
IBM J. Res. & Dev.Acun et al.: Scalable Molecular Dynamics with NAMD on the Summit System Page | 1

Scalable Molecular Dynamics with NAMD on the Summit System

B. Acun, D. J. Hardy, L. V. Kale, K. Li, J. C. Phillips, J. E. Stone

NAMD (NAnoscale Molecular Dynamics) is a parallel molecular dynamics application that has been
used to make breakthroughs in understanding the structure and dynamics of large biomolecular
complexes, such as viruses like HIV and various types of influenza. State-of-the-art biomolecular
simulations often require integration of billions of timesteps, computing all interatomic forces for each
femtosecond timestep. Molecular dynamics simulation of large biomolecular systems and long-
timescale biological phenomena requires tremendous computing power. NAMD harnesses the power
of thousands of heterogeneous processors to meet this demand. In this paper, we present algorithm
improvements and performance optimizations that enable NAMD to achieve high performance on the
IBM Newell platform (with POWER9 processors and NVIDIA Volta V100 GPUs) which underpins the
Oak Ridge National Laboratory's Summit and Lawrence Livermore National Laboratory's Sierra
supercomputers. The Top-500 supercomputers June 2018 list shows Summit at the number one spot
with 187 Petaflop/s peak performance and Sierra third with 119 Petaflop/s. Optimizations for NAMD
on Summit include: data layout changes for GPU acceleration and CPU vectorization, improving
GPU offload efficiency, increasing performance with PAMI support in Charm++, improving efficiency
of FFT calculations, improving load balancing, enabling better CPU vectorization and cache
performance, and providing an alternative thermostat through stochastic velocity rescaling. We also
present performance scaling results on early Newell systems.

1. Introduction

Structural biology simulation presents two challenges. The first,
driven by the revolution in cryo-electron microscopy and other
single-molecule imaging methods, is the increasing scale of the
biomolecular aggregates that can be resolved in sufficient
atomic detail to enable simulation. For a fixed simulation rate,
computational requirements scale with the number of atoms
simulated. Petascale machines such as NCSA Blue Waters and
Oak Ridge Titan have been used for simulations of up to 200
million atoms [1], including studies of the HIV virus capsid, the
photosynthetic chromatophore, and the influenza viral coat.
Simulations running on Summit will encompass up to two
billion atoms while also achieving faster simulation rates than
Titan.

The second challenge is the long timescales of many
biomolecular processes, many requiring structural
rearrangements or other rare events that would take milliseconds
or longer to observe in a single molecular dynamics trajectory.
To address this challenge, Summit enables the simulation of
thousands of replicas of a smaller system, and NAMD is
equipped with various methodologies for exchanging
temperatures or a variety of steering biases among replicas to
statistically sample very long time scales [2]. Depending on the
size of the system, NAMD can make effective use of Summit by
simulating one replica per Volta GPU (six replicas per node),
two replicas per node (one replica for every three Volta GPUs),
or one replica per node (one replica for every six Volta GPUs).
Due to the lack of inter-node communication, each replica is
able to run as a single NAMD process with a higher simulation
rate than large, multi-node simulations. Multi-node replicas are
also supported if required.

2. Background

Summit Architecture

Summit is a supercomputer with over 200 Petaflops of double
precision theoretical performance [3]. Summit is composed of
4,600 powerful IBM AC922 compute nodes, each containing
two POWER9 CPUs and six Nvidia Volta V100 GPUs. The
POWER9 CPUs have 22 cores running at 3.07 GHz. In
operation, Summit reserves one core per CPU socket for
operating system use to reduce system noise. The remaining 42
CPU cores on each node are made available for applications.
Each CPU core supports up to four hardware threads (SMT4),
with pairs of threads sharing L2 and L3 cache regions [4]. The
six NVIDIA Tesla V100 GPUs in each node provide a
theoretical double-precision arithmetic capability of
approximately 40 TeraFLOPS. Dual NVLink 2.0 connections
between CPUs and GPUs provides a 25GB/s transfer rate in
each direction on each NVLink, yielding an aggregate
bidirectional bandwidth of 100GB/s.

Summit has a data network with a non-blocking fat tree
topology with a node injection bandwidth of 23 GB/s. Compute
nodes have access to high performance storage systems through
GPFS, and each node also contains an on-board 1.6TB of
NVMe flash storage for use as a so-called burst buffer, to
facilitate node-local storage of transient data, e.g., for
checkpoint/restart images, and in-situ visualization and analysis.

