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NAMD (NAnoscale Molecular Dynamics) is a parallel molecular dynamics application that has been 
used to make breakthroughs in understanding the structure and dynamics of large biomolecular 
complexes, such as viruses like HIV and various types of influenza. State-of-the-art biomolecular 
simulations often require integration of billions of timesteps, computing all interatomic forces for each 
femtosecond timestep. Molecular dynamics simulation of large biomolecular systems and long-
timescale biological phenomena requires tremendous computing power. NAMD harnesses the power 
of thousands of heterogeneous processors to meet this demand. In this paper, we present algorithm 
improvements and performance optimizations that enable NAMD to achieve high performance on the 
IBM Newell platform (with POWER9 processors and NVIDIA Volta V100 GPUs) which underpins the 
Oak Ridge National Laboratory's Summit and Lawrence Livermore National Laboratory's Sierra 
supercomputers. The Top-500 supercomputers June 2018 list shows Summit at the number one spot 
with 187 Petaflop/s peak performance and Sierra third with 119 Petaflop/s. Optimizations for NAMD 
on Summit include: data layout changes for GPU acceleration and CPU vectorization, improving 
GPU offload efficiency, increasing performance with PAMI support in Charm++, improving efficiency 
of FFT calculations, improving load balancing, enabling better CPU vectorization and cache 
performance, and providing an alternative thermostat through stochastic velocity rescaling. We also 
present performance scaling results on early Newell systems. 

 
1. Introduction 
 
Structural biology simulation presents two challenges. The first, 
driven by the revolution in cryo-electron microscopy and other 
single-molecule imaging methods, is the increasing scale of the 
biomolecular aggregates that can be resolved in sufficient 
atomic detail to enable simulation. For a fixed simulation rate, 
computational requirements scale with the number of atoms 
simulated. Petascale machines such as NCSA Blue Waters and 
Oak Ridge Titan have been used for simulations of up to 200 
million atoms [1], including studies of the HIV virus capsid, the 
photosynthetic chromatophore, and the influenza viral coat. 
Simulations running on Summit will encompass up to two 
billion atoms while also achieving faster simulation rates than 
Titan. 
 
The second challenge is the long timescales of many 
biomolecular processes, many requiring structural 
rearrangements or other rare events that would take milliseconds 
or longer to observe in a single molecular dynamics trajectory. 
To address this challenge, Summit enables the simulation of 
thousands of replicas of a smaller system, and NAMD is 
equipped with various methodologies for exchanging 
temperatures or a variety of steering biases among replicas to 
statistically sample very long time scales [2]. Depending on the 
size of the system, NAMD can make effective use of Summit by 
simulating one replica per Volta GPU (six replicas per node), 
two replicas per node (one replica for every three Volta GPUs), 
or one replica per node (one replica for every six Volta GPUs). 
Due to the lack of inter-node communication, each replica is 
able to run as a single NAMD process with a higher simulation 
rate than large, multi-node simulations. Multi-node replicas are 
also supported if required. 

 

2. Background 
 
Summit Architecture 

Summit is a supercomputer with over 200 Petaflops of double 
precision theoretical performance [3].  Summit is composed of 
4,600 powerful IBM AC922 compute nodes,  each containing 
two POWER9 CPUs and six Nvidia Volta V100 GPUs.  The 
POWER9 CPUs have 22 cores running at 3.07 GHz.  In 
operation, Summit reserves one core per CPU socket for 
operating system use to reduce system noise.  The remaining 42 
CPU cores on each node are made available for applications. 
Each CPU core supports up to four hardware threads (SMT4), 
with pairs of threads sharing L2 and L3 cache regions [4]. The 
six NVIDIA Tesla V100 GPUs in each node provide a 
theoretical double-precision arithmetic capability of 
approximately 40 TeraFLOPS. Dual NVLink 2.0 connections 
between CPUs and GPUs provides a 25GB/s transfer rate in 
each direction on each NVLink, yielding an aggregate 
bidirectional bandwidth of 100GB/s. 
 
