher dimensions, such computation is not implemented and the energy
reported is zero.

If several ABF biases are defined concurrently, their name is inserted to produce unique filenames
for output, as in outputName.abf1.grad. This should not be done routinely and could lead to
meaningless results: only do it if you know what you are doing!

If the colvar space has been partitioned into sections (windows) in which independent ABF sim-
ulations have been run, the resulting data can be merged using the inputPrefix option described
above (a run of 0 steps is enough).

Multidimensional free energy surfaces If a one-dimensional calculation is performed, the
estimated free energy gradient is integrated using a simple rectangle rule. In dimension 2 or 3, it
is calculated as the solution of a Poisson equation:

∆A(ξ) = −∇ · 〈Fξ〉 (63)

wehere ∆A is the Laplacian of the free energy. The potential of mean force is written under
the file name <outputName>.pmf, in a plain text format (see 9.3.18) that can be read by most
data plotting and analysis programs (e.g. Gnuplot). This applies periodic boundary conditions to
periodic coordinates, and Neumann boundary conditions otherwise (imposed free energy gradient
at the boundary of the domain). Note that the grid used for free energy discretization is extended
by one point along non-periodic coordinates, but not along periodic coordinates.

In dimension 4 or greater, integrating the discretized gradient becomes non-trivial. The stan-
dalone utility abf integrate is provided to perform that task. Because 4D ABF calculations are
uncommon, this tool is practically deprecated by the Poisson integration described above.

abf integrate reads the gradient data and uses it to perform a Monte-Carlo (M-C) simulation
in discretized collective variable space (specifically, on the same grid used by ABF to discretize the
free energy gradient). By default, a history-dependent bias (similar in spirit to metadynamics) is
used: at each M-C step, the bias at the current position is incremented by a preset amount (the hill
height). Upon convergence, this bias counteracts optimally the underlying gradient; it is negated
to obtain the estimate of the free energy surface.

abf integrate is invoked using the command-line:
abf integrate <gradient file> [-n <nsteps>] [-t <temp>] [-m (0|1)] [-h <hill height>] [-f

<factor>]

The gradient file name is provided first, followed by other parameters in any order. They are
described below, with their default value in square brackets:

• -n: number of M-C steps to be performed; by default, a minimal number of steps is chosen
based on the size of the grid, and the integration runs until a convergence criterion is satisfied
(based on the RMSD between the target gradient and the real PMF gradient)

• -t: temperature for M-C sampling (unrelated to the simulation temperature) [500 K]

• -s: scaling factor for the gradients; when using a histogram of total forces obtained from
outputTotalForce (see 9.3.19) or the .force file written by writeTISamples (see 9.5.1), a
scaling factor of -1 should be used [1.0]

184

• -m: use metadynamics-like biased sampling? (0 = false) [1]

• -h: increment for the history-dependent bias (“hill height”) [0.01 kcal/mol]

• -f: if non-zero, this factor is used to scale the increment stepwise in the second half of the
M-C sampling to refine the free energy estimate [0.5]

Using the default values of all parameters should give reasonable results in most cases.

abf integrate produces the following output files:

• <gradient file>.pmf: computed free energy surface

• <gradient file>.histo: histogram of M-C sampling (not usable in a straightforward way
if the history-dependent bias has been applied)

• <gradient file>.est: estimated gradient of the calculated free energy surface (from finite
differences)

• <gradient file>.dev: deviation between the user-provided numerical gradient and the ac-
tual gradient of the calculated free energy surface. The RMS norm of this vector field is used
as a convergence criteria and displayed periodically during the integration.

Note: Typically, the “deviation” vector field does not vanish as the integration converges. This
happens because the numerical estimate of the gradient does not exactly derive from a potential,
due to numerical approximations used to obtain it (finite sampling and discretization on a grid).

9.5.3 Extended-system Adaptive Biasing Force (eABF)

Extended-system ABF (eABF) is a variant of ABF (9.5.2) where the bias is not applied directly
to the collective variable, but to an extended coordinate (“fictitious variable”) λ that evolves
dynamically according to Newtonian or Langevin dynamics. Such an extended coordinate is enabled
for a given colvar using the extendedLagrangian and associated keywords (9.3.20). The theory of
eABF and the present implementation are documented in detail in reference [64].

Defining an ABF bias on a colvar wherein the extendedLagrangian option is active will perform
eABF automatically; there is no dedicated option.

The extended variable λ is coupled to the colvar z = ξ(q) by the harmonic potential (k/2)(z−λ)2.
Under eABF dynamics, the adaptive bias on λ is the running estimate of the average spring force:

F bias(λ∗) = 〈k(λ− z)〉λ∗ (64)

where the angle brackets indicate a canonical average conditioned by λ = λ∗. At long simulation
times, eABF produces a flat histogram of the extended variable λ, and a flattened histogram of ξ,
whose exact shape depends on the strength of the coupling as defined by extendedFluctuation in
the colvar. Coupling should be somewhat loose for faster exploration and convergence, but strong
enough that the bias does help overcome barriers along the colvar ξ.[64] Distribution of the colvar
may be assessed by plotting its histogram, which is written to the outputName.zcount file in every
eABF simulation. Note that a histogram bias (9.5.10) applied to an extended-Lagrangian colvar
will access the extended degree of freedom λ, not the original colvar ξ; however, the joint histogram
may be explicitly requested by listing the name of the colvar twice in a row within the colvars
parameter of the histogram block.

The eABF PMF is that of the coordinate λ, it is not exactly the free energy profile of ξ. That
quantity can be calculated based on either the CZAR estimator or the Zheng/Yang estimator.

185

CZAR estimator of the free energy The corrected z-averaged restraint (CZAR) estimator is
described in detail in reference [64]. It is computed automatically in eABF simulations, regardless
of the number of colvars involved. Note that ABF may also be applied on a combination of extended
and non-extended colvars; in that case, CZAR still provides an unbiased estimate of the free energy
gradient.

CZAR estimates the free energy gradient as:

A′(z) = − 1
β

d ln ρ̃(z)
dz

+ k(〈λ〉z − z). (65)

where z = ξ(q) is the colvar, λ is the extended variable harmonically coupled to z with a force
constant k, and ρ̃(z) is the observed distribution (histogram) of z, affected by the eABF bias.

Parameters for the CZAR estimator are:

• CZARestimator < Calculate CZAR estimator of the free energy? >
Context: abf
Acceptable Values: boolean
Default Value: yes
Description: This option is only available when ABF is performed on extended-Lagrangian
colvars. When enabled, it triggers calculation of the free energy following the CZAR estimator.

• writeCZARwindowFile < Write internal data from CZAR to a separate file? >
Context: abf
Acceptable Values: boolean
Default Value: no
Description: When this option is enabled, eABF simulations will write a file containing
the z-averaged restraint force under the name outputName.zgrad. The same information is
always included in the colvars state file, which is sufficient for restarting an eABF simulation.
These separate file is only useful when joining adjacent windows from a stratified eABF
simulation, either to continue the simulation in a broader window or to compute a CZAR
estimate of the PMF over the full range of the coordinate(s). Important warning. Unbiased
free-energy estimators from eABF dynamics rely on some form of sampling histogram. When
running stratified (windowed) calculations this histogram becomes discontinuous, and as a
result the free energy gradient estimated by CZAR is inaccurate at the window boundary,
resulting in visible ”blips” in the PMF. As a workaround, we recommend manually replacing
the two free energy gradient values at the boundary, either with the ABF values from .grad
files (accurate in the limit of tight coupling), or with values interpolated for the neighboring
values of the CZAR gradient.

Similar to ABF, the CZAR estimator produces two output files in multicolumn text format
(9.3.18):

• outputName.czar.grad: current estimate of the free energy gradient (grid), in multicolumn;

• outputName.czar.pmf: only for one-dimensional calculations, integrated free energy profile
or PMF.

The sampling histogram associated with the CZAR estimator is the z-histogram, which is written
in the file outputName.zcount.

186

Zheng/Yang estimator of the free energy This feature has been contributed to NAMD by
the following authors:

Haohao Fu and Christophe Chipot

Laboratoire International Associé Centre National de la Recherche Scientifique et Uni-
versity of Illinois at Urbana–Champaign,
Unité Mixte de Recherche No. 7565, Université de Lorraine,
B.P. 70239, 54506 Vandœuvre-ls-Nancy cedex, France

c© 2016, Centre National de la Recherche Scientifique

This implementation is fully documented in [36]. The Zheng and Yang estimator [121] is based
on Umbrella Integration [53]. The free energy gradient is estimated as :

A′(ξ∗) =

∑
λ

N(ξ∗, λ)
[
(ξ∗ − 〈ξ〉λ)

βσ2
λ

− k(ξ∗ − λ)
]

∑
λ

N(ξ∗, λ)
(66)

where ξ is the colvar, λ is the extended variable harmonically coupled to ξ with a force constant
k, N(ξ, λ) is the number of samples collected in a (ξ, λ) bin, which is assumed to be a Gaussian
function of ξ with mean 〈ξ〉λ and standard deviation σλ.

The estimator is enabled through the following option:

• UIestimator < Calculate UI estimator of the free energy? >
Context: abf
Acceptable Values: boolean
Default Value: no
Description: This option is only available when ABF is performed on extended-Lagrangian
colvars. When enabled, it triggers calculation of the free energy following the UI estimator.

Usage for multiple–replica eABF. The eABF algorithm can be associated with a multiple–
walker strategy [77, 25] (9.5.2). To run a multiple–replica eABF simulation, start a multiple-replica
NAMD run (option +replicas) and set shared on in the Colvars config file to enable the multiple–
walker ABF algorithm. It should be noted that in contrast with classical MW–ABF simulations,
the output files of an MW–eABF simulation only show the free energy estimate of the corresponding
replica.

One can merge the results, using ./eabf.tcl -mergemwabf [merged filename]
[eabf output1] [eabf output2] ..., e.g., ./eabf.tcl -mergemwabf merge.eabf eabf.0.UI
eabf.1.UI eabf.2.UI eabf.3.UI.

If one runs an ABF–based calculation, breaking the reaction pathway into several non–
overlapping windows, one can use ./eabf.tcl -mergesplitwindow [merged fileprefix]
[eabf output] [eabf output2] ... to merge the data accrued in these non–overlapping win-
dows. This option can be utilized in both eABF and classical ABF simulations, e.g., ./eabf.tcl
-mergesplitwindow merge window0.czar window1.czar window2.czar window3.czar,
./eabf.tcl -mergesplitwindow merge window0.UI window1.UI window2.UI window3.UI
or ./eabf.tcl -mergesplitwindow merge abf0 abf1 abf2 abf3.

187

9.5.4 Metadynamics

The metadynamics method uses a history-dependent potential [60] that generalizes to any type
of colvars the conformational flooding [40] and local elevation [48] methods, originally formulated
to use as colvars the principal components of a covariance matrix or a set of dihedral angles,
respectively. The metadynamics potential on the colvars ξ = (ξ1, ξ2, . . . , ξNcv) is defined as:

Vmeta(ξ(t)) =
t′<t∑

t′=δt,2δt,...

W

Ncv∏
i=1

exp

(
−(ξi(t)− ξi(t′))2

2σ2
ξi

)
, (67)

where Vmeta is the history-dependent potential acting on the current values of the colvars ξ, and
depends only parametrically on the previous values of the colvars. Vmeta is constructed as a sum
of Ncv-dimensional repulsive Gaussian “hills”, whose height is a chosen energy constant W , and
whose centers are the previously explored configurations (ξ(δt), ξ(2δt), . . .).

During the simulation, the system evolves towards the nearest minimum of the “effective”
potential of mean force Ã(ξ), which is the sum of the “real” underlying potential of mean force
A(ξ) and the the metadynamics potential, Vmeta(ξ). Therefore, at any given time the probability
of observing the configuration ξ∗ is proportional to exp

(
−Ã(ξ∗)/κBT

)
: this is also the probability

that a new Gaussian “hill” is added at that configuration. If the simulation is run for a sufficiently
long time, each local minimum is canceled out by the sum of the Gaussian “hills”. At that stage
the “effective” potential of mean force Ã(ξ) is constant, and −Vmeta(ξ) is an estimator of the “real”
potential of mean force A(ξ), save for an additive constant:

A(ξ) ' −Vmeta(ξ) +K (68)

Such estimate of the free energy can be provided by enabling writeFreeEnergyFile. Assuming
that the set of collective variables includes all relevant degrees of freedom, the predicted error of
the estimate is a simple function of the correlation times of the colvars τξi

, and of the user-defined
parameters W , σξi

and δt [16]. In typical applications, a good rule of thumb can be to choose the
ratio W/δt much smaller than κBT/τξ, where τξ is the longest among ξ’s correlation times: σξi

then dictates the resolution of the calculated PMF.
If the metadynamics parameters are chosen correctly, after an equilibration time, te, the esti-

mator provided by eq. 68 oscillates on time around the “real” free energy, thereby a better estimate
of the latter can be obtained as the time average of the bias potential after te [70, 27]:

A(ξ) = − 1
ttot − te

∫ ttot

te

Vmeta(ξ, t)dt (69)

where te is the time after which the bias potential grows (approximately) evenly during the simula-
tion and ttot is the total simulation time. The free energy calculated according to eq. 69 can thus be
obtained averaging on time mutiple time-dependent free energy estimates, that can be printed out
through the keyword keepFreeEnergyFiles. An alternative is to obtain the free energy profiles by
summing the hills added during the simulation; the hills trajectory can be printed out by enabling
the option writeHillsTrajectory.

Treatment of the PMF boundaries In typical scenarios the Gaussian hills of a metadynamics
potential are interpolated and summed together onto a grid, which is much more efficient than
computing each hill independently at every step (the keyword useGrids (see 9.5.4) is on by default).

188

This numerical approximation typically yields neglibile errors in the resulting PMF [33]. However,
due to the finite thickness of the Gaussian function, the metadynamics potential would suddenly
vanish each time a variable exceeds its grid boundaries.

To avoid such discontinuity the Colvars metadynamics code will keep an explicit copy of each
hill that straddles a grid’s boundary, and will use it to compute metadynamics forces outside the
grid. This measure is taken to protect the accuracy and stability of a metadynamics simulation,
except in cases of “natural” boundaries (for example, the [0 : 180] interval of an angle colvar) or
when the flags hardLowerBoundary (see 9.3.18) and hardUpperBoundary (see 9.3.18) are explicitly
set by the user. Unfortunately, processing explicit hills alongside the potential and force grids could
easily become inefficient, slowing down the simulation and increasing the state file’s size.

In general, it is a good idea to define a repulsive potential to avoid hills from coming too close
to the grid’s boundaries, for example as a harmonicWalls restraint (see 9.5.7).

Example: Using harmonic walls to protect the grid’s boundaries.
colvar {
name r
distance { ... }
upperBoundary 15.0
width 0.2

}

metadynamics {
name meta r
colvars r
hillWeight 0.001
hillWidth 2.0

}

harmonicWalls {
name wall r
colvars r
upperWalls 13.0
upperWallConstant 2.0

}

In the colvar r, the distance function used has a lowerBoundary automatically set to 0 Å by
default, thus the keyword lowerBoundary itself is not mandatory and hardLowerBoundary is set
to yes internally. However, upperBoundary does not have such a “natural” choice of value. The
metadynamics potential meta r will individually process any hill whose center is too close to the
upperBoundary, more precisely within fewer grid points than 6 times the Gaussian σ parameter
plus one. It goes without saying that if the colvar r represents a distance between two freely-moving
molecules, it will cross this “threshold” rather frequently.

In this example, where the value of hillWidth (2σ) amounts to 2 grid points, the threshold is
6+1 = 7 grid points away from upperBoundary. In explicit units, the width of r is wr = 0.2 Å,
and the threshold is 15.0 - 7×0.2 = 13.6 Å.

The wall r restraint included in the example prevents this: the position of its upperWall is 13 Å,

189

i.e. 3 grid points below the buffer’s threshold (13.6 Å). For the chosen value of upperWallConstant,
the energy of the wall r bias at r = rupper = 13.6 Å is:

E∗ =
1
2
k

(
r − rupper

wr

)2

=
1
2
2.0 (−3)2 = 9 kcal/mol

which results in a relative probability exp(−E∗/κBT) ' 3 × 10−7 that r crosses the threshold.
The probability that r exceeds upperBoundary, which is further away, has also become vanishingly
small. At that point, you may want to set hardUpperBoundary to yes for r, and let meta r know
that no special treatment near the grid’s boundaries will be needed.

What is the impact of the wall restraint onto the PMF? Not a very complicated one: the PMF
reconstructed by metadynamics will simply show a sharp increase in free-energy where the wall
potential kicks in (r > 13 Å). You may then choose between using the PMF only up until that
point and discard the rest, or subtracting the energy of the harmonicWalls restraint from the
PMF itself. Keep in mind, however, that the statistical convergence of metadynamics may be less
accurate where the wall potential is strong.

In summary, although it would be simpler to set the wall’s position upperWall and the grid’s
boundary upperBoundary to the same number, the finite width of the Gaussian hills calls for setting
the former strictly within the latter.

Basic configuration keywords To enable a metadynamics calculation, a metadynamics {...}
block must be defined in the Colvars configuration file. Its mandatory keywords are colvars (see
9.5), the variables involved, hillWeight (see 9.5.4), the weight parameter W , and the widths 2σ of
the Gaussian hills in each dimension given by the single dimensionless parameter hillWidth (see
9.5.4), or more explicitly by the gaussianSigmas (see 9.5.4).

• name: see definition of name in sec. 9.5 (biasing and analysis methods)

• colvars: see definition of colvars in sec. 9.5 (biasing and analysis methods)

• outputEnergy: see definition of outputEnergy in sec. 9.5 (biasing and analysis methods)

• outputFreq: see definition of outputFreq in sec. 9.5 (biasing and analysis methods)

• writeTIPMF: see definition of writeTIPMF in sec. 9.5 (biasing and analysis methods)

• writeTISamples: see definition of writeTISamples in sec. 9.5 (biasing and analysis meth-
ods)

• stepZeroData: see definition of stepZeroData in sec. 9.5 (biasing and analysis methods)

• hillWeight < Height of each hill (kcal/mol) >
Context: metadynamics
Acceptable Values: positive decimal
Description: This option sets the height W of the Gaussian hills that are added during
this run. Lower values provide more accurate sampling of the system’s degrees of freedom at
the price of longer simulation times to complete a PMF calculation based on metadynamics.

190

• hillWidth < Width 2σ of a Gaussian hill, measured in number of grid points >
Context: metadynamics
Acceptable Values: positive decimal
Description: This keyword sets the Gaussian width 2σξi

for all colvars, expressed in number
of grid points, with the grid spacing along each colvar ξ determined by the respective value
of width (see 9.3.18). Values between 1 and 3 are recommended for this option: smaller
numbers will fail to adequately interpolate each Gaussian function [33], while larger values
may be unable to account for steep free-energy gradients. The values of each half-width σξi

in the physical units of ξi are also printed by NAMD at initialization time; alternatively, they
may be set explicitly via gaussianSigmas (see 9.5.4).

• gaussianSigmas < Half-widths σ of the Gaussian hill (one for each colvar) >
Context: metadynamics
Acceptable Values: space-separated list of decimals
Description: This option sets the parameters σξi

of the Gaussian hills along each colvar
ξi, expressed in the same unit of ξi. No restrictions are placed on each value, but a warning
will be printed if useGrids (see 9.5.4) is on and the Gaussian width 2σξi

is smaller than the
corresponding grid spacing, width(ξi). If not given, default values will be computed from the
dimensionless number hillWidth (see 9.5.4).

• newHillFrequency < Frequency of hill creation >
Context: metadynamics
Acceptable Values: positive integer
Default Value: 1000
Description: This option sets the number of steps after which a new Gaussian hill is added
to the metadynamics potential. The product of this number and the integration time-step
defines the parameter δt in eq. 67. Higher values provide more accurate statistical sampling,
at the price of longer simulation times to complete a PMF calculation.

Output files When interpolating grids are enabled (default behavior), the PMF is written by
default every colvarsRestartFrequency steps to the file outputName.pmf in multicolumn text
format (9.3.18). The following two options allow to disable or control this behavior and to track
statistical convergence:

• writeFreeEnergyFile < Periodically write the PMF for visualization >
Context: metadynamics
Acceptable Values: boolean
Default Value: on
Description: When useGrids and this option are on, the PMF is written every outputFreq
(see 9.5) steps.

• keepFreeEnergyFiles < Keep all the PMF files >
Context: metadynamics
Acceptable Values: boolean
Default Value: off
Description: When writeFreeEnergyFile and this option are on, the step number is
included in the file name, thus generating a series of PMF files. Activating this option can be

191

useful to follow more closely the convergence of the simulation, by comparing PMFs separated
by short times.

• writeHillsTrajectory < Write a log of new hills >
Context: metadynamics
Acceptable Values: boolean
Default Value: off
Description: If this option is on, a file containing the Gaussian hills written by the
metadynamics bias, with the name:
“outputName.colvars.<name>.hills.traj”,
which can be useful to post-process the time series of the Gassian hills. Each line is
written every newHillFrequency, regardless of the value of outputFreq (see 9.5). When
multipleReplicas is on, its name is changed to:
“outputName.colvars.<name>.<replicaID>.hills.traj”.
The columns of this file are the centers of the hills, ξi(t′), followed by the half-widths, σξi

,
and the weight, W . Note: prior to version 2020-02-24, the full-width 2σ of the Gaussian was
reported in lieu of σ.

Performance optimization The following options control the computational cost of metady-
namics calculations, but do not affect results. Default values are chosen to minimize such cost with
no loss of accuracy.

• useGrids < Interpolate the hills with grids >
Context: metadynamics
Acceptable Values: boolean
Default Value: on
Description: This option discretizes all hills for improved performance, accumulating their
energy and their gradients on two separate grids of equal spacing. Grids are defined by
the values of lowerBoundary, upperBoundary and width for each colvar. Currently, this
option is implemented for all types of variables except the non-scalar types (distanceDir or
orientation). If expandBoundaries is defined in one of the colvars, grids are automatically
expanded along the direction of that colvar.

• rebinGrids < Recompute the grids when reading a state file >
Context: metadynamics
Acceptable Values: boolean
Default Value: off
Description: When restarting from a state file, the grid’s parameters (boundaries and
widths) saved in the state file override those in the configuration file. Enabling this option
forces the grids to match those in the current configuration file.

• keepHills < Write each individual hill to the state file >
Context: metadynamics
Acceptable Values: boolean
Default Value: off
Description: When useGrids and this option are on, all hills are saved to the state
file in their analytic form, alongside their grids. This makes it possible to later use exact

192

analytic Gaussians for rebinGrids. To only keep track of the history of the added hills,
writeHillsTrajectory is preferable.

Ensemble-Biased Metadynamics The ensemble-biased metadynamics (EBMetaD) approach
[69] is designed to reproduce a target probability distribution along selected collective variables.
Standard metadynamics can be seen as a special case of EBMetaD with a flat distribution as target.
This is achieved by weighing the Gaussian functions used in the metadynamics approach by the
inverse of the target probability distribution:

VEBmetaD(ξ(t)) =
t′<t∑

t′=δt,2δt,...

W

exp (Sρ) ρexp(ξ(t′))

Ncv∏
i=1

exp

(
−(ξi(t)− ξi(t′))2

2σ2
ξi

)
, (70)

where ρexp(ξ) is the target probability distribution and Sρ = −
∫
ρexp(ξ) log ρexp(ξ) dξ its corre-

sponding differential entropy. The method is designed so that during the simulation the resulting
distribution of the collective variable ξ converges to ρexp(ξ). A practical application of EBMetaD
is to reproduce an “experimental” probability distribution, for example the distance distribution
between spectroscopic labels inferred from Förster resonance energy transfer (FRET) or double
electron-electron resonance (DEER) experiments [69].

The PMF along ξ can be estimated from the bias potential and the target ditribution [69]:

A(ξ) ' −VEBmetaD(ξ)− κBT log ρexp(ξ) (71)

and obtained by enabling writeFreeEnergyFile. Similarly to eq. 69, a more accurate estimate of
the free energy can be obtained by averaging (after an equilibration time) multiple time-dependent
free energy estimates (see keepFreeEnergyFiles).

The following additional options define the configuration for the ensemble-biased metadynamics
approach:

• ebMeta < Perform ensemble-biased metadynamics >
Context: metadynamics
Acceptable Values: boolean
Default Value: off
Description: If enabled, this flag activates the ensemble-biased metadynamics as described
by Marinelli et al.[69]. The target distribution file, targetdistfile, is then required. The
keywords lowerBoundary, upperBoundary and width for the respective variables are also
needed to set the binning (grid) of the target distribution file.

• targetDistFile < Target probability distribution file for ensemble-biased metadynamics
>
Context: metadynamics
Acceptable Values: multicolumn text file
Description: This file provides the target probability distribution, ρexp(ξ), reported in
eq. 70. The latter distribution must be a tabulated function provided in a multicolumn text
format (see 9.3.18). The provided distribution is then normalized.

• ebMetaEquilSteps < Number of equilibration steps for ensemble-biased metadynamics >
Context: metadynamics
Acceptable Values: positive integer

193

Description: The EBMetaD approach may introduce large hills in regions with small values
of the target probability distribution (eq. 70). This happens, for example, if the probability
distribution sampled by a conventional molecular dynamics simulation is significantly different
from the target distribution. This may lead to instabilities at the beginning of the simulation
related to large biasing forces. In this case, it is useful to introduce an equilibration stage
in which the bias potential gradually switches from standard metadynamics (eq. 67) to
EBmetaD (eq. 70) as λVmeta(ξ) + (1 − λ)VEBmetaD(ξ), where λ = (ebMetaEquilSteps −
step)/ebMetaEquilSteps and step is the current simulation step number.

• targetDistMinVal < Minimum value of the target distribution in reference to its maximum
value >
Context: metadynamics
Acceptable Values: positive decimal
Description: It is useful to set a minimum value of the target probability distribution to
avoid values of the latter that are nearly zero, leading to very large hills. This parameter sets
the minimum value of the target probability distribution that is expressed as a fraction of
its maximum value: minimum value = maximum value X targetDistMinVal. This implies
that 0 < targetDistMinVal < 1 and its default value is set to 1/1000000. To avoid divisions
by zero (see eq. 70), if targetDistMinVal is set as zero, values of ρexp equal to zero are
replaced by the smallest positive value read in the same file.

As with standard metadynamics, multidimensional probability distributions can be targeted
using a single metadynamics block using multiple colvars and a multidimensional target distri-
bution file (see 9.3.18). Instead, multiple probability distributions on different variables can be
targeted separately in the same simulation by introducing multiple metadynamics blocks with the
ebMeta option.

Example: EBmetaD configuration for a single variable.
colvar {
name r
distance {

group1 { atomNumbers 991 992 }
group2 { atomNumbers 1762 1763 }

}
upperBoundary 100.0
width 0.1

}

metadynamics {
name ebmeta
colvars r
hillWeight 0.01
hillWidth 3.0
ebMeta on
targetDistFile targetdist1.dat
ebMetaEquilSteps 500000

}

194

where targetdist1.dat is a text file in “multicolumn” format (9.3.18) with the same width as the
variable r (0.1 in this case):

1
0.0 0.1 1000 0

0.05 0.0012
0.15 0.0014

.
99.95 0.0010

Tip: Besides setting a meaninful value for targetDistMinVal, the exploration of unphysi-
cally low values of the target distribution (which would lead to very large hills and possibly nu-
merical instabilities) can be also prevented by restricting sampling to a given interval, using e.g.
harmonicWalls restraint (9.5.7).

Well-tempered metadynamics The following options define the configuration for the “well-
tempered” metadynamics approach [4]:

• wellTempered < Perform well-tempered metadynamics >
Context: metadynamics
Acceptable Values: boolean
Default Value: off
Description: If enabled, this flag causes well-tempered metadynamics as described by
Barducci et al.[4] to be performed, rather than standard metadynamics. The parameter
biasTemperature is then required. This feature was contributed by Li Li (Luthey-Schulten
group, Department of Chemistry, UIUC).

• biasTemperature < Temperature bias for well-tempered metadynamics >
Context: metadynamics
Acceptable Values: positive decimal
Description: When running metadynamics in the long time limit, collective variable space
is sampled to a modified temperature T+∆T . In conventional metadynamics, the temperature
“boost” ∆T would constantly increases with time. Instead, in well-tempered metadynamics
∆T must be defined by the user via biasTemperature. The written PMF includes the scaling
factor (T + ∆T)/∆T [4]. A careful choice of ∆T determines the sampling and convergence
rate, and is hence crucial to the success of a well-tempered metadynamics simulation.

Multiple-walker metadynamics Metadynamics calculations can be performed concurrently by
multiple replicas that share a common history. This variant of the method is called multiple-walker
metadynamics [90]: the Gaussian hills of all replicas are periodically combined into a single biasing
potential, intended to converge to a single PMF.

In the implementation here described [33], replicas communicate through files. This arrange-
ment allows launching the replicas either (1) as a bundle (i.e. a single job in a cluster’s queueing
system) or (2) as fully independent runs (i.e. as separate jobs for the queueing system). One
advantage of the use case (1) is that an identical Colvars configuration can be used for all replicas
(otherwise, replicaID needs to be manually set to a different string for each replica). However,

195

the use case (2) is less demanding in terms of high-performance computing resources: a typical
scenario would be a computer cluster (including virtual servers from a cloud provider) where not
all nodes are connected to each other at high speed, and thus each replica runs on a small group
of nodes or a single node.

Whichever way the replicas are started (coupled or not), a shared filesystem is needed so that
each replica can read the files created by the others: paths to these files are stored in the shared
file replicasRegistry. This file, and those listed in it, are read every replicaUpdateFrequency
steps. Each time the Colvars state file is written (for example, colvarsRestartFrequency steps),
the file named:
outputName.colvars.name.replicaID.state
is written as well; this file contains only the state of the metadynamics bias, which the other
replicas will read in turn. In between the times when this file is modified/replaced, new hills are
also temporarily written to the file named:
outputName.colvars.name.replicaID.hills
Both files are only used for communication, and may be deleted after the replica begins writing
files with a new outputName.

Example: Multiple-walker metadynamics with file-based communication.
metadynamics {
name mymtd
colvars x
hillWeight 0.001
newHillFrequency 1000
hillWidth 3.0

multipleReplicas on
replicasRegistry /shared-folder/mymtd-replicas.txt
replicaUpdateFrequency 50000 # Best if larger than newHillFrequency

}

The following are the multiple-walkers related options:

• multipleReplicas < Enable multiple-walker metadynamics >
Context: metadynamics
Acceptable Values: boolean
Default Value: off
Description: This option turns on multiple-walker communication between replicas.

• replicasRegistry < Multiple replicas database file >
Context: metadynamics
Acceptable Values: UNIX filename
Description: If multipleReplicas is on, this option sets the path to the replicas’ shared
database file. It is best to use an absolute path (especially when running individual replicas
in separate folders).

• replicaUpdateFrequency < How often hills are shared between replicas >
Context: metadynamics
Acceptable Values: positive integer

196

Description: If multipleReplicas is on, this option sets the number of steps after which
each replica tries to read the other replicas’ files. On a networked file system, it is best to use
a number of steps that corresponds to at least a minute of wall time.

• replicaID < Set the identifier for this replica >
Context: metadynamics
Acceptable Values: string
Default Value: replica index (only if a shared communicator is used)
Description: If multipleReplicas is on, this option sets a unique identifier for this
replicas. When the replicas are launched in a single command (i.e. they share a parallel
communicator and are tightly synchronized) this value is optional, and defaults to the replica’s
numeric index (starting at zero). However, when the replicas are launched as independent
runs this option is required.

• writePartialFreeEnergyFile < Periodically write the contribution to the PMF from this
replica >
Context: metadynamics
Acceptable Values: boolean
Default Value: off
Description: If multipleReplicas is on, enabling this option produces an additional file
outputName.partial.pmf, which can be useful to monitor the contribution of each replica
to the total PMF (which is written to the file outputName.pmf). Note: the name of this file
is chosen for consistency and convenience, but its content is not a PMF and it is not expected
to converge, even if the total PMF does.

9.5.5 Harmonic restraints

The harmonic biasing method may be used to enforce fixed or moving restraints, including variants
of Steered and Targeted MD. Within energy minimization runs, it allows for restrained minimiza-
tion, e.g. to calculate relaxed potential energy surfaces. In the context of the Colvars module,
harmonic potentials are meant according to their textbook definition:

V (ξ) =
1
2
k

(
ξ − ξ0
wξ

)2

(72)

There are two noteworthy aspects of this expression:

1. Because the standard coefficient of 1/2 of the harmonic potential is included, this expression
differs from harmonic bond and angle potentials historically used in common force fields,
where the factor was typically omitted resulting in a non-standard definition of the force
constant.

2. The variable ξ is not only centered at ξ0, but is also scaled by its characteristic length scale
wξ (keyword width (see 9.3.18)). The resulting dimensionless variable z = (ξ − ξ0)/wξ is
typically easier to treat numerically: for example, when the forces typically experienced by
ξ are much smaller than k/wξ and k is chosen equal to κBT (thermal energy), the resulting
probability distribution of z is approximately a Gaussian with mean equal to 0 and standard
deviation equal to 1.

197

This property can be used for setting the force constant in umbrella-sampling ensemble runs:
if the restraint centers are chosen in increments of wξ, the resulting distributions of ξ are most
often optimally overlapped. In regions where the underlying free-energy landscape induces
highly skewed distributions of ξ, additional windows may be added as needed, with spacings
finer than wξ.

Beyond one dimension, the use of a scaled harmonic potential also allows a standard definition
of a multi-dimensional restraint with a unified force constant:

V (ξ1, . . . , ξM) =
1
2
k

M∑
i=1

(
ξi − ξ0
wξ

)2

(73)

If one-dimensional or homogeneous multi-dimensional restraints are defined, and there are no
other uses for the parameter wξ, width can be left at its default value of 1.

A harmonic restraint is defined by a harmonic {...} block, which may contain the following
keywords:

• name: see definition of name in sec. 9.5 (biasing and analysis methods)

• colvars: see definition of colvars in sec. 9.5 (biasing and analysis methods)

• outputEnergy: see definition of outputEnergy in sec. 9.5 (biasing and analysis methods)

• writeTIPMF: see definition of writeTIPMF in sec. 9.5 (biasing and analysis methods)

• writeTISamples: see definition of writeTISamples in sec. 9.5 (biasing and analysis meth-
ods)

• stepZeroData: see definition of stepZeroData in sec. 9.5 (biasing and analysis methods)

• forceConstant < Scaled force constant (kcal/mol) >
Context: harmonic
Acceptable Values: positive decimal
Default Value: 1.0
Description: This option defines a scaled force constant k for the harmonic potential
(eq. 73). To ensure consistency for multidimensional restraints, it is divided internally by the
square of the specific width of each variable (which is 1 by default). This makes all values
effectively dimensionless and of commensurate size. For instance, if this force constant is set
to the thermal energy κBT (equal to RT if molar units are used), then the amplitude of the
thermal fluctuations of each variable ξ will be on the order of its width, wξ. This can be used
to estimate the optimal spacing of umbrella-sampling windows (under the assumption that
the force constant is larger than the curvature of the underlying free energy). The values of
the actual force constants k/w2

ξ are always printed when the restraint is defined.

• centers < Initial harmonic restraint centers >
Context: harmonic
Acceptable Values: space-separated list of colvar values
Description: The centers (equilibrium values) of the restraint, ξ0, are entered here. The
number of values must be the number of requested colvars. Each value is a decimal number
if the corresponding colvar returns a scalar, a “(x, y, z)” triplet if it returns a unit vector

198

or a vector, and a “(q0, q1, q2, q3)” quadruplet if it returns a rotational quaternion. If a
colvar has periodicities or symmetries, its closest image to the restraint center is considered
when calculating the harmonic potential.

Tip: A complex set of restraints can be applied to a system, by defining several colvars, and
applying one or more harmonic restraints to different groups of colvars. In some cases, dozens of
colvars can be defined, but their value may not be relevant: to limit the size of the colvars trajectory
file, it may be wise to disable outputValue for such “ancillary” variables, and leave it enabled only
for “relevant” ones.

Moving restraints: steered molecular dynamics The following options allow to change
gradually the centers of the harmonic restraints during a simulations. When the centers are changed
continuously, a steered MD in a collective variable space is carried out.

• targetCenters < Steer the restraint centers towards these targets >
Context: harmonic
Acceptable Values: space-separated list of colvar values
Description: When defined, the current centers will be moved towards these values during
the simulation. By default, the centers are moved over a total of targetNumSteps steps by a
linear interpolation, in the spirit of Steered MD. If targetNumStages is set to a nonzero value,
the change is performed in discrete stages, lasting targetNumSteps steps each. This second
mode may be used to sample successive windows in the context of an Umbrella Sampling
simulation. When continuing a simulation run, the centers specified in the configuration
file <colvarsConfig> are overridden by those saved in the restart file <colvarsInput>.
To perform Steered MD in an arbitrary space of colvars, it is sufficient to use this option
and enable outputAccumulatedWork and/or outputAppliedForce within each of the colvars
involved.

• targetNumSteps < Number of steps for steering >
Context: harmonic
Acceptable Values: positive integer
Description: In single-stage (continuous) transformations, defines the number of MD steps
required to move the restraint centers (or force constant) towards the values specified with
targetCenters or targetForceConstant. After the target values have been reached, the
centers (resp. force constant) are kept fixed. In multi-stage transformations, this sets the
number of MD steps per stage.

• outputCenters < Write the current centers to the trajectory file >
Context: harmonic
Acceptable Values: boolean
Default Value: off
Description: If this option is chosen and colvarsTrajFrequency is not zero, the positions
of the restraint centers will be written to the trajectory file during the simulation. This
option allows to conveniently extract the PMF from the colvars trajectory files in a steered
MD calculation.

Note on restarting moving restraint simulations: Information about the current step
and stage of a simulation with moving restraints is stored in the restart file (state file). Thus, such

199

simulations can be run in several chunks, and restarted directly using the same colvars configuration
file. In case of a restart, the values of parameters such as targetCenters, targetNumSteps, etc.
should not be changed manually.

Moving restraints: umbrella sampling The centers of the harmonic restraints can also be
changed in discrete stages: in this cases a one-dimensional umbrella sampling simulation is per-
formed. The sampling windows in simulation are calculated in sequence. The colvars trajectory file
may then be used both to evaluate the correlation times between consecutive windows, and to cal-
culate the frequency distribution of the colvar of interest in each window. Furthermore, frequency
distributions on a predefined grid can be automatically obtained by using the histogram bias (see
9.5.10).

To activate an umbrella sampling simulation, the same keywords as in the previous section can
be used, with the addition of the following:

• targetNumStages < Number of stages for steering >
Context: harmonic
Acceptable Values: non-negative integer
Default Value: 0
Description: If non-zero, sets the number of stages in which the restraint centers or force
constant are changed to their target values. If zero, the change is continuous. Each stage
lasts targetNumSteps MD steps. To sample both ends of the transformation, the simulation
should be run for targetNumSteps × (targetNumStages + 1).

Changing force constant The force constant of the harmonic restraint may also be changed to
equilibrate [31].