IBM J. Res. & Dev.Acun et al.: Scalable Molecular Dynamics with NAMD on the Summit System Page | 2

NAMD
NAMD, recipient of a 2002 Gordon Bell Award and a 2012
Sidney Fernbach Award, is a parallel molecular dynamics code
designed for high-performance simulation of large biomolecular
systems [5]. NAMD scales to hundreds of cores for typical
simulations and beyond 500,000 cores for the largest
simulations. In 2007, NAMD was the first full-featured
molecular dynamics application to support GPU acceleration
using CUDA [6], [7].

NAMD offers a wide range of traditional molecular dynamics
simulation methodologies, including fast methods for long-
range electrostatics, with support for the CHARMM, AMBER,
and GROMOS force fields. NAMD also provides many
advanced features, including support for the Drude polarizable
force field in CHARMM, a variety of free energy perturbation
methods (with GPU compatibility in all conformational free
energy methods and ongoing development for GPU support in
alchemical free energy methods), a variety of replica exchange
molecular dynamics methodologies, and the Colvars collective
variables package. The Tcl scripting interface offered by
NAMD enables customization opportunities for extending the
underlying methods. The source code and binary builds are

distributed free of charge, and binary builds are actively
maintained at the NSF supercomputing centers.

Charm++
NAMD is built upon the Charm++ parallel programming
framework, which is a C++ based model with data-driven
objects [8]. Charm++ provides NAMD performance and
portability across many architectures.

The Charm++ adaptive runtime system (RTS) has three main
properties: Over-decomposition, asynchronous message driven
execution, and migratability. Over-decomposition means the
application data is divided into many objects, typically more
than the number of processors. In the case of NAMD, the atoms
are specially decomposed into patch objects together with
compute objects that are used to calculate the forces between the
patches. The Charm++ runtime system controls the mapping of
these objects to the processors.

Asynchronous message driven execution means the program
execution happens through message calls on objects that may be
located on local or remote processors. Asynchronous execution
can help reduce the communication overhead that can degrade
the performance of applications. The sender and receiver does
not block execution after sending a message or when waiting for
a message. It can execute other messages available in the queue,
therefore overlapping the communication with computation. The

Figure 1: Summit Architecture.

IBM J. Res. & Dev.Acun et al.: Scalable Molecular Dynamics with NAMD on the Summit System Page | 3

messages can also be assigned a priority level based on the
application. For NAMD, PME messages that drive the FFT
computation are more critical than the non-bonded compute
messages coming from the patches. Therefore, PME messages
are given higher priority.

The third property, migratability, is the ability of the runtime
system to move objects from processor to processor. The
runtime can redistribute the objects dynamically to achieve load
balance.

NAMD not only benefits from these attributes of Charm++ but
also the portable high-performance communication layer of
Charm++. Section 3, gives more details on the PAMI-based
communication layer that is used on Summit.

Parallel structure of NAMD: NAMD was one of the early
pioneers of the idea of hybrid spatial-and-force decomposition
[9]: the atoms are partitioned into cubes, typically of size
slightly larger than the cutoff distance. Separately, a set of force
computation objects are created, one for each pair of cubes that
are within the cutoff distance from each other. These objects
are assigned to processors using the Charm++ load-balancing
framework. In addition, there are separate sets of objects that
implement bonded force calculations, and an FFT-based
particle-mesh Ewald (PME) algorithm. This decomposition is
depicted in Figure 2. CUDA force calculation is done in single
precision. Bonded forces are accumulated as 64-bit fixed point,
while nonbonded forces are accumulated in single precision.

Figure 2: Parallel decomposition in NAMD (Figure adapted from [14]).

3. Performance Optimizations

In this section, we describe the performance optimizations
implemented on NAMD and Charm++ in order to scale NAMD
efficiently on the Summit architecture. These techniques
include: data layout changes for GPU acceleration and CPU

vectorization, improving GPU offload efficiency, PAMI-based
communication layer, optimizing PME/FFT, load balancing,
vectorization of NAMD routines on POWER9, and stochastic
velocity rescaling. All of the techniques are included in the
NAMD 2.13 release.