Summit has a data network with a non-blocking fat tree 
topology with a node injection bandwidth of 23 GB/s.  Compute 
nodes have access to high performance storage systems through 
GPFS, and each node also contains an on-board 1.6TB of 
NVMe flash storage for use as a so-called burst buffer, to 
facilitate node-local storage of transient data, e.g., for 
checkpoint/restart images, and in-situ visualization and analysis. 
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NAMD 
NAMD, recipient of a 2002 Gordon Bell Award and a 2012 
Sidney Fernbach Award, is a parallel molecular dynamics code 
designed for high-performance simulation of large biomolecular 
systems [5].  NAMD scales to hundreds of cores for typical 
simulations and beyond 500,000 cores for the largest 
simulations.  In 2007, NAMD was the first full-featured 
molecular dynamics application to support GPU acceleration 
using CUDA [6], [7]. 

NAMD offers a wide range of traditional molecular dynamics 
simulation methodologies, including fast methods for long-
range electrostatics, with support for the CHARMM, AMBER, 
and GROMOS force fields.  NAMD also provides many 
advanced features, including support for the Drude polarizable 
force field in CHARMM, a variety of free energy perturbation 
methods (with GPU compatibility in all conformational free 
energy methods and ongoing development for GPU support in 
alchemical free energy methods), a variety of replica exchange 
molecular dynamics methodologies, and the Colvars collective 
variables package.  The Tcl scripting interface offered by 
NAMD enables customization opportunities for extending the 
underlying methods.  The source code and binary builds are 

distributed free of charge, and binary builds are actively 
maintained at the NSF supercomputing centers. 

 
Charm++ 
NAMD is built upon the Charm++ parallel programming 
framework, which is a C++ based model with data-driven 
objects [8]. Charm++ provides NAMD performance and 
portability across many architectures. 
 
The Charm++ adaptive runtime system (RTS) has three main 
properties: Over-decomposition, asynchronous message driven 
execution, and migratability.  Over-decomposition means the 
application data is divided into many objects, typically more 
than the number of processors. In the case of NAMD, the atoms 
are specially decomposed into patch objects together with 
compute objects that are used to calculate the forces between the 
patches. The Charm++ runtime system controls the mapping of 
these objects to the processors. 
 
Asynchronous message driven execution means the program 
execution happens through message calls on objects that may be 
located on local or remote processors. Asynchronous execution 
can help reduce the communication overhead that can degrade 
the performance of applications. The sender and receiver does 
not block execution after sending a message or when waiting for 
a message. It can execute other messages available in the queue, 
therefore overlapping the communication with computation. The 

Figure 1: Summit Architecture. 
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messages can also be assigned a priority level based on the 
application. For NAMD, PME messages that drive the FFT 
computation are more critical than the non-bonded compute 
messages coming from the patches. Therefore, PME messages 
are given higher priority. 
 
The third property, migratability, is the ability of the runtime 
system to move objects from processor to processor. The 
runtime can redistribute the objects dynamically to achieve load 
balance. 
 
NAMD not only benefits from these attributes of Charm++ but 
also the portable high-performance communication layer of 
Charm++. Section 3, gives more details on the PAMI-based 
communication layer that is used on Summit. 
 
Parallel structure of NAMD: NAMD was one of the early 
pioneers of the idea of hybrid spatial-and-force decomposition 
[9]: the atoms are partitioned into cubes, typically of size 
slightly larger than the cutoff distance. Separately, a set of force 
computation objects are created, one for each pair of cubes that 
are within the cutoff distance from each other.  These objects 
are assigned to processors using the Charm++ load-balancing 
framework. In addition, there are separate sets of objects that 
implement bonded force calculations, and an FFT-based 
particle-mesh Ewald (PME) algorithm. This decomposition is 
depicted in Figure 2. CUDA force calculation is done in single 
precision. Bonded forces are accumulated as 64-bit fixed point, 
while nonbonded forces are accumulated in single precision. 

 
Figure 2: Parallel decomposition in NAMD (Figure adapted from [14]). 

 
 

3. Performance Optimizations 
 
In this section, we describe the performance optimizations 
implemented on NAMD and Charm++ in order to scale NAMD 
efficiently on the Summit architecture. These techniques 
include: data layout changes for GPU acceleration and CPU 

vectorization, improving GPU offload efficiency, PAMI-based 
communication layer, optimizing PME/FFT, load balancing, 
vectorization of NAMD routines on POWER9, and stochastic 
velocity rescaling. All of the techniques are included in the 
NAMD 2.13 release. 