• targetForceConstant < Change the force constant towards this value >
Context: harmonic
Acceptable Values: positive decimal
Description: When defined, the current forceConstant will be moved towards this
value during the simulation. Time evolution of the force constant is dictated by the
targetForceExponent parameter (see below). By default, the force constant is changed
smoothly over a total of targetNumSteps steps. This is useful to introduce or remove re-
straints in a progressive manner. If targetNumStages is set to a nonzero value, the change is
performed in discrete stages, lasting targetNumSteps steps each. This second mode may be
used to compute the conformational free energy change associated with the restraint, within
the FEP or TI formalisms. For convenience, the code provides an estimate of the free energy
derivative for use in TI. A more complete free energy calculation (particularly with regard
to convergence analysis), while not handled by the Colvars module, can be performed by
post-processing the colvars trajectory, if colvarsTrajFrequency is set to a suitably small
value. It should be noted, however, that restraint free energy calculations may be handled
more efficiently by an indirect route, through the determination of a PMF for the restrained
coordinate.[31]

• targetForceExponent < Exponent in the time-dependence of the force constant >
Context: harmonic
Acceptable Values: decimal equal to or greater than 1.0

200

Default Value: 1.0
Description: Sets the exponent, α, in the function used to vary the force constant as
a function of time. The force is varied according to a coupling parameter λ, raised to the
power α: kλ = k0 + λα(k1 − k0), where k0, kλ, and k1 are the initial, current, and final
values of the force constant. The parameter λ evolves linearly from 0 to 1, either smoothly,
or in targetNumStages equally spaced discrete stages, or according to an arbitrary schedule
set with lambdaSchedule. When the initial value of the force constant is zero, an exponent
greater than 1.0 distributes the effects of introducing the restraint more smoothly over time
than a linear dependence, and ensures that there is no singularity in the derivative of the
restraint free energy with respect to lambda. A value of 4 has been found to give good results
in some tests.

• targetEquilSteps < Number of steps discarded from TI estimate >
Context: harmonic
Acceptable Values: positive integer
Description: Defines the number of steps within each stage that are considered equilibra-
tion and discarded from the restraint free energy derivative estimate reported reported in the
output.

• lambdaSchedule < Schedule of lambda-points for changing force constant >
Context: harmonic
Acceptable Values: list of real numbers between 0 and 1
Description: If specified together with targetForceConstant, sets the sequence of discrete
λ values that will be used for different stages.

9.5.6 Computing the work of a changing restraint

If the restraint centers or force constant are changed continuosly (targetNumStages undefined) it
is possible to record the net work performed by the changing restraint:

• outputAccumulatedWork < Write the accumulated work of the changing restraint to the
Colvars trajectory file >
Context: harmonic
Acceptable Values: boolean
Default Value: off
Description: If targetCenters or targetForceConstant are defined and this option is
enabled, the accumulated work from the beginning of the simulation will be written to the
trajectory file (colvarsTrajFrequency must be non-zero). When the simulation is contin-
ued from a state file, the previously accumulated work is included in the integral. This
option allows to conveniently extract the estimated PMF of a steered MD calculation (when
targetCenters is used), or of other simulation protocols.

9.5.7 Harmonic wall restraints

The harmonicWalls {...} bias is closely related to the harmonic bias (see 9.5.5), with the following
two differences: (i) instead of a center a lower wall and/or an upper wall are defined, outside of

201

which the bias implements a half-harmonic potential;

V (ξ) =


1
2k
(

ξ−ξupper

wξ

)2
if ξ > ξupper

0 if ξlower ≤ ξ ≥ ξupper

1
2k
(

ξ−ξlower
wξ

)2
if ξ < ξlower

(74)

where ξlower and ξupper are the lower and upper wall thresholds, respectively; (ii) because an
interval between two walls is defined, only scalar variables can be used (but any number of
variables can be defined, and the wall bias is intrinsically multi-dimensional).

Note: this bias replaces the keywords lowerWall, lowerWallConstant, upperWall and
upperWallConstant defined in the colvar context. Those keywords are deprecated.

The harmonicWalls bias implements the following options:

• name: see definition of name in sec. 9.5 (biasing and analysis methods)

• colvars: see definition of colvars in sec. 9.5 (biasing and analysis methods)

• outputEnergy: see definition of outputEnergy in sec. 9.5 (biasing and analysis methods)

• writeTIPMF: see definition of writeTIPMF in sec. 9.5 (biasing and analysis methods)

• writeTISamples: see definition of writeTISamples in sec. 9.5 (biasing and analysis meth-
ods)

• stepZeroData: see definition of stepZeroData in sec. 9.5 (biasing and analysis methods)

• lowerWalls < Position of the lower wall >
Context: colvar
Acceptable Values: Space-separated list of decimals
Description: Defines the values ξlower below which a confining restraint on the colvar is
applied to each colvar ξ.

• upperWalls < Position of the lower wall >
Context: colvar
Acceptable Values: Space-separated list of decimals
Description: Defines the values ξupper above which a confining restraint on the colvar is
applied to each colvar ξ.

• forceConstant: see definition of forceConstant in sec. 9.5.5 (Harmonic restraints)

• lowerWallConstant < Force constant for the lower wall >
Context: harmonicWalls
Acceptable Values: positive decimal
Default Value: forceConstant
Description: When both sets of walls are defined (lower and upper), this keyword allows
setting different force constants for them. As with forceConstant, the specified constant is
divided internally by the square of the specific width of each variable (see also the equivalent
keyword for the harmonic restraint, forceConstant (see 9.5.5)). The force constant reported
in the output as “k”, and used in the change of force constant scheme, is the geometric mean
of upperWallConstant and upperWallConstant.

202

• upperWallConstant: analogous to lowerWallConstant

• targetForceConstant: see definition of targetForceConstant in sec. 9.5.5 (harmonic
restraints)

• targetForceConstant < Change the force constant(s) towards this value >
Context: harmonicWalls
Acceptable Values: positive decimal
Description: This keyword allows changing either one or both of the wall force constants
over time. In the case that lowerWallConstant and upperWallConstant have the same
value, the behavior of this keyword is identical to the corresponding keyword in the harmonic
restraint; otherwise, the change schedule is applied to the geometric mean of the two constant.
When only one set of walls is defined (lowerWall or upperWalls), only the respective force
constant is changed. Note: if only one of the two force constants is meant to change over
time, it is possible to use two instances of harmonicWalls, and apply the changing schedule
only to one of them.

• targetNumSteps: see definition of targetNumSteps in sec. 9.5.5 (harmonic restraints)

• targetForceExponent: see definition of targetForceExponent in sec. 9.5.5 (harmonic
restraints)

• targetEquilSteps: see definition of targetEquilSteps in sec. 9.5.5 (harmonic restraints)

• targetNumStages: see definition of targetNumStages in sec. 9.5.5 (harmonic restraints)

• lambdaSchedule: see definition of lambdaSchedule in sec. 9.5.5 (harmonic restraints)

• outputAccumulatedWork: see definition of outputAccumulatedWork in sec. 9.5.5 (har-
monic restraints)

• bypassExtendedLagrangian < Apply bias to actual colvars, bypassing extended coordinates
>
Context: harmonicWalls
Acceptable Values: boolean
Default Value: on
Description: This option behaves as bypassExtendedLagrangian (see 9.5) for other biases,
but it defaults to on, unlike in the general case. Thus, by default, the harmonicWalls
bias applies to the actual colvars, so that the distribution of the colvar between the walls
is unaffected by the bias, which then applies a flat-bottom potential as a function of the
colvar value. This bias will affect the extended coordinate distribution near the walls. If
bypassExtendedLagrangian is disabled, harmonicWalls applies a flat-bottom potential as
a function of the extended coordinate. Conversely, this bias will then modify the distribution
of the actual colvar value near the walls.

Example 1: harmonic walls for one variable with two different force constants.
harmonicWalls {

name mywalls
colvars dist
lowerWalls 22.0

203

upperWalls 38.0
lowerWallConstant 2.0
upperWallConstant 10.0

}

Example 2: harmonic walls for two variables with a single force constant.
harmonicWalls {

name mywalls
colvars phi psi
lowerWalls -180.0 0.0
upperWalls 0.0 180.0
forceConstant 5.0

}

9.5.8 Linear restraints

The linear restraint biasing method is used to minimally bias a simulation. There is generally a
unique strength of bias for each CV center, which means you must know the bias force constant
specifically for the center of the CV. This force constant may be found by using experiment directed
simulation described in section 9.5.9. Please cite Pitera and Chodera when using [87].

• name: see definition of name in sec. 9.5 (biasing and analysis methods)

• colvars: see definition of colvars in sec. 9.5 (biasing and analysis methods)

• outputEnergy: see definition of outputEnergy in sec. 9.5 (biasing and analysis methods)

• forceConstant < Scaled force constant (kcal/mol) >
Context: linear
Acceptable Values: positive decimal
Default Value: 1.0
Description: This option defines a scaled force constant for the linear bias. To ensure con-
sistency for multidimensional restraints, it is divided internally by the specific width of each
variable (which is 1 by default), so that all variables are effectively dimensionless and of com-
mensurate size. See also the equivalent keyword for the harmonic restraint, forceConstant
(see 9.5.5). The values of the actual force constants k/wξ are always printed when the restraint
is defined.

• centers < Initial linear restraint centers >
Context: linear
Acceptable Values: space-separated list of colvar values
Description: These are analogous to the centers (see 9.5.5) keyword of the harmonic
restraint. Although they do not affect dynamics, they are here necessary to ensure a well-
defined energy for the linear bias.

• writeTIPMF: see definition of writeTIPMF in sec. 9.5 (biasing and analysis methods)

• writeTISamples: see definition of writeTISamples in sec. 9.5 (biasing and analysis meth-
ods)

204

• targetForceConstant: see definition of targetForceConstant in sec. 9.5.5 (Harmonic
restraints)

• targetNumSteps: see definition of targetNumSteps in sec. 9.5.5 (Harmonic restraints)

• targetForceExponent: see definition of targetForceExponent in sec. 9.5.5 (Harmonic
restraints)

• targetEquilSteps: see definition of targetEquilSteps in sec. 9.5.5 (Harmonic restraints)

• targetNumStages: see definition of targetNumStages in sec. 9.5.5 (Harmonic restraints)

• lambdaSchedule: see definition of lambdaSchedule in sec. 9.5.5 (Harmonic restraints)

• outputAccumulatedWork: see definition of outputAccumulatedWork in sec. 9.5.5 (Har-
monic restraints)

9.5.9 Adaptive Linear Bias/Experiment Directed Simulation

Experiment directed simulation applies a linear bias with a changing force constant. Please cite
White and Voth [117] when using this feature. As opposed to that reference, the force constant here
is scaled by the width corresponding to the biased colvar. In White and Voth, each force constant
is scaled by the colvars set center. The bias converges to a linear bias, after which it will be the
minimal possible bias. You may also stop the simulation, take the median of the force constants
(ForceConst) found in the colvars trajectory file, and then apply a linear bias with that constant.
All the notes about units described in sections 9.5.8 and 9.5.5 apply here as well. This is not
a valid simulation of any particular statistical ensemble and is only an optimization
algorithm until the bias has converged.

• name: see definition of name in sec. 9.5 (biasing and analysis methods)

• colvars: see definition of colvars in sec. 9.5 (biasing and analysis methods)

• centers < Collective variable centers >
Context: alb
Acceptable Values: space-separated list of colvar values
Description: The desired center (equilibrium values) which will be sought during the
adaptive linear biasing. The number of values must be the number of requested colvars.
Each value is a decimal number if the corresponding colvar returns a scalar, a “(x, y, z)”
triplet if it returns a unit vector or a vector, and a “q0, q1, q2, q3)” quadruplet if it
returns a rotational quaternion. If a colvar has periodicities or symmetries, its closest image
to the restraint center is considered when calculating the linear potential.

• updateFrequency < The duration of updates >
Context: alb
Acceptable Values: An integer
Description: This is, N , the number of simulation steps to use for each update to the bias.
This determines how long the system requires to equilibrate after a change in force constant
(N/2), how long statistics are collected for an iteration (N/2), and how quickly energy is
added to the system (at most, A/2N , where A is the forceRange). Until the force constant

205

has converged, the method as described is an optimization procedure and not an integration
of a particular statistical ensemble. It is important that each step should be uncorrelated
from the last so that iterations are independent. Therefore, N should be at least twice the
autocorrelation time of the collective variable. The system should also be able to dissipate
energy as fast as N/2, which can be done by adjusting thermostat parameters. Practically,
N has been tested successfully at significantly shorter than the autocorrelation time of the
collective variables being biased and still converge correctly.

• forceRange < The expected range of the force constant in units of energy >
Context: alb
Acceptable Values: A space-separated list of decimal numbers
Default Value: 3 kbT
Description: This is largest magnitude of the force constant which one expects. If this
parameter is too low, the simulation will not converge. If it is too high the simulation will
waste time exploring values that are too large. A value of 3 kbT has worked well in the
systems presented as a first choice. This parameter is dynamically adjusted over the course of
a simulation. The benefit is that a bad guess for the forceRange can be corrected. However,
this can lead to large amounts of energy being added over time to the system. To prevent
this dynamic update, add hardForceRange yes as a parameter

• rateMax < The maximum rate of change of force constant >
Context: alb
Acceptable Values: A list of space-separated real numbers
Description: This optional parameter controls how much energy is added to the system
from this bias. Tuning this separately from the updateFrequency and forceRange can allow
for large bias changes but with a low rateMax prevents large energy changes that can lead to
instability in the simulation.

9.5.10 Multidimensional histograms

The histogram feature is used to record the distribution of a set of collective variables in the form
of a N-dimensional histogram. A histogram block may define the following parameters:

• name: see definition of name in sec. 9.5 (biasing and analysis methods)

• colvars: see definition of colvars in sec. 9.5 (biasing and analysis methods)

• outputFreq: see definition of outputFreq in sec. 9.5 (biasing and analysis methods)

• stepZeroData: see definition of stepZeroData in sec. 9.5 (biasing and analysis methods)

• outputFile < Write the histogram to a file >
Context: histogram
Acceptable Values: UNIX filename
Default Value: outputName.<name>.dat
Description: Name of the file containing histogram data (multicolumn format), which is
written every outputFreq (see 9.5) steps. For the special case of 2 variables, Gnuplot may
be used to visualize this file. If outputFile is set to none, the file is not written.

206

• outputFileDX < Write the histogram to a file >
Context: histogram
Acceptable Values: UNIX filename
Default Value: outputName.<name>.dx
Description: Name of the file containing histogram data (OpenDX format), which is
written every outputFreq (see 9.5) steps. For the special case of 3 variables, VMD may be
used to visualize this file. This file is written by default if the dimension is 3 or more. If
outputFileDX is set to none, the file is not written.

• gatherVectorColvars < Treat vector variables as multiple observations of a scalar vari-
able? >
Context: histogram
Acceptable Values: UNIX filename
Default Value: off
Description: When this is set to on, the components of a multi-dimensional colvar
(e.g. one based on cartesian, distancePairs, or a vector of scalar numbers given by
scriptedFunction) are treated as multiple observations of a scalar variable. This results
in the histogram being accumulated multiple times for each simulation step). When mul-
tiple vector variables are included in histogram, these must have the same length because
their components are accumulated together. For example, if ξ, λ and τ are three variables
of dimensions 5, 5 and 1, respectively, for each iteration 5 triplets (ξi, λi, τ) (i = 1, . . . 5) are
accumulated into a 3-dimensional histogram.

• weights < Treat vector variables as multiple observations of a scalar variable? >
Context: histogram
Acceptable Values: list of space-separated decimals
Default Value: all weights equal to 1
Description: When gatherVectorColvars is on, the components of each multi-dimensional
colvar are accumulated with a different weight. For example, if x and y are two distinct
cartesian variables defined on the same group of atoms, the corresponding 2D histogram
can be weighted on a per-atom basis in the definition of histogram.

As with any other biasing and analysis method, when a histogram is applied to an extended-
system colvar (9.3.20), it accesses the value of the extended coordinate rather than that of the actual
colvar. This can be overridden by enabling the bypassExtendedLagrangian (see 9.5) option. A
joint histogram of the actual colvar and the extended coordinate may be collected by specifying
the colvar name twice in a row in the colvars parameter (e.g. colvars myColvar myColvar): the
first instance will be understood as the actual colvar, and the second, as the extended coordinate.

• bypassExtendedLagrangian: see definition of bypassExtendedLagrangian in sec. 9.5
(biasing and analysis methods)

Grid definition for multidimensional histograms Like the ABF and metadynamics biases,
histogram uses the parameters lowerBoundary, upperBoundary, and width to define its grid.
These values can be overridden if a configuration block histogramGrid { ...} is provided inside
the configuration of histogram. The options supported inside this configuration block are:

• lowerBoundaries < Lower boundaries of the grid >
Context: histogramGrid

207

Acceptable Values: list of space-separated decimals
Description: This option defines the lower boundaries of the grid, overriding any values
defined by the lowerBoundary keyword of each colvar. Note that when gatherVectorColvars
is on, each vector variable is automatically treated as a scalar, and a single value should be
provided for it.

• upperBoundaries: analogous to lowerBoundaries

• widths: analogous to lowerBoundaries

9.5.11 Probability distribution-restraints

The histogramRestraint bias implements a continuous potential of many variables (or of a single
high-dimensional variable) aimed at reproducing a one-dimensional statistical distribution that is
provided by the user. The M variables (ξ1, . . . , ξM) are interpreted as multiple observations of a
random variable ξ with unknown probability distribution. The potential is minimized when the
histogram h(ξ), estimated as a sum of Gaussian functions centered at (ξ1, . . . , ξM), is equal to the
reference histogram h0(ξ):

V (ξ1, . . . , ξM) =
1
2
k

∫
(h(ξ)− h0(ξ))

2 dξ (75)

h(ξ) =
1

M
√

2πσ2

M∑
i=1

exp
(
−(ξ − ξi)2

2σ2

)
(76)

When used in combination with a distancePairs multi-dimensional variable, this bias implements
the refinement algorithm against ESR/DEER experiments published by Shen et al [98].

This bias behaves similarly to the histogram bias with the gatherVectorColvars option, with
the important difference that all variables are gathered, resulting in a one-dimensional histogram.
Future versions will include support for multi-dimensional histograms.

The list of options is as follows:

• name: see definition of name in sec. 9.5 (biasing and analysis methods)

• colvars: see definition of colvars in sec. 9.5 (biasing and analysis methods)

• outputEnergy: see definition of outputEnergy in sec. 9.5 (biasing and analysis methods)

• lowerBoundary < Lower boundary of the colvar grid >
Context: histogramRestraint
Acceptable Values: decimal
Description: Defines the lowest end of the interval where the reference distribution h0(ξ)
is defined. Exactly one value must be provided, because only one-dimensional histograms are
supported by the current version.

• upperBoundary: analogous to lowerBoundary

• width < Width of the colvar grid >
Context: histogramRestraint
Acceptable Values: positive decimal
Description: Defines the spacing of the grid where the reference distribution h0(ξ) is
defined.

208

• gaussianSigma < Standard deviation of the approximating Gaussian >
Context: histogramRestraint
Acceptable Values: positive decimal
Default Value: 2 × width
Description: Defines the parameter σ in eq. 76.

• forceConstant < Force constant (kcal/mol) >
Context: histogramRestraint
Acceptable Values: positive decimal
Default Value: 1.0
Description: Defines the parameter k in eq. 75.

• refHistogram < Reference histogram h0(ξ) >
Context: histogramRestraint
Acceptable Values: space-separated list of M positive decimals
Description: Provides the values of h0(ξ) consecutively. The mid-point convention is used,
i.e. the first point that should be included is for ξ = lowerBoundary+width/2. If the integral
of h0(ξ) is not normalized to 1, h0(ξ) is rescaled automatically before use.

• refHistogramFile < Reference histogram h0(ξ) >
Context: histogramRestraint
Acceptable Values: UNIX file name
Description: Provides the values of h0(ξ) as contents of the corresponding file (mutually
exclusive with refHistogram). The format is that of a text file, with each line containing the
space-separated values of ξ and h0(ξ). The same numerical conventions as refHistogram are
used.

• writeHistogram < Periodically write the instantaneous histogram h(ξ) >
Context: metadynamics
Acceptable Values: boolean
Default Value: off
Description: If on, the histogram h(ξ) is written every colvarsRestartFrequency steps
to a file with the name outputName.<name>.hist.datThis is useful to diagnose the conver-
gence of h(ξ) against h0(ξ).

9.5.12 Defining scripted biases

Rather than using the biasing methods described above, it is possible to apply biases provided at
run time as a Tcl script, in the spirit of TclForces.

• scriptedColvarForces < Enable custom, scripted forces on colvars >
Context: global
Acceptable Values: boolean
Default Value: off
Description: If this flag is enabled, a Tcl procedure named calc colvar forces accepting
one parameter should be defined by the user. It is executed at each timestep, with the
current step number as parameter, between the calculation of colvars and the application of
bias forces. This procedure may use the cv command to access the values of colvars (e.g.
cv colvar xi value), apply forces on them (cv colvar xi addforce $F) or add energy

209

to the simulation system (cv addenergy $E), effectively defining custom collective variable
biases.

9.5.13 Performance of scripted biases

If concurrent computation over multiple threads is available (this is indicated by the message “SMP
parallelism is available.” printed at initialization time), it is useful to take advantage of the scripting
interface to combine many components, all computed in parallel, into a single variable.

The default SMP schedule is the following:

1. distribute the computation of all components across available threads;

2. on a single thread, collect the results of multi-component variables using polynomial combi-
nations (see 9.3.15), or custom functions (see 9.3.16), or scripted functions (see 9.3.17);

3. distribute the computation of all biases across available threads;

4. compute on a single thread any scripted biases implemented via the keyword
scriptedColvarForces (see 9.5.12).

5. communicate on a single thread forces to NAMD.

The following options allow to fine-tune this schedule:

• scriptingAfterBiases < Scripted colvar forces need updated biases? >
Context: global
Acceptable Values: boolean
Default Value: on
Description: This flag specifies that the calc colvar forces procedure (last step in the
list above) is executed only after all biases have been updated (next-to-last step) For example,
this allows using the energy of a restraint bias, or the force applied on a colvar, to calculate
additional scripted forces, such as boundary constraints. When this flag is set to off, it is
assumed that only the values of the variables (but not the energy of the biases or applied
forces) will be used by calc colvar forces: this can be used to schedule the calculation of
scripted forces and biases concurrently to increase performance.

9.6 Scripting interface (Tcl): list of commands

This section lists all the commands used in NAMD to control the behavior of the Colvars module
from within a run script.

9.6.1 Commands to manage the Colvars module

• cv addenergy <E>
Add an energy to the MD engine (no effect in VMD)
Parameters
E : float - Amount of energy to add

• cv config <conf>
Read configuration from the given string
Parameters
conf : string - Configuration string

210

• cv configfile <conf file>
Read configuration from a file
Parameters
conf file : string - Path to configuration file

• cv delete
Delete this Colvars module instance (VMD only)

• cv frame [frame]
Get or set current frame number (VMD only)
Parameters
frame : integer - Frame number (optional)

• cv getconfig
Get the module’s configuration string read so far

• cv getenergy
Get the current Colvars energy

• cv help [command]
Get the help string of the Colvars scripting interface
Parameters
command : string - Get the help string of this specific command (optional)

• cv list [param]
Return a list of all variables or biases
Parameters
param : string - "colvars" or "biases"; default is "colvars" (optional)

• cv listcommands
Get the list of script functions, prefixed with "cv ", "colvar " or "bias "

• cv load <prefix>
Load data from a state file into all matching colvars and biases
Parameters
prefix : string - Path to existing state file or input prefix

• cv loadfromstring <buffer>
Load state data from a string into all matching colvars and biases
Parameters
buffer : string - String buffer containing the state information

• cv molid [molid]
Get or set the molecule ID on which Colvars is defined (VMD only)
Parameters
molid : integer - Molecule ID; -1 means undefined (optional)

• cv printframe
Return the values that would be written to colvars.traj

211

• cv printframelabels
Return the labels that would be written to colvars.traj

• cv reset
Delete all internal configuration

• cv resetindexgroups
Clear the index groups loaded so far, allowing to replace them

• cv save <prefix>
Change the prefix of all output files and save them
Parameters
prefix : string - Output prefix with trailing ".colvars.state" gets
removed)

• cv savetostring
Write the Colvars state to a string and return it

• cv units [units]
Get or set the current Colvars unit system
Parameters
units : string - The new unit system (optional)

• cv update
Recalculate colvars and biases

• cv version
Get the Colvars Module version number

9.6.2 Commands to manage individual collective variables

• cv colvar name addforce <force>
Apply the given force onto this colvar and return the same
Parameters
force : float or array - Applied force; must match colvar dimensionality

• cv colvar name cvcflags <flags>
Enable or disable individual components by setting their active flags
Parameters
flags : integer array - Zero/nonzero value disables/enables the CVC

• cv colvar name delete
Delete this colvar, along with all biases that depend on it

• cv colvar name get <feature>
Get the value of the given feature for this colvar
Parameters
feature : string - Name of the feature

• cv colvar name getappliedforce
Return the total of the forces applied to this colvar

212

• cv colvar name getatomgroups
Return the atom indices used by this colvar as a list of lists

• cv colvar name getatomids
Return the list of atom indices used by this colvar

• cv colvar name getconfig
Return the configuration string of this colvar

• cv colvar name getgradients
Return the atomic gradients of this colvar

• cv colvar name gettotalforce
Return the sum of internal and external forces to this colvar

• cv colvar name help [command]
Get a help summary or the help string of one colvar subcommand
Parameters
command : string - Get the help string of this specific command (optional)

• cv colvar name modifycvcs <confs>
Modify configuration of individual components by passing string arguments
Parameters
confs : sequence of strings - New configurations; empty strings are skipped

• cv colvar name run ave
Get the current running average of the value of this colvar

• cv colvar name set <feature> <value>
Set the given feature of this colvar to a new value
Parameters
feature : string - Name of the feature
value : string - String representation of the new feature value

• cv colvar name state
Print a string representation of the feature state of this colvar

• cv colvar name type
Get the type description of this colvar

• cv colvar name update
Recompute this colvar and return its up-to-date value

• cv colvar name value
Get the current value of this colvar

• cv colvar name width
Get the width of this colvar

213

9.6.3 Commands to manage individual biases

• cv bias name bin
Get the current grid bin index (1D ABF only for now)

• cv bias name bincount [index]
Get the number of samples at the given grid bin (1D ABF only for now)
Parameters
index : integer - Grid index; defaults to current bin (optional)

• cv bias name binnum
Get the total number of grid points of this bias (1D ABF only for now)

• cv bias name delete
Delete this bias

• cv bias name energy
Get the current energy of this bias

• cv bias name get <feature>
Get the value of the given feature for this bias
Parameters
feature : string - Name of the feature

• cv bias name getconfig
Return the configuration string of this bias

• cv bias name help [command]
Get a help summary or the help string of one bias subcommand
Parameters
command : string - Get the help string of this specific command (optional)

• cv bias name load <prefix>
Load data into this bias
Parameters
prefix : string - Read from a file with this name or prefix

• cv bias name loadfromstring <buffer>
Load state data into this bias from a string
Parameters
buffer : string - String buffer containing the state information

• cv bias name save <prefix>
Save data from this bias into a file with the given prefix
Parameters
prefix : string - Prefix for the state file of this bias

• cv bias name savetostring
Save data from this bias into a string and return it

214

• cv bias name set <feature> <value>
Set the given feature of this bias to a new value
Parameters
feature : string - Name of the feature
value : string - String representation of the new feature value

• cv bias name share
Share bias information with other replicas (multiple-walker scheme)

• cv bias name state
Print a string representation of the feature state of this bias

• cv bias name update
Recompute this bias and return its up-to-date energy

9.7 Syntax changes from older versions

The following is a list of syntax changes in Colvars since its first release. Many of the older keywords
are still recognized by the current code, thanks to specific compatibility code. This is not a list of
new features: its primary purpose is to make you aware of those improvements that affect the use
of old configuration files with new versions of the code.
Note: if you are using any of the NAMD and VMD tutorials:
https://www.ks.uiuc.edu/Training/Tutorials/
please be aware that several of these tutorials are not actively maintained : for those cases, this list
will help you reconcile any inconsistencies.

• Colvars version 2016-06-09 or later (NAMD version 2.12b1 or later).
The legacy keyword refPositionsGroup has been renamed fittingGroup (see 9.4.2) for
clarity (the legacy version is still supported).

• Colvars version 2016-08-10 or later (NAMD version 2.12b1 or later).
“System forces” have been replaced by “total forces” (see for example outputTotalForce
(see 9.3.19)). See the following page for more information:
https://colvars.github.io/README-totalforce.html

• Colvars version 2017-01-09 or later (NAMD version 2.13b1 or later).
A new type of restraint, harmonicWalls (see 9.5.7), replaces and improves upon the legacy
keywords lowerWall and upperWall: these are still supported as short-hands.

• Colvars version 2018-11-15 or later (NAMD version 2.14b1 or later).
The global analysis keyword has been discontinued: specific analysis tasks are controlled
directly by the keywords corrFunc (see 9.3.23) and runAve (see 9.3.23), which continue to
remain off by default.

• Colvars version 2020-02-25 or later (NAMD version 2.14b1 or later).
The parameter hillWidth (see 9.5.4), expressing the Gaussian width 2σ in relative units
(number of grid points), does not have a default value any more. A new alternative parameter
gaussianSigmas (see 9.5.4) allows setting the σ parameters explicitly for each variable if
needed.
Furthermore, to facilitate the use of other analysis tools such as for example sum hills:

215

https://www.ks.uiuc.edu/Training/Tutorials/
https://colvars.github.io/README-totalforce.html

https://www.plumed.org/doc-v2.6/user-doc/html/sum_hills.html
the format of the file written by writeHillsTrajectory (see 9.5.4) has also been changed to
use σ instead of 2σ. This change does not affect how the biasing potential is written in the
state file, or the simulated trajectory.

• Colvars version 2020-02-25 or later (NAMD version 2.14b1 or later).
The legacy keywords lowerWall and upperWall of a colvar definition block do not have de-
fault values any longer, and need to be set explicitly, preferably as part of the harmonicWalls
restraint. When using an ABF bias, it is recommended to set the two walls equal to
lowerBoundary (see 9.3.18) and upperBoundary (see 9.3.18), respectively. When using a
metadynamics bias, it is recommended to set the two walls strictly within lowerBoundary
(see 9.3.18) and upperBoundary (see 9.3.18); see 9.5.4 for details.

Up-to-date documentation can always be accessed at:
https://colvars.github.io/colvars-refman-namd/colvars-refman-namd.html

216

https://www.plumed.org/doc-v2.6/user-doc/html/sum_hills.html
https://colvars.github.io/colvars-refman-namd/colvars-refman-namd.html

10 Alchemical Free Energy Methods1

Alchemical free energy calculations model the physically impossible but computationally realizable
process of gradually mutating a subset of atoms of a system from one state to another, through
a series of intermediate steps. Two alternative methods for alchemical calculation of free energies
from molecular dynamics simulation are available in NAMD: Free energy perturbation (FEP) and
thermodynamic integration (TI).

10.1 Theoretical Background

Free energy differences can be obtained through four different routes: (i) probability densities,
(ii) free energy perturbation, (iii) thermodynamic integration, or (iv) nonequilibrium work ap-
proaches [22]. Within NAMD, alchemical transformations are modeled following the second and
the third routes, both of which rely upon the use of a general extent parameter often referred to
as the coupling parameter [8, 71, 54, 55] for the description of chemical changes in the molecular
systems between the reference and the target states.

10.1.1 The dual–topology paradigm

In a typical alchemical transformation setup involving the alteration of one chemical species into an
alternate one in the course of the simulation, the atoms in the molecular topology can be classified
into three groups, (i) a group of atoms that do not change during the simulation — e.g. the
environment, (ii) the atoms describing the reference state, a, of the system, and (iii) the atoms
that correspond to the target state, b, at the end of the alchemical transformation. The atoms
representative of state a should never interact with those of state b throughout the MD simulation.
Such a setup, in which atoms of both the initial and the final states of the system are present in
the molecular topology file — i.e. the psf file — is characteristic of the so–called “dual topology”
paradigm [37, 86, 3]. The hybrid Hamiltonian of the system is a function of the general extent
parameter, λ, which connects smoothly state a to state b. In the simplest case, such a connection
may be achieved by linear combination of the corresponding Hamiltonians:

H(x,px;λ) = H0(x,px) + λHb(x,px) + (1− λ)Ha(x,px) (77)

where Ha(x,px) describes the interaction of the group of atoms representative of the reference
state, a, with the rest of the system. Hb(x,px) characterizes the interaction of the target topology,
b, with the rest of the system. H0(x,px) is the Hamiltonian describing those atoms that do not
undergo any transformation during the MD simulation.

For instance, in the point mutation of an alanine side chain into that of glycine, by means
of a free energy calculation — either free energy perturbation or thermodynamic integration, the
topology of both the methyl group of alanine and the hydrogen borne by the Cα in glycine co–exist
throughout the simulation (see Figure 6), yet without actually seeing each other.

The energy and forces are defined as a function of λ, in such a fashion that the interaction of the
methyl group of alanine with the rest of the protein is effective at the beginning of the simulation,
i.e. λ = 0, while the glycine Cα hydrogen atom does not interact with the rest of the protein, and
vice versa at the end of the simulation, i.e. λ = 1. For intermediate values of λ, both the alanine

1The features described in this section were contributed by Surjit B. Dixit, Christophe Chipot (Nancy Université,
Université Henri Poincaré, France), Floris Buelens (Institute of Structural and Molecular Biology, University of
London, Birkbeck, UK), and Christopher Harrison (University of Illinois, Urbana, IL USA).

217

C H
H

C

NH

H
C

H
O

HH

O

H

C

NH

C

O

C

HH

O

H

H

Cα α

Figure 6: Dual topology description for an alchemical simulation. Case example of the mutation
of alanine into serine. The lighter color denotes the non–interacting, alternate state.

and the glycine side chains participate in nonbonded interactions with the rest of the protein, scaled
on the basis of the current value of λ. It should be clearly understood that these side chains never
interact with each other.

It is noteworthy that end points of alchemical transformations carried out in the framework of
the dual–topology paradigm have been shown to be conducive to numerical instabilities from molec-
ular dynamics simulations, often coined as “end–point catastrophes”. These scenarios are prone
to occur when λ becomes close to 0 or 1, and incoming atoms instantly appear where other parti-
cles are already present, which results in a virtually infinite potential as the interatomic distance
tends towards 0. Such “end–point catastrophes” can be profitably circumvented by introducing
a so–called soft–core potential [7, 67], aimed at a gradual scaling of the short–range nonbonded
interactions of incoming atoms with their environment, as shown in Equation 78. What is really
being modified is the value of a coupling parameter (λLJ or λelec) that scales the interactions —
i.e., if set to 0, the latter are off; if set to 1, they are on — in lieu of the actual value of λ provided
by the user.

VNB(rij) = λLJεij

(Rmin
ij

2

r2ij + δ(1− λLJ)

)6

−

(
Rmin

ij
2

r2ij + δ(1− λLJ)

)3
+ λelec

qiqj
ε1rij

(78)

It is also worth noting that the free energy calculation does not alter intermolecular bonded
potentials, e.g. bond stretch, valence angle deformation and torsions, in the course of the sim-
ulation. In calculations targeted at the estimation of free energy differences between two states
characterized by distinct environments — e.g. a ligand, bound to a protein in the first simulation,
and solvated in water, in the second — as is the case for most free energy calculations that make
use of a thermodynamic cycle, perturbation of intramolecular terms may, by and large, be safely
avoided [11]. This property is controlled by the alchDecouple keyword described in

218

10.1.2 Free Energy Perturbation

Within the FEP framework [8, 21, 22, 38, 57, 71, 109, 112, 122], the free energy difference between
two alternate states, a and b, is expressed by:

∆Aa→b = − 1
β

ln 〈exp {−β [Hb(x,px)−Ha(x,px)]}〉a (79)

Here, β−1 ≡ kBT , where kB is the Boltzmann constant, T is the temperature. Ha(x,px) and
Hb(x,px) are the Hamiltonians describing states a and b, respectively. 〈· · · 〉a denotes an ensemble
average over configurations representative of the initial, reference state, a.

x

xp

a

b

(a) x

xp
a

b

(b)

p

x

x

a

b

i

(c)

Figure 7: Convergence of an FEP calculation. If the ensembles representative of states a and b
are too disparate, equation (79) will not converge (a). If, in sharp contrast, the configurations of
state b form a subset of the ensemble of configurations characteristic of state a, the simulation is
expected to converge (b). The difficulties reflected in case (a) may be alleviated by the introduction
of mutually overlapping intermediate states that connect a to b (c). It should be mentioned that
in practice, the kinetic contribution, T (px), is assumed to be identical for state a and state b.

Convergence of equation (79) implies that low–energy configurations of the target state, b,
are also configurations of the reference state, a, thus resulting in an appropriate overlap of the
corresponding ensembles — see Figure 7. Transformation between the two thermodynamic states
is replaced by a series of transformations between non–physical, intermediate states along a well–
delineated pathway that connects a to b. This pathway is characterized by the general extent
parameter [8, 54, 55, 71], λ, that makes the Hamiltonian and, hence, the free energy, a continuous
function of this parameter between a and b:

∆Aa→b = − 1
β

N∑
i=1

ln 〈exp {−β [H(x,px;λi+1)−H(x,px;λi)]}〉i (80)

Here, N stands for the number of intermediate stages, or “windows” between the initial and
the final states — see Figure 7.

10.1.3 Thermodynamic Integration

An alternative to the perturbation formula for free energy calculation is Thermodynamic Integration
(TI). With the TI method, the free energy is given as [55, 108, 35]:

∆A =
∫ 1

0

〈
∂H(x,px;λ)

∂λ

〉
λ

dλ (81)

219

In the multi-configuration thermodynamic integration approach [108] implemented in NAMD,
〈∂H(x,px;λ)/∂λ 〉λ, the ensemble average of the derivative of the internal energy with respect to λ,
is collected for a series of discrete λ values and written to tiOutFile. These values are analyzed by
the separately distributed script NAMD ti.pl, which performs the integration of individual energy
components and reports back the total ∆A values for the transformation.

10.2 Implementation of the free energy methods in NAMD

The procedures implemented in NAMD are particularly adapted for performing free energy cal-
culations that split the λ reaction path into a number of non–physical, intermediate states, or
“windows”. Separate simulations can be started for each window. Alternatively, the Tcl scripting
ability of NAMD can be employed advantageously to perform the complete simulation in a single
run. An example, making use of such a script, is supplied at the end of this section. However,
the setup of sequential alchemical trsnaformations can be simplified by calling the script
library fep.tcl, found in the lib/alch directory of the NAMD distribution. This library provides
two helper procedures, runFEP to run a series of evenly spaced windows, and runFEPlist to specify
a list of λ values to be sampled.

The following keywords can be used to run alchemical free energy calculations, whether FEP
or TI.

• alch < Is an alchemical transformation to be performed? >
Acceptable Values: on or off
Default Value: off
Description: Turns on alchemical transformation methods in NAMD.