Data Layout Changes for GPU Acceleration and
CPU Vectorization
GPUs and state-of-the-art CPUs such as POWER9 incorporate
SIMD architecture concepts and/or vector instructions to
improve arithmetic throughput at a low cost in terms of
microprocessor logic and die area. Vector instructions enable
CPUs to process multiple data items concurrently, performing
the same instruction on each data item. GPUs rely very heavily
on SIMD architecture, collectively employing thousands of
ALUs that are organized into large groups called warps or
workgroups, roughly similar to a CPU vector but typically much
larger. To exploit SIMD hardware architectures efficiently, data
items to be processed must be organized in consecutive memory
locations in a so-called structure-of-arrays (SOA) layout.
NAMD has been developed in C++ following conventional best
practices. This has led to object-oriented data structures and
memory layouts that are easy to work with and that lend
themselves to customization and extension, however these same
data structures and memory layouts inhibit or reduce the
efficacy of CPU vector instructions. The prevalent memory
layout pattern that has resulted from these C++ objects is what
is known as array-of-structures (AOS) layout, which is ill-suited
to vectorization because consecutive memory storage locations
refer to different object member variables. By redesigning
performance-critical NAMD data structures for SOA layout,
advanced C++ compilers such as IBM XL C/C++ can often
vectorize loops automatically, and host-side data structures are
better prepared for replication onto or access from GPU
accelerators.

Improving GPU offload efficiency

NAMD was one of the very earliest production HPC codes to
adopt GPU computing techniques. Prior to being accelerated by
GPUs, a rough breakdown of the amount of computational
effort spent in different parts of the calculation is shown in
Table 1.

Table 1: NAMD breakdown of the computational effort on CPU

Non-bonded forces, short-range cutoff 90%

Long-range electrostatics, gridded (e.g. PME) 5%

Bonded forces (bonds, angles, etc.) 2%

Correction for excluded interactions 2%

Integration, constraints, thermostat, barostat 1%

IBM J. Res. & Dev.Acun et al.: Scalable Molecular Dynamics with NAMD on the Summit System Page | 4

The most computation intensive and time consuming parts of
NAMD were the first to be accelerated by GPUs. Over the
course of the last several years, all force calculations have been
implemented using CUDA on GPU-accelerated platforms [6],
[7], [10], with bonded force calculations being the most recently
implemented, and which appear in NAMD 2.13 for use on
Summit.

As the CUDA programming model has evolved to allow greater
flexibility and sophistication for collective operations and
synchronizations among groupings of threads, the underlying
GPU hardware has also evolved, requiring algorithms that use
so-called warp-synchronous programming techniques be
adapted to new CUDA APIs. To make previously developed
NAMD force kernels work properly on the Tesla V100 GPUs
on Summit, we have adapted them to a new set of warp-level
intrinsic APIs that additionally require the GPU active thread
lane mask as an input parameter to ensure the correctness of
warp-synchronous calculations.

When compared with previous HPC systems, we have found
that the balance between CPU and GPU computation power has
shifted with the new Tesla V100 GPU, and particularly in the
dense six-GPU node configuration on Summit. The overall
NAMD performance is heavily bounded by CPU performance
while the GPU utilization is below 15%. From profiling, we can
see that the CPU time between two consecutive non-bonded
force GPU kernels are significantly longer than the execution of
the force kernel itself. This excess CPU activity is associated
with what was originally about 1% of the overall work,
responsible for the integration of atomic coordinates, rigid bond
constraints, thermostat, and barostat controls. We are in the
process of overcoming this CPU calculation bottleneck by
offloading these additional work phases to the GPUs.

We have added a new SOA layout for NAMD’s patch data,
while keeping the original AOS layout for communication
between nodes. The new SOA data structure uses a single
contiguous buffer to store all atomic coordinates and integration
parameters, with arrays padded to 32 elements for coalesced
GPU memory access.

The prototype GPU integrator introduces minimal change to the
existing code. During the GPU integration, each patch, running
in its own user-level thread, copies its SOA data array to the
corresponding GPU global memory before any GPU kernel
launch. The SOA data array is copied back to the CPU memory
before scheduling the force calculation or starting the load
balancing and output phase. During the reduction phase, warp
intrinsic operations are used for the reduction of the patch on a
GPU before sending out via Charm++ for global reduction.

Currently the drawback for this prototype is that CUDA kernel
launch overhead and memory copy overhead is still dominating
the integration computation because four memory transfers and
two kernel launches are performed at every step for every patch.

To further reduce the launch overheads, we are working on a
patch aggregation approach which will pack the entire SOA
buffer for all patches on a process before copying to GPU and
kernel launch.

PAMI
IBM PAMI (Parallel Active Messaging Interface) is a low-level
communication library that is provided on Summit
[11]. Charm++ implements high performance communication
using vendor-provided hardware-native communication APIs,
unlike many other PGAS languages. These vendor-specific
hardware-native communication layers usually outperform the
MPI-based communication layer of Charm++. Charm++
initially implemented a PAMI-based communication layer for
Blue Gene Systems [12]. The same implementation is still being
used on Summit with minor enhancements. The performance
plot below shows the performance benefit (reduction in time per
step) associated with the use of the Charm++ PAMI
communication layer rather than MPI. On Summit, the
performance gain provided by the Charm++ PAMI layer is
greatest for large node counts.
Figure 3: PAMI-SMP versus MPI-SMP performance.