Data Layout Changes for GPU Acceleration and 
CPU Vectorization 
GPUs and state-of-the-art CPUs such as POWER9 incorporate 
SIMD architecture concepts and/or vector instructions to 
improve arithmetic throughput at a low cost in terms of 
microprocessor logic and die area.  Vector instructions enable 
CPUs to process multiple data items concurrently, performing 
the same instruction on each data item. GPUs rely very heavily 
on SIMD architecture, collectively employing thousands of 
ALUs that are organized into large groups called warps or 
workgroups, roughly similar to a CPU vector but typically much 
larger.  To exploit SIMD hardware architectures efficiently, data 
items to be processed must be organized in consecutive memory 
locations in a so-called structure-of-arrays (SOA) layout.  
NAMD has been developed in C++ following conventional best 
practices.  This has led to object-oriented data structures and 
memory layouts that are easy to work with and that lend 
themselves to customization and extension, however these same 
data structures and memory layouts inhibit or reduce the 
efficacy of CPU vector instructions.  The prevalent memory 
layout pattern that has resulted from these C++ objects is what 
is known as array-of-structures (AOS) layout, which is ill-suited 
to vectorization because consecutive memory storage locations 
refer to different object member variables.  By redesigning 
performance-critical NAMD data structures for SOA layout, 
advanced C++ compilers such as IBM XL C/C++ can often 
vectorize loops automatically, and host-side data structures are 
better prepared for replication onto or access from GPU 
accelerators. 

 

Improving GPU offload efficiency 

NAMD was one of the very earliest production HPC codes to 
adopt GPU computing techniques. Prior to being accelerated by 
GPUs, a rough breakdown of the amount of computational 
effort spent in different parts of the calculation is shown in 
Table 1. 
 
Table 1: NAMD breakdown of the computational effort on CPU 

 

Non-bonded forces, short-range cutoff 90% 

Long-range electrostatics, gridded (e.g. PME) 5% 

Bonded forces (bonds, angles, etc.) 2% 

Correction for excluded interactions 2% 

Integration, constraints, thermostat, barostat 1% 



IBM J. Res. & Dev.Acun et al.: Scalable Molecular Dynamics with NAMD on the Summit System Page | 4 

 

 

The most computation intensive and time consuming parts of 
NAMD were the first to be accelerated by GPUs.  Over the 
course of the last several years, all force calculations have been 
implemented using CUDA on GPU-accelerated platforms [6], 
[7], [10], with bonded force calculations being the most recently 
implemented, and which appear in NAMD 2.13 for use on 
Summit. 
 
As the CUDA programming model has evolved to allow greater 
flexibility and sophistication for collective operations and 
synchronizations among groupings of threads, the underlying 
GPU hardware has also evolved, requiring algorithms that use 
so-called warp-synchronous programming techniques be 
adapted to new CUDA APIs.  To make previously developed 
NAMD force kernels work properly on the Tesla V100 GPUs 
on Summit, we have adapted them to a new set of warp-level 
intrinsic APIs that additionally require the GPU active thread 
lane mask as an input parameter to ensure the correctness of 
warp-synchronous calculations. 
 
When compared with previous HPC systems, we have found 
that the balance between CPU and GPU computation power has 
shifted with the new Tesla V100 GPU, and particularly in the 
dense six-GPU node configuration on Summit.  The overall 
NAMD performance is heavily bounded by CPU performance 
while the GPU utilization is below 15%. From profiling, we can 
see that the CPU time between two consecutive non-bonded 
force GPU kernels are significantly longer than the execution of 
the force kernel itself.   This excess CPU activity is associated 
with what was originally about 1% of the overall work, 
responsible for the integration of atomic coordinates, rigid bond 
constraints, thermostat, and barostat controls. We are in the 
process of overcoming this CPU calculation bottleneck by 
offloading these additional work phases to the GPUs. 
 
We have added a new SOA layout for NAMD’s patch data, 
while keeping the original AOS layout for communication 
between nodes. The new SOA data structure uses a single 
contiguous buffer to store all atomic coordinates and integration 
parameters, with arrays padded to 32 elements for coalesced 
GPU memory access. 
 
The prototype GPU integrator introduces minimal change to the 
existing code. During the GPU integration, each patch, running 
in its own user-level thread, copies its SOA data array to the 
corresponding GPU global memory before any GPU kernel 
launch. The SOA data array is copied back to the CPU memory 
before scheduling the force calculation or starting the load 
balancing and output phase. During the reduction phase, warp 
intrinsic operations are used for the reduction of the patch on a 
GPU before sending out via Charm++ for global reduction. 

Currently the drawback for this prototype is that CUDA kernel 
launch overhead and memory copy overhead is still dominating 
the integration computation because four memory transfers and 
two kernel launches are performed at every step for every patch. 