• alchType < Which method is to be employed for the alchemical transformation? >
Acceptable Values: fep or ti
Default Value: ti
Description: Turns on Hamiltonian scaling and ensemble averaging for alchemical FEP or
TI.

• alchWCA < Turn on/off Weeks-Chandler-Andersen (WCA) decomposition. >
Acceptable Values: on or off
Default Value: off
Description: When active, WCA decomposition changes the lambda dependence of the
van der Waals perturbation following the repulsion/dispersion scheme proposed by Deng
and Roux [30]. For example, for appearing atoms, all interactions are still fully coupled
at alchLambda = alchVdwLambdaEnd, but repulsive components are instead fully coupled
according to the new alchRepLambdaEnd keyword. No dispersive interactions (including
terms from LJcorrection) are coupled until the repulsive interactions are fully coupled.
By virtue of the formulation, alchVdwShiftCoeff does not have any effect in this scheme
and any non-zero values are ignored. Note that this scheduling is completely separate from
electrostatic coupling and the two may overlap in any way desired (this may not be stable!).
In order to achieve the exact decoupling scheme proposed by Deng and Roux, one ought to
set alchRepLambdaEnd < alchVdwLambdaEnd = alchElecLambdaStart < 1. This scheme
has only been widely tested when a single alchemical group is being used. Due
to current limitations, this scheme is not available when alchType is set to ti.

220

• alchLambda < Current value of the coupling parameter >
Acceptable Values: positive decimal between 0.0 and 1.0
Description: The coupling parameter value determining the progress of the perturbation
for FEP or TI. This parameter is unnecessary when using the runFEP procedure of fep.tcl.

• alchLambda2 < Forward projected value of the coupling parameter >
Acceptable Values: positive decimal between 0.0 and 1.0
Description: The lambda2 value corresponds to the coupling parameter to be used for sam-
pling in the next window. The free energy difference between alchLambda2 and alchLambda
is calculated. Through simulations at progressive values of alchLambda and alchLambda2 the
total free energy difference may be determined. This parameter is unnecessary when using
the runFEP procedure of fep.tcl.

• alchLambdaIDWS < Backward value of the coupling parameter for Interleaved Double-Wide
Sampling >
Acceptable Values: decimal between 0.0 and 1.0, negative to disable
Description: Setting this parameter between 0 and 1 activates Interleaved Double-
Wide Sampling (IDWS), whereby the target lambda value alternates between alchLambda2
and alchLambdaIDWS. The switch occurs every fullElectFrequency steps if defined, or
nonbondedFrequency otherwise. Setting this parameter to a negative value (including be-
tween run statements) disables IDWS. When IDWS is active, the alchemy output file contains
FepEnergy line headers for the forward energy differences, and FepE Back for backward en-
ergy differences. FEP free energy estimates given in output are based on forward data only.
The fepout file can be postprocessed with the python script deinterleave idws.py, found in
the lib/alch directory of the NAMD distribution. This tool produces separate fepout files
for the forward and backwards samples, suitable for computing e.g. a Bennett’s Acceptance
Ratio (BAR) estimate of the free energy difference. When using the runFEP or runFEPlist
procedure of fep.tcl, IDWS can be enabled simply by adding a true flag to the argument
list.

• alchEquilSteps < Number of equilibration steps in a window, prior to data collection >
Acceptable Values: positive integer less than numSteps or run
Default Value: 0
Description: In each window alchEquilSteps steps of equilibration can be performed
before ensemble averaging is initiated. The output also contains the data gathered during
equilibration and is meant for analysis of convergence properties of the alchemical free energy
calculation.

• alchFile < pdb file with perturbation flags >
Acceptable Values: filename
Default Value: coordinates
Description: pdb file to be used for indicating the status of all atoms pertaining to the
system, with respect to the alchemical transformation. If this parameter is not declared
specifically, then the pdb file specified by coordinates is utilized for this information.

• alchCol < Column in the alchFile that carries the perturbation flag >
Acceptable Values: X, Y, Z, O or B
Default Value: B

221

Description: Column of the pdb file to use for retrieving the status of each atom, i.e. a flag
that indicates which atom will be perturbed in the course of the alchemical transformation.
A value of -1 in the specified column indicates that the atom will vanish as λ moves from 0
to 1, whereas a value of 1 indicates that it will grow.

• alchOutFreq < Frequency of free energy output in time–steps >
Acceptable Values: positive integer
Default Value: 5
Description: Every alchOutFreq number of MD steps, the output file alchOutFile is
updated by dumping energies that are used for ensemble averaging. This variable could be
set to 1 to include all the configurations for ensemble averaging. Yet, it is recommended
to update alchOutFile energies at longer intervals to avoid large files containing highly
correlated data, unless a post–treatment, e.g. Bennett’s acceptance ratio (BAR) [5] or simple
overlap sampling (SOS) [65], is to be performed.

• alchOutFile < Alchemical free energy output filename >
Acceptable Values: filename
Default Value: outfilename
Description: An output file named alchOutFile, containing the FEP energies, or
tiOutFile, containing the TI derivatives, dumped every alchOutFreq steps.

• alchVdwShiftCoeff < Soft-core van der Waals radius-shifting coefficient >
Acceptable Values: positive decimal
Default Value: 5
Description: This is a radius-shifting coefficient of λ that is used to construct the modified
vdW interactions during alchemical free energy calculations. Providing a positive value for
alchVdWShiftCoeff ensures that the vdW potential is finite everywhere for small values of λ,
which significantly improves the accuracy and convergence of FEP and TI calculations, and
also prevents overlapping particles from making the simulation unstable. During FEP and
TI, assuming λ = 0 denotes an absence of interaction, the interatomic distances used in the
Lennard-Jones potential are shifted according to [7, 67]: r2 → r2 + alchVdWShiftCoeff ×
(1− λ)

• alchElecLambdaStart < Value of λ to introduce electrostatic interactions >
Acceptable Values: positive decimal
Default Value: 0.5
Description: In order to avoid the so–called “end-point catastrophes”, it is crucial to
avoid situations where growing particles overlap with existing particles with an unbounded
interaction potential, which would approach infinity as the interaction distance approaches
zero [7, 22]. One possible route for avoiding overlap of unbounded electrostatic poten-
tials consists of allowing a bounded (soft-core) vdW potential, using a positive value of
alchVdWShiftCoeff, to repel first all overlapping particles at low values of λ. As λ increases,
once the particles are repelled, it becomes safe to turn on FEP or TI electrostatics.

In the current implementation, the electrostatic interactions of an exnihilated, or appearing,
particle are linearly coupled to the simulation over the λ value range of alchElecLambdaStart
– 1.0. At λ values less than or equal to the user-defined value of alchElecLambdaStart,
electrostatic interactions of the exnihilated particle are fully decoupled from the simulation.
Coupling of electrostatic interactions then increases linearly for increasing values of λ until

222

Figure 8: Relationship of user-defined λ to coupling of electrostatic or vdW interactions to a
simulation, given specific values of alchElecLambdaStart or alchVdwLambdaEnd.

λ=1.0, at which point electrostatic interactions of the exnihilated particle are fully coupled
to the simulation.

For annihilated, or vanishing, particles the electrostatic interactions are linearly decoupled
from the simulation over the λ value range of 0 – (1.0 - alchElecLambdaStart). At λ=0
electrostatic interactions are fully coupled to the simulation, and then linearly decreased with
increasing λ such that at λ values greater than or equal to (1.0 - alchElecLambdaStart)
electrostatic interactions are completely decoupled from the simulation. Two examples, shown
in Figure 8, describe the relationship between the user-defined value of λ and the coupling of
electrostatic or vdW interactions to the simulation.

• alchVdwLambdaEnd < Value of λ to cancel van der Waals interactions >
Acceptable Values: positive decimal
Default Value: 1.0
Description: If the alchElecLambdaStart option is used, it may also be desirable to
separate the scaling of van der Waals and electrostatic interactions. alchVdwLambdaEnd sets
the value of λ above which all vdW interactions are fully enabled for exnihilated particles.

For an exnihilated particle, vdW interactions are fully decoupled at λ=0. The coupling of
vdW interactions to the simulation is then increased with increasing values of λ such that at
values of λ greater than or equal to alchVdwLambdaEnd the vdW interactions of the exnihilated
particle are fully coupled to the simulation.

For an annihilated particle, vdW interactions are completely coupled to the simulation for λ
values between 0 and (1 - alchVdwLambdaEnd). Then, vdW interactions of the annihilated
particle are linearly decoupled over the range of λ values between (1 - alchVdwLambdaEnd)
and 1.0. VdW interactions are only fully decoupled when λ reaches 1.0.

223

New as of version 2.12: The energy and virial terms added by LJcorrection on are now
also controlled by the vdW λ schedule. The average Lennard-Jones A and B coefficients are
computed separately at both endpoints and then coupled linearly. In most practical situations
the energy difference is extremely negligible, but this is more theoretically sound than the
old behavior of averaging both endpoints together. However, the kinetic energy component
of the virial does still count the endpoints together, as if annihilated alchemical atoms were
an ideal gas. Again, this is likely quite negligible, nor is it clear that this should be treated
specially.

• alchRepLambdaEnd < Value of λ to cancel van der Waals repulsive interactions >
Acceptable Values: positive decimal
Default Value: 0.5
Description: This parameter is only used when alchWCA is on, in which case it MUST
be less than or equal to alchVdwLambdaEnd. For appearing atoms, this marks both the value
at which repulsive interactions are completely coupled and at which dispersive interactions
beging to become coupled (but are still zero).

• alchBondLambdaEnd < Value of λ to cancel bonded interactions >
Acceptable Values: positive decimal
Default Value: 0.0
Description: New as of version 2.12 Bonded terms involving alchemical atoms may now
also be scaled on a schedule similar to vdW interactions. Although this is more theoretically
sound in many situations, this behavior is off by default.

• alchBondDecouple < Enable scaling of bonded terms within alchemical groups >
Acceptable Values: on or off
Default Value: off
Description: This is essentially a bonded term analogue of the alchDecouple keyword.
Setting alchBondDecouple on, causes bonded terms between alchemical atoms in the same
group to also be scaled. This means that alchemical atoms are annihilated into ideal gas
atoms instead of ideal gas molecules. In this case it is recommended to use the approach
of Axelsen and Li [3] by way of the extraBonds keyword. Using alchBondDecouple on is
strictly necessary if it is desired to have the endpoint (potential) energies of a dual-topology
PSF match those of a non-alchemical PSF.

• alchDecouple < Disable scaling of nonbonded interactions within alchemical partitions >
Acceptable Values: on or off
Default Value: off
Description: With alchDecouple set to on, only nonbonded interactions of perturbed,
incoming and outgoing atoms with their environment are scaled, while interactions within
the subset of perturbed atoms are preserved. On the contrary, if alchDecouple is set to
off, interactions within the perturbed subset of atoms are also scaled and contribute to the
cumulative free energy. In most calculations, intramolecular annihilation free energies are not
particularly informative, and decoupling ought to be preferred. Under certain circumstances,
it may, however, be desirable to scale intramolecular interactions, provided that the latter are
appropriately accounted for in the thermodynamic cycle [22].

224

10.3 Examples of input files for running alchemical free energy calculations

Note: In this section the lambda values are specified manually. For sequential sampling of lambda
values, it is simpler to call the runFEP or runFEPlist procedure of fep.tcl. See the comments in
that file for instructions.

The first example illustrates the use of Tcl scripting for running an alchemical transformation
with the FEP feature of NAMD. In this calculation, λ is changed continuously from 0 to 1 by
increments of δλ = 0.1.

alch On
alchType fep
alchFile ion.fep
alchCol X
alchOutfile ion.fepout
alchOutFreq 5
alchEquilSteps 5000

set Lambda0 0.0
set dLambda 0.1

while {$Lambda0 < 1.0} {
alchLambda $Lambda0
set Lambda0 [expr $Lambda0 + $dLambda]
alchLambda2 $Lambda0
run 10000
}

Enable alchemical simulation module
Set alchemical method to FEP
File containing the information about grow-
ing/shrinking atoms described in column X.
Output file containing the free energy.
Frequency at which fepOutFreq is updated.
Number of equilibration steps per λ–state.

Starting value of λ.
Increment of λ, i.e. δλ.

Tcl script to increment λ:
(1) set lambda value;
(2) increment λ;
(3) set lambda2 value;
(4) run 10,000 MD steps.

The user should be reminded that by setting run 10000, 10,000 MD steps will be performed,
which includes the preliminary fepEquilSteps equilibration steps. This means that here, the
ensemble average of equation (80) will be computed over 5,000 MD steps.

Alternatively, λ–states may be declared explicitly, avoiding the use of Tcl scripting:
alchLambda 0.0
alchLambda2 0.1
run 10000

(1) set alchLambda value;
(2) set alchLambda2 value;
(3) run 10,000 MD steps.

This option is generally preferred to set up windows of diminishing widths as λ → 0 or 1 —
a way to circumvent end–point singularities caused by appearing atoms that may clash with their
surroundings.

The following second input is proposed for the measuring via TI the free energy of a particle
insertion.

alch On ;# Enable alchemical simulation module
alchType ti ;# Set method to thermodynamic integration
alchFile ion.alch.pdb ;# PDB file with perturbation flags
alchCol B ;# Perturbation flags in Beta column
alchOutfile ion.ti.out
alchOutFreq 5
alchEquilSteps 5000

alchVdWShiftCoeff 1 ;# Enable soft-core vdW potential
alchElecLambdaStart 0.1 ;# Introduce electrostatics for lambda > 0.1

225

alchLambda 0
run 10000
alchLambda 0.00001
run 10000
alchLambda 0.0001
run 10000
alchLambda 0.001
run 10000
alchLambda 0.01
run 10000

set Lambda 0.1

while {$Lambda <= 0.9} {
alchLambda $Lambda
run 10000
set Lambda [expr $Lambda + 0.1]

}

alchLambda 0.99
run 10000
alchLambda 0.999
run 10000
alchLambda 0.9999
run 10000
alchLambda 0.99999
run 10000
alchLambda 1
run 10000

Robust sampling of the free energy of particle insertion is enabled by the use of soft-core van
der Waals scaling with the alchVdWShiftCoeff parameter, delayed introduction of electrostatics
with a non-zero alchElecLambdaStart value, and very gradual scaling of λ towards its end points.

10.4 Description of a free energy calculation output

10.4.1 Free Energy Perturbation

When running FEP, the alchOutFile contains electrostatic and van der Waals energy data calcu-
lated for alchLambda and alchLambda2, written every alchOutFreq steps. The column dE is the
energy difference of the single configuration, dE avg and dG are the instantaneous ensemble average
of the energy and the calculated free energy at the time step specified in column 2, respectively.
The temperature is specified in the penultimate column. Upon completion of alchEquilSteps
steps, the calculation of dE avg and dG is restarted. The accumulated net free energy change is
written at each lambda value and at the end of the simulation.

Whereas the FEP module of NAMD supplies free energy differences determined from equa-
tion (79), the wealth of information available in alchOutFile may be utilized profitably to explore

226

different routes towards the estimation of ∆A. Both BAR and SOS methods, which combine
advantageously direct and reverse transformations to improve convergence and accuracy of the
calculation, represent relevant alternatives to brute–force application of the FEP formula [65].

Within the SOS framework, the free energy difference between states λi and λi+1 is expressed
as:

exp(−β∆Ai→i+1) =

〈
exp

{
−β

2
[H(x,px;λi+1)−H(x,px;λi)]

}〉
i〈

exp
{
−β

2
[H(x,px;λi)−H(x,px;λi+1)]

}〉
i+1

(82)

and can be readily used with the statistical information provided by the forward and the backward
runs.

10.4.2 Thermodynamic Integration

When running TI free energy calculations, the elec dU/dl, vdW dU/dl, and bond dU/dl values
reported in alchOutFile are the derivatives of the internal energy with respect to the scaling
factors for each interaction type (i.e. electrostatics, etc.). dU/dl values are locally averaged over
the last alchOutFreq steps. Cumulative averages for each component are reported alongside in the
avg columns.

The electrostatic, vdW, and bond values are separated following a partition scheme — that
is, the “appearing” and the “disappearing” atoms are accounted for separately. “Partition 1”
contains those atoms whose interactions are switched up as λ increases — i.e. flagged with 1 in
the alchFile. “Partition 2” represents those atoms whose interactions are switched down as λ
increases — i.e. flagged with -1. ∆A values for each component are obtained by integrating from
λ = 0 to 1 using the respective ELEC / VDW / BOND LAMBDA listed for each partition after the title.

New as of version 2.12: The output in alchOutFile has been extensively revised and now
more closely matches the NAMD standard output. Additional accounting for bonded term scaling
is now also included.

The choice of λ values will depend on the application, but in general it is important to examine
the shape of the curve to ensure that sampling is adequate to give a good estimate of the integral. In
particular, it will be necessary to sample more finely towards the end points in order to accurately
account for the strong repulsive van der Waals forces encountered when inserting particles into a
system (see Figure 9).

10.5 Hybrid single–dual topology approach for relative binding free energy cal-
culation of ligand to receptor

An effective hybrid single–dual topology protocol is designed for the calculation of relative binding
affinities of small ligands to a receptor. The protocol was developed as an expansion of the existing
dual-topology relative alchemical free energy calculations [50], for either free energy perturbation or
thermodynamic integration. In this protocol, the alchemical end states are represented as two sep-
arate molecules sharing a common substructure identified through maximum structural mapping.
Within the substructure, an atom-to-atom correspondence is established, and each pair of corre-
sponding atoms are holonomically constrained to share identical coordinates at all time throughout
the simulation, as shown in Figure 10. The forces are projected and combined at each step for
propagation.

227

0.0 0.2 0.4 0.6 0.8 1.0

4
6

8
1
0

1
2

lambda

lo
g
(d
E
/d
l)

Figure 9: Sample TI data (log(
〈

∂U
∂λ

〉
) against λ). The blue shaded area shows the integral with

fine sampling close to the end point. The red area shows the difference when λ values are more
sparse. In this example, insufficient sampling before λ '0.1 can result in a large overestimation of
the integral. Beyond '0.2, sparser sampling is justified as dE/dλ is not changing quickly.

Figure 10: Hybrid single–dual topology setup generated by applying holonomic constraints on the
maximum common substructure.

228

As it is based on the existing dual topology setup, the major input files including PDB, PSF and
alchemical flag files adopt the same format as before, with two more partitions accommodating the
initial/end states of the single topology region. Determining the common substructure generally
requires a special setup tool to determine the maximum structural mapping that generate the
partitions present in the PDB and PSF files. The dual-topology setup also implements Shobana
bonded terms to support the ring topology change problem [100], for which a separate input file
lists all unperturbed bonded terms on a ring. The current implementation supports both relative
solvation free energies of small molecules and relative binding affinities of drug compounds to
proteins. To enhance sampling of the dual-topology region, the alchemical calculations can be
carried out within a replica-exchange MD scheme supported by the multiple-copy algorithm module
of NAMD, with periodic attempted swapping of the thermodynamic coupling parameter λ betwen
neighboring states.

It needs to be noted that the protocol is currently implemented only on CPU, with a GPU
implementation in development. VMD does not yet provide a hybrid topology setup tool, and
CHARMM-GUI is testing a beta version (that is not yet available online) to automatically gen-
erate all input files for NAMD. For the time being, users can utilize an alternative hybrid struc-
ture preparation tool, such as FESetup or AmberTools, and then manually convert the generated
CHARMM-formatted input files into a format that can be read by NAMD.

The following keywords enable hybrid single–dual topology simulation.

• singleTopology < Enable hybrid single–dual topology? >
Acceptable Values: on or off
Default Value: off
Description: Enable the use of hybrid single–dual topology for alchemical transformation,
which extends the default dual topology setup.

• sdBondScaling < Are Shobana terms enabled? >
Acceptable Values: on or off
Default Value: off
Description: Enable the use of selected Shobana terms, the unperturbed bond, angle, and
dihedral terms on a transformed ring, that remove the possible artificial effects of dummy
atoms. For a more detailed elucidation, please see reference [100].

• unperturbedBondFile < file listing unperturbed bonded terms >
Acceptable Values: filename
Description: This must be defined if sdBondScaling is on. The file lists the selected
unperturbed bond, angle, and dihedral terms that remove the possible artificial effects of
dummy atoms. When sdBondScaling is off, the file will be skipped.

229

11 Accelerated Sampling Methods

11.1 Accelerated Molecular Dynamics

Accelerated molecular dynamics (aMD) [42] is an enhanced-sampling method that improves the
conformational space sampling by reducing energy barriers separating different states of a system.
The method modifies the potential energy landscape by raising energy wells that are below a certain
threshold level, while leaving those above this level unaffected. As a result, barriers separating
adjacent energy basins are reduced, allowing the system to sample conformational space that cannot
be easily accessed in a classical MD simulation.

Please include the following two references in your work using the NAMD implementation of
aMD:

• Accelerated Molecular Dynamics: A Promising and Efficient Simulation Method for
Biomolecules, D.Hamelberg, J.Mongan, and J.A. McCammon. J. Chem. Phys., 120:11919-
11929, 2004.

• Implementation of Accelerated Molecular Dynamics in NAMD, Y.Wang, C.Harrison,
K. Schulten, and J.A. McCammon, Comp. Sci. Discov., 4:015002, 2011.

11.1.1 Theoretical background

In the original form of aMD [42], when the system’s potential energy falls below a threshold energy,
E, a boost potential is added, such that the modified potential, V ∗(r), is related to the original
potential, V (r), via

V ∗(r) = V (r) + ∆V (r), (83)

where ∆V (r) is the boost potential,

∆V (r) =

{
0 V (r) ≥ E
(E−V (r))2

α+E−V (r) V (r) < E.
(84)

As shown in the following figure, the threshold energy E controls the portion of the potential
surface affected by the boost, while the acceleration factor α determines the shape of the modified
potential. Note that α cannot be set to zero, otherwise the derivative of the modified potential is
discontinuous.

From an aMD simulation, the ensemble average, 〈A〉, of an observable, A(r), can be calculated
using the following reweighting procedure:

〈A〉 =
〈A(r) exp(β∆V (r))〉∗

〈exp(β∆V (r))〉∗
, (85)

in which β=1/kBT , and 〈...〉 and 〈...〉∗ represent the ensemble average in the original and the aMD
ensembles, respectively.

Currently, aMD can be applied in three modes in NAMD: aMDd, aMDT, and aMDdual [115].
The boost energy is applied to the dihedral potential in the aMDd mode (the default mode), and to
the total potential in the aMDT mode. In the dual boost mode (aMDdual) [41], two independent
boost energies are applied, one on the dihedral potential and the other on the (Total - Dihedral)
potential.

230

Figure 11: Schematics of the aMD method. When the original potential (thick line) falls below a
threshold energy E (dashed line), a boost potential is added. The modified energy profiles (thin
lines) have smaller barriers separating adjacent energy basins.

11.1.2 NAMD parameters

The following parameters are used to enable accelerated MD:

• accelMD < Is accelerated molecular dynamics active? >
Acceptable Values: on or off
Default Value: off
Description: Specifies if accelerated MD is active.

• accelMDdihe < Apply boost to dihedrals? >
Acceptable Values: on or off
Default Value: on
Description: Only applies boost to the dihedral potential. By default, accelMDdihe is
turned on and the boost energy is applied to the dihedral potential of the simulated system.
When accelMDdihe is turned off, aMD switches to the accelMDT mode, and the boost is
applied to the total potential.

• accelMDE < Threshold energy E >
Acceptable Values: Real number
Description: Specifies the threshold energy E in the aMD equations.

• accelMDalpha < Acceleration factor α >
Acceptable Values: Positive real number
Description: Specifies the acceleration factor α in the aMD equations.

• accelMDdual < Use dual boost mode? >
Acceptable Values: on or off
Default Value: off
Description: When accelMDdual is on, aMD switches to the dual boost mode. Two inde-
pendent boost potentials will be applied: one to the dihedral potential that is controlled by

231

the parameters accelMDE and accelMDalpha, and a second to the (Total - Dihedral) potential
that is controlled by the accelMDTE and accelMDTalpha parameters described below.

• accelMDTE < Threshold energy E in the dual boost mode >
Acceptable Values: Real number
Description: Specifies the threshold energy E used in the calculation of boost energy for
the (Total - Dihedral) potential. This option is only available when accelMDdual is turned
on.

• accelMDTalpha < Acceleration factor α in the dual boost mode >
Acceptable Values: Positive real number
Description: Specifies the acceleration factor α used in the calculation of boost energy for
the (Total - Dihedral) potential. This option is only available when accelMDdual is turned
on.

• accelMDFirstStep < First accelerated MD step >
Acceptable Values: Zero or positive integer
Default Value: 0
Description: Accelerated MD will only be performed when the current step is equal to
or higher than accelMDFirstStep, and equal to or lower than accelMDLastStep. Otherwise
regular MD will be performed.

• accelMDLastStep < Last accelerated MD step >
Acceptable Values: Zero or positive integer
Default Value: 0
Description: Accelerated MD will only be performed when the current step is equal to
or higher than accelMDFirstStep, and equal to or lower than accelMDLastStep. Otherwise
regular MD will be performed. Note that the accelMDLastStep parameter only has an effect
when it is positive. When accelMDLastStep is set to zero (the default), aMD is ‘open-ended’
and will be performed till the end of the simulation.

• accelMDOutFreq < Frequency in steps of aMD output >
Acceptable Values: Positive integer
Default Value: 1
Description: An aMD output line will be printed to the log file at the frequency specified
by accelMDOutFreq. The aMD output will contain the boost potential (dV) at the current
timestep, the average boost potential (dV AV G) since the last aMD output, and various
potential energy values at the current timestep. The boost potential dV can be used to
reconstruct the ensemble average described earlier.

11.2 Gaussian Accelerated Molecular Dynamics

Gaussian accelerated molecular dynamics (GaMD) [76] is a type of accelerated molecular dynamics
(aMD) calculation. It is an enhanced sampling method that works by adding a harmonic boost
potential to smoothen the system’s potential energy surface. By constructing a boost potential
that follows Gaussian distribution, accurate reweighting of the GaMD simulations is achieved using
cumulant expansion to the second order.

Please include the following two references in your work using the NAMD implementation of
GaMD:

232

• Gaussian Accelerated Molecular Dynamics: Unconstrained Enhanced Sampling and Free En-
ergy Calculation, Y.Miao, V. Feher, and J.A. McCammon. J. Chem. Theory Comput.,
11:3584-3595, 2015.

• Gaussian Accelerated Molecular Dynamics in NAMD, Y.T.Pang, Y. Miao, Y. Wang, and J.A.
McCammon, J. Chem. Theory Comput., 13:9-19, 2017.

11.2.1 Theoretical background

GaMD enhances conformational sampling of biomolecules by adding a harmonic boost potential to
smoothen the system’s potential energy surface [76], as illustrated below:

Figure 12: Schematic illustration of GaMD. When the threshold energy E is set to the maximum
potential (iE = 1 mode), the system’s potential energy surface is smoothened by adding a harmonic
boost potential that follows a Gaussian distribution. The coefficient k0, which falls in the range of
0− 1.0, determines the magnitude of the applied boost potential.

Consider a system with N atoms at positions r =
{
r1, · · · , rN}. When the system’s potential

energy V (r) is lower than a threshold energy E, the following boost potential is added:

V ∗(r) = V (r) + ∆V (r), (86)

where ∆V (r) is the boost potential,

∆V (r) =
{

1
2k (E − V (r))2 , V (r) < E
0, V (r) ≥ E.

(87)

where k is the harmonic force constant.
As explained in reference [76], the two adjustable parameters E and k are automatically deter-

mined by the following three criteria. First, ∆V should not change the relative order of the biased
potential values, i.e., for any two arbitrary potential values V1(r) and V2(r) found on the original
energy surface, if V1(r) < V2(r), then one should have V ∗

1 (r) < V ∗
2 (r). Second, the difference be-

tween potential energy values on the smoothened energy surface should be smaller than that of the
original, i.e., if V1(r) < V2(r), then one should have V ∗

2 (r)− V ∗
1 (r) < V2(r)− V1(r). By combining

the above two criteria and plugging in the formula of V ∗(r) and ∆V , one obtains

Vmax ≤ E ≤ Vmin +
1
k

(88)

233

where Vmin and Vmax are the system’s minimum and maximum potential energies. To ensure that
Eqn. (88) is valid, k needs to satisfy: k ≤ 1

Vmax−Vmin
. Define k ≡ k0 · 1

Vmax−Vmin
, then 0 < k0 ≤ 1.

Third, the standard deviation of ∆V needs to be small enough (i.e., narrow distribution) to ensure
accurate reweighting using cumulant expansion to the second order: σ∆V = k (E − Vavg)σV ≤ σ0,
where Vavg and σV are the average and standard deviation of the system’s potential energies, σ∆V

is the standard deviation of ∆V , while σ0 is a user-specified upper limit (e.g., 10kBT) in order to
achieve accurate reweighting.

iE = 1 mode: When E is set to E = Vmax according to Eqn. (88), k0 is calculated as:

k0 = min(1.0, k′0) = min
(

1.0,
σ0

σV
· Vmax − Vmin

Vmax − Vavg

)
(89)

iE = 2 mode: Alternatively, when E is set to E = Vmin + 1
k , k0 is calculated as:

k0 = k′′0 ≡
(

1− σ0

σV
· Vmax − Vmin

Vavg − Vmin

)
(90)

If k′′0 obtained from the above equation is smaller than 0 or greater than 1, then k0 will be calculated
using Eqn. (89).

For more details on GaMD and the corresponding reweighting using cumulant expansion, see
reference [76][85].

11.2.2 NAMD parameters

Same as aMD, three modes are available for applying boost potential in GaMD: (1) boosting the
dihedral energy only, (2) boosting the total potential energy, and (3) boosting both the dihedral
and total potential energy (i.e., “dual-boost”).

Some parameters from aMD, including: accelMD, accelMDdihe, accelMDdual,
accelMDFirstStep, accelMDLastStep and accelMDOutFreq are shared by GaMD (see Sec-
tion 11.1 for details). The following is a list of input parameters unique to a GaMD run:

• accelMDG < Is Gaussian accelerated MD on? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether Gaussian accelerated MD (GaMD) is on. Only available
when accelMD is on.

• accelMDGiE < Flag to set the threshold energy for adding boost potential >
Acceptable Values: 1 or 2
Default Value: 1
Description: Specifies how the threshold energy E is set in GaMD. A value of 1 indicates
that the threshold energy E is set to its lower bound E = Vmax. A value of 2 indicates that
the threshold energy is set to its upper bound E = Vmin + (Vmax − Vmin)/k0.

• accelMDGcMDPrepSteps < Number of preparatory cMD steps >
Acceptable Values: Zero or Positive integer
Default Value: 200,000
Description: The number of preparatory conventional MD (cMD) steps in GaMD.
This value should be smaller than accelMDGcMDSteps (see below). Potential energies

234

are not collected for calculating the values of Vmax, Vmin, Vavg, σV during the first
accelMDGcMDPrepSteps.

• accelMDGcMDSteps < Number of total cMD steps >
Acceptable Values: Zero or Positive integer
Default Value: 1,000,000
Description: The number of total cMD steps in GaMD. With accelMDGcMDPrepSteps <
t < accelMDGcMDSteps, Vmax, Vmin, Vavg, σV are collected and at t = accelMDGcMDSteps, E
and k0 are computed.

• accelMDGEquiPrepSteps < Number of preparatory equilibration steps in GaMD >
Acceptable Values: Zero or Positive integer
Default Value: 200,000
Description: The number of preparatory equilibration steps in GaMD. This value
should be smaller than accelMDGEquiSteps (see below). With accelMDGcMDSteps < t <
accelMDGEquiPrepSteps + accelMDGcMDSteps, GaMD boost potential is applied according
to E and k0 obtained at t = accelMDGcMDSteps.

• accelMDGEquiSteps < Number of total equilibration steps in GaMD >
Acceptable Values: Zero or Positive integer
Default Value: 1,000,000
Description: The number of total equilibration steps in GaMD. With
accelMDGEquiPrepSteps + accelMDGcMDSteps < t < accelMDGEquiSteps +
accelMDGcMDSteps, GaMD boost potential is applied, and E and k0 are updated ev-
ery step.

• accelMDGStatWindow < Number of steps to calculate average and standard deviation in
GaMD >
Acceptable Values: Integer
Default Value: -1
Description: The number of simulation steps used to calculate the average and standard
deviation of potential energies, as well as the frequency of recalculating the boost potential
during equilibration steps. When it is set to a negative number, all the steps throughout
the cMD and equilibration stage (except the preparatory steps) will be used to calculate
the average and standard deviation without resetting, and the boost potential will be up-
dated every step during equilibration steps. When used, it is recommended to be set to
about 4 times the total number of atoms in the system. Note that accelMDGcMDPrepSteps,
accelMDGcMDSteps, accelMDGEquiPrepSteps and accelMDGEquiSteps need to be multiples
of accelMDGStatWindow.

• accelMDGSigma0P < Upper limit of the standard deviation of the total boost potential in
GaMD >
Acceptable Values: Positive real number
Default Value: 6.0 (kcal/mol)
Description: Specifies the upper limit of the standard deviation of the total boost potential.
This option is only available when accelMDdihe is off or when accelMDdual is on.

• accelMDGSigma0D < Upper limit of the standard deviation of the dihedral boost potential
in GaMD >

235

Acceptable Values: Positive real number
Default Value: 6.0 (kcal/mol)
Description: Specifies the upper limit of the standard deviation of the dihedral boost
potential. This option is only available when accelMDdihe or accelMDdual is on.

• accelMDGRestart < Flag to restart GaMD simulation >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether the current GaMD simulation is the continuation of a previ-
ous run. If this option is turned on, the GaMD restart file specified by accelMDGRestartFile
(see below) will be read.

• accelMDGRestartFile < Name of GaMD restart file >
Acceptable Values: UNIX filename
Description: A GaMD restart file that stores the current number of steps, maximum,
minimum, average and standard deviation of the dihedral and/or total potential energies (de-
pending on the accelMDdihe and accelMDdual parameters). This file is saved automatically
every restartfreq steps. If accelMDGRestart is turned on, this file will be read and the
simulation will restart from the point where the file was written.

11.3 Solute Scaling and REST2

Solute scaling improves sampling efficiency by scaling the intramolecular potential energy of a
protein to lower barriers separating different confirmations [114]. The potential is scaled based on
a parameter β,

USS(~r) = βUpp(~r) +
√
βUpw(~r) + Uww(~r), (91)

with Upp denoting protein–protein interactions, Upw denoting protein–water interactions, and
Uww denoting water–water interactions, effectively “heating” the protein’s interatomic interactions
whenever β < 1. The NAMD implementation is made efficient by rescaling the force field pa-
rameters for the affected atoms [52]. In particular, this parameter scaling approach makes the
calculation compatible with existing CUDA force kernels.

The NAMD implementation provides additional flexibility to solute scaling by allowing different
scaling factors for electrostatics, van der Waals, and bonded interactions, as described in the follow-
ing section. Solute scaling can be combined with replica exchange to produce a powerful sampling
enhancement method that is highly transferable and provides higher efficiency than traditional
temperature exchange methods. In the literature, this replica exchange solute scaling method is
known as REST2, due to its improvement of the earlier REST (replica exchange solute tempering)
method that directly scaled the temperature of the solute. Sample files are available in directory
lib/replica/REST2, with script file lib/replica/REST2/rest2 remd.namd demonstrating use of
solute scaling with multiple replicas.

11.3.1 NAMD parameters

The following parameters are used to control solute scaling:

• soluteScaling < Is replica exchange solute tempering enabled? >
Acceptable Values: on or off
Default Value: off

236

Description: Specifies whether or not REST2 is enabled. If set on, then soluteScaling
must also be set.

• soluteScalingFactor < Solute scaling factor >
Acceptable Values: non-negative
Description: This options sets the scaling factor β, and is typically set lower than 1 to
reduce potential energy barriers for the solute.

• soluteScalingFactorCharge < Solute scaling factor for electrostatics >
Acceptable Values: non-negative
Default Value: soluteScalingFactor
Description: Scaling factor applied to just the electrostatics interactions. If not specified,
this is set to soluteScalingFactor.

• soluteScalingFactorVdw < Solute scaling factor for van der Waals >
Acceptable Values: non-negative
Default Value: soluteScalingFactor
Description: Scaling factor applied to just the van der Waals interactions. If not specified,
this is set to soluteScalingFactor.

• soluteScalingFile < PDB file with scaling flags >
Acceptable Values: UNIX filename
Default Value: coordinates
Description: PDB file used to flag solute atoms for scaling. If undefined, this defaults to
the coordinate PDB file.

• soluteScalingCol < Column of PDB file >
Acceptable Values: X, Y, Z, O, or B
Default Value: O
Description: Column of the PDB file used to flag solute atoms for scaling. If undefined,
this defaults to the O (occupancy) column. A value of 1.0 marks the atom for scaling.

• soluteScalingAll < Apply scaling also to bond and angle interactions? >
Acceptable Values: on or off
Default Value: off
Description: If set on, scalingFactor is applied also to bond and angle interactions.
Otherwise, scalingFactor is applied only to dihedral, improper, and crossterm interactions.

11.4 Adaptive Tempering

Adaptive tempering is akin to a single-copy replica exchange method for dynamically updating the
simulation temperature. The temperature T is a new random variable in the range [Tmin, Tmax]
that is governed by the equation dE/dT = E − E(T) − 1/T + sqrt(2)Tξ, where ξ is Gaussian
white noise. The effect is that when the potential energy for a given structure is lower than the
(so far calculated) average energy, the temperature is lowered. Conversely when the current energy
is higher than the average energy, the temperature is raised. The effect is faster conformational
sampling to find minimum energy structures. The method is implemented exactly as described by
Zhang and Ma in J. Chem. Phys. 132, 244101 (2010) (using Equation 18 of their paper to calculate
the average energy at a given temperature from the histogram of energies).

237

The dynamic temperature is realized either by changing the temperature of the Langevin ther-
mostat or by velocity rescaling.

11.4.1 NAMD parameters

The following parameters are used to adaptive tempering:

• adaptTempMD < Is adaptive tempering active? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not adaptive tempering is used. If set to on then the
following parameters are required to be set: either all of (adaptTempTmin, adaptTempTmax,
adaptTempBins, adaptTempDt) or adaptTempInFile (but not both).

• adaptTempFreq < steps between temperature updates >
Acceptable Values: Positive integers
Default Value: 10
Description: The number of steps between temperature updates. Note that the potential
energy at the current is calculated and added to the temperature-energy histogram at every
step.

• adaptTempTmin < minimum temperature (K) >
Acceptable Values: Positive real number
Description: Sets the minimum temperature to be used in the simulation.

• adaptTempTmax < maximum temperature (K) >
Acceptable Values: Positive real number
Description: Sets the maximum temperature to be used in the simulation.

• adaptTempBins < number of temperature bins >
Acceptable Values: Positive integer
Default Value: 1000
Description: Sets the number of bins to subdivide the temperature range. Each bin stores
the average energy for the given temperature

• adaptTempDt < stepsize for temperature updates >
Acceptable Values: Positive real numbers
Default Value: 10−4

Description: Integration timestep for temperature updates. This is unrelated to the
simulation timestep and only scales the size of the step taken in temperature space every
adaptTempFreq steps.