Optimizing PME/FFT
Long-range electrostatic forces often drive conformational
changes in biomolecular systems and so must be accurately
represented. The particle-mesh Ewald (PME) method is used by
NAMD to efficiently approximate the electrostatic interactions
between all pairs of atoms, the number of which grows
quadratically with the size of the system, as well as their infinite
images in the periodic simulation cell. PME makes use of a fast
approximation method important for all but the smallest system
sizes. The challenge with PME for parallel scalability is that it
requires 3D FFTs be calculated, which entails a many-to-many
communication pattern between processors. Although a 3D
FFT decomposes into a collection of 1D FFTs across each
coordinate axis, the FFT itself is challenging to parallelize
effectively, since there is very little calculation required relative
to the communication involved, so scales poorly, particularly
over multiple GPUs.

IBM J. Res. & Dev.Acun et al.: Scalable Molecular Dynamics with NAMD on the Summit System Page | 5

NAMD takes two approaches to optimizing the FFT-based PME
calculation. For system sizes that are small enough to fit within
a single node, the entire PME/FFT calculation is offloaded to a
single GPU, making use of the cuFFT library provided by
CUDA. This approach is particularly effective when employing
replica exchange molecular dynamics for effectively using the
power of Summit to run thousands of simultaneous simulations.
For larger system sizes that span multiple nodes, NAMD
employs PME every three steps and reduces the FFT bandwidth
for the gridded part of the calculation by doubling the standard
grid spacing, thereby reducing the entire 3D grid size by a factor
of 8, while increasing the order of interpolation from 4th order
to 8th order to maintain the same accuracy. This re-weighting
of the work allows NAMD to benefit from offloading to the
GPU the localized grid operations involving the charge
spreading from atoms to grid points and the interpolation of grid
potentials to atomic forces.

Load Balancing
During the investigation of NAMD performance, we found that
parts of the CPU workload are not well balanced across
different PEs. In the bonded force calculation routine, CPU
threads copy data from individual buffers, corresponding to each
bonded force type, into a single contiguous memory. This
ensures that the CPU-to-GPU data transfers achieve higher
bandwidth.

In SMP execution mode, the Charm++ CkLoop function is used
to dynamically parallelize the copy of different types of bonds
using multiple PEs. However, the “exclusion” bonds (which
correct for bonded atoms that are intended to be excluded from
non-bonded interaction) are always processed by only one PE,
due to a serial algorithm for separating modified and non-
modified types of van der Waals interaction. A given simulation
might have many more exclusion bonds than any other type,
causing the PE that is performing the copying of exclusion
bonds to become a bottleneck. To overcome this issue, we
parallelized the separation of modified and non-modified
exclusion bonds and used CkLoop to copy these bonds into a
single buffer in parallel. After exclusion bonds are done, the
other five types of bonds can be well balanced during the copy.
As a result, the overall run time is improved by about 1% after
this balancing.

Vectorization of NAMD routines on POWER9
As described above, one of the key requirements to take
advantage of CPU vectorization is that performance-critical data
structures must be adapted to an SOA layout so that data
associated with independent work units to be vectorized are
stored contiguously in memory, to facilitate loads and stores to
and from CPU vector registers. We expect to adapt all of the
remaining performance-critical loops for execution entirely on
the GPU, but implementations of new simulation methods,
particularly those developed by external researchers, will likely
always be implemented on the CPU initially. It is therefore
desirable that such methods are able to benefit from CPU
vectorization so that they do not negatively impact overall

NAMD performance. As a particularly surprising example,
early detailed benchmarking of NAMD performance on Summit
showed that among several of the algorithms that had not yet
been migrated to the GPU, random number generators that are
associated with the Langevin thermostat were consuming a
significant fraction (15%) of the CPU runtime, which was
already limiting the efficacy of GPU acceleration and overall
NAMD performance. The Gaussian random number
distribution required by the Langevin thermostat algorithm
involves costly floating point arithmetic that is aptly suited to
vectorization.

Stochastic Velocity Rescaling
Significant performance gains are sometimes available through
more efficient algorithms. The Langevin thermostat used for
simulating at a desired temperature requires for each time step
generating up to 3N Gaussian distributed random numbers (up
to three per atom) and an additional calculation of the rigid bond
constraints, both of which are substantial fractions of the overall
cost of performing integration on the CPU. An alternative
approach, the stochastic velocity rescaling thermostat of Bussi,
Donadio, and Parrinello [13], gives NAMD as much as a 20%
improvement in performance over the Langevin thermostat.
Stochastic velocity rescaling is a relatively simple correction to
the classic Berendsen thermostat to achieve true sampling of the
canonical distribution (as does Langevin), but requires as few as
two Gaussian distributed random numbers be calculated every
twenty time steps. Furthermore, the rescaling preserves
holonomic constraints so that no additional calculation of the
rigid bond constraints are required. Unlike the Langevin
thermostat, which requires no additional communication, the
stochastic velocity rescaling thermostat does require a reduction
operation to determine the temperature of the system followed
by a broadcast of the new scaling coefficient, the calculation of
which requires the two Gaussian distributed random numbers.
However, the newly introduced communication is required no
more frequently than every twenty time steps and can easily be
piggybacked on other communication already being performed
by NAMD.

4. Performance Results

In this section, we show preliminary results from benchmarking
NAMD on Summit. Note that at the time these results were
collected, Summit did not have final versions of its software
stack and was still undergoing development and testing.

In order to benchmark NAMD performance for large
simulations, we use freely distributable synthetic benchmarks by
replicating the 1.06M atom STMV benchmark (satellite tobacco
mosaic virus - the first full virus simulation performed with
NAMD in 2006). Two benchmarks we show in this section
were formed by tiling the 216.832 A cubic cell: a 5x2x2 system
of 21 million atoms and a 7x6x5 system of 224 million atoms.
The benchmarks use rigid water and bonds to hydrogens to
enable a 2 fs time step and use a 12 A cutoff distance with PME
every three steps using a 2 A grid and 8th order interpolation.

IBM J. Res. & Dev.Acun et al.: Scalable Molecular Dynamics with NAMD on the Summit System Page | 6

Pressure control with a relaxed reduction-broadcast barrier is
enabled to avoid global synchronization [14].

Figure 4 shows strong scaling of NAMD on the quarter of the
Summit system. GPUs on Summit provides about 8x
performance compared to CPU only runs. The 21M atom
simulation achieves about 128 nanoseconds per day, and the
224M atom simulation achieves close to 32 nanoseconds per
day performance. In these early runs on Summit, SMT2 and
SMT4 have not shown any performance benefit, therefore we
use SMT1. Particular sections of the code that might benefit
from SMT need to be studied in detail on why SMT has not
provided better performance. Figure 5 shows that stochastic
velocity rescaling improves performance about 10% compared
to Langevin damping as discussed in the previous section.
Average performance is further improved over original results
by using a special “bsub” job submission flag to isolate the
GPFS file system daemon from NAMD CPU threads by pinning
it to a CPU core reserved for use by system software and the
operating system itself. Trajectory output is written only at the
end of the simulation once, therefore it is not included in the
performance results.

Figure 4: NAMD strong scaling performance on Summit using up to
1K nodes. The upper and lower lines of each line type indicate results
for the 21M atom and 224M atom simulations, respectively.

Figure 5: NAMD strong scaling results comparing stochastic velocity
rescaling to Langevin damping.

5. Challenges and Ongoing Work

The single most important performance enhancement is to
offload the integrator and related routines to the GPU. The
Volta generation of GPU is now so fast that NAMD is held back
by any computational work remaining on the CPU that scales
with the number of atoms, effectively a modern-day version of
Amdahl’s Law. Depending on the simulation parameters, the
floating point operations required for the CPU-based integrator
can be less than 1% of the total computational work.
Furthermore, NAMD patches were not implemented to be
migratable units of work and the force calculation performed on
GPUs requires little enough time as to render the measurement-
based Charm++ load balancing ineffective. Offloading the
integrator will help to restore the expected balance of
computational work. Adoption of the fundamental NAMD
atomic data structures to SOA form will need to proceed in pace
with the integrator GPU offloading.

Although much of the integrator work is exceedingly data
parallel, there are other parts of the integrator algorithms that are
more difficult to implement on the GPU, in particular the rigid
bond constraint calculation and the pressure reduction
accumulations over so-called hydrogen groups. The rigid bond
constraint implementation in NAMD, using successive bond
relaxation, does not expose sufficient data parallelism desired
for GPU implementation. Alternative algorithms that provide
better data parallelism, such as matrix-SHAKE [14] and P-
LINCS [15], are currently under investigation.