• adaptTempInFile < adaptive tempering input filename >
Acceptable Values: UNIX filename
Description: The input file containing restart information for adaptive tempering (written
out by adaptTempRestartFile).

• adaptTempRestartFile < adaptive tempering restart filename >
Acceptable Values: UNIX filename
Description: The file to write out restart information for adaptive tempering.

238

• adaptTempRestartFreq < steps between writing restart file >
Acceptable Values: Positive integer
Description: Frequency of writing restart file.

• adaptTempLangevin < send temperature updates to langevin thermostat? >
Acceptable Values: on or off
Default Value: on
Description: Setting this to on will cause the langevin thermostat to use the updated tem-
peratures from adaptive tempering. Note that either one of adaptTempLangevin or adapt-
TempRescaling have to be on.

• adaptTempRescaling < send temperature to velocity rescaling thermostat? >
Acceptable Values: on or off
Default Value: on
Description: Setting this to on will cause the veloctiy rescaling thermostat to use the
updated temperatures from adaptive tempering. Note that either one of adaptTempLangevin
or adaptTempRescaling have to be on.

• adaptTempOutFreq < steps between printing adaptive tempering output >
Acceptable Values: Positive integers
Default Value: 10
Description: The number of timesteps between printing adaptive tempering output to the
log file.

• adaptTempFirstStep < step to start adaptive tempering >
Acceptable Values: Non-negative integers
Default Value: 0
Description: The first timestep from which adaptive tempering will be run.

• adaptTempLastStep < step to stop adaptive tempering >
Acceptable Values: Positive integers
Description: The last timestep to apply adaptive tempering.

• adaptTempCgamma < dynamic bin averaging constant >
Acceptable Values: Non-negative real number
Default Value: 0.1
Description: The calculation of the mean energy for a given bin is weighted by a factor of
1 - Cgamma / samples to damp out old statistics. Setting Cgamma to zero restores the use
of a standard arithmetic mean to calculate the mean energy for each bin.

• adaptTempRandom < assign random temperature if we step out of range? >
Acceptable Values: on or off
Default Value: off
Description: If set to on and the temperature steps out of [adaptTempTmin,
adaptTempTmax], a random temperature in that range is assigned. Otherwise the previous
temperature is kept.

239

11.5 Locally enhanced sampling

Locally enhanced sampling (LES) [92, 101, 102] increases sampling and transition rates for a portion
of a molecule by the use of multiple non-interacting copies of the enhanced atoms. These enhanced
atoms experience an interaction (electrostatics, van der Waals, and covalent) potential that is
divided by the number of copies present. In this way the enhanced atoms can occupy the same
space, while the multiple instances and reduces barriers increase transition rates.

11.5.1 Structure generation

To use LES, the structure and coordinate input files must be modified to contain multiple copies of
the enhanced atoms. psfgen provides the multiply command for this purpose. NAMD supports
a maximum of 255 copies, which should be sufficient.

Begin by generating the complete molecular structure and guessing coordinates as described
in Sec. 4. As the last operation in your script, prior to writing the psf and pdb files, add the
multiply command, specifying the number of copies desired and listing segments, residues, or
atoms to be multiplied. For example, multiply 4 BPTI:56 BPTI:57 will create four copies of the
last two residues of segment BPTI. You must include all atoms to be enhanced in a single multiply
command in order for the bonded terms in the psf file to be duplicated correctly. Calling multiply
on connected sets of atoms multiple times will produce unpredictable results, as may running other
commands after multiply.

The enhanced atoms are duplicated exactly in the structure—they have the same segment,
residue, and atom names. They are distinguished only by the value of the B (beta) column in the
pdb file, which is 0 for normal atoms and varies from 1 to the number of copies created for enhanced
atoms. The enhanced atoms may be easily observed in VMD with the atom selection beta != 0.

11.5.2 Simulation

In practice, LES is a simple method used to increase sampling; no special output is generated. The
following parameters are used to enable LES:

• les < is locally enhanced sampling active? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not LES is active.

lesFactor < number of LES images to use >
Acceptable Values: positive integer equal to the number of images present
Description: This should be equal to the factor used in multiply when creating the
structure. The interaction potentials for images is divided by lesFactor.

• lesReduceTemp < reduce enhanced atom temperature? >
Acceptable Values: on or off
Default Value: off
Description: Enhanced atoms experience interaction potentials divided by lesFactor.
This allows them to enter regions that would not normally be thermally accessible. If this
is not desired, then the temperature of these atoms may be reduced to correspond with the
reduced potential. This option affects velocity initialization, reinititialization, reassignment,
and the target temperature for langevin dynamics. Langevin dynamics is recommended with

240

this option, since in a constant energy simulation energy will flow into the enhanced degrees
of freedom until they reach thermal equilibrium with the rest of the system. The reduced
temperature atoms will have reduced velocities as well, unless lesReduceMass is also enabled.

• lesReduceMass < reduce enhanced atom mass? >
Acceptable Values: on or off
Default Value: off
Description: Used with lesReduceTemp to restore velocity distribution to enhanced atoms.
If used alone, enhanced atoms would move faster than normal atoms, and hence a smaller
timestep would be required.

• lesFile < PDB file containing LES flags >
Acceptable Values: UNIX filename
Default Value: coordinates
Description: PDB file to specify the LES image number of each atom. If this parameter
is not specified, then the PDB file containing initial coordinates specified by coordinates is
used.

• lesCol < column of PDB file containing LES flags >
Acceptable Values: X, Y, Z, O, or B
Default Value: B
Description: Column of the PDB file to specify the LES image number of each atom.
This parameter may specify any of the floating point fields of the PDB file, either X, Y, Z,
occupancy, or beta-coupling (temperature-coupling). A value of 0 in this column indicates
that the atom is not enhanced. Any other value should be a positive integer less than
lesFactor.

11.6 Replica exchange simulations

The lib/replica/ directory contains Tcl scripts that implement replica exchange both for parallel
tempering (temperature exchange) and umbrella sampling (exchanging collective variable biases).
This replaces the old Tcl server and socket connections driving a separate NAMD process for every
replica used in the simulation.

A NAMD build based on Charm++ 6.5.0 or later using one of the “LRTS” (low-
level runtime system) machine layers is required! Current LRTS machine layers include
mpi, netlrts, verbs (for InfiniBand), gemini gni-crayxe, gni-crayxc, and pamilrts-bluegeneq.

Only temperature-exchange simulations are described below. To employ replicas for um-
brella sampling you will need to understand this material, collective variable-based calculations
(Sec. 9), and basic Tcl programming to adapt the examples in lib/replica/umbrella/ and
lib/replica/umbrella2d/ until further documentation and a tutorial are available.

This implementation is designed to be modified to implement exchanges of parameters other
than temperature or via other temperature exchange methods. The scripts should provide a good
starting point for any simulation method requiring a number of loosely interacting systems.

Replica exchanges and energies are recorded in the .history files written in the output directories.
These can be viewed with, e.g., “xmgrace output/*/*.history” and processed via awk or other
tools. There is also a script to load the output into VMD and color each frame according to replica
index. An example simulation folds a 66-atom model of a deca-alanine helix in about 10 ns.

replica.namd is the master script for replica temperature-exchange simulations. To run:

241

cd example
mkdir output
(cd output; mkdir 0 1 2 3 4 5 6 7)
mpirun namd2 +replicas 8 job0.conf +stdout output/%d/job0.%d.log
mpirun namd2 +replicas 8 job1.conf +stdout output/%d/job1.%d.log

The number of MPI ranks must be a multiple of the number of replicas (+replicas). Be sure to
increment jobX for +stdout option on command line.

show replicas.vmd is a script for loading replicas into VMD; first source the replica exchange
conf file and then this script, then repeat for each restart conf file or for example just do “vmd -e
load all.vmd”. This script will likely destroy anything else you are doing in VMD at the time,
so it is best to start with a fresh VMD. clone reps.vmd provides the clone reps commmand to
copy graphical representation from the top molecule to all other molecules.

sortreplicas, found in the namd2 binary directory, is a program to un-shuffle replica trajec-
tories to place same-temperature frames in the same file. Usage:

sortreplicas <job_output_root> <num_replicas> <runs_per_frame> [final_step]

where job output root is the job specific output base path, including %s or %d for separate directo-
ries as in output/%s/fold alanin.job1 This will be extended with .%d.dcd .%d.history for input files
and .%d.sort.dcd .%d.sort.history for output files. The optional final step parameter will truncate
all output files after the specified step, which is useful in dealing with restarts from runs that did
not complete. Colvars trajectory files are similarly processed if they are found.

A replica exchange config file should define the following Tcl variables:

• num replicas, the number of replica simulations to use,

• min temp, the lowest replica target temperature,

• max temp, the highest replica target temperature,

• steps per run, the number of steps between exchange attempts,

• num runs, the number of runs before stopping (should be divisible by runs per frame ×
frames per restart).

• runs per frame, the number of runs between trajectory outputs,

• frames per restart, the number of frames between restart outputs,

• namd config file, the NAMD config file containing all parameters, needed for the sim-
ulation except seed, langevin, langevinTemp, outputEnergies, outputname, dcdFreq,
temperature, bincoordinates, binvelocities, or extendedSystem, which are provided
by replica.namd,

• output root, the directory/fileroot for output files, optionally including a “%s” that is re-
placed with the replica index to use multiple output directories,

• psf file, the psf file for show replicas.vmd,

• initial pdb file, the initial coordinate pdb file for show replicas.vmd,

242

• fit pdb file, the coodinates that frames are fit to by show replicas.vmd (e.g., a folded
structure),

The lib/replica/example/ directory contains all files needed to fold a 66-atom model of a
deca-alanine helix:

• alanin base.namd, basic config options for NAMD,

• alanin.params, parameters,

• alanin.psf, structure,

• unfolded.pdb, initial coordinates,

• alanin.pdb, folded structure for fitting in show replicas.vmd,

• fold alanin.conf, config file for replica exchange.tcl script,

• job0.conf, config file to start alanin folding for 10 ns,

• job1.conf, config file to continue alanin folding another 10 ns, and

• load all.vmd, load all output into VMD and color by replica index.

The fold alanin.conf config file contains the following settings:

set num_replicas 8
set min_temp 300
set max_temp 600
set steps_per_run 1000
set num_runs 10000
num_runs should be divisible by runs_per_frame * frames_per_restart
set runs_per_frame 10
set frames_per_restart 10
set namd_config_file "alanin_base.namd"
set output_root "output/%s/fold_alanin" ; # directories must exist

the following used only by show_replicas.vmd
set psf_file "alanin.psf"
set initial_pdb_file "unfolded.pdb"
set fit_pdb_file "alanin.pdb"

11.7 Random acceleration molecular dynamics simulations

The “lib/ramd” directory stores the tcl scripts and the example files for the implementation of the
Random Acceleration Molecular Dynamics (RAMD) simulation method in NAMD. The RAMD
method can be used to carry out molecular dynamics (MD) simulations with an additional randomly
oriented acceleration applied to the center of mass of one group of atoms (referred to below as
“ligand”) in the system. It can, for example, be used to identify egress routes for a ligand from a
buried protein binding site. Since its original implementation in the ARGOS [66, 120] program, the
method has been implemented in AMBER 8 [96], and CHARMM [17]. The first implementation

243

of RAMD in NAMD using a tcl script (available as supplementary material in [113]) provided
only limited functionality compared to the AMBER 8 implementation and was followed with an
implementation of RAMD and RAMD–MD in NAMD [24, 9]. Recently the RAMD method was
improved in speed by using NAMD vector implementations and streamlining the code. The current
implementation is now focused on the RAMD simulation and was used in the τRAMD procedure
for the estimation of relative drug-target residence times [56].

Additional information is found in the README file in the “lib/ramd” directory. The user is
encouraged to carefully read this information before starting production runs.

The two required scripts are stored in “lib/ramd/scripts”: (i) ramd–5.tcl defines the simulation
parameters and passes them from the NAMD configuration file to the main script, (ii) “ramd–
5 script.tcl” adds the randomly oriented force and performs all related computations.

Two examples for running RAMD are included in the directory “lib/ramd/example/”. The
examples can be started using the RAMD-force.sh shell scripts.

The specific RAMD simulation parameters to be provided in the NAMD configuration file (listed
below) should be preceded by the keyword “ramd”. The default values for these parameters are
only given as guidance. They may not to be suitable for other systems.

Mandatory parameter settings:

• ramd lastProtAtom < Last index of protein atom >
Acceptable Values: positive integer
Description: Specifies the index of the last protein atom.

• ramd firstRamdAtom < First index of ligand atom >
Acceptable Values: positive integer
Description: Specifies the index of the first ligand atom.

• ramd lastRamdAtom < Last index of ligand atom >
Acceptable Values: positive integer
Description: Specifies the index of the last ligand atom.

• ramd ramdfilename < Name of ramd output file >
Acceptable Values: Valid file name
Description: Specified the name of the file where the ramd logs are written.

Optional parameter settings with a default. Depending on your simulation system, you might
want to change these settings:

• ramd firstProtAtom < First index of protein atom >
Acceptable Values: positive integer
Default Value: 1
Description: Specifies the index of the first protein atom.

• ramd ramdSteps < Set number of steps in RAMD block >
Acceptable Values: positive integer
Default Value: 50
Description: Specifies the number of steps in 1 RAMD block; the simulations are evaluated
every ‘ramdSteps’ steps.

244

• ramd forceRAMD < Set acceleration force >
Acceptable Values: positive decimal
Default Value: 16.0
Description: Specifies the force to be applied. Replaces the acceleration (accel) specified
in previous releases. Defaults to 16 kcal/mol/Angstrom

• ramd rMinRamd < Set threshold for distance travelled RAMD >
Acceptable Values: positive decimal
Default Value: 0.01
Description: Specifies a threshold value for the distance in Angstroms travelled by the
ligand in 1 RAMD block. In RAMD simulations the direction of the acceleration is changed
if the ligand has travelled less than ‘rMinRamd’ Å in the evaluated block.

• ramd forceOutFreq < Set frequency of RAMD forces output >
Acceptable Values: positive integer, Must be divisor of ramdSteps
Default Value: 10
Description: Every ‘forceOutFreq’ steps, detailed output of forces will be written.

• ramd maxDist < Set center of mass separation >
Acceptable Values: positive decimal
Default Value: 50
Description: Specifies the distance in Angstroms between the the centers of mass of the
ligand and the protein when the simulation is stopped.

• ramd ramdSeed < Set RAMD seed >
Acceptable Values: positive integer
Default Value: 14253
Description: Specifies seed for the random number generator for generation of RAMD
force directions. Change this parameter if you wish to run different trajectories with identical
parameters.

• ramd debugLevel < Set debug level of RAMD >
Acceptable Values: integer value
Default Value: 0
Description: Activates verbose output if set to an integer greater than 0. Should be used
only for testing purposes because the very dense output is full of information only relevant
for debugging.

• ramd namdVersion < Set the NAMD version >
Acceptable Values: float value
Default Value: 2.13
Description: After NAMD version 2.10 a call to enabletotalforces is done to enable tcl
processing in NAMD

Note: In the current RAMD implementation, combined RAMD-MD simulations, where RAMD
blocks alternate with standard MD blocks are not available. In case you are are interested in this
feature, please contact the RAMD developers at mcmsoft@h-its.org

Scripts for using RAMD in the τRAMD procedure for computing residence times are available
at: https://www.h-its.org/downloads/ramd/.

245

https://www.h-its.org/downloads/ramd/

12 Structure based simulations

12.1 Hybrid MD-Go Simulation

12.1.1 Hybrid MD-Go model

NAMD incorporates a hybrid MD-Go model (hereby referred to as Go) to study the conformation
changes in biomolecular systems. The method replaces the physical-based nonbonded interactions
with a smoother knowledge-based potential energy surface. Bonded interactions are taken from the
classical force fields. By removing energetic traps along a MD trajectory, the system will be able
to sample states not normally accessible to classical MD simulations.

12.1.2 Hybrid MD-Go considerations

Typically, Go simulations are conducted in the absence of solvent and with electrostatic and
van der Waals forces in the system turned off to improve conformational space exploration.
Due to the current implementation of Go, the partial charges and van der Waals radii need
to be set to zero in the psf and parameter file to remove the physical nonbonded interactions.
Additionally, NAMD uses a reference PDB structure to construct the Go pairwise potential
between atoms.

Finally, the Go model in NAMD introduces the idea of chain types. Consider modeling a
protein-nucleic acid complex. Using classical all-atom MD, a single force field describes all possible
nonbonded interactions. With Go, however, one can create separate nonbonded force fields to
describe the protein and nucleic acid interactions. In order to create separate force fields, atoms
are grouped together using chain types where the chain types are taken from the occupancy field
of the reference PDB file. For argument sake, assume that the protein atoms have an occupancy
value of 1.0 and that the nucleic acid atoms have an occupancy value of 2.0. One now must define
three separate Go potentials for intra-protein, intra-nucleic acid, and inter-protein-nucleic acid
interactions. In terms of chain types, this corresponds to (1) between atom pairs fully in chain
1, (2) between atom pairs fully in chain 2, (3) between atom pairs where one atom is in chain 1
and the other atom is in chain 2 respectively. To run Go, a minimum of one chain type must be
defined.

12.1.3 Configuration file modifications

The following configuration parameters are used to setup and run a Go simulation:

• GoForcesOn < Are Go forces turned on? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether or not Go forces should be calculated. If turned ‘off’,
Go forces will not be calculated. If turned ‘on’, Go forces will be calculated. By default,
the Go forces will be calculated in addition to the electrostatic and van der Waals forces. To
simulate a system using only Go forces, the partial charges and Lennard-Jones parameters
can be set to zero in the force field files.

• GoParameters < Parameter file defining Go potential >
Acceptable Values: file

246

Description: File contains parameters to define the Go pairwise forces between different
chain types. All possible chain type pairing combinations must be enumerated. Chain types
are defined in the GoCoordinates file. The format for the GoParameters file is described in
the next section.

• GoCoordinates < Reference structure for Go simulation >
Acceptable Values: PDB file
Description: PDB file contains the reference structure used to define the Go potential. The
file need not be the same file used to initialize the coordinates of the MD simulation; however,
it must contain the same number of atoms in the same order as given in the structure (.psf)
and coordinates (.coor) file. Additionally, the occupancy fields of the PDB file will be read
to determine which chain type an individual atom belongs to, and, thus, which pairwise Go
potential to use to calculate forces. By default, the occupancy value of 0.0 turns off the Go
potential for that particular atom.

• GoMethod < controls method for storing Go contact information >
Acceptable Values: lowmem or matrix
Description: Specifies whether the Go contacts should be calculated on the fly or stored in a
matrix respectively. In most cases, ‘lowmem’ will be sufficient. However, for smaller systems,
the ‘matrix’ does offer a slight performance speedup in terms of wall time. Variable is only
used if GoForcesOn is ‘on’

The following sections describe the format of the GoParameter file.

12.1.4 GoParameter format

When running a Go simulation, the atoms are partitioned into chains according to the occupancy
value given in the GoCoordinates file. For every possible pairwise combination between chains, a
Go potential is defined by the following equations:

Let rref
i,j be the pairwise distance between atoms i and j in the reference structure. If rref

i,j is
less than the Go cutoff distance, the pairwise potential between atoms i and j is given by:

VGo(ri,j , ε, σ
ref
i,j , a, b) = 4ε

[(σref
i,j

ri,j

)a
−
(σref

i,j

ri,j

)b
]

where σref
i,j is given as

(
b
a

) 1
b−a rref

i,j . If rref
i,j is greater than the Go cutoff distance, the pair-

wise potential between atoms i and j is given by:

VGo(ri,j , εrep, σrep, expRep) = 4εrep(
σrep

i,j

ri,j
)expRep

For each pairwise chain combination, the following parameters are needed to define the Go
potential:

• chaintypes (2 floats): (first chain second chain) Defines the pairwise chain interaction

247

• epsilon (1 float): (ε) Determines the ε constant of the Go potential in units of kcal ·mol−1 ·
Å−2

• exp a (1 integer): (a) Determines the ‘a’ constant for the Go potential

• exp b (1 integer): (b) Determines the ‘b’ constant for the Go potential

• expRep (1 integer): (expRep) Determines the ‘expRep’ constant for the Go potential

• sigmaRep (1 float): (σrep) Determines the σrep constant for the Go potential in units of Å

• epsilonRep (1 float): (εrep) Determines the εrep constant for the Go potential in units of
kcal ·mol−1 · Å−2

• cutoff (1 float): (cutoff) Defines the Go cutoff distance for this particular pairwise chain in
units of Å

• [Optional] restriction (1 integer): Determines if interactions between the ith and ith +
integer adjacent residue should be excluded. Multiple restriction between adjacent residues
can be defined within a chaintype. Each additional new restriction is given on its own line.

Each pairwise chaintype should be written in its own block of text with each entry given its
own line. It is recommended that individual pairwise potential be separated by a blank line.

12.2 Running SMOG simulations

12.2.1 SMOG model considerations

NAMD supports the SMOG model from published from Onuchic’s lab [118, 119]. The input
files for SMOG can be generated from the SMOG website (http://smog-server.org) [82]. It
is recommended to run these simulations with 1-4 exclusions (as opposed to scaled 1-4), a 0.5fs
timestep, and with a 0.5fs timestep (as described in [118, 119]).

12.2.2 Configuration file modifications

As the SMOG model uses GROMACS topology and coordinate files, the GROMACS configura-
tion parameters—gromacs, grotopfile, �grocoorfile—must be defined. The description for the
GROMACS configuration parameters are reproduced below:

• gromacs < use GROMACS format force field? >
Acceptable Values: on or off
Default Value: off
Description: If gromacs is set to on, then grotopfile must be defined, and structure
and parameters should not be defined.

• grotopfile < GROMACS format topology/parameter file >
Acceptable Values: UNIX filename
Description: This file contains complete topology and parameter information of the
system.

248

http://smog-server.org

• grocoorfile < GROMACS format coordinate file >
Acceptable Values: UNIX filename
Description: This file contains the coordinates of all the atoms. Note that coordinates
can also be used for PDB format coordinate file. When gromacs is set to on, either
grocoorfile or coordinates must be defined, but not both.

To run a SMOG simulation, the following extra parameters must be defined.

• GromacsPair < Are GROMACS pair forces turned on? >
Acceptable Values: on or off
Default Value: off
Description: This variable determines if the pair section of the GROMACS topology file
grotopfile is evaluated. Currently, only Lennard-Jones type pairs are supported. Variable is
only used if gromacs variable is ‘on’.

• staticAtomAssignment < Optimization to fix atoms onto a specific node >
Acceptable Values: on or off
Default Value: off
Description: Specifies if atoms should be statically fixed to a node. This will change the
internode communication and will give a significant speed-up to MD simulations if the atoms
are moving rapidly. It is suggested that SMOG simulations use the staticAtomAssignment
flag.

249

13 Constant-pH Simulations 1

Constant-pH MD in NAMD is based on the scheme first proposed by Stern [105] and later revised
and extended by Chen and Roux [19]. A detailed description of the modifications and improvements
made in the NAMD implementation has been presented elsewhere by Radak, et al. [88] and this
is likely the best comprehensive description of the method, its uses, and its limitations/pitfalls.
Herein the goal is to provide a working understanding of how the implementation works and what
kinds of data it produces.

13.1 Overview and Theoretical Background

Constant-pH MD is a simulation methodology specially formulated for the treatment of variable
protonation states. This is to be contrasted with conventional force-field based MD simulations,
which generally treat protonation states by assuming they are fixed. Consider, for example, a pro-
tein with two titratable residues which may both be either protonated or deprotonated (Figure 13);
the system has four possible protonation states. In the conventional route, the user must enu-
merate these possibilities, construct distinct topologies, and then simulate the cases individually.
The simulations for each state must then be connected by either asserting knowledge about the
system (e.g., by assuming that only certain states are of biological importance) or by performing
additional simulations to probe transitions between states directly (e.g., by performing free energy
calculations). In a constant-pH MD simulation, knowledge of the transformations is not assumed
and is instead actively explored by interconverting between the various protonation states. This is
especially useful when the number of protonation states is extremely large and/or prior information
on the importance of particular states is not available.

Figure 13: The core difference between conventional and constant-pH MD can be illustrated by a
simple enzyme E with four protonation states describing the occupancy of two titratable residues,
R1 and R2. A conventional MD simulation handles the states separately (left panel). The relative
importance of the states must be known beforehand or computed by other means. Conversely, a
constant-pH MD simulation handles the states collectively and actively simulates interconversion
(right panel). Determining the relative importance of the states is a direct result of the simulation.

1The features described in this section were implemented by Brian K. Radak (Argonne National Laboratory,
Argonne, IL USA) with considerable technical support from James C. Phillips (University of Illinois, Urbana, IL
USA) and Wei Jiang (Argonne National Laboratory). The algorithm draws heavily from earlier work by Yunjie
Chen and Benôıt Roux and later by Donghyuk Suh (University of Chicago, Chicago, IL USA), as well as time spent
as a postdoctoral scholar at University of Chicago. Testing and validation were also aided by Christophe Chipot
(Université de Lorraine, Vandœuvre-lès-Nancy cedex France and University of Illinois).

250

In formal terms, conventional MD samples from a canonical ensemble, whereas constant-pH
MD samples from a semi-grand canonical ensemble. The new partition function,

Ξ(pH) =
∑
λ∈S

Qλ10−nλpH, (92)

is essentially a weighted summation of canonical partition functions, Qλ, each of which are defined
by an occupancy vector, λ. The elements of λ are either one or zero depending on whether a
given protonation site is or is not occupied, respectively. For a vector of length m, the set of all
protonation states, S, has at most 2m members. In order to sample from the corresponding semi-
grand canonical distribution function, a simulation must explore both the phase space defined by
the canonical paritition functions and the state space defined by the different occupancy vectors.
The fraction of simulation time spent in each state is dictated by the weights in the summation
and these depend on the pH and the number of protons, nλ, in the system (i.e., the sum of the
elements in λ).

Although a constant-pH MD system may contain any number of titratable protons, the base
transformation is always the movement of one proton from a molecule into a bath of non-interacting
protons “in solution.” For a generic chemical species A, this corresponds to the usual deprotonation
reaction definition, except with fixed pH:

HA
−H+

pH fixed

A−.

In the language of statistical mechanics the species HA and A− refer to all terms in Eq. (92) which
do and do not, respectively, contain the specific proton in question (i.e., the particular element of
λ is one or zero). By taking out a factor of 10−pH, this can be re-written as

Ξ(pH) = ΞA−(pH) + ΞHA(pH)10−pH

and then recast as a statistical mechanical analog of the Henderson-Hasselbalch equation by recog-
nizing that ΞA−(pH)/ΞHA(pH) is just the ratio of deprotonated / protonated fractions of species
A. The protonated fraction is then

PHA(pH) =
1

1 + 10pH−pKa(pH)
; pKa(pH) ≡ − log

ΞA−(pH)
ΞHA(pH)

. (93)

In practice, PHA(pH) can be calculated from a simulation by simply counting the fraction of time
spent in state HA (e.g., the fraction of time a specific element of λ is one). Note also that pKa(pH)
is formally a pH dependent function unless the system only contains one proton (or type of proton).

In most experimental contexts, a different form of Eq. (93) is used which is often referred to as
a “generalized” Hill equation. This corresponds to a specific choice of pH dependence such that

pKa(pH) ≈ pK(a)
a + (1− n)

(
pH− pK(a)

a

)
.

The constant n is then known as the Hill coefficient and the so-called apparent pKa, pK(a)
a , generally

corresponds to the inflection point of a plot of PHA(pH). Both quantities are usually determined
by non-linear regression after PHA has been determined at different pH values.

251

13.2 Implementation Details

In NAMD, each canonical partition function is represented by a specific force field description
embodied in a PSF – in order to change the protonation state the underlying PSF must also be
modified. This is accomplished by a close coupling to psfgen. The models that can be used
with constant-pH MD are thus limited to only those which can be completely implemented within
psfgen. This also means that NAMD requires access to residue topology files (RTFs) during the
course of a simulation. These must be specified with the psfgen topology command.

For consistency between topological descriptions, NAMD uses “dummy” atoms to represent
non-interacting protons. These atoms have the same mass as protons but only interact with the
system via a minimal number of force field bonded terms. This formalism guarantees that: 1) the
number of atoms/coordinates during the simulation remains fixed and 2) the thermodynamics of
the model is unchanged. The latter point is subtle and warrants comment. As implemented in
NAMD, constant-pH MD only captures the thermodynamics of the semi-grand canonical ensemble.
There is no active description of proton dissociation events. However, this is more of a limitation of
classical MD than a particular shortcoming of NAMD. A useful analogy may be the use of Langevin
dynamics as a thermostat as opposed to a phenomonological model for Brownian motion.

Figure 14: The basic constant-pH MD scheme in NAMD is to alternate equilibrium sampling in
a fixed protonation state followed by a nonequilibrium MD Monte Carlo move to sample other
protonation states. The latter move can be accepted or rejected. If accepted, the simulation
continues in the new protonation state. If the move is rejected, sampling continues as if the move
were never attempted at all.

The basic scheme in NAMD is to alternately sample the protonation state and then the con-
figuration space within that state. Protonation state sampling is accomplished by an alchemical
coupling scheme that forcibly turns off interactions with the current protonation state and turns on
interactions with a candidate protonation state. This nonequilibrium “switching” is accomplished
with the alchemy code (specifically the thermodynamic integration code branch) and necessarily
has lower performance (by about 30%) than regular MD due to the added electrostatic calculations
in the reciprocal space (i.e., when using PME). However, the configuration space sampling should
still have normal performance. The switching process exerts work on the system and thus drives
the system out of equilibrium. However, an appropriately designed Monte Carlo (MC) move using
an accept/reject criterion can recover the correct semi-grand canonical equilibrium distribution in
both the state and configuration spaces [81, 20]. The resulting scheme is a hybrid nonequilibrium

252

MD/MC (neMD/MC) algorithm. The most important conceptual change from conventional MD
is that, rather than being a continuous trajectory, the simulation now becomes a series of cycles
composed of an MD and neMD/MC step. This means that the length of the simulation is no longer
simply determined by the number of steps (numsteps) but rather the number of cycles. The length
of a cycle is also determined by two parts – the amount of time on equilibrium sampling and the
amount of time executing the switch.

It may be profitable/necessary to vary the switch time depending on the type of protonation
change that is being effected. Indeed, this is a critical factor in the efficiency of the method. That
is, if the switch is too short, then moves are unlikely to be accepted and effort will be wasted
when the move is rejected. However, if the switch is too long, then an inordinate amount of effort
will be spent sampling the state space and there will be fewer resources left for exploring the
configuration space. Some basic qualities of the system that affect sampling have been determined
using nonequilibrium linear response theory [89]. In short, there are intrinsic limits based on: 1) the
extent that differing interactions between each state fluctuate (according to some variance, σ2

0) and
2) the “molecular” time scale, τm, on which these fluctuations change. These effects are roughly
captured by the expression [89, 88]:

τopt ≤
σ2

0τm
2.83475

,

where τopt is some optimal switching time, in the sense of maximizing the rate at which protonation
states interconvert. Overall, switching times on the order of tens of picoseconds tend to be optimal
in that they balance the high cost of switching versus the high acceptance rate at longer switching
times (in the infinite time limit the perturbation is adiabatic and exerts zero work). For titratable
groups exposed primarily to aqueous solvent, a switch on the order of 10-20 ps appears to give near
optimal results [89, 88]. An equivalent formulation of the above expression is that mean acceptance
rates around 20-25% are likely near optimal.

Important Limitations:

For various reasons concerning the implementation, constant-pH simulations are currently
incompatible with the following NAMD functionalities in all or most situations:

• Any system using GPUs/CUDA

• Generalized Born implict solvent (GBIS)

• Alchemical free energy calculations, e.g., ligand binding (alch)

• Drude polarizable force fields

• Hybrid quantum mechanical/molecular mechanical simulations

• Collective variables (colvars)

• extraBonds

This list is neither exhaustive nor definitive. In many instances the problem may be overcome
by modest additional developments.

253

254

13.3 New Commands and Keywords

The constant-pH implementation is largely implemented in Tcl and can be found in
/lib/namdcph/namdcph.tcl, where the base directory is the NAMD source home directory. When
that file has been loaded with a suitable source command, the following commands and keywords
are available and appear to the user in a way similar to NAMD syntax. The most significant change
from normal NAMD usage is that there is generally no need to use the run command. One should
instead use the new cphRun command; this can only be used once per script for now. NB, all
commands and keywords are currently case sensitive!

cphRun < Run constant-pH MD >
Arguments: <numsteps> [numcycles]
Defaults: numcycles = 1
Description: Execute numcycles cycles of constant-pH MD with the current settings. Each cycle
consists of 1) a neMD/MC move in both configuration and protonation space and 2) MD based sam-
pling in configuration space. By default, configuration space sampling simply consists of numsteps
dynamics, as in conventional MD. The nature of the neMD/MC moves, however, is more elaborate
and controlled by other keywords, many of which are required (see below).

13.3.1 Required Keywords

• pH < pH value that the system is in contact with >
Acceptable Values: decimal (usually between 0 and 14)
Description: The pH is effectively a chemical potential applied to protons only. This value
affects the details of neMD/MC moves but otherwise has no effect on the system dynamics.

• cphConfigFile < File defining titratable residues >
Acceptable Values: filename
Description: The cphConfigFile contains definitions for the available titratable residues.
This is essentially meta information regarding the RTF contents, but also includes experi-
mental references and additional force field parameterization.

• cphNumstepsPerSwitch < Number of steps during nonequilibrium switching >
Acceptable Values: [integer [<move label> <integer>] . . .]
Description: Each move must have an associated number of steps per switch. If an odd
number number of arguments is specified, then the first such argument is assumed to be a
default number for all such moves. After this (or if an even number of arguments is specified)
all remaining arguments are assumed to be specific assignments for a given move label of the
form <segid>:<resid>:<resname>/<segid>:<resid>:<resname>/. . . .

13.3.2 Commonly Used Options

• cphSetResidueState < Set the initial state of one or more titratable residues. >
Acceptable Values: <segid>:<resid>:<resname> <state> [. . .]
Description: Initial residue states can be assigned in three ways (in descending order of
precedence): 1) via this command, 2) from a cphRestartFile, and 3) randomly from the
assigned pH and the current inherent pKa of each residue.

255

• cphSetResiduepKai < Set the inherent pKa of one or more titratable residues. >
Acceptable Values: <segid>:<resid>:<resname> <pKai> [. . .]
Description: The two step inherent pKa algorithm implemented here permits on-the-fly
update of an estimate for the pKa(s) of each residue. These can either be guessed at the
outset (the default is to use the reference pKa) or updated as the simulation progresses. A
more accurate estimate of the inherent pKa increases the statistical efficiency of the method,
but the long time result is formally unbiased regardless of the value. If an extremely large
or extremely small value is assigned, then the residue will be assigned the most probable
protonation state at the given pH and likely remain fixed in that state.

• cphExcludeResidue < Exclude one or more residues from being titratable >
Acceptable Values: <segid>:<resid>:<resname> [. . .]
Description: By default, any residue that matches a titratable residue type will be
allowed to change protonation state. This command permits specific residues to be excluded
from consideration in a manner that is similar to assigning an extreme inherent pKa (see
cphSetResiduepKai). The main differences are that 1) the protonation state will not be
modified and remain as it is in the original PSF and 2) the protons in the residue will not
be tracked in the cphlog file. This command is not always recommended, but is currently
necessary for handling disulfide linkages.

• cphRestartFile < Restart file for constant-pH >
Acceptable Values: filename
Description: Constant pH requires additional checkpoint information regarding the state
of the titratable residues and the nature of the neMD/MC moves. This (optional) information
is read from the file specified here. After/during a simulation, this information is written to
[outputname].cphrst.

• cphRestartFreq < Frequency at which constant-pH checkpoint files are written >
Acceptable Values: Non-negative integer
Default Value: 0
Description: Checkpoint information is written to [outputname].cphrst every
cphRestartFreq cycles (not MD steps). A checkpoint file is always written at the end
of the last cycle.

• cphOutFile < Log file for constant-pH >
Acceptable Values: filename
Default Value: [outputname].cphlog
Description: Titratable residue state information is logged here after every cycle.

• cphProposalWeight < MC move label and weight specifications >
Acceptable Values: <move label> <weight> [[<move label> <weight>] . . .]
Description: During each cycle, MC moves are selected from the move set and then
accepted/rejected according to a Metropolis criterion based on the combined inherent pKa
information and pH. The move weight affects the probability that such a move is selected.
Note that this does not affect the probability that any given proposal is accepted, it merely
increases the number of attempts at the given proposal. This may be useful in a system where
one desires specific attention on a given process, such as proton transfer or the exchange of a
given residue, but one does not want to assume that all other residue protonation states are

256

nominally fixed. By default all moves are assigned equal weights of 1.0. During the simulation
these are automatically normalized to a discrete probability mass function.

• cphMaxProposalAttempts < Maximum number of switch proposal attempts per cycle >
Acceptable Values: integer
Default Value: 0
Description: During each cycle, MC moves are selected from the move set and then
accepted/rejected according to a Metropolis criterion based on the combined inherent pKa
information and pH. This process stops when either a switch move is accepted or a maximum
limit is reached. Any value less than one defaults to the number of titratable residues in the
system.

• cphNumMinSteps < Number of steps of minimization before dynamics >
Acceptable Values: integer
Default Value: 0
Description: This is a replacement for the normal minimize command, which is not
compatible with constant-pH due to PSF modifications during initialization. Setting this
option to a modest number (100–200, say) might be necessary when randomizing protonation
states based on pH, since in that case it cannot be assumed that the starting structure is
representative of the initial protonation state.

13.3.3 Specialized Options

• cphForceConstant < force constant for alchemical switches (in kcal/mol-Å2) >
Acceptable Values: Non-negative decimal
Default Value: 100.0
Description: During “dual-topology” alchemical switches, a harmonic bond is formed
between analogous atoms in each alchemical region. This rigorously leaves all static ther-
modynamic quantities intact and is generally expected to improve the stability of dynamic
quantities.

• cphMDBasename < basename of intermediate files for equilibrium MD >
Acceptable Values: string
Default Value: namdcph.md
Description: PSF/coordinate modifications are currently done via the file system and
utilize intermediate files. It may be advantageous to direct this I/O to a fast temporary
directory.

• cphSWBasename < basename of intermediate files for nonequilibrium (switch) MD >
Acceptable Values: string
Default Value: namdcph.sw
Description: PSF/coordinate modifications are currently done via the file system and
utilize intermediate files. It may be advantageous to direct this I/O to a fast temporary
directory.

257

Undocumented Features:

The constant-pH code is actively under development, although future work will almost exclu-
sively be in adding new features and capabilities as well as improving performance. Because
the code is fairly lightweight and available in Tcl, the intrepid user may discover “easter
egg” features which are not listed in the documentation. USE UNDOCUMENTED

FEATURES AT YOUR OWN RISK. Such undocumented features may work (and
even be advisable) for specific problems, but have not undergone as rigorous of testing and
may be prone to unintended consequences.

13.4 Minimal Examples

Constant-pH simulations can be carried out with largely the same options as conventional MD
simulations (with some exceptions, see previous sections). The follwing examples assume that: 1)
PSF and PDB files for the system of interest have already been constructed and 2) appropriate
simulation keywords have already been chosen (e.g., for PME, Langevin dynamics, etc.).

End conventional settings...
source .../namd/lib/namdcph/namdcph.tcl
Constant-pH MD requires additional force field files _during_ the simulation.
In general, all RTFs used to construct the system need to be included with
the ‘‘topology’’ command (just as in psfgen). Additional constant-pH specific
RTF and PRM files are also necessary, as well as an accompanying
configuration file in JSON format.
#
cphConfigFile <path to JSON config file>
topology <path to RTF>
topology <path to another RTF>
pH 7.0
The following defaults all nonequilibrium switches to 5000 steps and then
increases the time for residue 5 of segid PROA to 7500 steps -- multiple
residues can be specified
#
cphNumStepsPerSwitch 5000 PROA:5:ASP 7500
Run 100 minimization cycles before starting dynamics.
cphNumMinSteps 100
Run 2500 steps of MD between attempted protonation state changes. Run 10
cycles of MD and neMD/MC. The _upper_ bound of the simulation is thus:
#
10*(2500 + 7500) = 100000 steps
#
but the actual simulation may be shorter in length.
#
cphRun 2500 10

258

Restarting a simulation
The following assumes that a simulation has already been run (as in the example above). For
clarity we shall assume that outputname was set to ”foo” such that restart files have been written
to foo.coor and foo.vel (normal output) as well as foo.psf, foo.pdb, and foo.cphrst (constant-pH
specific output).

End conventional settings...
source .../namd/lib/namdcph/namdcph.tcl
Constant-pH MD requires additional force field files _during_ the simulation.
In general, all RTFs used to construct the system need to be included with
the ‘‘topology’’ command (just as in psfgen). Additional constant-pH specific
RTF and PRM files are also necessary, as well as an accompanying
configuration file in JSON format.
#
cphConfigFile <path to JSON config file>
topology <path to RTF>
topology <path to another RTF>
pH 7.0

structure foo.psf
coordinates foo.pdb
binCoordinates foo.coor
binVelocities foo.vel
cphRestartFile foo.cphrst
NB: switch times and inherent pKa values are read here and no longer need to
be specified as during initialization

cphRun 2500 10

259

14 Hybrid QM/MM Simulations

Even though molecular mechanics (MM) force-fields are based on quantum mechanical calculations
and experimental observations, only quantum mechanics (QM) can give a complete and accurate
understanding of many biochemical processes, particularly those involving chemical reactions or
charge redistribution. Nevertheless, even with the advanced hardware technology available today,
the computational cost of studying nanosecond-long dynamics of entire systems relying solely on
QM methodologies is usually prohibitive. A common route to circumvent this cost barrier is to
confine the QM formalism to a sub-region of a system and to include the effects of the surrounding
system through MM simulations, leading to hybrid QM/MM simulations [97].

NAMD’s comprehensive QM/MM suite [75] was developed to provide easy setup, visualization
and analysis of QM/MM simulations through the graphical user interface VMD/QwikMD [91], and
a broad range of QM methods through NAMD’s new “QMForces” module. The QM/MM interface
in NAMD supports the simulation of many independent QM regions, and smooth integration with
a vast collection of enhanced sampling methods. In hybrid QM/MM simulations, NAMD offloads
part of its standard force and energy calculations to a QM program, either through native interfaces
to MOPAC [106, 68] or ORCA [80], or through a flexible generic interface requiring a wrapper script,
where exemplary Python wrappers are provided for Gaussian, TeraChem and Q-CHEM. Multiple
QM-MM coupling schemes are implemented, allowing for both mechanically and electrostatically
embedded QM regions to be used (see description in Nature Methods [75]). QM/MM simulations
require the same input files used for classical MD, with additional options in the configuration file.
QM and MM atoms covalently bound are usually treated by redistributing the MM atom’s charge
over its nearest MM neighbors and by capping the QM atom with a hydrogen atom, as shown
in Figure 15 for a solvated tri-alanine QM/MM calculation using the NAMD/ORCA interface.
Tests of the QM/MM interface for accuracy, stability and performance, are provided as supporting
information in Nature Methods [75].

If employing NAMD QM/MM please cite:

NAMD goes quantum: An integrative suite for hybrid simulations. Melo*, M. C. R.;
Bernardi*, R. C.; Rudack T.; Scheurer, M.; Riplinger, C.; Phillips, J. C.; Maia, J. D.
C.; Rocha, G. D.; Ribeiro, J. V.; Stone, J. E.; Neese, F.; Schulten, K.; Luthey-Schulten,
Z.; Nature Methods, 2018 (doi:10.1038/nmeth.4638)

14.1 Division of Labor

The basic idea behind a hybrid QM/MM simulation in NAMD is to use a classical force field to
treat the classical atoms in the system (or “MM atoms”), and pass the information that describes
the quantum atoms in the system (or “QM atoms”) to a Quantum Chemistry (QC) software, which
is expected to produce gradients for all QM atoms, as well as the total energy of the QM region
(and optionally partial charges). All bonded and non-bonded interactions among MM atoms are
handled by NAMD’s force field. Similarly, all bonded and non-bonded interactions among QM
atoms are handled by the QC software in its chosen theory level. Treatment of covalent bonds
between QM and MM atoms will be described in a following section.

The non-bonded interactions between QM and MM atoms are handled differently, and can be
modified and regulated by the user. Van der Waals interactions are always calculated, and can
be done using either the default force field parameters, or specific (user-defined) parameters for
QM atoms. Parameter modifications for QM atoms have been proposed in order to compensate

260

Figure 15: Graphical representation of NAMD-ORCA interconnection. Only the contribution
of MM charges beyond rmax are calculated by NAMD (via PME), with the direct electrostatic
calculation performed by ORCA. The image assumes the charge shift redistribution scheme, where
the partial charge of the linking MM atom is shifted to its nearest MM neighbors.

261

for over-polarization that these atoms may exhibit in hybrid QM/MM simulations. Larger van der
Waals radii and/or shallower well depths should then be provided for all element types that occur
among QM atoms (see the “qmVdwParams” keyword).

14.2 Mechanical and Electrostatic Embedding

Electrostatic interactions between QM and MM atoms deserve a more detailed discussion due to
the abundance and diversity of available alternatives. The first decision to be made is whether
there will be electrostatic interactions between the two portions of a system, QM and MM. In the
“mechanical embedding” scheme, only positions and elements of atoms in the QM region are passed
on to the chosen QC software for energy and force calculations. This way, QM and MM atoms
share only van der Waals interactions.

In the “electrostatic embedding” scheme, on the other hand, the partial charges of MM atoms
surrounding all QM atoms are used to approximate the electrostatic environment where QM atoms
are found (the scheme is selected with the “qmElecEmbed” keyword). See Figure 16. This process
can be customized in a variety of ways, the first of which is deciding if a smoothing function will
be used to avoid an abrupt decay in electrostatic force due to the cutoff used in the selection of
surrounding point charges (this option is activated with the “qmSwitching” keyword).

Classical point charge utilization can be further customized by choosing which smoothing func-
tion will be used, and if the total charge of selected partial charges should be modified to (A) have
a whole charge or (B) have a complementary charge to that of the QM region, so that the sum of
charges from QM atoms and classical partial charges add to zero (see Figure 16).

With electrostatic embedding, QM atoms are influenced by the charges in the classical region.
In order to balance the forces acting on the system, NAMD uses partial charges for the QM atoms
to calculate the electrostatic interaction with classical point charges. There are two possibilities for
the origin of the QM partial charges: the original partial charges found in the force field parameter
files can be used, or updated partial charges can be gathered at each step from the QC software
output (controllable through the “qmChargeMode” keyword). The continuous update in charge
distribution allows for a partial re-parameterization of the targeted molecule at each time step,
which can lead to an improved description of the interactions of a ligand as it repositions over the
surface of a protein, for example, or as it moves through a membrane.

In case PME is activated by the user, NAMD will automatically apply the necessary corrections
to handle the QM region, allowing it to be influenced by long range interactions from the entire
system.

14.3 Covalent Bonds Divided by the QM/MM Barrier

Hybrid QM/MM simulations of biomolecular systems often present situations where only a portion
of a molecule should be treated quantum mechanically, usually to save computational resources
since the cost of simulating QM regions rises rapidly with the number of simulated toms. In order
to deal with chemical bonds that are split by the QM/MM division of the biomolecular system, that
is, bonds that have one atom in the quantum (QM) region and another in the classical (MM) region
(we will call these “QM/MM bonds”), NAMD makes approximations to the molecular system in
order to bridge differences in simulation type (QM vs. MM), and minimize errors involved in the
QM/MM division of the system (Figure 17 A and B).

262

Figure 16: Diagram of options that control the use and manipulation of classical point charges. De-
fault values are indicated below their respective keyword. “Cutoff” and “SwitchDist” are keywords
used in NAMD to configure the calculations of electrostatic and van der Waals interactions.

263

Figure 17: Treatment of QM/MM bonds. A) Illustration of all atoms in the vicinity of the QM/MM
bond, colored by element: cyan for carbon, white for hydrogen, blue for nitrogen and red for oxygen.
B) To the left, in blue, is the region that will be treated with the chosen QC software. To the right,
in red, the region treated classically by NAMD. The bond in gray is the one crossing the QM/MM
division. The atom marked as QM1 is the quantum atom directly connected to the classical atom
on the other side of the QM/MM division. Analogously, the atom marked as MM1 is the classical
atom directly connected to the quantum atom on the other side of the QM/MM division. Atoms
marked as MM2 are directly bonded to the MM1 atom, and atoms marked MM3 are directly
bonded to MM2 atoms. C) Z1 method. Ignored partial charges are indicated in the image with a
gray sphere taking the place of its respective classical atom. Directly adjacent to MM1 is a green
sphere representing the link atom that is placed along the QM1-MM1 covalent bond. All remaining
partial charges representing classical atoms that are passed on to the QC software are indicated
in purple spheres. D) Z2 method. E) Z3 method. F) RCD method. Virtual point charges, are
represented in yellow spheres. The text indicates the total charge placed at each position, where q
indicates the charge of the MM1 atom and q2 represents the partial charge of the MM2 atom at
that position. The yellow spheres at MM2 atom positions indicate their partial charge has been
changed from its original value. G) CS method. Since in this case the virtual point charges are
placed very close to the MM2 atom position, the yellow spheres representing them show significant
overlapping.

264

14.3.1 Link Atoms

As previously mentioned, the information regarding atoms in the QM region is passed on to the
chosen QC software, that is, their respective positions and element types, but in order to maintain
(or approximate) the effect of the chemical bond between the QM atom and the MM atom, NAMD
creates and places a link atom (usually a hydrogen) along the “broken” QM/MM bond. The user
can fine-tune this process by choosing the method of placement of the link atom and even the
element of such atom (keywords “qmBondDist” and “qmLinkElement”).

The introduction of the link atom will invariably place it very near the classical atom involved in
the QM/MM bond, therefore the use and placement of partial charges from classical atoms becomes
highly relevant. Under the mechanical embedding scheme, the QC software only receives the atoms
in the QM region and the link atoms created to approximate QM/MM bonds, so no manipulation
of partial charges is required. On the other hand, usual QM/MM simulations are done under the
electrostatic embedding scheme, in which case the partial charges of classical atoms involved in the
QM/MM bonds and classical atoms directly connected to them require special treatment.

14.3.2 Point Charge Alterations

Several methods have been proposed to handle this situation, and the QM/MM interface developed
here implements the most widely accepted ones. One can be chosen using the “qmBondScheme”
keyword (Figure 17 C to G). In all implemented methods, the classical atom participating in the
QM/MM bond (MM1 atom) does not have its partial charge passed on to the QC software, since
this would create excessive repulsion (or attraction) on the link atom. This is, in fact, the entirety
of the “Z1” method: ignoring the partial charge of the MM1 atom. Analogously, “Z2” and “Z3”
ignore all partial charges up to MM2 and MM3 atoms, respectively (Figure 17 C to E).

The Redistributed Charge and Dipole (RCD) method (Figure 17 F) is more elaborate, as it
rearranges the partial charge of the MM1 atom (indicated as q) so that the total charge of the
region is maintained as well as the dipole moments of the bonds between MM1 and MM2 atoms.
This is done by creating “virtual” point charges, which are passed on to the QC software as if they
represented partial charges of classical atoms. More specifically, the RCD method creates a virtual
point charge in the middle of all MM1-MM2 bonds with a charge of 2q/n, where n is the number
of MM2 atoms connected to MM1, and also subtracts a charge q/n from each of the MM2 atoms,
so that the total charge of the region remains constant while approximating the dipole moment of
the MM1-MM2 bonds. This way there will be no point charge placed at the position of the MM1
atom, but its partial charge is not simply removed, it is redistributed.

A similar approach is taken by the Charge Shifting (CS) method (Figure 17 G). In this case,
the MM1 partial charge is equally distributed across the MM2 atoms, and two virtual point charges
are placed along the direction of the MM1-MM2 bond, one before the MM2 atom and one after,
each one with a charge of +q/n and −q/n respectively. This method will also keep the total charge
of the region constant while trying to preserve the local dipoles formed by all MM1-MM2 bonds.

14.3.3 Link Atom Charge and Charge Groups

Along with the gradient over all QM atoms, NAMD can also use the partial charge derived from
the QC calculation to update the charge distribution of atoms in the QM region. When a QM/MM
bond exists, however, part of the charge of the region will be placed on the link atom, and in order
to keep the charge of the QM region constant, the link atom charge is re-distributed on the QM

265

region. This seemingly simple mechanism can cause problems unless special care is be taken when
deciding which bond will mark the division of QM and MM regions.

Many force fields divide the topologies of biomolecules in “charge groups” (Figure 18 A and B).
What this means is that not only will the partial charges of all atoms of a molecule add up to the
whole number that represents the charge of the molecule, they will also add up to whole numbers in
sub groups of atoms (look for the “GROUP” statements in http://www.ks.uiuc.edu/Training/
Tutorials/namd/namd-tutorial-unix-html/node24.html to see an example). Therefore, one
needs to make sure that the chosen QM/MM bond(s) sits in between “charge groups”, so the
total sum of partial charges of atoms defining a QM region is a whole number. This is especially
important in order to keep the total charge of the system constant. Since the QC calculation will
always distribute a whole charge over all atoms of a system (QM atoms plus a link atom), if the
partial charge of QM atoms is not initially a whole number, it will be forced into a whole number
after the first QC step, where the charge of the link atom is distributed over the QM region. This
will create a mismatch between QM and MM charges, changing the total charge of the entire system
(QM plus MM regions).

An example can be seen in Figure 18, bonds 1 and 3 are chosen as the QM/MM bonds, the
charge distribution seen in Figure 18 C shows a whole charge for the QM region (and consequently
for the MM region). Therefore, any charge placed on link atoms can be redistributed to the QM
atoms with no change in total system charge. However, if bonds 2 and 3 are chosen for the QM/MM
bond (Figure 18 D), the charge of the MM region would be +1.16, while the charge of the QM
region would be −1.16. Since the QC calculation would place a pre-determined whole charge on
the region (−1, in this case), the updated charge of the QM region after the first simulation step
would change the total charge of the system to +0.16, in this example.

14.4 Custom Quantum Chemistry Software

In order to offer the broad range of tools and technologies present in NAMD to all researchers who
develop and/or employ specialized Quantum Chemistry tools, the QM/MM interface is prepared to
utilize any QC tool that can be wrapped in a script that converts input and output files to specified
formats. This flexible interface will improve development and testing of new tools, as well as their
quick integration utilization in hybrid dynamics.

We currently provide in the libs/qmmm/ directory (and mirrored at http://www.ks.uiuc.
edu/Research/qmmm/Scripts/) Python wrapper scripts for GAUSSIAN, TeraChem, and Q-Chem.
Other wrapper scripts can be generated, based on these templates, in any other language, as long as
they are provided to NAMD in an executable form. Although natively supported, we also provide a
python wrapper script for ORCA, with extended comments explaining the format in which NAMD
will write data for the QC software and the format in which NAMD expects to find the results.

14.5 Independent QM Regions

Aiming at large macromolecular simulations that could take advantage of localized QM resolution,
NAMD allows the user to set up multiple independent QM regions in the same molecular system.
For example, one could study a multimeric complex that contains several active sites and have all
active sites be calculated with a chosen QC software simultaneously (Figure 19). Each active site
would be calculated independently of all others, by its own execution of the QC software, keeping
the calculation cost low and without impacting the overall efficiency of the simulation, since all
QM regions would be calculated in parallel.

266

http://www.ks.uiuc.edu/Training/Tutorials/namd/namd-tutorial-unix-html/node24.html
http://www.ks.uiuc.edu/Training/Tutorials/namd/namd-tutorial-unix-html/node24.html
http://www.ks.uiuc.edu/Research/qmmm/Scripts/
http://www.ks.uiuc.edu/Research/qmmm/Scripts/

Figure 18: Charge Groups and QM/MM Bonds. A) Illustration of aspartate and the distribution
of charge over its atoms as in CHARMM36 force field parameters. Circles in red indicate oxygen
atoms, blue indicate nitrogen atoms, cyan for carbon atoms, and white for hydrogen atoms. “Bond
1” indicates the peptide bond, “Bond 2” indicates the one between the alpha carbon and the peptide
bond nitrogen, and “Bond 3” the bond between the alpha carbon and the peptide bond carbon.
B) Charge groups are indicated with dashed squares, along with their total charges. C) Depiction
of the atoms in the QM region if Bonds 1 and 3 are used to separate it from the MM region. The
total charge of QM region is −1. D) Depiction of QM region if the same is defined by Bonds 2 and
3. In this case, the total charge of QM region is −1.16.

267

Figure 19: Diagram of Multiple QM Regions. The illustration depicts a hetero-hexameric complex
(light and dark green triangles) that combine to create three active sites (in gray). Active sites
are bound to a target molecule (purple triangle). The inner and outer dashed circles represent,
respectively, the boundary of a QM region and the limits of the classical point charge shell around
that region.

268

Identifying the different QM regions and which atoms belong to each one of them can be simply
accomplished in the input PDB file, or in a dedicated PDB file (keyword “qmParamPDB”). Since
each region can contain different sets of molecules, their charges and multiplicities are indicated
separately (see keywords “qmCharge” and “qmMult”).

For simulations of large systems that are distributed across several computer nodes, one can
control how many independent QM regions are calculated in each node. This would prevent large
simulations from running out of memory if two or more large QM regions are placed in the same
node (see keyword “qmSimsPerNode”).

14.6 Keywords

• qmForces < Calculate QM? >
Acceptable Values: yes or no
Default Value: no
Description: Turns on or off the QM calculations.

• qmParamPDB < Set QM atoms >
Acceptable Values: PDB file
Description: Name of an optional secondary PDB file where the OCCupancy or BETA
column has the indications for QM or MM atoms. QM atoms should have an integer bigger
than zero (0) and MM atoms should have zero as the beta or occupancy field. The same
file may have indications for bonds between a QM atom and an MM atom. This should be
provided in case the PDB file passed to the “coordinates” keyword already has data on its
beta or occupancy columns, such as when a SMD simulations is being performed.

• qmColumn < Which column? >
Acceptable Values: “beta” or “occ”
Description: Indicates which column has the QM/MM field. Required.

• qmSimsPerNode < Sims per node >
Acceptable Values: postive integer
Default Value: 1
Description: Number of independent simultaneous QM simulations per node.

• qmBondColumn < Which bond column? >
Acceptable Values: “beta” or “occ”
Description: Indicates which column has the QM/MM bond information. This will tell
NAMD which atoms are at the ends of a covalent bond split by the QM/MM barrier, with
one atom being quantum and one being classical. There is no default value. If this parameter
is provided, NAMD will parse options for dealing with QM/MM bonds.

• qmBondDist < Use qmBondColumn value for distance? >
Acceptable Values: “on” or “off”
Default Value: off
Description: Indicates whether the value in the BondColumn will be used to define the

269

distance between the QM atom and the Link Atom that will replace the MM atom in the
QM system.

• qmBondValueType < Does qmBondColumn value give length or ratio? >
Acceptable Values: “len” or “ratio”
Default Value: len
Description: Indicates if the values in the BondColumn represent either the length (“len”)
between the QM and link atoms or the ratio (“ratio”) between the QM-MM distance and the
one which will be used as the QM-Link distance.

• qmLinkElement < Set link atom element >
Acceptable Values: string, for example “4 9 Cl”
Default Value: H
Description: User defined link atom element. Two syntaxes are allowed: if there is only
one QM-MM bond, a string with the element symbol is allowed (such as “H” or “Cl”). If
there are two or more bonds, the string needs to have the two atoms that compose the bond,
and then the element (such as “4 9 Cl”). The default element for all link atoms is hydrogen.

• qmBondScheme < Select QM-MM bond scheme >
Acceptable Values: “CS” or “RCD” or “Z1” or “Z2” or “Z3”
Default Value: CS
Description: Indicates what will be the treatment given to QM-MM bonds in terms
of charge distribution and link atom creation and placement. CS: Charge Shift Scheme;
RCD: Redistributed Charge and Dipole method; Z1: Only ignored MM1 partial charge, with
no charge redistribution; Z2: Ignores MM1 and all MM2 partial charges, with no charge
redistribution; Z3: Ignores MM1 and all MM2 and MM3 partial charges, with no charge
redistribution.

• qmElecEmbed < Should point charges be used in QM? >
Acceptable Values: “on” or “off”
Default Value: on
Description: Indicates if classical point charges should be used in QM calculations.

• qmSwitching < Use switching on point charges? >
Acceptable Values: “on” or “off”
Default Value: off
Description: This will scale down the point charges representing the classical system
as to replicate the switching procedure that NAMD applies to all charged interaction (see
“switching”).

• qmSwitchingType < Set functional form of switching >
Acceptable Values: “switch” or “shift”
Default Value: shift
Description: This option is used to decide which kind of function will be used to scale down
point charges sent to QM calculations. SHIFT: This will ”shift down” the entire shell of point
charges so that electrostactic interactions reach zero at the cutoff distance. SWITCH: This

270

will only change point charges in the sub-volume between the switchdist and cutoff distance,
so that electrostactic interactions reach zero at the cutoff distance.

• qmPointChargeScheme < Set point charge scheme >
Acceptable Values: “none” or “round” or “zero”
Default Value: none
Description: This option allows the user to decide if and how the point charges presented
to the QM system will be altered. NONE: Nothing will be done. ROUND: This will change
the most distant point charges so that the total sum of point charges is a whole number.
ZERO: This will adjust the most distant point charges so that the total sum of point charges
is 0.

• qmBaseDir < Set directory for file I/O >
Acceptable Values: directory path
Description: This should be a fast read/write location, such as a RAM drive (/dev/shm on
most linux distros). The user needs to make sure this directory exists in the node(s) running
the QM calculation(s).

• qmReplaceAll < Use only QM gradients for forces? >
Acceptable Values: “on” or “off”
Default Value: off
Description: Indicates to NAMD that ALL forces form NAMD will be ignored and only
the gradients from the QM software will be applied on the atoms. This IS NOT NECESSARY
in any regular QM/MM simulation, and will prevent the use of any other feature from NAMD
such as SMD.

• qmVdwParams < Modify type names for QM atoms? >
Acceptable Values: “on” or “off”
Default Value: off
Description: The QM code will change all QM atoms’ van der Waals types to ”q”+element
(e.g., all carbons will be qC and all hydrogens will be qH) for VdW interactions. This means
that a parameter file with epsilon and sigma values for these atom types must be provided
along with the regular parameter files. For example, if using CHARMM force field, the new
file should be in CHARMM format.

• qmPCStride < Set stride for point charge >
Acceptable Values: integer
Default Value: 1
Description: Sets a stride for new point charge determination. The same set of classical
atoms will be sent to QM calculations as point charges, but with updated positions.

• qmCustomPCSelection < Provide custom point charge selection? >
Acceptable Values: “on” or “off”
Default Value: off
Description: Indicates that one or more file(s) will be provided with a custom selection of

271

point charges. Each file will have a selection for a single QM group. This selection will be
kept during the entire simulation.

• qmCustomPCFile < File for custom point charge selection >
Acceptable Values: PDB file
Description: The file will have, in the “qmColumn”, the same QM ID provided for a single
QM group. All other groups will have zero (0) in this column. In the second column (beta or
occupancy), the classical or quantum atoms (from other QM regions) that need to be passed
as point charges will be identified by a non-zero number.
Example/Format:
qmCustomPCFile system/system.customPC.1.pdb
qmCustomPCFile system/system.customPC.2.pdb
qmCustomPCFile system/system.customPC.3.pdb
qmCustomPCFile system/system.customPC.4.pdb

• qmLiveSolventSel < Keep track of solvent? >
Acceptable Values: “on” or “off”
Default Value: off
Description: With Live Solvent Selection (LSS), NAMD will automatically keep track of
the solvent molecules for all QM Groups, and will exchange classical solvent molecules with
QM solvent molecules every ”QMLSSFreq” steps.

• qmLSSResname < Set residue name for LSS >
Acceptable Values: residue name
Default Value: TIP3
Description: Indicates which residue name will be used in LSS.

• qmLSSFreq < Set frequency of LSS >
Acceptable Values: integer, multiple of stepspercycle
Default Value: 100
Description: Frequency of LSS. Must be a multiple of stepspercycle.

• qmLSSMode < How solvent molecules are selected >
Acceptable Values: “dist” or “COM”
Default Value: dist
Description: For LSS, this indicates how solvent molecules are selected. In all cases, the
closest solvent molecules are selected, and if a classical solvent molecule is closer than a QM
one, they are swaped. DIST: This mode will use the smallest distance between a solvent atom
and a non-solvent QM atom to sort solvent molecules. This is best used when the non-solvent
QM atoms form irregular volumes (when the COM is not very representatve), and/or volumes
with high solvent accessibility (such as a drug, or a small peptide, in solution). COM: This
mode will sort solvent molecules based on Center Of Mass distance between the solvent COM
and the COM of a selection for each QM group (see “qmLSSRef” keyword). Best used with
small QM regions that have limited solvent accessibility, such as an active site.

• qmLSSRef < Which residues for COM of QM atoms? >
Acceptable Values: string

272

Description: This will indicate which residues are to be used in the determination of the
COM of non-solvent QM atoms. Only these atoms will be used to determine the closest set
of solvent molecules. The keyword takes a string composed of the QM group ID, the segment
name and the residue ID.
Example/Format:
qmLSSRef "1 RP1 9"
qmLSSRef "2 RP1 3"
qmLSSRef "2 RP1 2"
qmLSSRef "3 AP1 9"
qmLSSRef "3 AP1 3"
qmLSSRef "4 AP1 9"

• qmConfigLine < Pass string to QM configuration >
Acceptable Values: string
Description: The string passed to ”qmConfigLine” will be copied and pasted at the very
begining of the configuration file for the chosen QM software if either ORCA or MOPAC are
selected.
Example/Format (QM/MM NAMD-ORCA):
qmConfigLine "! PM3 ENGRAD"
qmConfigLine "%%output PrintLevel Mini Print\[P Mulliken\] 1 Print\[P AtCharges M\] 1 end"

Example/Format (QM/MM NAMD-MOPAC):
qmConfigLine "PM7 XYZ T=2M 1SCF MOZYME CUTOFF=9.0 AUX LET GRAD QMMM GEO-OK"
qmConfigLine "Test System"

• qmMult < Set multiplicity of QM region >
Acceptable Values: string
Description: Multiplicity of the QM region. This is needed for proper construction of
ORCA’s input file. Each string must be composed of the QM region ID and its multiplicity.
Example/Format:
qmMult "1 1"
qmMult "2 1"
qmMult "3 1"
qmMult "4 1"

• qmCharge < Set charge of each QM region >
Acceptable Values: string
Description: Indicates the charge of each QM region. If no charge is provided for a QM
region, NAMD calculates the total charge automatically based on the given parameter set.
Each string must be composed of the QM region ID and its total charge.
Example/Format:
qmCharge "1 1"
qmCharge "2 -1"
qmCharge "3 1"
qmCharge "4 -1"

• qmSoftware < Which QM software? >
Acceptable Values: “mopac” or “orca” or “custom”
Description: Required for QM/MM, this indicates which QM software should be used.

273

In case the user wants to apply another QM code, this can be done by using the ”custom”
qmSoftware. In this case, NAMD will call the executable defined in the qmExecPath variable
and will give it one argument: the full path to the input file.

INPUT: This input file will contain on the first line the number of QM atoms (X) and the
number of point charges in the file (Y, which may be 0 or more), separated by a space. The
following X+Y lines will have four (4) fields: X, Y and Z coordinates, and a fourth field which
will depend on the type of entry. For QM atoms, the field will contain the element of the QM
atom. For point charge lines, the field will contain the charge of the point charge.

OUTPUT: The expected output file whould be placed in the same directory as the input
file, and should be named "*inputfile*.result" (meaning it will have the same path and
name of the input file, plus the suffix ".result"). This file should have, on its first line,
the energy of the system and the number of point charges that were passed to ORCA, and
that ORCA calculated forces on (zero, if using mechanical embedding). The two numbers
should be separated by a single white space. Following the standard for the INPUT file,
there will be another X+Y lines in the OUTPUT file. On the following X lines (where X is
the number of QM atoms passed in the input file), there must be four (4) fields: the x, y
and z components of the TOTAL FORCE applied on that atom, and on the fourth field, the
charge of the atom. If the user indicates that charges from the QM software should not be
used (see “qmChargeMode”), the fourth field should have zeroes, but should not be empty.
On the following Y lines (where Y is the number of point charges), there must be only three
(3) fields: the x, y and z components of the electrostatic force applied on that point charge.
Energy should be in Kcal/mol and forces in Kcal/mol/Angstrom.

• qmExecPath < Set path to QM executable >
Acceptable Values: path
Description: Required for QM/MM, this indicates the path to the QM code executable.

• qmSecProc < Set path to secondary executable >
Acceptable Values: path
Description: Indicates a secondary executable that NAMD will call AFTER each QM
software execution for each QM group. The executable is called with two arguments: the
complete path and name of the input file used for each QM software execution; and the
simulation step. This option can be used for an extra-processing at every step, e.g., for
saving all QM outputs every step.

• qmPrepProc < Set path to initial executable >
Acceptable Values: path
Description: Indicates an executable that must be called BEFORE the FIRST QM software
execution of each QM group. The executable is called with one argument: the complete path
and name of the input file used for each QM software execution. This can be used to setup
a charge distribution for a molecule of interest, for example.

• qmChargeMode < Set charge calculation mode >
Acceptable Values: “none” or “mulliken” or “chelpg”
Default Value: mulliken

274

Description: Charge calculation mode expected from the QM software. This indicates if
charges should be read from the QM software and updated at every step, or if the original
force field atom charges should be used. In case you are using ORCA, two charge options are
allowed, Mulliken or CHELPG. We must know the kind of charge requested by the user so
that the proper format is expected, read and processed. NONE: No charges are read from
the QM software output and the original force field charges are preserved. MULLIKEN: This
is the only other option for MOPAC and one possibility for ORCA. In case you are using the
custom QM software interface, choose this option in order to use the charges calculated in the
custom QM software, irrespective of the actual theory used for that calculation. CHELPG:
This is a second possibility for ORCA.

• qmOutStride < Set frequency of QM charge output >
Acceptable Values: integer
Default Value: 0 (not saving)
Description: Frequency of QM charge output. A dedicated DCD file will be created to
store the charge data for all QM atoms in the system. This independent frequency allows the
user to store whole-system data at a larger stride to save time and space.

• qmPositionOutStride < Set frequency of QM-only position output >
Acceptable Values: integer
Default Value: 0 (not saving)
Description: Frequency of QM-only position output. A dedicated DCD file will be created
to store the position data for all QM atoms in the system. This independent frequency allows
the user to store whole-system data at a larger stride to save time and space.

• qmEnergyStride < Set frequency of QM specific energy output >
Acceptable Values: integer
Default Value: 1
Description: Frequency of QM-only energy output. A dedicated energy output line will
be created to indicate the energy calculated by the QM code. This independent frequency
allows the user to store QM-specific energy data at a larger stride to save time and space.

• qmChargeFromPSF < Set charge of QM region from PSF file >
Acceptable Values: “on” or “off”
Default Value: off
Description: Automatically determine charge of QM regions by adding the charges of
atoms in each region.

• qmCSMD < Apply conditional-SMD to QM atoms? >
Acceptable Values: “on” or “off”
Default Value: off
Description: Apply conditional SMD to QM atoms in order to steer the simulation
within the QM region, while avoiding bringing atoms too close together and destabilizing
the molecule. C-SMD works like regular SMD, but with pairs of atoms. The first atom is
pulled by a string connected to a virtual particle, and the direction of motion of the virtual
particle is updated to follow a second atom. The force on the first atom will stop being

275

applied when they come closer than a cutoff value.

• qmCSMDFile < Set cSMD information >
Acceptable Values: cSMD file
Description: Name of a text file indicating pairs of atoms that will be brought closer in
space. In the file, each line defines a cSMD bias, with the following syntax:
Atom1 Atom2 Force(Kcal/Mol/A) Speed(A/step) Cutoff(A)

276

15 Runtime Analysis

15.1 Pair interaction calculations

NAMD supportes the calculation of interaction energy calculations between two groups of atoms.
When enabled, pair interaction information will be calculated and printed in the standard output
file on its own line at the same frequency as energy output. The format of the line is PAIR
INTERACTION: STEP: step VDW FORCE: fx fy fz ELECT FORCE: fx fy fz. The displayed force is the
force on atoms in group 1 and is units of kcal/mol/Å.

For trajectory analysis the recommended way to use this set of options is to use the NAMD Tcl
scripting interface as described in Sec. 2.2.2 to run for 0 steps, so that NAMD prints the energy
without performing any dynamics.

• pairInteraction < is pair interaction calculation active? >
Acceptable Values: on or off
Default Value: off
Description: Specifies whether pair interaction calculation is active.

• pairInteractionFile < PDB file containing pair interaction flags >
Acceptable Values: UNIX filename
Default Value: coordinates
Description: PDB file to specify atoms to use for pair interaction calculations. If this
parameter is not specified, then the PDB file containing initial coordinates specified by
coordinates is used.

• pairInteractionCol < column of PDB file containing pair interaction flags >
Acceptable Values: X, Y, Z, O, or B
Default Value: B
Description: Column of the PDB file to specify which atoms to use for pair interaction
calculations. This parameter may specify any of the floating point fields of the PDB file,
either X, Y, Z, occupancy, or beta-coupling (temperature-coupling).

• pairInteractionSelf < compute within-group interactions instead of bewteen groups >
Acceptable Values: on or off
Default Value: off
Description: When active, NAMD will compute bonded and nonbonded interactions only
for atoms within group 1.

• pairInteractionGroup1 < Flag to indicate atoms in group 1? >
Acceptable Values: integer
Description:

• pairInteractionGroup2 < Flag to indicate atoms in group 2? >
Acceptable Values: integer
Description: These options are used to indicate which atoms belong to each interac-
tion group. Atoms with a value in the column specified by pairInteractionCol equal to
pairInteractionGroup1 will be assigned to group 1; likewise for group 2.

277

15.2 Pressure profile calculations

NAMD supports the calculation of lateral pressure profiles as a function of the z-coordinate in the
system. The algorithm is based on that of Lindahl and Edholm (JCP 2000), with modifications to
enable Ewald sums based on Sonne et al (JCP 122, 2005).

The simulation space is partitioned into slabs, and half the virial due to the interaction between
two particles is assigned to each of the slabs containing the particles. This amounts to employing
the Harasima contour, rather than the Irving-Kirkwood contour, as was done in NAMD 2.5. The
diagonal components of the pressure tensor for each slab, averaged over all timesteps since the
previous output, are recorded in the NAMD output file. The units of pressure are the same as in
the regular NAMD pressure output; i.e., bar.

The total virial contains contributions from up to four components: kinetic energy, bonded
interactions, nonbonded interactions, and an Ewald sum. All but the Ewald sums are computed
online during a normal simulation run (this is a change from NAMD 2.5, when nonbonded contri-
butions to the Ewald sum were always computed offline). If the simulations are performed using
PME, the Ewald contribution should be estimated using a separate, offline calculation based on
the saved trajectory files. The nonbonded contribution using a cutoff different from the one used
in the simulation may also be computed offline in the same fashion as for Ewald, if desired.

Pressure profile calculations may be performed in either constant volume or constant pressure
conditions. If constant pressure is enabled, the slabs thickness will be rescaled along with the unit
cell; the dcdUnitCell option will also be switched on so that unit cell information is stored in the
trajectory file.

NAMD 2.6 now reports the lateral pressure partitioned by interaction type. Three groups are
reported: kinetic + rigid bond restraints (referred to as “internal”, bonded, and nonbonded. If
Ewald pressure profile calculations are active, the Ewald contribution is reported in the nonbonded
section, and no other contributions are reported.

NAMD 2.6 also permits the pressure profile to be partitioned by atom type. Up to 15 atom
groups may be assigned, and individual contribution of each group (for the “internal” pressures)
and the pairwise contributions of interactions within and between groups (for the nonbonded and
bonded pressures) are reported in the output file.

• pressureProfile < compute pressure profile >
Acceptable Values: on or off
Default Value: off
Description: When active, NAMD will compute kinetic, bonded and nonbonded (but not
reciprocal space) contributions to the pressure profile. Results will be recorded in the NAMD
output file in lines with the format PRESSUREPROFILE: ts Axx Ayy Azz Bxx Byy Bzz ...
, where ts is the timestep, followed by the three diagonal components of the pressure tensor
in the first slab (the slab with lowest z), then the next lowest slab, and so forth. The output
will reflect the pressure profile averaged over all the steps since the last output.

NAMD also reports kinetic, bonded and nonbonded contributions separately, using the
same format as the total pressure, but on lines beginning with PPROFILEINTERNAL,
PPROFILEBONDED, and PPROFILENONBONDED.

• pressureProfileSlabs < Number of slabs in the spatial partition >
Acceptable Values: Positive integer
Default Value: 10

278

Description: NAMD divides the entire periodic cell into horizontal slabs of equal thickness;
pressureProfileSlabs specifies the number of such slabs.

• pressureProfileFreq < How often to output pressure profile data >
Acceptable Values: Positive integer
Default Value: 1
Description: Specifies the number of timesteps between output of pressure profile data.

• pressureProfileEwald < Enable pressure profile Ewald sums >
Acceptable Values: on or off
Default Value: off
Description: When enabled, only the Ewald contribution to the pressure profile will be
computed. For trajectory analysis the recommended way to use this option is to use the
NAMD Tcl scripting interface as described in Sec. 2.2.2 to run for 0 steps, so that NAMD
prints the pressure profile without performing any dynamics.

The Ewald sum method is as described in Sonne et al. (JCP 122, 2005). The number of k
vectors to use along each periodic cell dimension is specified by the pressureProfileEwaldn
parameters described below.