More broadly, NAMD, and biomolecular simulation in general,
faces substantial challenges arising from the direction
supercomputer architectures are going and strong-scaling needs
of biophysicists. Each simulation time step is one or two
femtoseconds, and so billions of steps are needed to simulate
trajectories of microseconds duration. So, it is clear that we
need to simulate hundreds of nanoseconds per day. Assuming a
femtosecond timestep, 100 ns/day requires a timestep to be

IBM J. Res. & Dev.Acun et al.: Scalable Molecular Dynamics with NAMD on the Summit System Page | 7

completed in less than a millisecond. With the planned advances
in NAMD, this will be achieved for single-node runs easily. But
for larger molecular systems, one has to use multiple nodes.
Typical simulations of interest range from 100,000 to 10-million
atom systems, with a few heroic simulations over hundred
million atoms. Indeed, in the past, NAMD has demonstrated
that it can complete a timestep in less than 250 microseconds on
the BlueGene/Q machine simulating 92,000 atoms using 16,000
cores. This machine had slow low-power cores coupled with
relatively fast network. However, as individual compute nodes
get fatter, often without corresponding increase in across-node
bandwidth, with relatively high kernel startup overheads, it will
be challenging to meet and exceed these strong scaling targets.
In terms of Summit itself, one can restate the challenge
concretely: to obtain good scaling for one million atoms
simulated on a few hundred nodes. One of the key techniques
for achieving the strong scaling in the past was adaptive
communication-computation overlap, which depended on firing
small force calculation computations, taking tens of
microseconds, as soon as their data was available. It will
require a combination of provisioning of higher bandwidth, low-
overhead communication of short messages, and ability to fire
short kernels on subsets of GPGPU cores under program control
and with low overhead, along with significant software
experimentation and modification, to break through these strong
scaling challenges in the future.

Fault tolerance is another challenge in large-scale systems.
Charm++ provides various fault tolerance strategies to handle
hard and soft errors: checkpoint/restart, message logging,
proactive evacuation and targeted protection for silent data
corruption [14]. Nevertheless NAMD uses its own periodic
disk-based checkpointing of simulation state, which allows a
simulation to be continued after faults. Particularly when the job
schedulers start allowing applications to recover from failures
and continue running, NAMD would benefit from Charm++’s
fault tolerance strategies.

6. Conclusion

NAMD is one of the most scalable and impactful molecular
dynamics applications. NAMD is supported in many different
architectures and major supercomputers in the U.S., including
very recently on Summit. As one of the ORNL’s Center for
Accelerated Application Readiness (CAAR) projects,
performance optimization of NAMD on Summit’s CPU-GPU
architecture continues. In this paper, we have shown some of the
optimizations implemented and preliminary results from scaling
NAMD on a quarter of the full Summit system, and we have
also identified immediate challenges.

7. Acknowledgment

First and foremost, we acknowledge the recent passing of two
members of the NAMD team: Prof. Klaus Schulten established
the Theoretical and Computational Biophysics Group (TCBG)
and led the collaborative NIH Center for Macromolecular
Modeling and Bioinformatics, the home of NAMD, from 1992

until his passing in late 2016; and Antti-Pekka Hynninen
contributed to GPU kernel development in NAMD through the
IBM/NVIDIA Center of Excellence program at Oak Ridge
National Laboratory and then at NVIDIA until his passing in
2017. We thank Sameer Kumar for his help in optimizing
NAMD on IBM systems. We thank Brian Radak of the TCBG
for his implementation of stochastic velocity rescaling. Over
the years, many other students and staff of the Parallel
Programming Laboratory and the TCBG at the University of
Illinois have contributed to NAMD software to make this
project a success.

This work was supported by the National Institutes of Health
grant NIH P41-GM104601 “Center for Macromolecular
Modeling and Bioinformatics.” This research is part of the Blue
Waters sustained-petascale computing project, which is
supported by the National Science Foundation (awards OCI-
0725070 and ACI-1238993) and the state of Illinois. Blue
Waters is a joint effort of the University of Illinois at Urbana-
Champaign and its National Center for Supercomputing
Applications. This research used resources of the Oak Ridge
Leadership Computing Facility at the Oak Ridge National
Laboratory, which is supported by the Office of Science of the
U.S. Department of Energy under Contract No. DE-AC05-
00OR22725. We thank Tjerk Straatsma for his assistance as the
point of contact for our Center for Accelerated Application
Readiness project.

8. References

1. J. C. Phillips, Y. Sun, N. Jain, E. J. Bohm, and L. V. Kalé,

“Mapping to Irregular Torus Topologies and Other Techniques for
Petascale Biomolecular Simulation.,” SC ... conference
proceedings. SC (Conference: Supercomputing), vol. 2014, pp.
81–91, 2012.