• pressureProfileEwaldX < Ewald grid size along X >
Acceptable Values: Positive integer
Default Value: 10
Description:

• pressureProfileEwaldY < Ewald grid size along Y >
Acceptable Values: Positive integer
Default Value: 10
Description:

• pressureProfileEwaldZ < Ewald grid size along Z >
Acceptable Values: Positive integer
Default Value: 10
Description:

• pressureProfileAtomTypes < Number of atom type partitions >
Acceptable Values: Positive integer
Default Value: 1
Description: If pressureProfileAtomTypes is greater than 1, NAMD will calculate the
separate contributions of each type of atom to the internal, bonded, nonbonded, and total
pressure. In the case of the internal contribution, there will be n pressure profile data sets
reported on each PPROFILEINTERNAL line, where n is the number of atom types. All the
partial pressures for atom type 1 will be followed by those for atom type 2, and so forth.
The other three pressure profile reports will contain n(n + 1)/2 data sets. For example, if
there are n = 3 atom types, the six data sets arising from the three inter-partition and the
three intra-partition interactions will be reported in the following order: 1–1, 1–2, 1–3, 2–2,
2–3, 3–3. The total pressure profile, reported on the PRESSUREPROFILE line, will contain the
internal contributions in the data sets corresponding to 1–1, 2–2, etc.

279

• pressureProfileAtomTypesFile < Atom type partition assignments >
Acceptable Values: PDB file
Default Value: coordinate file
Description: If pressureProfileAtomTypes is greater than 1, NAMD will assign atoms
to types based on the corresponding value in pressureProfileAtomTypesCol. The type for
each atom must be strictly less than pressureProfileAtomTypes!

• pressureProfileAtomTypesCol < pressureProfileAtomTypesFile PDB column >
Acceptable Values: PDB file
Default Value: B
Description:

Here is an example snippet from a NAMD input that can be used to compute the Ewald
component of the pressure profile. It assumes that the coordinates were saved in the dcd file
pp03.dcd) every 500 timesteps.

Pme on
PmeGridSizeX 64
PmeGridSizeY 64
PmeGridSizeZ 64

exclude scaled1-4
1-4scaling 1.0

switching on
switchdist 9
cutoff 10
pairlistdist 11

pressureProfile on
pressureProfileSlabs 30
pressureProfileFreq 100
pressureProfileAtomTypes 6
pressureProfileAtomTypesFile atomtypes.pdb
pressureProfileEwald on
pressureProfileEwaldX 16
pressureProfileEwaldY 16
pressureProfileEwaldZ 16

set ts 0
firstTimestep $ts

coorfile open dcd pp03.dcd
while { [coorfile read] != -1 } {

incr ts 500
firstTimestep $ts
run 0

280

}
coorfile close

281

16 Performance Tuning

16.1 NAMD performance tuning concepts

The simulation performance obtained from NAMD depends on many factors. The particular sim-
ulation protocol being run is one of the largest single factors associated with NAMD performance,
as different simulation methods invoke different code that can have substantially different perfor-
mance costs, potentially with a different degree of parallel scalability, message passing activity,
hardware acceleration through the use of GPUs or CPU vectorization, and other attributes that
also contribute to overall NAMD performance.

Measuring performance. When NAMD first starts running, it does significant I/O, FFT tun-
ing, GPU context setup, and other work that is unrelated to normal simulation activity, so it is
important to measure performance only when NAMD has completed startup all of the processing
units are running at full speed. The best way to measure NAMD performance accurately requires
running NAMD for 500 to 1,000 steps of normal dynamics (not minimization), so that load bal-
ancing has a chance to take place several times, and all of the CPUs and GPUs have ramped up
to 100% clock rate. NAMD provides “Benchmark time:” and “TIMING:” measurements in its
output, which can be used for this purpose. Here, we are only interested in the so-called wall clock
time.

NAMD configuration and I/O performance. Aside from the choice of major simulation
protocol and associated methods in use, it is also important to consider the performance impacts
associated with routine NAMD configuration parameters such as those that control the frequency
of simulation informational outputs and various types of I/O. Simulation outputs such as energy
information may require NAMD to do additional computations above and beyond standard force
evaluation calculations. We advise that NAMD simulation configuration parameters be selected
such that output of energies (via the outputEnergies parameter) be performed only as much
as is strictly necessary, since they otherwise serve to slow down the simulation due to the extra
calculations they require. NAMD writes “restart” files to enable simulations that were terminated
unexpectedly (for any reason) to be conveniently restarted from the most recently written restart
file available. While it is desirable to have a relatively recent restart point to continue from, writing
restart information costs NAMD extra network communication and disk I/O. If restart files are
written too frequently, this extra activity and I/O will slow down the simulation. A reasonable
estimate for restart frequency is to choose the value such that NAMD writes restart files about
once every ten minutes of wall clock time. At such a rate, the extra work and I/O associated with
writing the restart files should remain an insignificant factor in NAMD performance.

Computational (arithmetic) performance. NAMD is provided in a variety of builds that
support platform-specific techniques such as CPU vectorization and GPU acceleration to achieve
higher arithmetic performance, thereby increasing NAMD simulation throughput. Whenever pos-
sible NAMD builds should be compiled such that CPU vector instructions are enabled, and highly
tuned platform-specific NAMD code is employed for performance-critical force computations. The
so-called “SMP” builds of NAMD benefit from reduced memory use and can in many cases per-
form better overall, but one trade-off is that the communication thread is unavailable for simulation
work. NAMD performance can be improved by explicitly setting CPU affinity using the appropriate
Charm++ command line flags, e.g., ++ppn 7 +commap 0,8 +pemap 1-7,9-15 as an example.

282

It is often beneficial to reserve one CPU core for the operating system, to prevent harmful
operating system noise or “jitter”, particularly when running NAMD on large scale clusters or
supercomputers. The Cray aprun -r 1 command reserves and forces the operating system to run
on the last CPU core.

State-of-the-art compute-optimized GPU accelerators, can provide NAMD with simulation per-
formance equivalent to several CPU sockets (on the order of 100 CPU cores) when used to greatest
effect, e.g., when GPUs have sufficient work per GPU. In general, effective GPU acceleration cur-
rently requires on the order of 10,000 atoms per GPU assuming a fast network interconnect. NAMD
currently requires several CPU cores to drive each GPU effectively, ensuring that there is always
work ready and available for the GPU. For contemporary CPU and GPU hardware, the most pro-
ductive ratios of CPU core counts per GPU tend to range from 8:1 to 25:1 depending on the details
of the hardware involved.

Networking performance. When running NAMD on more than a single node, it is important
to use a NAMD version that is optimal for the underlying network hardware and software you
intend to run on. The Charm++ runtime system on which NAMD is based supports a variety of
underlying networks, so be sure to select a NAMD/Charm++ build that is most directly suited
for your hardware platform. In general, we advise users to avoid the use of an MPI-based NAMD
build as it will underperform compared with a native network layer such as InfiniBand IB verbs
(often referred to as “verbs”), the Cray-specific “gni-crayxc” or “gni-crayxe” layer, or the IBM
PAMI message passing layer, as practical examples.

16.2 Non-bonded interaction distance-testing

The last critical parameter for non-bonded interaction calculations is the parameter pairlistdist.
To reduce the cost of performing the non-bonded interactions, NAMD uses a non-bonded pair list
which contained all pairs of atoms for which non-bonded interactions should be calculated. Per-
forming the search for pairs of atoms that should have their interactions calculated is an expensive
operation. Thus, the pair list is only calculated periodically, at least once per cycle. Unfortunately,
pairs of atoms move relative to each other during the steps between preparation of the pair list.
Because of this, if the pair list were built to include only those pairs of atoms that are within
the cutoff distance when the list is generated, it would be possible for atoms to drift closer to-
gether than the cutoff distance during subsequent timesteps and yet not have their non-bonded
interactions calculated.

Let us consider a concrete example to better understand this. Assume that the pairlist is built
once every ten timesteps and that the cutoff distance is 8.0 Å. Consider a pair of atoms A and B
that are 8.1 Å apart when the pairlist is built. If the pair list includes only those atoms within the
cutoff distance, this pair would not be included in the list. Now assume that after five timesteps,
atoms A and B have moved to only 7.9 Å apart. A and B are now within the cutoff distance of each
other, and should have their non-bonded interactions calculated. However, because the non-bonded
interactions are based solely on the pair list and the pair list will not be rebuilt for another five
timesteps, this pair will be ignored for five timesteps causing energy not to be conserved within the
system.

To avoid this problem, the parameter pairlistdist allows the user to specify a distance greater
than the cutoff distance for pairs to be included in the pair list, as shown in Figure 20. Pairs that
are included in the pair list but are outside the cutoff distance are simply ignored. So in the above

283

example, if the pairlistdist were set to 10.0 Å, then the atom pair A and B would be included
in the pair list, even though the pair would initially be ignored because they are further apart than
the cutoff distance. As the pair moved closer and entered the cutoff distance, because the pair was
already in the pair list, the non-bonded interactions would immediately be calculated and energy
conservation would be preserved. The value of pairlistdist should be chosen such that no atom
pair moves more than pairlistdist − cutoff in one cycle. This will insure energy conservation
and efficiency.

pairlist distance cutoff

Figure 20: Depiction of the difference between the cutoff distance and the pair list distance. The pair list
distance specifies a sphere that is slightly larger than that of the cutoff so that pairs are allowed to move in
and out of the cutoff distance without causing energy conservation to be disturbed.

The pairlistdist parameter is also used to determine the minimum patch size. Unless the
splitPatch parameter is explicitly set to position, hydrogen atoms will be placed on the same
patch as the “mother atom” to which they are bonded. These hydrogen groups are then distance
tested against each other using only a cutoff increased by the the value of the hgroupCutoff
parameter. The size of the patches is also increased by this amount. NAMD functions correctly
even if a hydrogen atom and its mother atom are separated by more than half of hgroupCutoff
by breaking that group into its individual atoms for distance testing. Margin violation warning
messages are printed if an atom moves outside of a safe zone surrounding the patch to which it
is assigned, indicating that pairlistdist should be increased in order for forces to be calculated
correctly and energy to be conserved.

Margin violations mean that atoms that are in non-neighboring patches may be closer than the
cutoff distance apart. This may sometimes happen in constant pressure simulations when the cell
shrinks (since the patch grid remains the same size). The workaround is to increase the margin
parameter so that the simulation starts with fewer, larger patches. Restarting the simulation will
also regenerate the patch grid.

In rare special circumstances atoms that are involved in bonded terms (bonds, angles, dihedrals,

284

or impropers) or nonbonded exclusions (especially implicit exclusions due to bonds) will be placed
on non-neighboring patches because they are more than the cutoff distance apart. This can result
in the simulation dying with a message of “bad global exclusion count”. If an “atoms moving too
fast; simulation has become unstable”, “bad global exclusion count”, or similar error happens on
the first timestep then there is likely something very wrong with the input coordinates, such as the
atoms with uninitialized coordinates or different atom orders in the PSF and PDB file. Looking
at the system in VMD will often reveal an abnormal structure. Be aware that the atom IDs in the
“Atoms moving too fast” error message are 1-based, while VMD’s atom indices are 0-based. If an
“atoms moving too fast; simulation has become unstable”, “bad global exclusion count”, or similar
error happens later in the simulation then the dynamics have probably become unstable, resulting
in the system “exploding” apart. Energies printed at every timestep should show an exponential
increase. This may be due to a timestep that is too long, or some other strange feature. Saving
a trajectory of every step and working backwards in can also sometimes reveal the origin of the
instability.

• pairlistdist < distance between pairs for inclusion in pair lists (Å) >
Acceptable Values: positive decimal ≥ cutoff
Default Value: cutoff
Description: A pair list is generated pairlistsPerCycle times each cycle, containing
pairs of atoms for which electrostatics and van der Waals interactions will be calculated.
This parameter is used when switching is set to on to specify the allowable distance between
atoms for inclusion in the pair list. This parameter is equivalent to the X-PLOR parameter
CUTNb. If no atom moves more than pairlistdist−cutoff during one cycle, then there will
be no jump in electrostatic or van der Waals energies when the next pair list is built. Since
such a jump is unavoidable when truncation is used, this parameter may only be specified
when switching is set to on. If this parameter is not specified and switching is set to on,
the value of cutoff is used. A value of at least one greater than cutoff is recommended.

• stepspercycle < timesteps per cycle >
Acceptable Values: positive integer
Default Value: 20
Description: Number of timesteps in each cycle. Each cycle represents the number of
timesteps between atom reassignments. For more details on non-bonded force evaluation, see
Section 5.2.

• splitPatch < how to assign atoms to patches >
Acceptable Values: position or hydrogen
Default Value: hydrogen
Description: When set to hydrogen, hydrogen atoms are kept on the same patch as their
parents, allowing faster distance checking and rigid bonds.

• hgroupCutoff (Å) < used for group-based distance testing >
Acceptable Values: positive decimal
Default Value: 2.5
Description: This should be set to twice the largest distance which will ever occur between
a hydrogen atom and its mother. Warnings will be printed if this is not the case. This value
is also added to the margin.

285

• margin < extra length in patch dimension (Å) >
Acceptable Values: positive decimal
Default Value: 0.0
Description: An internal tuning parameter used in determining the size of the cubes of
space with which NAMD uses to partition the system. The value of this parameter will not
change the physical results of the simulation. Unless you are very motivated to get the very
best possible performance, just leave this value at the default.

• pairlistMinProcs < min procs for pairlists >
Acceptable Values: positive integer
Default Value: 1
Description: Pairlists may consume a large amount of memory as atom counts, densities,
and cutoff distances increase. Since this data is distributed across processors it is normally
only problematic for small processor counts. Set pairlistMinProcs to the smallest number of
processors on which the simulation can fit into memory when pairlists are used.

• pairlistsPerCycle < regenerate x times per cycle >
Acceptable Values: positive integer
Default Value: 2
Description: Rather than only regenerating the pairlist at the beginning of a cycle,
regenerate multiple times in order to better balance the costs of atom migration, pairlist
generation, and larger pairlists.

• outputPairlists < how often to print warnings >
Acceptable Values: non-negative integer
Default Value: 0
Description: If an atom moves further than the pairlist tolerance during a simulation
(initially (pairlistdist - cutoff)/2 but refined during the run) any pairlists covering that atom
are invalidated and temporary pairlists are used until the next full pairlist regeneration. All
interactions are calculated correctly, but efficiency may be degraded. Enabling outputPairlists
will summarize these pairlist violation warnings periodically during the run.

• pairlistShrink < tol *= (1 - x) on regeneration >
Acceptable Values: non-negative decimal
Default Value: 0.01
Description: In order to maintain validity for the pairlist for an entire cycle, the pairlist
tolerance (the distance an atom can move without causing the pairlist to be invalidated) is
adjusted during the simulation. Every time pairlists are regenerated the tolerance is reduced
by this fraction.

• pairlistGrow < tol *= (1 + x) on trigger >
Acceptable Values: non-negative decimal
Default Value: 0.01
Description: In order to maintain validity for the pairlist for an entire cycle, the pairlist
tolerance (the distance an atom can move without causing the pairlist to be invalidated) is
adjusted during the simulation. Every time an atom exceeds a trigger criterion that is some
fraction of the tolerance distance, the tolerance is increased by this fraction.

286

• pairlistTrigger < trigger is atom beyond (1 - x) * tol >
Acceptable Values: non-negative decimal
Default Value: 0.3
Description: The goal of pairlist tolerance adjustment is to make pairlist invalidations
rare while keeping the tolerance as small as possible for best performance. Rather than
monitoring the (very rare) case where atoms actually move more than the tolerance distance,
we reduce the trigger tolerance by this fraction. The tolerance is increased whenever the
trigger tolerance is exceeded, as specified by pairlistGrow.

287

17 Translation between NAMD and X-PLOR configuration pa-
rameters

NAMD was designed to provide many of the same molecular dynamics functions that X-PLOR
provides. As such, there are many similarities between the types of parameters that must be
passed to both X-PLOR and NAMD. This section describes relations between similar NAMD and
X-PLOR parameters.

• NAMD Parameter: cutoff
X-PLOR Parameter: CTOFNB
When full electrostatics are not in use within NAMD, these parameters have exactly the
same meaning — the distance at which electrostatic and van der Waals forces are truncated.
When full electrostatics are in use within NAMD, the meaning is still very similar. The
van der Waals force is still truncated at the specified distance, and the electrostatic force is
still computed at every timestep for interactions within the specified distance. However, the
NAMD integration uses multiple time stepping to compute electrostatic force interactions
beyond this distance every stepspercycle timesteps.

• NAMD Parameter: vdwswitchdist
X-PLOR Parameter: CTONNB
Distance at which the van der Waals switching function becomes active.

• NAMD Parameter: pairlistdist
X-PLOR Parameter: CUTNb
Distance within which interaction pairs will be included in pairlist.

• NAMD Parameter: 1-4scaling
X-PLOR Parameter: E14Fac
Scaling factor for 1-4 pair electrostatic interactions.

• NAMD Parameter: dielectric
X-PLOR Parameter: EPS
Dielectric constant.

• NAMD Parameter: exclude
X-PLOR Parameter: NBXMod
Both parameters specify which atom pairs to exclude from non-bonded interactions. The
ability to ignore explicit exclusions is not present within NAMD, thus only positive values of
NBXMod have NAMD equivalents. These equivalences are

– NBXMod=1 is equivalent to exclude=none — no atom pairs excluded,

– NBXMod=2 is equivalent to exclude=1-2 — only 1-2 pairs excluded,

– NBXMod=3 is equivalent to exclude=1-3 — 1-2 and 1-3 pairs excluded,

– NBXMod=4 is equivalent to exclude=1-4 — 1-2, 1-3, and 1-4 pairs excluded,

– NBXMod=5 is equivalent to exclude=scaled1-4 — 1-2 and 1-3 pairs excluded, 1-4 pairs
modified.

288

• NAMD Parameter: switching
X-PLOR Parameter: SHIFt, VSWItch, and TRUNcation
Activating the NAMD option switching is equivalent to using the X-PLOR options SHIFt
and VSWItch. Deactivating switching is equivalent to using the X-PLOR option TRUNcation.

• NAMD Parameter: temperature
X-PLOR Parameter: FIRSttemp
Initial temperature for the system.

• NAMD Parameter: rescaleFreq
X-PLOR Parameter: IEQFrq
Number of timesteps between velocity rescaling.

• NAMD Parameter: rescaleTemp
X-PLOR Parameter: FINAltemp
Temperature to which velocities are rescaled.

• NAMD Parameter: restartname
X-PLOR Parameter: SAVE
Filename prefix for the restart files.

• NAMD Parameter: restartfreq
X-PLOR Parameter: ISVFrq
Number of timesteps between the generation of restart files.

• NAMD Parameter: DCDfile
X-PLOR Parameter: TRAJectory
Filename for the position trajectory file.

• NAMD Parameter: DCDfreq
X-PLOR Parameter: NSAVC
Number of timesteps between writing coordinates to the trajectory file.

• NAMD Parameter: velDCDfile
X-PLOR Parameter: VELOcity
Filename for the velocity trajectory file.

• NAMD Parameter: velDCDfreq
X-PLOR Parameter: NSAVV
Number of timesteps between writing velocities to the trajectory file.

• NAMD Parameter: numsteps
X-PLOR Parameter: NSTEp
Number of simulation timesteps to perform.

289

18 Sample configuration files

This section contains some simple example NAMD configuration files to serve as templates.
This file shows a simple configuration file for alanin. It performs basic dynamics with no output

files or special features.

protocol params
numsteps 1000

initial config
coordinates alanin.pdb
temperature 300K
seed 12345

output params
outputname /tmp/alanin
binaryoutput no

integrator params
timestep 1.0

force field params
structure alanin.psf
parameters alanin.params
exclude scaled1-4
1-4scaling 1.0
switching on
switchdist 8.0
cutoff 12.0
pairlistdist 13.5
stepspercycle 20

290

This file is again for alanin, but shows a slightly more complicated configuration. The system
is periodic, a coordinate trajectory file and a set of restart files are produced.

protocol params
numsteps 1000

initial config
coordinates alanin.pdb
temperature 300K
seed 12345

periodic cell
cellBasisVector1 33.0 0 0
cellBasisVector2 0 32.0 0
cellBasisVector3 0 0 32.5

output params
outputname /tmp/alanin
binaryoutput no
DCDfreq 10
restartfreq 100

integrator params
timestep 1.0

force field params
structure alanin.psf
parameters alanin.params
exclude scaled1-4
1-4scaling 1.0
switching on
switchdist 8.0
cutoff 12.0
pairlistdist 13.5
stepspercycle 20

291

This file shows another simple configuration file for alanin, but this time with full electrostatics
using PME and multiple timestepping.

protocol params
numsteps 1000

initial config
coordinates alanin.pdb
temperature 300K
seed 12345

periodic cell
cellBasisVector1 33.0 0 0
cellBasisVector2 0 32.0 0
cellBasisVector3 0 0 32.5

output params
outputname /tmp/alanin
binaryoutput no
DCDfreq 10
restartfreq 100

integrator params
timestep 1.0
fullElectFrequency 4

force field params
structure alanin.psf
parameters alanin.params
exclude scaled1-4
1-4scaling 1.0
switching on
switchdist 8.0
cutoff 12.0
pairlistdist 13.5
stepspercycle 20

full electrostatics
PME on
PMEGridSizeX 32
PMEGridSizeY 32
PMEGridSizeZ 32

292

This file demonstrates the analysis of a DCD trajectory file using NAMD. The file pair.pdb
contains the definition of pair interaction groups; NAMD will compute the interaction energy and
force between these groups for each frame in the DCD file. It is assumed that coordinate frames
were written every 1000 timesteps. See Sec. 15.1 for more about pair interaction calculations.

initial config
coordinates alanin.pdb
temperature 0

output params
outputname /tmp/alanin-analyze
binaryoutput no

integrator params
timestep 1.0

force field params
structure alanin.psf
parameters alanin.params
exclude scaled1-4
1-4scaling 1.0
switching on
switchdist 8.0
cutoff 12.0
pairlistdist 13.5
stepspercycle 20

Atoms in group 1 have a 1 in the B column; group 2 has a 2.
pairInteraction on
pairInteractionFile pair.pdb
pairInteractionCol B
pairInteractionGroup1 1
pairInteractionGroup2 2

First frame saved was frame 1000.
set ts 1000

coorfile open dcd /tmp/alanin.dcd

Read all frames until nonzero is returned.
while { ![coorfile read] } {

Set firstTimestep so our energy output has the correct TS.
firstTimestep $ts
Compute energies and forces, but don’t try to move the atoms.
run 0

293

incr ts 1000
}
coorfile close

294

19 Running NAMD

NAMD runs on a variety of serial and parallel platforms. While it is trivial to launch a serial
program, a parallel program depends on a platform-specific library such as MPI to launch copies
of itself on other nodes and to provide access to a high performance network such as Myrinet or
InfiniBand if one is available.

For typical workstations (Windows, Linux, Mac OS X, or other Unix) with only ethernet net-
working (hopefully gigabit), NAMD uses the Charm++ native communications layer and the pro-
gram charmrun to launch namd2 processes for parallel runs (either exclusively on the local machine
with the ++local option or on other hosts as specified by a nodelist file). The namd2 binaries for
these platforms can also be run directly (known as standalone mode) for single process runs.

19.1 Individual Windows, Linux, Mac OS X, or Other Unix Workstations

Individual workstations use the same version of NAMD as workstation networks, but running
NAMD is much easier. If your machine has only one processor core you can run the any non-MPI
namd2 binary directly:

namd2 <configfile>

Windows, Mac OX X (Intel), and Linux-x86 64-multicore released binaries are based on “mul-
ticore” builds of Charm++ that can run multiple threads. These multicore builds lack a network
layer, so they can only be used on a single machine. For best performance use one thread per
processor with the +p option:

namd2 +p<procs> <configfile>

For other multiprocessor workstations the included charmrun program is needed to run multiple
namd2 processes. The ++local option is also required to specify that only the local machine is
being used:

charmrun namd2 ++local +p<procs> <configfile>

You may need to specify the full path to the namd2 binary.

19.2 Windows Clusters and Workstation Networks

The Win64-MPI version of NAMD runs on Windows HPC Server and should be launched as you
would any other MPI program.

19.3 Linux Clusters with InfiniBand or Other High-Performance Networks

Charm++ provides a special ibverbs network layer that uses InfiniBand networks directly through
the OpenFabrics OFED ibverbs library. This avoids efficiency and portability issues associated with
MPI. Look for pre-built ibverbs NAMD binaries or specify ibverbs when building Charm++. The
newer verbs network layer should offer equivalent performance to the ibverbs layer, plus support
for multi-copy algorithms (replicas).

Intel Omni-Path networks are incompatible with the pre-built ibverbs NAMD binaries.
Charm++ for verbs can be built with –with-qlogic to support Omni-Path, but the Charm++

295

MPI network layer performs better than the verbs layer. Hangs have been observed with Intel
MPI but not with OpenMPI, so OpenMPI is preferred. See “Compiling NAMD” below for MPI
build instructions. NAMD MPI binaries may be launched directly with mpiexec rather than via
the provided charmrun script.

Writing batch job scripts to run charmrun in a queueing system can be challenging. Since most
clusters provide directions for using mpiexec to launch MPI jobs, charmrun provides a ++mpiexec
option to use mpiexec to launch non-MPI binaries. If “mpiexec -n procs ...” is not sufficient to
launch jobs on your cluster you will need to write an executable mympiexec script like the following
from TACC:

#!/bin/csh
shift; shift; exec ibrun $*

The job is then launched (with full paths where needed) as:

charmrun +p<procs> ++mpiexec ++remote-shell mympiexec namd2 <configfile>

Charm++ now provides the option ++mpiexec-no-n for the common case where mpiexec does
not accept ”-n procs” and instead derives the number of processes to launch directly from the
queueing system:

charmrun +p<procs> ++mpiexec-no-n ++remote-shell ibrun namd2 <configfile>

For workstation clusters and other massively parallel machines with special high-performance
networking, NAMD uses the system-provided MPI library (with a few exceptions) and standard
system tools such as mpirun are used to launch jobs. Since MPI libraries are very often incompatible
between versions, you will likely need to recompile NAMD and its underlying Charm++ libraries
to use these machines in parallel (the provided non-MPI binaries should still work for serial runs.)
The provided charmrun program for these platforms is only a script that attempts to translate
charmrun options into mpirun options, but due to the diversity of MPI libraries it often fails to
work.

19.4 Linux or Other Unix Workstation Networks

The same binaries used for individual workstations as described above (other than pure “multicore”
builds and MPI builds) can be used with charmrun to run in parallel on a workstation network.
The only difference is that you must provide a “nodelist” file listing the machines where namd2
processes should run, for example:

group main
host brutus
host romeo

The “group main” line defines the default machine list. Hosts brutus and romeo are the two
machines on which to run the simulation. Note that charmrun may run on one of those machines,
or charmrun may run on a third machine. All machines used for a simulation must be of the same
type and have access to the same namd2 binary.

By default, the “rsh” command is used to start namd2 on each node specified in the nodelist
file. You can change this via the CONV RSH environment variable, i.e., to use ssh instead of

296

rsh run “setenv CONV RSH ssh” or add it to your login or batch script. You must be able
to connect to each node via rsh/ssh without typing your password; this can be accomplished
via a .rhosts files in your home directory, by an /etc/hosts.equiv file installed by your sysadmin,
or by a .ssh/authorized keys file in your home directory. You should confirm that you can run
“ssh hostname pwd” (or “rsh hostname pwd”) without typing a password before running NAMD.
Contact your local sysadmin if you have difficulty setting this up. If you are unable to use rsh
or ssh, then add “setenv CONV DAEMON” to your script and run charmd (or charmd faceless,
which produces a log file) on every node.

You should now be able to try running NAMD as:

charmrun namd2 +p<procs> <configfile>

If this fails or just hangs, try adding the ++verbose option to see more details of the startup
process. You may need to specify the full path to the namd2 binary. Charmrun will start the
number of processes specified by the +p option, cycling through the hosts in the nodelist file as
many times as necessary. You may list multiprocessor machines multiple times in the nodelist file,
once for each processor.

You may specify the nodelist file with the “++nodelist” option and the group (which defaults
to “main”) with the “++nodegroup” option. If you do not use “++nodelist” charmrun will first
look for “nodelist” in your current directory and then “.nodelist” in your home directory.

Some automounters use a temporary mount directory which is prepended to the path returned
by the pwd command. To run on multiple machines you must add a “++pathfix” option to your
nodelist file. For example:

group main ++pathfix /tmp_mnt /
host alpha1
host alpha2

There are many other options to charmrun and for the nodelist file. These are documented at in
the Charm++ Installation and Usage Manual available at http://charm.cs.uiuc.edu/manuals/
and a list of available charmrun options is available by running charmrun without arguments.

If your workstation cluster is controlled by a queueing system you will need build a nodelist
file in your job script. For example, if your queueing system provides a HOST FILE environment
variable:

set NODES = ‘cat $HOST_FILE‘
set NODELIST = $TMPDIR/namd2.nodelist
echo group main >! $NODELIST
foreach node ($nodes)

echo host $node >> $NODELIST
end
@ NUMPROCS = 2 * $#NODES
charmrun namd2 +p$NUMPROCS ++nodelist $NODELIST <configfile>

Note that NUMPROCS is twice the number of nodes in this example. This is the case for
dual-processor machines. For single-processor machines you would not multiply $#NODES by
two.

Note that these example scripts and the setenv command are for the csh or tcsh shells. They
must be translated to work with sh or bash.

297

http://charm.cs.uiuc.edu/manuals/

19.5 Shared-Memory and Network-Based Parallelism (SMP Builds)

The Linux-x86 64-ibverbs-smp and Solaris-x86 64-smp released binaries are based on “smp” builds
of Charm++ that can be used with multiple threads on either a single machine like a multicore build,
or across a network. SMP builds combine multiple worker threads and an extra communication
thread into a single process. Since one core per process is used for the communication thread SMP
builds are typically slower than non-SMP builds. The advantage of SMP builds is that many data
structures are shared among the threads, reducing the per-core memory footprint when scaling
large simulations to large numbers of cores.

SMP builds launched with charmrun use ++n to specify the total number of processes
(Charm++ ”nodes”) and ++ppn to specify the number of PEs (Charm++ worker threads) per
process. Prevous versions required the use of +p to specify the total number of PEs, but the new
++n option is now recommended. Thus, to run one process with one communication and three
worker threads on each of four quad-core nodes one would specify:

charmrun namd2 ++n 4 ++ppn 3 <configfile>

For MPI-based SMP builds one would specify any mpiexec options needed for the required
number of processes and pass +ppn to the NAMD binary as:

mpiexec -n 4 namd2 +ppn 3 <configfile>

See the Cray XE/XK/XC directions below for a more complex example.

19.6 Cray XE/XK/XC

First load modules for the GNU compilers (XE/XK only, XC should use Intel), topology informa-
tion, huge page sizes, and the system FFTW 3 library:

module swap PrgEnv-cray PrgEnv-gnu
module load rca
module load craype-hugepages8M
module load fftw

The CUDA Toolkit module enables dynamic linking, so it should only be loaded when building
CUDA binaries and never for non-CUDA binaries:

module load cudatoolkit

For CUDA or large simulations on XE/XK use gemini gni-crayxe-persistent-smp and for smaller
XE simulations use gemini gni-crayxe-persistent. For XC similarly use gni-crayxc-persistent-smp
or gni-crayxc-persistent.

For XE/XK use CRAY-XE-gnu and (for CUDA) the “–with-cuda” config option, the appropri-
ate “–charm-arch” parameter, and –with-fftw3. For XC use instead CRAY-XC-intel but all other
options the same.

Your batch job will need to load modules and set environment variables:

298

module swap PrgEnv-cray PrgEnv-gnu
module load rca
module load craype-hugepages8M
setenv HUGETLB_DEFAULT_PAGE_SIZE 8M
setenv HUGETLB_MORECORE no

To run an SMP build with one process per node on 16 32-core nodes:

aprun -n 16 -r 1 -N 1 -d 31 /path/to/namd2 +ppn 30 +pemap 1-30 +commap 0 <configfile>

or the same with 4 processes per node:

aprun -n 64 -N 4 -d 8 /path/to/namd2 +ppn 7 \
+pemap 1-7,9-15,17-23,25-31 +commap 0,8,16,24 <configfile>

or non-SMP, leaving one core free for the operating system:

aprun -n 496 -r 1 -N 31 -d 1 /path/to/namd2 +pemap 0-30 <configfile>

The explicit +pemap and +commap settings are necessary to avoid having multiple threads
assigned to the same core (or potentially all threads assigned to the same core). If the performance
of NAMD running on a single compute node is much worse than comparable non-Cray host then
it is very likely that your CPU affinity settings need to be fixed.

All Cray XE/XK/XC network layers support multi-copy algorithms (replicas).

19.7 Xeon Phi Processors (KNL)

Special Linux-KNL-icc and CRAY-XC-KNL-intel builds enable vectorizable mixed-precision kernels
while preserving full alchemical and other functionality. Multi-host runs require multiple smp
processes per host (as many as 13 for Intel Omni-Path, 6 for Cray Aries) in order to drive the
network. Careful attention to CPU affinity settings (see below) is required, as is 1 or 2 (but not 3
or 4) hyperthreads per PE core (but only 1 per communication thread core).

There appears to be a bug in the Intel 17.0 compiler that breaks the non-KNL-optimized
NAMD kernels (used for alchemical free energy, etc.) on KNL. Therefore the Intel 16.0 compilers
are recommended on KNL.

19.8 SGI Altix UV

Use Linux-x86 64-multicore and the following script to set CPU affinity:

namd2 +setcpuaffinity ‘numactl --show | awk ’/^physcpubind/ {printf \
"+p%d +pemap %d",(NF-1),$2; for(i=3;i<=NF;++i){printf ",%d",$i}}’‘ ...

19.9 IBM POWER Clusters

Run the verbs or ibverbs version of NAMD as on any other cluster, using poe in place of mpiexec
as the process launcher, for example:

charmrun +p<procs> ++mpiexec-no-n ++remote-shell poe namd2 <configfile>

The details of job submission will vary between sites. For example, two nodes with two tasks per
node on LSF are -n 4 -R ”span[ptile=2]” with charmrun options +p36 ++ppn 9 ++mpiexec-no-n
++remote-shell poe

299

19.10 CPU Affinity

NAMD may run faster on some machines if threads or processes are set to run on (or not run on)
specific processor cores (or hardware threads). On Linux this can be done at the process level with
the numactl utility, but NAMD provides its own options for assigning threads to cores. This feature
is enabled by adding +setcpuaffinity to the namd2 command line, which by itself will cause NAMD
(really the underlying Charm++ library) to assign threads/processes round-robin to available cores
in the order they are numbered by the operating system. This may not be the fastest configuration
if NAMD is running fewer threads than there are cores available and consecutively numbered cores
share resources such as memory bandwidth or are hardware threads on the same physical core.

If needed, specific cores for the Charm++ PEs (processing elements) and communication
threads (on SMP builds) can be set by adding the +pemap and (if needed) +commap options
with lists of core sets in the form “lower[-upper[:stride[.run]]][,...]”. A single number identifies a
particular core. Two numbers separated by a dash identify an inclusive range (lower bound and
upper bound). If they are followed by a colon and another number (a stride), that range will be
stepped through in increments of the additional number. Within each stride, a dot followed by
a run will indicate how many cores to use from that starting point. For example, the sequence
0-8:2,16,20-24 includes cores 0, 2, 4, 6, 8, 16, 20, 21, 22, 23, 24. On a 4-way quad-core system three
cores from each socket would be 0-15:4.3 if cores on the same chip are numbered consecutively.
There is no need to repeat cores for each node in a run as they are reused in order.

For example, the IBM POWER7 has four hardware threads per core and the first thread can use
all of the core’s resources if the other threads are idle; threads 0 and 1 split the core if threads 2 and 3
are idle, but if either of threads 2 or 3 are active the core is split four ways. The fastest configuration
of 32 threads or processes on a 128-thread 32-core is therefore “+setcpuaffinity +pemap 0-127:4”.
For 64 threads we need cores 0,1,4,5,8,9,... or 0-127:4.2. Running 4 processes with +ppn 31 would
be “+setcpuaffinity +pemap 0-127:32.31 +commap 31-127:32”

For Intel processors, including KNL, where hyperthreads on the same core are not numbered
consecutively, hyperthreads may be mapped to consecutive PEs by appending [+span] to a core set,
e.g., “+pemap 0-63+64+128+192” to use all threads on a 64-core, 256-thread KNL with threads
mapped to PEs as 0,64,128,192,1,65,129,193,...

For an Altix UV or other machines where the queueing system assigns cores to jobs this infor-
mation must be obtained with numactl –show and passed to NAMD in order to set thread affinity
(which will improve performance):

namd2 +setcpuaffinity ‘numactl --show | awk ’/^physcpubind/ {printf \
"+p%d +pemap %d",(NF-1),$2; for(i=3;i<=NF;++i){printf ",%d",$i}}’‘ ...

19.11 CUDA GPU Acceleration

NAMD does not offload the entire calculation to the GPU, and performance may therefore be
limited by the CPU. In general all available CPU cores should be used, with CPU affinity set as
described above.

Energy evaluation is slower than calculating forces alone, and the loss is much greater in CUDA-
accelerated builds. Therefore you should set outputEnergies to 100 or higher in the simulation config
file. Forces evaluated on the GPU differ slightly from a CPU-only calculation, an effect more visible
in reported scalar pressure values than in energies.

NAMD now has the entire force calculation offloaded to GPU for conventional MD simulation
options. However, not all advanced features are compatible with CUDA-accelerated NAMD builds,

300

in particular, any simulation option that requires modification to the functional form of the non-
bonded forces. Note that QM/MM simulation is also disabled for CUDA-accelerated NAMD,
because the calculation is bottlenecked by the QM calculation rather than the MM force calculation,
so can benefit from CUDA acceleration of the QM part when available. Table 1 lists the parts of
NAMD that are accelerated with CUDA-capable GPUs, and Table 2 lists the advanced simulation
options that are disabled within a CUDA-accelerated NAMD build.

Table 1: NAMD GPU: What is accelerated?

Accelerated Not Accelerated
short-range non-bonded integration

PME reciprocal sum rigid bonds
bonded terms grid forces

implicit solvent collective variables
NVIDIA GPUs only

Table 2: NAMD GPU: What features are disabled?

Disabled Not Disabled
Alchemical (FEP and TI) Memory optimized builds
Locally enhanced sampling Conformational free energy

Tabulated energies Collective variables
Drude (nonbonded Thole) Grid forces

Go forces Steering forces
Pairwaise interaction Almost everything else

Pressure profile
QM/MM

To benefit from GPU acceleration you will need a CUDA build of NAMD and a recent NVIDIA
video card. CUDA builds will not function without a CUDA-capable GPU and a driver that
supports CUDA 8.0. If the installed driver is too old NAMD will exit on startup with the error
“CUDA driver version is insufficient for CUDA runtime version.”