2. W. Jiang et al., “Generalized Scalable Multiple Copy Algorithms
for Molecular Dynamics Simulations in NAMD.,” Computer
physics communications, vol. 185, no. 3, pp. 908–916.

3. “Summit,” https: //www.olcf.ornl.gov/olcf-resources/compute-
systems/summit/. 2016.

4. S. K. Sadasivam, B. W. Thompto, R. Kalla, and W. J. Starke,
“IBM Power9 Processor Architecture,” IEEE Micro, vol. 37, no.
2.

5. J. C. Phillips et al., “Scalable molecular dynamics with NAMD.,”
Journal of computational chemistry, vol. 26, no. 16, pp. 1781–
1802.

6. J. E. Stone, J. C. Phillips, P. L. Freddolino, D. J. Hardy, L. G.
Trabuco, and K. Schulten, “Accelerating molecular modeling
applications with graphics processors,” J. Comput. Chem., vol. 28,
no. 16, pp. 2618–2640.

7. J. C. Phillips, J. E. Stone, and K. Schulten, “Adapting a Message-
Driven Parallel Application to GPU-Accelerated Clusters,” SC
’08: Proceedings of the 2008 ACM/IEEE Conference on
Supercomputing. Austin, Texas, 01-Nov-2008.

8. B. Acun et al., “Parallel Programming with Migratable Objects:
Charm++ in Practice,” in SC14: International Conference for
High Performance Computing, Networking, Storage and Analysis,
2014.

9. L. Kalé et al., “NAMD2: Greater Scalability for Parallel
Molecular Dynamics,” Journal of Computational Physics, vol.
151, pp. 283–312, 1996.

10. J. E. Stone, A.-P. Hynninen, J. C. Phillips, and K. Schulten, “Early

IBM J. Res. & Dev.Acun et al.: Scalable Molecular Dynamics with NAMD on the Summit System Page | 8

Experiences Porting the NAMD and VMD Molecular Simulation
and Analysis Software to GPU-Accelerated OpenPOWER
Platforms.,” High performance computing : 31st International
Conference, ISC High Performance 2016, Frankfurt, Germany,
June 19-23, 2016, Proceedings. ISC High Performance
(Conference) (31st : 2016 : Frankfurt, Germany), vol. 9945, pp.
188–206, Jun. 2016.

11. S. Kumar et al., “PAMI: A parallel active message interface for
the BlueGene/Q supercomputer,” Proceedings of 26th IEEE
International Parallel and Distributed Processing Symposium
(IPDPS). Shanghai, China, 01-May-2012.

12. S. Kumar, Y. Sun, and L. V. Kale, “Acceleration of an
Asynchronous Message Driven Programming Paradigm on IBM
Blue Gene/Q,” in 2013 IEEE 27th International Symposium on
Parallel and Distributed Processing, 2013.

13. G. Bussi, D. Donadio, and M. Parrinello, “Canonical sampling
through velocity rescaling,” The Journal of Chemical Physics, vol.
126, no. 1, Jan. 2007.

14. B. Acun, R. Buch, L. V. Kale, J. Phillips, “NAMD: Scalable
Molecular Dynamics Based on the Charm++ Parallel Runtime
System,” Exascale Scientific Applications: Scalability and
Performance Portability. Chapman and Hall/CRC, 2017.

15. R. Elber, A. P. Ruymgaart, and B. Hess, “SHAKE
parallelization.,” The European physical journal. Special topics,
vol. 200, no. 1, pp. 211–223, Nov. 2011.

16. B. Hess, “P-LINCS: A parallel linear constraint solver for
molecular simulation,” Journal of Chemical Theory and
Computation, vol. 4, no. 1, pp. 116–122.

Bilge Acun IBM Research Division, IBM T. J. Watson Research
Center, Yorktown Heights, NY, 10598, USA
(Bilge.Acun2@ibm.com). Dr. Acun received a B.S. degree in
2012 from the Department of Computer Science at Bilkent
University in Ankara, Turkey and a Ph.D. in 2017 from the
Department of Computer Science at University of Illinois at
Urbana-Champaign in Illinois, USA. Her dissertation focused
on improving the energy efficiency of the large scale systems.
She joined IBM as a Research Staff Member after completing
her Ph.D. Her research interests include improving the
performance of massively parallel applications, parallel
runtimes, energy efficiency and variability in large scale
systems.