Finally, if NAMD was not statically linked against the CUDA runtime then the libcudart.so
file included with the binary (copied from the version of CUDA it was built with) must be in a
directory in your LD LIBRARY PATH before any other libcudart.so libraries. For example, when
running a multicore binary (recommended for a single machine):

setenv LD_LIBRARY_PATH ".:$LD_LIBRARY_PATH"
(or LD_LIBRARY_PATH=".:$LD_LIBRARY_PATH"; export LD_LIBRARY_PATH)
./namd2 +p8 +setcpuaffinity <configfile>

Each namd2 thread can use only one GPU. Therefore you will need to run at least one thread
for each GPU you want to use. Multiple threads in an SMP build of NAMD can share a single
GPU, usually with an increase in performance. NAMD will automatically distribute threads equally

301

among the GPUs on a node. Specific GPU device IDs can be requested via the +devices argument
on the namd2 command line, for example:

./namd2 +p8 +setcpuaffinity +devices 0,2 <configfile>

Devices are shared by consecutive threads in a process, so in the above example threads 0–3
will share device 0 and threads 4–7 will share device 2. Repeating a device will cause it to be
assigned to multiple master threads, which is allowed only for different processes and is advised
against in general but may be faster in certain cases. When running on multiple nodes the +devices
specification is applied to each physical node separately and there is no way to provide a unique
list for each node.

When running a multi-node parallel job it is recommended to have one process per device
to maximize the number of communication threads. If the job launch system enforces device
segregation such that not all devices are visible to each process then the +ignoresharing argument
must be used to disable the shared-device error message.

When running a multi-copy simulation with both multiple replicas and multiple devices per
physical node, the +devicesperreplica <n> argument must be used to prevent each replica from
binding all of the devices. For example, for 2 replicas per 6-device host use +devicesperreplica 3.

GPUs of compute capability < 3.0 are no longer supported and are ignored. GPUs with two or
fewer multiprocessors are ignored unless specifically requested with +devices.

While charmrun with ++local will preserve LD LIBRARY PATH, normal charmrun does not.
You can use charmrun ++runscript to add the namd2 directory to LD LIBRARY PATH with the
following executable runscript:

#!/bin/csh
setenv LD_LIBRARY_PATH "${1:h}:$LD_LIBRARY_PATH"
$*

For example:

./charmrun ++runscript ./runscript ++n 4 ./namd2 ++ppn 15 <configfile>

An InfiniBand network is highly recommended when running CUDA-accelerated NAMD across
multiple nodes. You will need either an ibverbs NAMD binary (available for download) or an MPI
NAMD binary (must build Charm++ and NAMD as described above) to make use of the InfiniBand
network. The use of SMP binaries is also recommended when running on multiple nodes, with one
process per GPU and as many threads as available cores, reserving one core per process for the
communication thread.

The CUDA (NVIDIA’s graphics processor programming platform) code in NAMD is completely
self-contained and does not use any of the CUDA support features in Charm++. When building
NAMD with CUDA support you should use the same Charm++ you would use for a non-CUDA
build. Do NOT add the cuda option to the Charm++ build command line. The only changes to
the build process needed are to add –with-cuda and possibly –cuda-prefix ... to the NAMD config
command line.

Right now, NAMD does not support all features available on GPUs. Thus, some keywords were
introduced to help the user have a better control of the calculation. These keywords are relevant
only for CUDA builds, and are ignored if the user is running a CPU build.

302

19.11.1 Keywords

• bondedCUDA < 0 to 255 >
Acceptable Values: Integer value between 0 and 255
Default Value: 255
Description: NAMD provides CUDA kernels for calculating six different bonded force
terms. The bondedCUDA parameter acts as a bit mask that can disable particular kernels.
Any partial sum of the following values can be used to enable only the specified bonded terms:

– bonds = 1

– angles = 2

– dihedrals = 4

– impropers = 8

– exclusions = 16

– crossterms = 32

• usePMECUDA < Offload entire PME reciprocal sum to GPU? >
Acceptable Values: “on” or “off”
Default Value: on
Description: The entire PME reciprocal sum is offloaded to GPUs, when using no more
than four nodes. Otherwise usePMECUDA is disabled by default.

• PMEoffload < Offload PME gridding/ungridding procedures to GPU? >
Acceptable Values: “on” or “off”
Default Value: off
Description: The gridding and ungridding procedures for calculating the PME reciprocal
sum is offloaded to GPUs, with the FFT calculation still performed by CPUs. PMEoffload is
enabled by default only for PMEinterpOrder > 4.

For huge systems (10 million atoms and above) where the parallel FFT limits performance, it
is desirable to use PMEoffload in conjunction with increased order interpolation and increased
grid spacing, in order to decrease the overall communication latency by decreasing the overall
grid size by a factor of 8 while maintaining the same accuracy for the calculation.
Exemplary use:
PME on
PMEinterpOrder 8
PMEgridSpacing 2.0
PMEoffload on ;# enabled by default for these PME settings

19.12 Xeon Phi Acceleration

NAMD supports offloading calculations to Intel Xeon Phi coprocessors. This feature is new and
should be considered experimental. Observed speedups are around a factor of two, but parallel
scaling is degraded.

The Xeon Phi coprocessor is supported in NAMD similar to CUDA GPUs. Binaries are not
provided, so you will need to build from source code (see “Compiling NAMD” below) specify-
ing –with-mic to the config script. As with CUDA, multicore or ibverbs-smp builds are strongly
recommended. A recent Intel compiler is obviously required to compile for Xeon Phi.

303

19.13 Memory Usage

NAMD has traditionally used less than 100MB of memory even for systems of 100,000 atoms. With
the reintroduction of pairlists in NAMD 2.5, however, memory usage for a 100,000 atom system
with a 12A cutoff can approach 300MB, and will grow with the cube of the cutoff. This extra
memory is distributed across processors during a parallel run, but a single workstation may run
out of physical memory with a large system.

To avoid this, NAMD now provides a pairlistMinProcs config file option that specifies the
minimum number of processors that a run must use before pairlists will be enabled (on fewer
processors small local pairlists are generated and recycled rather than being saved, the default is
“pairlistMinProcs 1”). This is a per-simulation rather than a compile time option because memory
usage is molecule-dependent.

Additional information on reducing memory usage may be found at http://www.ks.uiuc.edu/
Research/namd/wiki/index.cgi?NamdMemoryReduction

19.14 Improving Parallel Scaling

While NAMD is designed to be a scalable program, particularly for simulations of 100,000 atoms
or more, at some point adding additional processors to a simulation will provide little or no extra
performance. If you are lucky enough to have access to a parallel machine you should measure
NAMD’s parallel speedup for a variety of processor counts when running your particular simulation.
The easiest and most accurate way to do this is to look at the “Benchmark time:” lines that are
printed after 20 and 25 cycles (usually less than 500 steps). You can monitor performance during
the entire simulation by adding “outputTiming steps” to your configuration file, but be careful to
look at the “wall time” rather than “CPU time” fields on the “TIMING:” output lines produced.
For an external measure of performance, you should run simulations of both 25 and 50 cycles (see
the stepspercycle parameter) and base your estimate on the additional time needed for the longer
simulation in order to exclude startup costs and allow for initial load balancing.

Multicore builds scale well within a single node, but may benefit from setting CPU affinity
using the +setcpuaffinity +pemap <map> +commap <map> options described in CPU Affinity
above. Experimentation is needed.

We provide standard (UDP), TCP, and ibverbs (InfiniBand) precompiled binaries for Linux
clusters. The TCP version may be faster on some networks but the UDP version now performs
well on gigabit ethernet. The ibverbs version should be used on any cluster with InfiniBand, and
for any other high-speed network you should compile an MPI version.

SMP builds generally do not scale as well across nodes as single-threaded non-SMP builds
because the communication thread is both a bottleneck and occupies a core that could otherwise
be used for computation. As such they should only be used to reduce memory consumption or if for
scaling reasons you are not using all of the cores on a node anyway, and you should run benchmarks
to determine the optimal configuration.

Extremely short cycle lengths (less than 10 steps) will limit parallel scaling, since the atom
migration at the end of each cycle sends many more messages than a normal force evaluation.
Increasing margin from 0 to 1 while doubling stepspercycle and pairlistspercycle may help, but it
is important to benchmark. The pairlist distance will adjust automatically, and one pairlist per
ten steps is a good ratio.

NAMD should scale very well when the number of patches (multiply the dimensions of the
patch grid) is larger or rougly the same as the number of processors. If this is not the case, it may

304

http://www.ks.uiuc.edu/Research/namd/wiki/index.cgi?NamdMemoryReduction
http://www.ks.uiuc.edu/Research/namd/wiki/index.cgi?NamdMemoryReduction

be possible to improve scaling by adding “twoAwayX yes” to the config file, which roughly doubles
the number of patches. (Similar options twoAwayY and twoAwayZ also exist, and may be used in
combination, but this greatly increases the number of compute objects. twoAwayX has the unique
advantage of also improving the scalability of PME.)

Additional performance tuning suggestions and options are described at http://www.ks.uiuc.
edu/Research/namd/wiki/?NamdPerformanceTuning

305

http://www.ks.uiuc.edu/Research/namd/wiki/?NamdPerformanceTuning
http://www.ks.uiuc.edu/Research/namd/wiki/?NamdPerformanceTuning

20 NAMD Availability and Installation

NAMD is distributed freely for non-profit use. NAMD 2.14 is based on the Charm++ messaging
system and the Converse communication layer (http://charm.cs.uiuc.edu/) which have been
ported to a wide variety of parallel platforms. This section describes how to obtain and install
NAMD 2.14.

20.1 How to obtain NAMD

NAMD may be downloaded from http://www.ks.uiuc.edu/Research/namd/. You will be re-
quired to provide minimal registration information and agree to a license before receiving access to
the software. Both source and binary distributions are available.

20.2 Platforms on which NAMD will currently run

NAMD should be portable to any parallel platform with a modern C++ compiler to which Charm
and Converse have been ported. Precompiled NAMD 2.14 binaries are available for download for
the following platforms:

• Windows (7, 8, 10, etc.) on x86-64 processors

• Mac OS X on Intel processors

• Linux on x86-64 processors

• Windows, Mac OS X, or Linux with NVIDIA GPUs (CUDA)

NAMD may be compiled for the following additional platforms:

• Cray XT/XE/XK/XC

• IBM Blue Gene L/P/Q

• Linux or AIX on POWER processors

• Linux on ARM processors

• Linux on ARM or POWER processors with NVIDIA GPUs (CUDA)

• Linux on x86-64 processors with Intel Xeon Phi coprocessors (MIC)

20.3 Installing NAMD

A NAMD binary distribution need only be untarred or unzipped and can be run directly in the
resulting directory. When building from source code, “make release” will generate a self-contained
directory and .tar.gz or .zip archive that can be moved to the desired installation location. Windows
and CUDA builds include Tcl .dll and CUDA .so files that must be in the dynamic library path.

306

http://charm.cs.uiuc.edu/
http://www.ks.uiuc.edu/Research/namd/

20.4 Compiling NAMD

We provide complete and optimized binaries for all common platforms to which NAMD has been
ported. It should not be necessary for you to compile NAMD unless you wish to add or mod-
ify features or to improve performance by using an MPI library that takes advantage of special
networking hardware.

Directions for compiling NAMD are contained in the release notes, which are available from the
NAMD web site http://www.ks.uiuc.edu/Research/namd/ and are included in all distributions.

20.5 Documentation

All available NAMD documentation is available for download without registration via the NAMD
web site http://www.ks.uiuc.edu/Research/namd/.

307

http://www.ks.uiuc.edu/Research/namd/
http://www.ks.uiuc.edu/Research/namd/

References

[1] M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford University Press,
New York, 1987. 14, 15

[2] A. Altis, P. H. Nguyen, R. Hegger, and G. Stock. Dihedral angle principal component analysis
of molecular dynamics simulations. J. Chem. Phys., 126(24):244111, 2007. 146

[3] P. H. Axelsen and D. Li. Improved convergence in dual–topology free energy calculations
through use of harmonic restraints. J. Comput. Chem., 19:1278–1283, 1998. 217, 224

[4] A. Barducci, G. Bussi, and M. Parrinello. Well-tempered metadynamics: A smoothly con-
verging and tunable free-energy method. Phys. Rev. Lett., 100:020603, 2008. 195

[5] C. H. Bennett. Efficient estimation of free energy differences with monte carlo data. J. Comp.
Phys., 22:245–268, 1976. 222

[6] F. C. Bernstein, T. F. Koetzle, G. J. B. Williams, J. E. F. Meyer, M. D. Brice, J. R. Rodgers,
O. Kennard, T. Shimanouchi, and M. Tasumi. The protein data bank: A computer-based
archival file for macromolecular structures. J. Mol. Biol., 112:535–542, 1977. 15

[7] T. C. Beutler, A. E. Mark, R. C. van Schaik, P. R. Gerber, and W. F. van Gunsteren. Avoid-
ing singularities and numerical instabilities in free energy calculations based on molecular
simulations. Chem. Phys. Lett., 222:529–539, 1994. 218, 222

[8] D. L. Beveridge and F. M. DiCapua. Free energy via molecular simulation: Applications to
chemical and biomolecular systems. Annu. Rev. Biophys. Biophys., 18:431–492, 1989. 217,
219

[9] L. Biedermannová, Z. Prokop, A. Gora, E. Chovancová, M. Kovács, J. Damborsky, and
R. C. Wade. A single mutation in a tunnel to the active site changes the mechanism and
kinetics of product release in haloalkane dehalogenase linb. Journal of Biological Chemistry,
287(34):29062–29074, 2012. 244

[10] A. Bondi. van der Waals volumes and radii. J. Phys. Chem., 68:441–451, 1964. 75

[11] S. Boresch and M. Karplus. The role of bonded terms in free energy simulations: I. theoretical
analysis. J. Phys. Chem. A, 103:103–118, 1999. 218

[12] D. Branduardi, F. L. Gervasio, and M. Parrinello. From a to b in free energy space. J Chem
Phys, 126(5):054103, 2007. 148, 152, 154, 162

[13] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus.
CHARMM: a program for macromolecular energy, minimization, and dynamics calculations.
J. Comp. Chem., 4(2):187–217, 1983. 14, 15, 25

[14] A. T. Brünger. X-PLOR, Version 3.1, A System for X-ray Crystallography and NMR. The
Howard Hughes Medical Institute and Department of Molecular Biophysics and Biochemistry,
Yale University, 1992. 14, 15, 25, 86, 87

[15] G. Bussi, D. Donadio, and M. Parrinello. Canonical sampling through velocity rescaling. J.
Chem. Phys., 126:014101, 2007. 87

308

[16] G. Bussi, A. Laio, and M. Parrinello. Equilibrium free energies from nonequilibrium meta-
dynamics. Phys. Rev. Lett., 96(9):090601, 2006. 188

[17] P. Carlsson, S. Burendahl, and L. Nilsson. Unbinding of retinoic acid from the retinoic acid
receptor by random expulsion molecular dynamics. Biophysical Journal, 91(9):3151–3161,
2006. 243

[18] A. Carter, E, G. Ciccotti, J. T. Hynes, and R. Kapral. Constrained reaction coordinate
dynamics for the simulation of rare events. Chem. Phys. Lett., 156:472–477, 1989. 180

[19] Y. Chen and B. Roux. Constant–pH hybrid nonequilibrium molecular dynamics–Monte Carlo
simulation method. J. Chem. Theory Comput., 11:3919–3931, 2015. 250

[20] Y. Chen and B. Roux. Generalized Metropolis acceptance criterion for hybrid non-equilibrium
molecular dynamics–Monte Carlo simulations. J. Chem. Phys., 142:024101, 2015. 252

[21] C. Chipot and D. A. Pearlman. Free energy calculations. the long and winding gilded road.
Mol. Sim., 28:1–12, 2002. 219

[22] C. Chipot and A. Pohorille, editors. Free energy calculations. Theory and applications in
chemistry and biology. Springer Verlag, 2007. 217, 219, 222, 224

[23] G. Ciccotti, R. Kapral, and E. Vanden-Eijnden. Blue moon sampling, vectorial reaction
coordinates, and unbiased constrained dynamics. ChemPhysChem, 6(9):1809–1814, 2005.
180

[24] V. Cojocaru, P. J. Winn, and R. C. Wade. Multiple, ligand-dependent routes from the active
site of cytochrome P450 2C9. Current Drug Metabolism, 13(2):143–154, 2012. 244

[25] J. Comer, J. Phillips, K. Schulten, and C. Chipot. Multiple-walker strategies for free-energy
calculations in namd: Shared adaptive biasing force and walker selection rules. J. Chem.
Theor. Comput., 10:5276–5285, 2014. 183, 187

[26] E. A. Coutsias, C. Seok, and K. A. Dill. Using quaternions to calculate RMSD. J. Comput.
Chem., 25(15):1849–1857, 2004. 138, 142, 174

[27] Y. Crespo, F. Marinelli, F. Pietrucci, and A. Laio. Metadynamics convergence law in a
multidimensional system. Phys. Rev. E, 81:055701, May 2010. 188

[28] E. Darve, D. Rodŕıguez-Gómez, and A. Pohorille. Adaptive biasing force method for scalar
and vector free energy calculations. J. Chem. Phys., 128(14):144120, 2008. 179

[29] W. K. den Otter. Thermodynamic integration of the free energy along a reaction coordinate
in cartesian coordinates. J. Chem. Phys., 112:7283–7292, 2000. 180

[30] Y. Deng and B. Roux. Hydration of amino acid side chains: Nonpolar and electrostatic
contributions calculated from staged molecular dynamics free energy simulations with explicit
water molecules. J. Phys. Chem. B, 108:16567–16576, 2004. 220

[31] Y. Deng and B. Roux. Computations of standard binding free energies with molecular dy-
namics simulations. J. Phys. Chem. B, 113(8):2234–2246, 2009. 200

309

[32] M. J. Ferrarotti, S. Bottaro, A. Prez-Villa, and G. Bussi. Accurate multiple time step in
biased molecular simulations. Journal of chemical theory and computation, 11:139–146, 2015.
168

[33] G. Fiorin, M. L. Klein, and J. Hénin. Using collective variables to drive molecular dynamics
simulations. Mol. Phys., 111(22-23):3345–3362, 2013. 117, 189, 191, 195

[34] G. Fiorin, F. Marinelli, and J. D. Faraldo-Gómez. Direct derivation of free energies of mem-
brane deformation and other solvent density variations from enhanced sampling molecular
dynamics. J. Comp. Chem., 41(5):449–459, 2020. 154, 155, 156

[35] D. Frenkel and B. Smit. Understanding Molecular Simulation From Algorithms to Applica-
tions. Academic Press, California, 2002. 219

[36] H. Fu, X. Shao, C. Chipot, and W. Cai. Extended adaptive biasing force algorithm. an
on–the–fly implementation for accurate free–energy calculations. J. Chem. Theory Comput.,
2016. 187

[37] J. Gao, K. Kuczera, B. Tidor, and M. Karplus. Hidden thermodynamics of mutant proteins:
A molecular dynamics analysis. Science, 244:1069–1072, 1989. 217

[38] M. K. Gilson, J. A. Given, B. L. Bush, and J. A. McCammon. The statistical–thermodynamic
basis for computation of binding affinities: A critical review. Biophys. J., 72:1047–1069, 1997.
219

[39] N. M. Glykos. Carma: a molecular dynamics analysis program. J. Comput. Chem.,
27(14):1765–1768, 2006. 146, 147

[40] H. Grubmüller. Predicting slow structural transitions in macromolecular systems: Confor-
mational flooding. Phys. Rev. E, 52(3):2893–2906, Sep 1995. 188

[41] D. Hamelberg, C. de Oliveira, and J. McCammon. Sampling of slow diffusive conformational
transitions with accelerated molecular dynamics. J. Chem. Phys., 127:155102, 2007. 230

[42] D. Hamelberg, J. Mongan, and J. McCammon. Accelerated molecular dynamics: a promising
and efficient simulation method for biomolecules. J. Chem. Phys., 120(24):11919–11929, 2004.
230

[43] E. Harder, V. M. Anisimov, I. V. Vorobyov, P. E. M. Lopes, S. Y. Noskov, A. D. MacK-
erell, and B. Roux. Atomic level anisotropy in the electrostatic modeling of lone pairs for
a polarizable force field based on the classical drude oscillator. J. Chem. Theory Comput.,
2(6):1587–1597, 2006. 64

[44] D. J. Hardy, Z. Wu, J. C. Phillips, J. E. Stone, R. D. Skeel, and K. Schulten. Multilevel
summation method for electrostatic force evaluation. J. Chem. Theory Comput., 11:766–779,
2015. 59, 60

[45] G. D. Hawkins, C. J. Cramer, and D. G. Truhlar. Parametrized models of aqueous free
energies of solvation based on pairwise descreening of solute atomic charges from a dielectric
medium. J. Phys. Chem., 100:19824–19839, 1996. 73, 75

310

[46] J. Hénin and C. Chipot. Overcoming free energy barriers using unconstrained molecular
dynamics simulations. J. Chem. Phys., 121:2904–2914, 2004. 179

[47] J. Hénin, G. Fiorin, C. Chipot, and M. L. Klein. Exploring multidimensional free energy
landscapes using time-dependent biases on collective variables. J. Chem. Theory Comput.,
6(1):35–47, 2010. 179

[48] T. Huber, A. E. Torda, and W. van Gunsteren. Local elevation - A method for improving the
searching properties of molecular-dynamics simulation. Journal of Computer-Aided Molecular
Design, 8(6):695–708, DEC 1994. 188

[49] M. Iannuzzi, A. Laio, and M. Parrinello. Efficient exploration of reactive potential energy
surfaces using car-parrinello molecular dynamics. Phys. Rev. Lett., 90(23):238302, 2003. 135,
167

[50] W. Jiang, C. Chipot, and B. Roux. Computing relative binding affinity of ligands to recep-
tor: An effective hybrid single-dual-topology free-energy perturbation approach in NAMD.
J. Chem. Inf. Model., 59(9):3794–3802, 2019. 227

[51] W. Jiang, D. Hardy, J. Phillips, A. MacKerell, K. Schulten, and B. Roux. High-performance
scalable molecular dynamics simulations of a polarizable force field based on classical Drude
oscillators in NAMD. J. Phys. Chem. Lett., 2:87–92, 2011. 64

[52] S. Jo and W. Jiang. A generic implementation of replica exchange with solute tempering
(REST2) algorithm in NAMD for complex biophysical simulations. 197:304–311, 2015. 236

[53] J. Kastner and W. Thiel. Bridging the gap between thermodynamic integration and um-
brella sampling provides a novel analysis method: “umbrella integration”. J. Chem. Phys.,
123(14):144104, 2005. 187

[54] P. M. King. Free energy via molecular simulation: A primer. In W. F. Van Gunsteren,
P. K. Weiner, and A. J. Wilkinson, editors, Computer simulation of biomolecular systems:
Theoretical and experimental applications, volume 2, pages 267–314. ESCOM, Leiden, 1993.
217, 219

[55] J. G. Kirkwood. Statistical mechanics of fluid mixtures. J. Chem. Phys., 3:300–313, 1935.
217, 219

[56] D. B. Kokh, M. Amaral, J. Bomke, U. Grädler, D. Musil, H.-P. Buchstaller, M. K. Dreyer,
M. Frech, M. Lowinski, F. Vallee, M. Bianciotto, A. Rak, and R. C. Wade. Estimation of drug-
target residence times by τ -random acceleration molecular dynamics simulations. Journal of
Chemical Theory and Computation, 14(7):3859–3869, 2018. PMID: 29768913. 244

[57] P. A. Kollman. Free energy calculations: Applications to chemical and biochemical phenom-
ena. Chem. Rev., 93:2395–2417, 1993. 219

[58] E. A. Koopman and C. P. Lowe. Advantages of a Lowe-Andersen thermostat in molecular
dynamics simulations. J. Chem. Phys., 124:204103, 2006. 90

[59] F. C. L. Hovan and F. L. Gervasio. Defining an optimal metric for the path collective variables.
J. Chem. Theory Comput., 15:25–32, 2019. 152

311

[60] A. Laio and M. Parrinello. Escaping free-energy minima. Proc. Natl. Acad. Sci. USA,
99(20):12562–12566, 2002. 188

[61] G. Lamoureux, E. Harder, I. V. Vorobyov, B. Roux, and A. D. MacKerell. A polarizable
model of water for molecular dynamics simulations of biomolecules. Chem. Phys. Lett., 418(1-
3):245–249, 2006. 64, 65

[62] G. Lamoureux and B. Roux. Modeling induced polarization with classical Drude oscillators:
Theory and molecular dynamics simulation algorithm. J. Chem. Phys., 119(6):3025–3039,
2003. 64

[63] G. D. Leines and B. Ensing. Path finding on high-dimensional free energy landscapes. Phys.
Rev. Lett., 109:020601, 2012. 148

[64] A. Lesage, T. Lelièvre, G. Stoltz, and J. Hénin. Smoothed biasing forces yield unbiased
free energies with the extended-system adaptive biasing force method. J. Phys. Chem. B,
121(15):3676–3685, 2017. 185, 186

[65] N. Lu, D. A. Kofke, and T. B. Woolf. Improving the efficiency and reliability of free energy
perturbation calculations using overlap sampling methods. J. Comput. Chem., 25:28–39,
2004. 222, 227

[66] S. K. Lüdemann, V. Lounnas, and R. C. Wade. How do substrates enter and products
exit the buried active site of cytochrome P450cam? 1. random expulsion molecular dynam-
ics investigation of ligand access channels and mechanisms. Journal of Molecular Biology,
303(5):797–811, 2000. 243

[67] Z. M., T. P. Straatsma, and M. J. A. Separation-shifted scaling, a new scaling method for
Lennard-Jones interactions in thermodynamic integration. J. Chem. Phys., 100:9025–9031,
1994. 218, 222

[68] J. D. C. Maia, G. A. Urquiza Carvalho, C. P. Mangueira Jr, S. R. Santana, L. A. F. Cabral,
and G. B. Rocha. Gpu linear algebra libraries and gpgpu programming for accelerating mopac
semiempirical quantum chemistry calculations. J. Chem. Theory Comput., 8(9):3072–3081,
2012. 260

[69] F. Marinelli and J. D. Faraldo-Gómez. Ensemble-biased metadynamics: A molecular simula-
tion method to sample experimental distributions. Biophysical Journal, 108(12):2779 – 2782,
2015. 193

[70] F. Marinelli, F. Pietrucci, A. Laio, and S. Piana. A kinetic model of trp-cage folding from
multiple biased molecular dynamics simulations. PLOS Computational Biology, 5(8):1–18,
2009. 188

[71] A. E. Mark. Free energy perturbation calculations. In P. v. R. Schleyer, N. L. Allinger,
T. Clark, J. Gasteiger, P. A. Kollman, H. F. Schaefer III, and P. R. Schreiner, editors, Ency-
clopedia of computational chemistry, volume 2, pages 1070–1083. Wiley and Sons, Chichester,
1998. 217, 219

[72] S. J. Marrink, A. H. de Vries, and A. E. Mark. Coarse grained model for semiquantitative
lipid simulations. J. Phys. Chem. B, 108:750–760, 2004. 67

312

[73] S. J. Marrink, H. J. Risselada, S. Yefimov, D. P. Tieleman, and A. H. de Vries. The martini
forcefield: coarse grained model for biomolecular simulations. J. Phys. Chem. B, 111:7812–
7824, 2007. 67

[74] J. A. McCammon and S. C. Harvey. Dynamics of Proteins and Nucleic Acids. Cambridge
University Press, Cambridge, 1987. 14

[75] M. Melo, R. Bernardi, T. Rudack, M. Scheurer, C. Riplinger, J. Phillips, J. Maia, G. Rocha,
J. Ribeiro, J. Stone, F. Nesse, K. Schulten, and Z. Luthey-Schulten. NAMD goes quantum:
An integrative suite for QM/MM simulations. Nat. Methods, 15:351–354, 2018. 260

[76] Y. Miao, V. Feher, and J. McCammon. Gaussian accelerated molecular dynamics: Uncon-
strained enhanced sampling and free energy calculation. J. Chem. Theory Comput., 11:3584–
3595, 2015. 232, 233, 234

[77] K. Minoukadeh, C. Chipot, and T. Lelièvre. Potential of mean force calculations: A multiple-
walker adaptive biasing force approach. J. Chem. Theor. Comput., 6:1008–1017, 2010. 183,
187

[78] L. Monticelli, S. Kandasamy, X. Periole, and R. L. D. T. S. Marrink. The martini coarse
grained forcefield: extension to proteins. J. Chem. Theory Comput., 4:819–834, 2008. 67

[79] Y. Mu, P. H. Nguyen, and G. Stock. Energy landscape of a small peptide revealed by dihedral
angle principal component analysis. Proteins, 58(1):45–52, 2005. 146

[80] F. Neese. The ORCA program system. Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2:73–78,
2012. 260

[81] J. P. Nilmeier, G. E. Crooks, D. D. L. Minh, and J. D. Chodera. Nonequilibrium candidate
Monte Carlo is an efficient tool for equilibrium simulation. Proc. Natl. Acad. Sci. USA,
108:E1009–E1018, 2011. 252

[82] J. K. Noel, P. C. Whitford, K. Y. Sanbonmatsu, and J. N. Onuchic. SMOG@ctbp: simplified
deployment of structure-based models in GROMACS. Nucleic Acids Research, 38:W657–61,
2010. 248

[83] A. Onufriev, D. Bashford, and D. A. Case. Modification of the generalised born model suitable
for macromolecules. J. Phys. Chem., 104:3712–3720, 2000. 73

[84] A. Onufriev, D. Bashford, and D. A. Case. Exploring protein native states and large-scale
conformational changes with a modified generalized born model. Proteins: Struct., Func.,
Gen., 55:383–394, 2004. 73, 75, 76

[85] Y. Pang, Y. Miao, Y. Wang, and J. McCammon. Gaussian accelerated molecular dynamics
in NAMD. J. Chem. Theory Comput., 13:9–19, 2017. 234

[86] D. A. Pearlman. A comparison of alternative approaches to free energy calculations. J. Phys.
Chem., 98:1487–1493, 1994. 217

[87] J. W. Pitera and J. D. Chodera. On the use of experimental observations to bias simulated
ensembles. J. Chem. Theory Comput., 8:3445–3451, 2012. 204

313

[88] B. K. Radak, C. Chipot, D. Suh, S. Jo, W. Jiang, J. C. Phillips, K. Schulten, and B. Roux.
Constant-pH molecular dynamics simulations for large biomolecular systems. J. Chem. The-
ory Comput., 13:5933–5944, 2017. 250, 253

[89] B. K. Radak and B. Roux. Efficiency in nonequilibrium molecular dynamics Monte Carlo
simulations. J. Chem. Phys., 145:134109, 2016. 253

[90] P. Raiteri, A. Laio, F. L. Gervasio, C. Micheletti, and M. Parrinello. Efficient reconstruction
of complex free energy landscapes by multiple walkers metadynamics. J. Phys. Chem. B,
110(8):3533–9, 2006. 195

[91] J. V. Ribeiro, R. C. Bernardi, T. Rudack, J. E. Stone, J. C. Phillips, P. L. Freddolino, and
K. Schulten. QwikMD-integrative molecular dynamics toolkit for novices and experts. Sci.
Rep., 6:26536, 2016. 260

[92] A. Roitberg and R. Elber. Modeling side chains in peptides and proteins: Application of the
locally enhanced sampling technique and the simulated annealing methods to find minimum
energy conformations. J. Chem. Phys., 95:9277–9287, 1991. 240

[93] M. J. Ruiz-Montero, D. Frenkel, and J. J. Brey. Efficient schemes to compute diffusive barrier
crossing rates. Mol. Phys., 90:925–941, 1997. 180

[94] R. Salari, T. Joseph, R. Lohia, J. Hénin, and G. Brannigan. A streamlined, general approach
for computing ligand binding free energies and its application to GPCR-bound cholesterol.
Journal of Chemical Theory and Computation, 14(12):6560–6573, 2018. 175

[95] M. Schaefer and C. Froemmel. A precise analytical method for calculating the electrostatic
energy of macromolecules in aqueous solution. J. Mol. Biol., 216:1045–1066, 1990. 73

[96] K. Schleinkofer, P. J. Winn, S. K. Lüdemann, R. C. Wade, et al. Do mammalian cy-
tochrome P450s show multiple ligand access pathways and ligand channelling? EMBO
Reports, 6(6):584–589, 2005. 243

[97] H. M. Senn and W. Thiel. Qm/mm methods for biomolecular systems. Angew. Chem. Int.
Ed. Engl., 48(7):1198–1229, 2009. 260

[98] R. Shen, W. Han, G. Fiorin, S. M. Islam, K. Schulten, and B. Roux. Structural refinement of
proteins by restrained molecular dynamics simulations with non-interacting molecular frag-
ments. PLoS Comput. Biol., 11(10):e1004368, 2015. 208

[99] M. R. Shirts, D. L. Mobley, J. D. Chodera, and V. S. Pande. Accurate and efficient corrections
for missing dispersion interactions in molecular simulations. J. Phys. Chem. B, 111(45):13052–
13063, 2007. 57

[100] S. Shobana, B. Roux, and O. S. Andersen. Free energy simulations: Thermodynamic re-
versibility and variability. J. Phys. Chem. B, 104(21):5179–5190, 2000. 229

[101] C. Simmerling, T. Fox, and P. A. Kollman. Use of locally enhanced sampling in free energy
calculations: Testing and application to the α→ β anomerization of glucose. J. Am. Chem.
Soc., 120(23):5771–5782, 1998. 240

314

[102] C. Simmerling, M. R. Lee, A. R. Ortiz, A. Kolinski, J. Skolnick, and P. A. Kollman. Com-
bining MONSSTER and LES/PME to predict protein structure from amino acid sequence:
Application to the small protein CMTI-1. J. Am. Chem. Soc., 122(35):8392–8402, 2000. 240

[103] R. D. Skeel and J. J. Biesiadecki. Symplectic integration with variable stepsize. Ann. Numer.
Math., 1:191–198, 1994. 85

[104] J. Srinivasan, M. W. Trevathan, P. Beroza, and D. A. Case. Application of a pairwise
generalized born model to proteins and nucleic acids: inclusion of salt effects. Theor Chem
Acc, 101:426–434, 1999. 73, 75

[105] H. A. Stern. Molecular simulation with variable protonation states at constant pH. J. Chem.
Phys., 126:164112, 2007. 250

[106] J. J. Stewart. Mopac: a semiempirical molecular orbital program. J. Comp.-Aided Mol.
Design, 4(1):1–103, 1990. 260

[107] W. C. Still, A. Tempczyk, R. C. Hawley, and T. Hendrickson. Semianalytical treatment of
solvation for molecular mechanics and dynamics. J. Am. Chem. Soc., 112:6127–6129, 1990.
73

[108] T. P. Straatsma and J. A. McCammon. Multiconfiguration thermodynamic integration. J.
Chem. Phys., 95:1175–1118, 1991. 219, 220

[109] T. P. Straatsma and J. A. McCammon. Computational alchemy. Annu. Rev. Phys. Chem.,
43:407–435, 1992. 219

[110] B. T. Thole. Molecular polarizabilities calculated with a modified dipole interaction. Chem.
Phys., 59:341–350, 1981. 64

[111] P. Van Duijnen and M. Swart. Molecular and atomic polarizabilities: Thole’s model revisited.
J. Phys. Chem. A, 102(14):2399–2407, 1998. 64

[112] W. F. van Gunsteren. Methods for calculation of free energies and binding constants: Suc-
cesses and problems. In W. F. Van Gunsteren and P. K. Weiner, editors, Computer simulation
of biomolecular systems: Theoretical and experimental applications, pages 27–59. Escom, The
Netherlands, 1989. 219

[113] H. Vashisth and C. F. Abrams. Ligand escape pathways and (un) binding free energy cal-
culations for the hexameric insulin-phenol complex. Biophysical Journal, 95(9):4193–4204,
2008. 244

[114] L. Wang, R. A. Friesner, and B. J. Berne. Replica exchange with solute scaling: A more
efficient version of replica exchange with solute tempering (REST2). J. Phys. Chem. B,
115(30):9431–9438, 2011. 236

[115] Y. Wang, C. Harrison, K. Schulten, and J. McCammon. Implementation of accelerated
molecular dynamics in NAMD. ”Comp. Sci. Discov.”, 4:015002, 2011. 230

[116] J. Weiser, P. Senkin, and W. C. Still. Approximate atomic surfaces from linear combinations
of pairwise overlaps (LCPO). J. Comp. Chem., 20:217–230, 1999. 77

315

[117] A. D. White and G. A. Voth. Efficient and minimal method to bias molecular simulations
with experimental data. J. Chem. Theory Comput., ASAP, 2014. 205

[118] P. C. Whitford, J. K. Noel, S. Gosavi, A. Schug, K. Y. Sanbonmatsu, and J. N. Onuchic.
An all-atom structure-based potential for proteins: Bridging minimal models with all-atom
empirical forcefields. Proteins, 75(2):430–441, 2009. 248

[119] P. C. Whitford, A. Schug, J. Saunders, S. P. Hennelly, J. N. Onuchic, and K. Y. Sanbonmatsu.
Nonlocal helix formation is key to understanding s-adenosylmethionine-1 riboswitch function.
Biophysical Journal, 96(2):L7 – L9, 2009. 248

[120] P. J. Winn, S. K. Lüdemann, R. Gauges, V. Lounnas, and R. C. Wade. Comparison of the
dynamics of substrate access channels in three cytochrome P450s reveals different opening
mechanisms and a novel functional role for a buried arginine. Proceedings of the National
Academy of Sciences, 99(8):5361–5366, 2002. 243

[121] L. Zheng and W. Yang. Practically efficient and robust free energy calculations: Double-
integration orthogonal space tempering. J. Chem. Theor. Compt., 8:810–823, 2012. 187

[122] R. W. Zwanzig. High–temperature equation of state by a perturbation method. i. nonpolar
gases. J. Chem. Phys., 22:1420–1426, 1954. 219

316

Index

abf
colvars, 181
name, 181
outputEnergy, 181
outputFreq, 181
stepZeroData, 181

alb
colvars, 205
name, 205

angle
forceNoPBC, 133
group1, 133
group2, 133
group3, 133
oneSiteTotalForce, 133

coordNum
group1, 135
group2, 135

dihedralPC
psfSegID, 147
residueRange, 147

dihedral
forceNoPBC, 134
group1, 134
group2, 134
group3, 134
group4, 134
oneSiteTotalForce, 134

dipoleAngle
forceNoPBC, 134
group1, 134
group2, 134
group3, 134
oneSiteTotalForce, 134

dipoleMagnitude
atoms, 142

distanceDir
forceNoPBC, 132
group1, 132
group2, 132
oneSiteTotalForce, 132

distanceInv
group1, 133
group2, 133

oneSiteTotalForce, 133
distancePairs

forceNoPBC, 147
group1, 147
group2, 147

distanceVec
forceNoPBC, 132
group1, 132
group2, 132
oneSiteTotalForce, 132

distanceXY
axis, 132
forceNoPBC, 132
main, 132
ref2, 132
ref, 132

distanceZ
forceNoPBC, 131
oneSiteTotalForce, 131, 132

distance
group2, 130

eigenvector
atoms, 140
refPositionsColValue, 140
refPositionsCol, 140
refPositionsFile, 140
refPositions, 140

gyration
atoms, 141

hBond
cutoff, 137
donor, 137
expDenom, 137
expNumer, 137

harmonicWalls
colvars, 202
forceConstant, 202
lambdaSchedule, 203
name, 202
outputAccumulatedWork, 203
outputEnergy, 202
stepZeroData, 202
targetEquilSteps, 203
targetForceConstant, 203

317

targetForceExponent, 203
targetNumStages, 203
targetNumSteps, 203
upperWallConstant, 203
writeTIPMF, 202
writeTISamples, 202

harmonic
colvars, 198
name, 198
outputEnergy, 198
stepZeroData, 198
writeTIPMF, 198
writeTISamples, 198

histogramGrid
upperBoundaries, 208
widths, 208

histogramRestraint
colvars, 208
name, 208
outputEnergy, 208
upperBoundary, 208

histogram
bypassExtendedLagrangian, 207
colvars, 206
name, 206
outputFreq, 206
stepZeroData, 206

inertiaZ
atoms, 142

inertia
atoms, 141

linear
colvars, 204
lambdaSchedule, 205
name, 204
outputAccumulatedWork, 205
outputEnergy, 204
targetEquilSteps, 205
targetForceConstant, 205
targetForceExponent, 205
targetNumStages, 205
targetNumSteps, 205
writeTIPMF, 204
writeTISamples, 204

metadynamics
colvars, 190

name, 190
outputEnergy, 190
outputFreq, 190
stepZeroData, 190
writeTIPMF, 190
writeTISamples, 190

orientationAngle
atoms, 143
refPositionsColValue, 143
refPositionsCol, 143
refPositionsFile, 143
refPositions, 143

orientationProj
atoms, 143
refPositionsColValue, 144
refPositionsCol, 144
refPositionsFile, 144
refPositions, 143

orientation
atoms, 142
refPositionsColValue, 143
refPositionsCol, 143
refPositionsFile, 143
refPositions, 142

selfCoordNum
cutoff3, 137
cutoff, 137
expDenom, 137
expNumer, 137
group1, 137
pairListFrequency, 137
tolerance, 137

spinAngle
atoms, 144
refPositionsColValue, 144
refPositionsCol, 144
refPositionsFile, 144
refPositions, 144

tilt
atoms, 144
axis, 145
refPositionsColValue, 145
refPositionsCol, 145
refPositionsFile, 145
refPositions, 144

cphRun command, 255

318

1-4scaling parameter, 56

abort command, 20
accelMD parameter, 231
accelMDalpha parameter, 231
accelMDdihe parameter, 231
accelMDdual parameter, 231
accelMDE parameter, 231
accelMDFirstStep parameter, 232
accelMDG parameter, 234
accelMDGcMDPrepSteps parameter, 234
accelMDGcMDSteps parameter, 235
accelMDGEquiPrepSteps parameter, 235
accelMDGEquiSteps parameter, 235
accelMDGiE parameter, 234
accelMDGRestart parameter, 236
accelMDGRestartFile parameter, 236
accelMDGSigma0D parameter, 235
accelMDGSigma0P parameter, 235
accelMDGStatWindow parameter, 235
accelMDLastStep parameter, 232
accelMDOutFreq parameter, 232
accelMDTalpha parameter, 232
accelMDTE parameter, 232
acceptor colvars hBond keyword, 137
adaptTempBins parameter, 238
adaptTempCgamma parameter, 239
adaptTempDt parameter, 238
adaptTempFirstStep parameter, 239
adaptTempFreq parameter, 238
adaptTempInFile parameter, 238
adaptTempLangevin parameter, 239
adaptTempLastStep parameter, 239
adaptTempMD parameter, 238
adaptTempOutFreq parameter, 239
adaptTempRandom parameter, 239
adaptTempRescaling parameter, 239
adaptTempRestartFile parameter, 238
adaptTempRestartFreq parameter, 239
adaptTempTmax parameter, 238
adaptTempTmin parameter, 238
alch parameter, 220
alchBondDecouple parameter, 224
alchBondLambdaEnd parameter, 224
alchCol parameter, 221
alchDecouple parameter, 224
alchElecLambdaStart parameter, 222

alchEquilSteps parameter, 221
alchFile parameter, 221
alchLambda parameter, 20, 221
alchLambda2 parameter, 20, 221
alchLambdaIDWS parameter, 221
alchOutFile parameter, 222
alchOutFreq parameter, 222
alchRepLambdaEnd parameter, 224
alchType parameter, 220
alchVdwLambdaEnd parameter, 223
alchVdwShiftCoeff parameter, 222
alchWCA parameter, 220
alias psfgen command, 44, 49
alphaCutoff parameter, 77
amber parameter, 31
ambercoor parameter, 31
angleRef colvars alpha keyword, 146
angleTol colvars alpha keyword, 146
applyBias colvars abf keyword, 183
atomNameResidueRange colvars atom group

keyword, 172
atomNumbers colvars atom group keyword,

171
atomNumbersRange colvars atom group key-

word, 172
atomPermutation colvars rmsd keyword, 139
atoms colvars cartesian keyword, 147
atoms colvars gspath and gzpath keyword,

148
atoms colvars polarPhi keyword, 134, 135
atoms colvars rmsd keyword, 138
Atoms moving too fast, 285
atomsCol colvars atom group keyword, 172
atomsColValue colvars atom group keyword,

172
atomsFile colvars atom group keyword, 172
atomsOfGroup colvars atom group keyword,

171
auto psfgen command, 45
axis colvars distanceZ keyword, 131
axis colvars inertiaZ keyword, 142
axis colvars tilt keyword, 144

Bad global exclusion count, 285
BerendsenPressure parameter, 20, 92
BerendsenPressureCompressibility parame-

ter, 20, 92

319

BerendsenPressureFreq parameter, 92
BerendsenPressureRelaxationTime parame-

ter, 20, 92
BerendsenPressureTarget parameter, 20, 92
biasTemperature colvars metadynamics key-

word, 195
binaryoutput parameter, 20, 28
binaryrestart parameter, 28
bincoordinates parameter, 27
binvelocities parameter, 27
bondedCUDA parameter, 303
BOUNDARY energy, 29
bypassExtendedLagrangian colvars

harmonicWalls keyword, 203
bypassExtendedLagrangian colvars colvar

bias keyword, 178

callback command, 19
cellBasisVector1 parameter, 78
cellBasisVector2 parameter, 78
cellBasisVector3 parameter, 78
cellOrigin parameter, 78
centerReference colvars atom group keyword,

173
centers colvars alb keyword, 205
centers colvars harmonic keyword, 198
centers colvars linear keyword, 204
checkpoint command, 20
checkpointFree command, 20, 22
checkpointLoad command, 20, 22
checkpointStore command, 20, 22
checkpointSwap command, 20, 22
closestToQuaternion colvars orientation

keyword, 143
colvars colvars colvar bias keyword, 177
colvars colvars NAMD configuration file key-

word, 119
colvarsConfig colvars NAMD configuration

file keyword, 119
colvarsInput colvars NAMD configuration file

keyword, 119
colvarsRestartFrequency colvars global key-

word, 124
colvarsTrajFrequency colvars global keyword,

124
COMmotion parameter, 83

componentCoeff colvars any component key-
word, 159

componentExp colvars any component key-
word, 159

consexp parameter, 68
consForceConfig command, 21, 95
consForceFile parameter, 95
consForceScaling parameter, 20, 95
conskcol parameter, 69
conskfile parameter, 69
consref parameter, 68
constantForce parameter, 21, 95
constraints parameter, 68
constraintScaling parameter, 20, 69
coord psfgen command, 49
coordinates parameter, 26
coordpdb psfgen command, 49
coorfile command, 21
corrFunc colvars colvar keyword, 168
corrFuncLength colvars colvar keyword, 169
corrFuncNormalize colvars colvar keyword,

169
corrFuncOffset colvars colvar keyword, 169
corrFuncOutputFile colvars colvar keyword,

169
corrFuncStride colvars colvar keyword, 169
corrFuncType colvars colvar keyword, 169
corrFuncWithColvar colvars colvar keyword,

169
cosAngles parameter, 67
cphConfigFile parameter, 255
cphExcludeResidue parameter, 256
cphForceConstant parameter, 257
cphMaxProposalAttempts parameter, 257
cphMDBasename parameter, 257
cphNumMinSteps parameter, 257
cphNumstepsPerSwitch parameter, 255
cphOutFile parameter, 256
cphProposalWeight parameter, 256
cphRestartFile parameter, 256
cphRestartFreq parameter, 256
cphSetResiduepKai parameter, 256
cphSetResidueState parameter, 255
cphSWBasename parameter, 257
customFunction colvars colvar keyword, 160

320

customFunctionType colvars colvar key-
word, 160

cutoff colvars coordNum keyword, 135
cutoff parameter, 54
cutoff3 colvars coordNum keyword, 135
cwd parameter, 27
cylindricalBC parameter, 80
cylindricalBCAxis parameter, 81
cylindricalBCCenter parameter, 81
cylindricalBCexp1 parameter, 81
cylindricalBCexp2 parameter, 81
cylindricalBCk1 parameter, 81
cylindricalBCk2 parameter, 81
cylindricalBCl1 parameter, 81
cylindricalBCl2 parameter, 81
cylindricalBCr1 parameter, 81
cylindricalBCr2 parameter, 81
CZARestimator colvars abf keyword, 186

dcdFile command, 23
DCDfile parameter, 20, 28
DCDfreq parameter, 29
DCDUnitCell parameter, 29
delatom psfgen command, 47
dielectric parameter, 56
differenceVector colvars eigenvector key-

word, 141
drude parameter, 66
drudeBondConst parameter, 66
drudeBondLen parameter, 66
drudeDamping parameter, 66
drudeHardWall parameter, 66
drudeNbTholeCut parameter, 66
drudeTemp parameter, 66
dummyAtom colvars atom group keyword,

172

ebMeta colvars metadynamics keyword, 193
ebMetaEquilSteps colvars metadynamics key-

word, 193
eField parameter, 20, 95
eFieldFreq parameter, 20
eFieldNormalized parameter, 96
eFieldOn parameter, 95
eFieldPhase parameter, 20
enableFitGradients colvars atom group key-

word, 175

enableForces colvars atom group keyword, 175
error message

Atoms moving too fast, 285
Bad global exclusion count, 285

exclude parameter, 56
ExcludeFromPressure parameter, 94
ExcludeFromPressureCol parameter, 94
ExcludeFromPressureFile parameter, 94
exit command, 20
expandBoundaries colvars colvar keyword,

164
expDenom colvars coordNum keyword, 136
expNumer colvars coordNum keyword, 135
exponent colvars distanceInv keyword, 133
extCoordFilename parameter, 115
extendedFluctuation colvars colvar keyword,

167
extendedLagrangian colvars colvar keyword,

167
extendedLangevinDamping colvars colvar

keyword, 168
extendedSystem parameter, 78
extendedTemp colvars colvar keyword, 167
extendedTimeConstant colvars colvar key-

word, 167
extForceFilename parameter, 115
extForces parameter, 115
extForcesCommand parameter, 115
extraBonds parameter, 71
extraBondsCosAngles parameter, 71
extraBondsFile parameter, 71

FFTWEstimate parameter, 58
FFTWUseWisdom parameter, 58
FFTWWisdomFile parameter, 58
first psfgen command, 45
firsttimestep parameter, 83
fittingAtoms colvars gspath and gspath key-

word, 149
fittingGroup colvars atom group keyword, 174
fixedAtoms parameter, 20, 70
fixedAtomsCol parameter, 70
fixedAtomsFile parameter, 70
fixedAtomsForces parameter, 20, 70
forceConstant colvars harmonic keyword, 198
forceConstant colvars histogramRestraint

keyword, 209

321

forceConstant colvars linear keyword, 204
forceDCDfile parameter, 29
forceDCDfreq parameter, 29
forceNoPBC colvars distance keyword, 130
forceRange colvars alb keyword, 206
FullDirect parameter, 62
fullElectFrequency parameter, 85
fullSamples colvars abf keyword, 181

gatherVectorColvars colvars histogram key-
word, 207

gaussianSigma colvars histogramRestraint
keyword, 209

gaussianSigmas colvars metadynamics key-
word, 191

GBIS parameter, 76
GBISBeta parameter, 76
GBISDelta parameter, 76
GBISGamma parameter, 76
GoCoordinates parameter, 247
GoForcesOn parameter, 246
GoMethod parameter, 247
GoParameters parameter, 246
GPRESSAVG, 30
GPRESSURE, 30
grocoorfile parameter, 33, 249
gromacs parameter, 33, 248
GromacsPair parameter, 249
grotopfile parameter, 33, 248
group1 colvars distance keyword, 130
group2CenterOnly colvars coordNum keyword,

136
guesscoord psfgen command, 49

hardLowerBoundary colvars colvar keyword,
163

hardUpperBoundary colvars colvar keyword,
164

hBondCoeff colvars alpha keyword, 145
hBondCutoff colvars alpha keyword, 146
hBondExpDenom colvars alpha keyword, 146
hBondExpNumer colvars alpha keyword, 146
hgroupCutoff (Å) parameter, 285
hideJacobian colvars abf keyword, 182
hillWeight colvars metadynamics keyword,

190
hillWidth colvars metadynamics keyword, 191

historyFreq colvars abf keyword, 182
hmassrepart psfgen command, 44

IMDfreq parameter, 108
IMDignore parameter, 108
IMDon parameter, 108
IMDport parameter, 108
IMDwait parameter, 108
indexFile colvars global keyword, 124
indexGroup colvars atom group keyword, 171
inputPrefix colvars abf keyword, 182
intrinsicRadiusOffset parameter, 76
ionConcentration parameter, 76
isset command, 19
istrue command, 19

keepFreeEnergyFiles colvars metadynamics
keyword, 191

keepHills colvars metadynamics keyword, 192

lambda colvars aspathCV and azpathCV key-
word, 153

lambdaSchedule colvars harmonic keyword,
201

langevin parameter, 86
langevinCol parameter, 87
langevinDamping parameter, 86
langevinFile parameter, 87
langevinHydrogen parameter, 86
LangevinPiston parameter, 20, 93
LangevinPistonDecay parameter, 20, 93
LangevinPistonPeriod parameter, 20, 93
LangevinPistonTarget parameter, 20, 93
LangevinPistonTemp parameter, 20, 94
langevinTemp parameter, 19, 86
last psfgen command, 45
les parameter, 240
lesCol parameter, 241
lesFactor parameter, 240
lesFile parameter, 241
lesReduceMass parameter, 241
lesReduceTemp parameter, 240
limitdist parameter, 57
LJcorrection parameter, 57
longSplitting parameter, 85
loweAndersen parameter, 90
loweAndersenCutoff parameter, 90
loweAndersenRate parameter, 90

322

loweAndersenTemp parameter, 90
lowerBoundaries colvars histogramGrid key-

word, 207
lowerBoundary colvars colvar keyword, 163
lowerBoundary colvars histogramRestraint

keyword, 208
lowerWallConstant colvars harmonicWalls

keyword, 202
lowerWalls colvars colvar keyword, 202

main colvars distanceZ keyword, 131
mapName colvars mapTotal keyword, 155
margin parameter, 286
margin violations, 284
martiniDielAllow parameter, 67
martiniSwitching parameter, 67
maxForce colvars abf keyword, 182
maximumMove parameter, 82
measure command, 21
mergeCrossterms parameter, 30
mgridforce parameter, 98
mgridforcechargecol parameter, 98
mgridforcecol parameter, 98
mgridforcecont1 parameter, 99
mgridforcecont2 parameter, 99
mgridforcecont3 parameter, 99
mgridforcefile parameter, 98
mgridforcelite parameter, 99
mgridforcepotfile parameter, 98
mgridforcescale parameter, 98
mgridforcevoff parameter, 99
mgridforcevolts parameter, 98
minBabyStep parameter, 82
minimization parameter, 82
minimize command, 19
minLineGoal parameter, 82
minTinyStep parameter, 82
MISC energy, 30
molly parameter, 85
mollyIterations parameter, 86
mollyTolerance parameter, 86
move command, 20
movingConstraints parameter, 101
movingConsVel parameter, 101
MSM parameter, 59
MSMApprox parameter, 60

MSMBlockSizeX, MSMBlockSizeY, MSM-
BlockSizeZ parameter, 61

MSMGridSpacing parameter, 60
MSMLevels parameter, 61
MSMPadding parameter, 61
MSMQuality parameter, 60
MSMSerial parameter, 62
MSMSplit parameter, 61
MSMxmax, MSMymax, MSMzmax parame-

ter, 61
MSMxmin, MSMymin, MSMzmin parameter,

61
MTSAlgorithm parameter, 85
multipleReplicas colvars metadynamics key-

word, 196
multiply psfgen command, 47
mutate psfgen command, 46
myReplica command, 21

name colvars colvar keyword, 128
name colvars any component keyword, 157
name colvars atom group keyword, 170
name colvars colvar bias keyword, 177
newHillFrequency colvars metadynamics key-

word, 191
nonbondedFreq parameter, 85
nonbondedScaling parameter, 20, 56
numNodes command, 20
numPes command, 20
numPhysicalNodes command, 20
numReplicas command, 21
numsteps parameter, 83

oneSiteTotalForce colvars angle,
dipoleAngle, dihedral keyword,
130

OPLS, 57
output command, 20
output onlyforces command, 20
output withforces command, 20
outputAccumulatedWork colvars harmonic

keyword, 201
outputAppliedForce colvars colvar keyword,

166
outputCenters colvars harmonic keyword, 199
outputEnergies parameter, 30
outputEnergy colvars colvar keyword, 166

323

outputEnergy colvars colvar bias keyword,
177

outputFile colvars histogram keyword, 206
outputFileDX colvars histogram keyword,

207
outputFreq colvars colvar bias keyword, 178
outputMomenta parameter, 30
outputname parameter, 27
outputPairlists parameter, 286
outputPressure parameter, 30
outputTiming parameter, 30
outputTotalForce colvars colvar keyword,

166
outputValue colvars colvar keyword, 165
outputVelocity colvars colvar keyword, 166

pairInteraction parameter, 277
pairInteractionCol parameter, 277
pairInteractionFile parameter, 277
pairInteractionGroup1 parameter, 277
pairInteractionGroup2 parameter, 277
pairInteractionSelf parameter, 277
pairlistdist parameter, 285
pairListFrequency colvars coordNum keyword,

136
pairlistGrow parameter, 286
pairlistMinProcs parameter, 286
pairlistShrink parameter, 286
pairlistsPerCycle parameter, 286
pairlistTrigger parameter, 287
parameters parameter, 26
paraTypeCharmm parameter, 26
paraTypeXplor parameter, 26
parmfile parameter, 31
patch psfgen command, 46
pathFile colvars aspathCV and azpathCV key-

word, 153
pathFile colvars gspathCV and gzpathCV key-

word, 151
pdb psfgen command, 46
pdbalias atom psfgen command, 49
pdbalias residue psfgen command, 44
period colvars distanceZ, custom colvars key-

word, 158
pH parameter, 255
PME parameter, 57
PMEGridSizeX parameter, 58

PMEGridSizeY parameter, 58
PMEGridSizeZ parameter, 58
PMEGridSpacing parameter, 58
PMEInterpOrder parameter, 57
PMEoffload parameter, 303
PMEProcessors parameter, 58
PMETolerance parameter, 57
PRESSAVG, 30
pressureProfile parameter, 278
pressureProfileAtomTypes parameter, 279
pressureProfileAtomTypesCol parameter, 280
pressureProfileAtomTypesFile parameter,

280
pressureProfileEwald parameter, 279
pressureProfileEwaldX parameter, 279
pressureProfileEwaldY parameter, 279
pressureProfileEwaldZ parameter, 279
pressureProfileFreq parameter, 279
pressureProfileSlabs parameter, 278
print command, 18
psfcontext allcaps psfgen command, 47
psfcontext create psfgen command, 48
psfcontext delete psfgen command, 48
psfcontext eval psfgen command, 48
psfcontext mixedcase psfgen command, 47
psfcontext psfgen command, 47
psfcontext reset psfgen command, 48
psfcontext stats psfgen command, 48
psfgen logfile psfgen command, 44
psfSegID colvars alpha keyword, 145
psfSegID colvars atom group keyword, 172
psfset psfgen command, 50
python command, 23

qmBaseDir parameter, 271
qmBondColumn parameter, 269
qmBondDist parameter, 269
qmBondScheme parameter, 270
qmBondValueType parameter, 270
qmCharge parameter, 273
qmChargeFromPSF parameter, 275
qmChargeMode parameter, 274
qmColumn parameter, 269
qmConfigLine parameter, 273
qmCSMD parameter, 275
qmCSMDFile parameter, 276
qmCustomPCFile parameter, 272

324

qmCustomPCSelection parameter, 271
qmElecEmbed parameter, 270
qmEnergyStride parameter, 275
qmExecPath parameter, 274
qmForces parameter, 269
qmLinkElement parameter, 270
qmLiveSolventSel parameter, 272
qmLSSFreq parameter, 272
qmLSSMode parameter, 272
qmLSSRef parameter, 272
qmLSSResname parameter, 272
qmMult parameter, 273
qmOutStride parameter, 275
qmParamPDB parameter, 269
qmPCStride parameter, 271
qmPointChargeScheme parameter, 271
qmPositionOutStride parameter, 275
qmPrepProc parameter, 274
qmReplaceAll parameter, 271
qmSecProc parameter, 274
qmSimsPerNode parameter, 269
qmSoftware parameter, 273
qmSwitching parameter, 270
qmSwitchingType parameter, 270
qmVdwParams parameter, 271

ramd debugLevel parameter, 245
ramd firstProtAtom parameter, 244
ramd firstRamdAtom parameter, 244
ramd forceOutFreq parameter, 245
ramd forceRAMD parameter, 245
ramd lastProtAtom parameter, 244
ramd lastRamdAtom parameter, 244
ramd maxDist parameter, 245
ramd namdVersion parameter, 245
ramd ramdfilename parameter, 244
ramd ramdSeed parameter, 245
ramd ramdSteps parameter, 244
ramd rMinRamd parameter, 245
rateMax colvars alb keyword, 206
readexclusions parameter, 31
readpsf psfgen command, 49
reassignFreq parameter, 89
reassignHold parameter, 89
reassignIncr parameter, 89
reassignTemp parameter, 19, 89

rebinGrids colvars metadynamics keyword,
192

ref colvars distanceZ keyword, 131
ref2 colvars distanceZ keyword, 131
refHistogram colvars histogramRestraint

keyword, 209
refHistogramFile colvars

histogramRestraint keyword,
209

refPositions colvars rmsd keyword, 138
refPositions colvars atom group keyword, 174
refPositionsCol colvars gspath and gzpath

keyword, 148
refPositionsCol colvars rmsd keyword, 138
refPositionsCol colvars atom group keyword,

174
refPositionsColValue colvars rmsd keyword,

139
refPositionsColValue colvars atom group key-

word, 174
refPositionsFile colvars rmsd keyword, 138
refPositionsFile colvars atom group keyword,

174
refPositionsFileN colvars gspath and gzpath

keyword, 148
regenerate psfgen command, 46
reinitatoms command, 20
reinitvels command, 20
reloadCharges command, 21
replica exchange, 241
replicaAtomRecv command, 22
replicaAtomSend command, 22
replicaAtomSendrecv command, 22
replicaBarrier command, 21
replicaDcdFile command, 22
replicaEval command, 22
replicaID colvars metadynamics keyword, 197
replicaRecv command, 22
replicaSend command, 22
replicaSendrecv command, 22
replicasRegistry colvars metadynamics key-

word, 196
replicaUniformPatchGrids parameter, 22
replicaUpdateFrequency colvars

metadynamics keyword, 196
replicaYield command, 22

325

rescaleFreq parameter, 89
rescaleTemp parameter, 19, 89
rescalevels command, 20
resetpsf psfgen command, 47
residue psfgen command, 46
residueRange colvars alpha keyword, 145
restartfreq parameter, 28
restartname parameter, 20, 28
restartsave parameter, 28
rigidBonds parameter, 67
rigidDieOnError parameter, 68
rigidIterations parameter, 68
rigidTolerance parameter, 67
rotateReference colvars atom group keyword,

173
rotConsAxis parameter, 102
rotConsPivot parameter, 102
rotConstraints parameter, 102
rotConsVel parameter, 102
run command, 19
run norepeat command, 19
runAve colvars colvar keyword, 170
runAveLength colvars colvar keyword, 170
runAveOutputFile colvars colvar keyword,

170
runAveStride colvars colvar keyword, 170

SASA parameter, 77
scalable colvars any component keyword, 157
scnb parameter, 31
scriptedColvarForces colvars global keyword,

209
scriptedFunction colvars colvar keyword, 162
scriptedFunctionType colvars colvar key-

word, 162
scriptedFunctionVectorSize colvars colvar

keyword, 162
scriptingAfterBiases colvars global keyword,

210
sdBondScaling parameter, 229
seed parameter, 83
segment psfgen command, 45
selectConstraints parameter, 69
selectConstrX parameter, 69
selectConstrY parameter, 69
selectConstrZ parameter, 69
shared colvars abf keyword, 183

sharedFreq colvars abf keyword, 183
singleTopology parameter, 229
SMD parameter, 107
SMDDir parameter, 108
SMDFile parameter, 107
SMDk parameter, 107
SMDk2 parameter, 107
SMDOutputFreq parameter, 108
SMDVel parameter, 108
smp colvars global keyword, 124
soluteScaling parameter, 236
soluteScalingAll parameter, 237
soluteScalingCol parameter, 237
soluteScalingFactor parameter, 237
soluteScalingFactorCharge parameter, 237
soluteScalingFactorVdw parameter, 237
soluteScalingFile parameter, 237
solventDielectric parameter, 76
source command, 18
sphericalBC parameter, 79
sphericalBCCenter parameter, 79
sphericalBCexp1 parameter, 80
sphericalBCexp2 parameter, 80
sphericalBCk1 parameter, 80
sphericalBCk2 parameter, 80
sphericalBCr1 parameter, 80
sphericalBCr2 parameter, 80
splitPatch parameter, 285
startup command, 19
staticAtomAssignment parameter, 249
stepspercycle parameter, 285
stepZeroData colvars colvar bias keyword, 178
stochRescale parameter, 88
stochRescaleFreq parameter, 88
stochRescaleHeat parameter, 88
stochRescalePeriod parameter, 88
stochRescaleTemp parameter, 88
StrainRate parameter, 94
structure parameter, 26
subtractAppliedForce colvars colvar key-

word, 168
surfaceTension parameter, 77
SurfaceTensionTarget parameter, 20, 94
switchdist parameter, 55
switching parameter, 55
symmetryFile parameter, 103

326

symmetryFirstFullStep parameter, 102
symmetryFirstStep parameter, 104
symmetryk parameter, 103
symmetrykFile parameter, 103
symmetryLastFullStep parameter, 102
symmetryLastStep parameter, 104
symmetryMatrixFile parameter, 103
symmetryRestraints parameter, 102
symmetryScaleForces parameter, 103

tableInterpType parameter, 64
tabulatedEnergies parameter, 63
tabulatedEnergiesFile parameter, 63
targetCenters colvars harmonic keyword, 199
targetDistFile colvars metadynamics key-

word, 193
targetDistMinVal colvars metadynamics key-

word, 194
targetEquilSteps colvars harmonic keyword,

201
targetForceConstant colvars harmonicWalls

keyword, 203
targetForceConstant colvars harmonic key-

word, 200
targetForceExponent colvars harmonic key-

word, 200
targetNumStages colvars harmonic keyword,

200
targetNumSteps colvars harmonic keyword,

199
tcl.call() command, 23
tcl.eval() command, 23
tclBC parameter, 112
tclBCArgs parameter, 112
tclBCScript parameter, 112
tclForces parameter, 109
tclForcesScript parameter, 109
tCouple parameter, 87
tCoupleCol parameter, 87
tCoupleFile parameter, 87
tCoupleTemp parameter, 87
TEMPAVG, 30
temperature parameter, 83
timestep parameter, 83
timeStepFactor colvars colvar keyword, 168
TMD parameter, 105
TMDDiffRMSD parameter, 106

TMDFile parameter, 105
TMDFile2 parameter, 106
TMDFinalRMSD parameter, 106
TMDFirstStep parameter, 105
TMDInitialRMSD parameter, 105
TMDk parameter, 105
TMDLastStep parameter, 105
TMDOutputFreq parameter, 105
tolerance colvars coordNum keyword, 136
topology alias psfgen command, 44
topology psfgen command, 44
TOTAL2 energy, 30
TOTAL3 energy, 30
twoAwayX, 305
twoAwayY, 305
twoAwayZ, 305

UIestimator colvars abf keyword, 187
units colvars global keyword, 119
units used for output, 25, 26, 29
unperturbedBondFile parameter, 229
updateBias colvars abf keyword, 183
updateFrequency colvars alb keyword, 205
updateGridforceScale parameter, 20
updategridforcescale parameter, 99
upperBoundary colvars colvar keyword, 163
upperWalls colvars colvar keyword, 202
useConstantArea parameter, 20, 91
useConstantRatio parameter, 20, 91
useFlexibleCell parameter, 20, 91
useGrids colvars metadynamics keyword, 192
useGroupPressure parameter, 20, 91
usePMECUDA parameter, 303
useSecondClosestFrame colvars gspathCV and

gzpathCV keyword, 150
useSecondClosestFrame colvars gspath and

gzpath keyword, 149
useSettle parameter, 68
useThirdClosestFrame colvars gspathCV and

gzpathCV keyword, 150
useThirdClosestFrame colvars gspath and

gzpath keyword, 149
useZsquare colvars gzpathCV keyword, 151
useZsquare colvars gzpath keyword, 149

vdwForceSwitching parameter, 55
vdwGeometricSigma parameter, 56

327

vector colvars eigenvector keyword, 140
vectorCol colvars eigenvector keyword, 140
vectorColValue colvars eigenvector key-

word, 141
vectorFile colvars dihedralPC keyword, 147
vectorFile colvars eigenvector keyword, 140
vectorNumber colvars dihedralPC keyword,

147
velDCDfile parameter, 29
velDCDfreq parameter, 29
velocities parameter, 27
velocityQuenching parameter, 82
vpbonds psfgen command, 44

waterModel parameter, 64
weights colvars aspathCV and azpathCV key-

word, 152
weights colvars histogram keyword, 207
wellTempered colvars metadynamics key-

word, 195
width colvars colvar keyword, 162
width colvars histogramRestraint keyword,

208
wrapAll parameter, 79
wrapAround colvars distanceZ, dihedral,

spinAngle, custom colvars keyword,
158

wrapNearest parameter, 79
wrapWater parameter, 79
writeCZARwindowFile colvars abf keyword,

186
writeFreeEnergyFile colvars metadynamics

keyword, 191
writeHillsTrajectory colvars metadynamics

keyword, 192
writeHistogram colvars metadynamics key-

word, 209
writenamdbin psfgen command, 50
writePartialFreeEnergyFile colvars

metadynamics keyword, 197
writepdb psfgen command, 50
writepsf psfgen command, 48
writeTIPMF colvars colvar bias keyword, 179
writeTISamples colvars colvar bias keyword,

179

XSTfile parameter, 78

XSTfreq parameter, 78

zeroMomentum parameter, 84

328

	Introduction
	NAMD and molecular dynamics simulations
	Acknowledgments

	Getting Started
	What is needed
	NAMD configuration file
	Configuration parameter syntax
	Tcl scripting interface and features
	Multiple-copy/replica-exchange scripting interface
	Python scripting interface and features
	Required NAMD configuration parameters

	Input and Output Files
	File formats
	PDB files
	X-PLOR format PSF files
	CHARMM19, CHARMM22, and CHARMM27 parameter files
	DCD trajectory files
	NAMD binary files

	NAMD configuration parameters
	Input files
	Output files
	Standard output

	AMBER file and force field support
	GROMACS file support

	Creating PSF Structure Files
	New commands and Functionalities
	Ordinary Usage
	Preparing separate PDB files
	Deleting unwanted atoms

	BPTI Example
	Building solvent around a protein
	New Commands in the version 2.0
	List of Commands
	Example of a Session Log

	Force Field Parameters
	Potential energy functions
	Bonded potential energy terms
	Nonbonded potential energy terms

	Non-bonded interactions
	Van der Waals interactions
	Electrostatic interactions
	Non-bonded force field parameters
	PME parameters
	MSM parameters
	Full direct parameters
	Tabulated nonbonded interaction parameters

	Water Models
	Drude polarizable force field
	Required input files
	Standard output
	Drude force field parameters

	MARTINI Residue-Based Coarse-Grain Forcefield
	Constraints and Restraints
	Bond constraint parameters
	Position restraint parameters
	Fixed atoms parameters
	Extra bond, angle, and dihedral restraints

	Generalized Born Implicit Solvent
	Theoretical Background
	Poisson Boltzmann Equation
	Generalized Born
	Generalized Born Equations

	3-Phase Calculation
	Configuration Parameters

	Standard Minimization and Dynamics Parameters
	Boundary Conditions
	Periodic boundary conditions
	Spherical harmonic boundary conditions
	Cylindrical harmonic boundary conditions

	Energy Minimization
	Conjugate gradient parameters
	Velocity quenching parameters

	Dynamics
	Timestep parameters
	Initialization
	Conserving momentum
	Multiple timestep parameters

	Temperature Control and Equilibration
	Langevin dynamics parameters
	Temperature coupling parameters
	Stochastic velocity rescaling parameters
	Temperature rescaling parameters
	Temperature reassignment parameters
	Lowe-Andersen dynamics parameters

	Pressure Control
	Berendsen pressure bath coupling
	Nosé-Hoover Langevin piston pressure control

	User Defined Forces
	Constant Forces
	External Electric Field
	Grid Forces
	Moving Constraints
	Rotating Constraints
	Symmetry Restraints
	Targeted Molecular Dynamics (TMD)
	Steered Molecular Dynamics (SMD)
	Interactive Molecular Dynamics (IMD)
	Tcl Forces and Analysis
	Tcl Boundary Forces
	External Program Forces

	Collective Variable-based Calculations (Colvars)
	Writing a Colvars configuration: a crash course
	Enabling and controlling the Colvars module in NAMD
	Units in the Colvars module
	NAMD parameters
	Using the cv command to control the Colvars module
	Configuration syntax used by the Colvars module
	Global keywords
	Input state file
	Output files

	Defining collective variables
	Choosing a function
	Distances
	Angles
	Contacts
	Collective metrics
	Rotations
	Protein structure descriptors
	Raw data: building blocks for custom functions
	Geometric path collective variables
	Arithmetic path collective variables
	Volumetric map-based variables
	Shared keywords for all components
	Periodic components
	Non-scalar components
	Linear and polynomial combinations of components
	Custom functions
	Scripted functions
	Defining grid parameters
	Trajectory output
	Extended Lagrangian
	Multiple time-step variables
	Backward-compatibility
	Statistical analysis

	Selecting atoms
	Atom selection keywords
	Moving frame of reference.
	Treatment of periodic boundary conditions.
	Performance of a Colvars calculation based on group size.

	Biasing and analysis methods
	Thermodynamic integration
	Adaptive Biasing Force
	Extended-system Adaptive Biasing Force (eABF)
	Metadynamics
	Harmonic restraints
	Computing the work of a changing restraint
	Harmonic wall restraints
	Linear restraints
	Adaptive Linear Bias/Experiment Directed Simulation
	Multidimensional histograms
	Probability distribution-restraints
	Defining scripted biases
	Performance of scripted biases

	Scripting interface (Tcl): list of commands
	Commands to manage the Colvars module
	Commands to manage individual collective variables
	Commands to manage individual biases

	Syntax changes from older versions

	Alchemical Free Energy Methods[1]The features described in this section were contributed by Surjit B. Dixit, Christophe Chipot (Nancy Université, Université Henri Poincaré, France), Floris Buelens (Institute of Structural and Molecular Biology, University of London, Birkbeck, UK), and Christopher Harrison (University of Illinois, Urbana, IL USA).
	Theoretical Background
	The dual--topology paradigm
	Free Energy Perturbation
	Thermodynamic Integration

	Implementation of the free energy methods in NAMD
	Examples of input files for running alchemical free energy calculations
	Description of a free energy calculation output
	Free Energy Perturbation
	Thermodynamic Integration

	Hybrid single--dual topology approach for relative binding free energy calculation of ligand to receptor

	Accelerated Sampling Methods
	Accelerated Molecular Dynamics
	Theoretical background
	NAMD parameters

	Gaussian Accelerated Molecular Dynamics
	Theoretical background
	NAMD parameters

	Solute Scaling and REST2
	NAMD parameters

	Adaptive Tempering
	NAMD parameters

	Locally enhanced sampling
	Structure generation
	Simulation

	Replica exchange simulations
	Random acceleration molecular dynamics simulations

	Structure based simulations
	Hybrid MD-Go Simulation
	Hybrid MD-Go model
	Hybrid MD-Go considerations
	Configuration file modifications
	GoParameter format

	Running SMOG simulations
	SMOG model considerations
	Configuration file modifications

	 Constant-pH Simulations [1] The features described in this section were implemented by Brian K. Radak (Argonne National Laboratory, Argonne, IL USA) with considerable technical support from James C. Phillips (University of Illinois, Urbana, IL USA) and Wei Jiang (Argonne National Laboratory). The algorithm draws heavily from earlier work by Yunjie Chen and Benoît Roux and later by Donghyuk Suh (University of Chicago, Chicago, IL USA), as well as time spent as a postdoctoral scholar at University of Chicago. Testing and validation were also aided by Christophe Chipot (Université de Lorraine, Vandœuvre-lès-Nancy cedex France and University of Illinois).
	Overview and Theoretical Background
	Implementation Details
	New Commands and Keywords
	Required Keywords
	Commonly Used Options
	Specialized Options

	Minimal Examples

	Hybrid QM/MM Simulations
	Division of Labor
	Mechanical and Electrostatic Embedding
	Covalent Bonds Divided by the QM/MM Barrier
	Link Atoms
	Point Charge Alterations
	Link Atom Charge and Charge Groups

	Custom Quantum Chemistry Software
	Independent QM Regions
	Keywords

	Runtime Analysis
	Pair interaction calculations
	Pressure profile calculations

	Performance Tuning
	NAMD performance tuning concepts
	Measuring performance.
	NAMD configuration and I/O performance.
	Computational (arithmetic) performance.
	Networking performance.

	Non-bonded interaction distance-testing

	Translation between NAMD and X-PLOR configuration parameters
	Sample configuration files
	Running NAMD
	Individual Windows, Linux, Mac OS X, or Other Unix Workstations
	Windows Clusters and Workstation Networks
	Linux Clusters with InfiniBand or Other High-Performance Networks
	Linux or Other Unix Workstation Networks
	Shared-Memory and Network-Based Parallelism (SMP Builds)
	Cray XE/XK/XC
	Xeon Phi Processors (KNL)
	SGI Altix UV
	IBM POWER Clusters
	CPU Affinity
	CUDA GPU Acceleration
	Keywords

	Xeon Phi Acceleration
	Memory Usage
	Improving Parallel Scaling

	NAMD Availability and Installation
	How to obtain NAMD
	Platforms on which NAMD will currently run
	Installing NAMD
	Compiling NAMD
	Documentation