David J. Hardy Theoretical and Computational Biophysics
Group, Beckman Institute, University of Illinois at Urbana-
Champaign, Urbana, IL 61801, USA (dhardy@ks.uiuc.edu).
Dr. Hardy received a B.S. in Mathematics and Computer
Science in 1994 from Truman State University, an M.S. in
Computer Science in 1997 from the Missouri University of
Science and Technology, and a Ph.D. in Computer Science in
2006 from the University of Illinois at Urbana-Champaign. He
develops the NAMD parallel molecular dynamics application.
His research interests include fast methods for calculating
electrostatics, numerical methods for time integration, and GPU
computing.

Laxmikant V. Kale Department of Computer Science,
University of Illinois at Urbana-Champaign, Urbana, IL 61801,
USA (kale@illinois.edu). Prof. Kale received the B.Tech degree
in Electronics Engineering from Benares Hindu University,
Varanasi, India in 1977, and a M.E. degree in Computer Science
from Indian Institute of Science in Bangalore, India, in 1979. He

received a Ph.D. in computer science in from State University of
New York, Stony Brook, in 1985. He joined the faculty of the
University of Illinois at Urbana-Champaign in 1985, where he is
now the Paul and Cynthia Saylor Professor of Computer Science
and the director of the Parallel Programming Laboratory. Prof.
Kale has been working on various aspects of parallel computing,
with a focus on enhancing performance and productivity via
adaptive runtime systems, and with the belief that only
interdisciplinary research involving multiple CSE and other
applications can bring back well-honed abstractions into
Computer Science that will have a long-term impact on the
state-of-art. His collaborations include the widely used Gordon-
Bell award winning (SC 2002) biomolecular simulation program
NAMD, computational cosmology (ChaNGa), and quantum
chemistry (OpenAtom). He takes pride in his group's success in
distributing and supporting software embodying the research
ideas, including Charm++, and Adaptive MPI. Prof. Kale is a
fellow of the ACM and IEEE, and a co-winner of the 2012 IEEE
Sidney Fernbach award.

Ke Li Nvidia Corporation, Santa Clara, CA 95051, USA
(kel@nvidia.com). Dr. Li received a B.S. degree in Electrical
Engineering in 2011 from Fudan University, China and a Ph.D.
degree in Electrical Engineering in 2017 from Washington
University in St. Louis, USA. His dissertation focused on
enabling novel PET (Positron Emission Tomography) systems
by using GPU parallel computing to achieve near real time
reconstruction. He joined Nvidia in 2017 as a senior developer
technology engineer. He is interested in high performance
computing applications for molecular dynamics, medical
imaging with deep learning focus.

James C. Phillips NCSA Blue Waters Project Office, University
of Illinois at Urbana-Champaign, Urbana IL 61801, USA
(jcphill@illinois.edu). Dr. Phillips received a B.S. in Physics
and Mathematics in 1993 from Marquette University in
Milwaukee, WI, and an M.S. in 1994 and a Ph.D. in 2002, both
in Physics, from the University of Illinois at Urbana-
Champaign. From 1999-2017 he was the lead NAMD developer
at the Theoretical and Computational Biophysics Group at the
Beckman Institute, University of Illinois at Urbana-Champaign.
During this time Dr. Phillips received a 2002 Gordon Bell
Award and NAMD PIs Klaus Schulten and Laxmikant Kale
shared the 2012 IEEE Sidney Fernbach Award recognizing the
contributions of NAMD to high performance computing. Dr.
Phillips is now the quality assurance lead in the Blue Waters
Project Office of the National Center for Supercomputing
Applications, where he is working to ensure the scientific
productivity of the next several generations of supercomputers.

John E. Stone Theoretical and Computational Biophysics
Group, Beckman Institute, University of Illinois at Urbana-
Champaign, Urbana, IL 61801, USA (johns@ks.uiuc.edu). Mr.
Stone received B.S. and M.S. degrees in Computer Science from
the Missouri University of Science and Technology in 1994, and
1998. Mr. Stone is the lead developer of VMD, a high
performance molecular visualization tool used by researchers all
over the world. His research interests include molecular
visualization, GPU computing, parallel computing, ray tracing,

IBM J. Res. & Dev.Acun et al.: Scalable Molecular Dynamics with NAMD on the Summit System Page | 9

haptics, virtual environments, and immersive visualization. Mr.
Stone was inducted as an NVIDIA CUDA Fellow in 2010. In
2015 Mr. Stone joined the Khronos Group Advisory Panel for
the Vulkan Graphics API. In 2017 and 2018 Mr. Stone was

awarded as an IBM Champion for Power, for innovative thought
leadership in the technical community. Mr. Stone is a member
of ACM and IEEE.