To further reduce the launch overheads, we are working on a 
patch aggregation approach which will pack the entire SOA 
buffer for all patches on a process before copying to GPU and 
kernel launch.  
 

PAMI 
IBM PAMI (Parallel Active Messaging Interface) is a low-level 
communication library that is provided on Summit 
[11].  Charm++ implements high performance communication 
using vendor-provided hardware-native communication APIs, 
unlike many other PGAS languages. These vendor-specific 
hardware-native communication layers usually outperform the 
MPI-based communication layer of Charm++. Charm++ 
initially implemented a PAMI-based communication layer for 
Blue Gene Systems [12]. The same implementation is still being 
used on Summit with minor enhancements. The performance 
plot below shows the performance benefit (reduction in time per 
step) associated with the use of the Charm++ PAMI 
communication layer rather than MPI.  On Summit, the 
performance gain provided by the Charm++ PAMI layer is 
greatest for large node counts. 
Figure 3: PAMI-SMP versus MPI-SMP performance. 

 
 
Optimizing PME/FFT 
Long-range electrostatic forces often drive conformational 
changes in biomolecular systems and so must be accurately 
represented.  The particle-mesh Ewald (PME) method is used by 
NAMD to efficiently approximate the electrostatic interactions 
between all pairs of atoms, the number of which grows 
quadratically with the size of the system, as well as their infinite 
images in the periodic simulation cell. PME makes use of a fast 
approximation method important for all but the smallest system 
sizes.  The challenge with PME for parallel scalability is that it 
requires 3D FFTs be calculated, which entails a many-to-many 
communication pattern between processors.  Although a 3D 
FFT decomposes into a collection of 1D FFTs across each 
coordinate axis, the FFT itself is challenging to parallelize 
effectively, since there is very little calculation required relative 
to the communication involved, so scales poorly, particularly 
over multiple GPUs. 
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NAMD takes two approaches to optimizing the FFT-based PME 
calculation.  For system sizes that are small enough to fit within 
a single node, the entire PME/FFT calculation is offloaded to a 
single GPU, making use of the cuFFT library provided by 
CUDA.  This approach is particularly effective when employing 
replica exchange molecular dynamics for effectively using the 
power of Summit to run thousands of simultaneous simulations.  
For larger system sizes that span multiple nodes, NAMD 
employs PME every three steps and reduces the FFT bandwidth 
for the gridded part of the calculation by doubling the standard 
grid spacing, thereby reducing the entire 3D grid size by a factor 
of 8, while increasing the order of interpolation from 4th order 
to 8th order to maintain the same accuracy.  This re-weighting 
of the work allows NAMD to benefit from offloading to the 
GPU the localized grid operations involving the charge 
spreading from atoms to grid points and the interpolation of grid 
potentials to atomic forces. 

 

Load Balancing 
During the investigation of NAMD performance, we found that 
parts of the CPU workload are not well balanced across 
different PEs. In the bonded force calculation routine, CPU 
threads copy data from individual buffers, corresponding to each 
bonded force type, into a single contiguous memory. This 
ensures that the CPU-to-GPU data transfers achieve higher 
bandwidth.   
 
In SMP execution mode, the Charm++ CkLoop function is used 
to dynamically parallelize the copy of different types of bonds 
using multiple PEs. However, the “exclusion” bonds (which 
correct for bonded atoms that are intended to be excluded from 
non-bonded interaction) are always processed by only one PE, 
due to a serial algorithm for separating modified and non-
modified types of van der Waals interaction. A given simulation 
might have many more exclusion bonds than any other type, 
causing the PE that is performing the copying of exclusion 
bonds to become a bottleneck. To overcome this issue, we 
parallelized the separation of modified and non-modified 
exclusion bonds and used CkLoop to copy these bonds into a 
single buffer in parallel. After exclusion bonds are done, the 
other five types of bonds can be well balanced during the copy. 
As a result, the overall run time is improved by about 1% after 
this balancing. 
 

Vectorization of NAMD routines on POWER9 
As described above, one of the key requirements to take 
advantage of CPU vectorization is that performance-critical data 
structures must be adapted to an SOA layout so that data 
associated with independent work units to be vectorized are 
stored contiguously in memory, to facilitate loads and stores to 
and from CPU vector registers.   We expect to adapt all of the 
remaining performance-critical loops for execution entirely on 
the GPU, but implementations of new simulation methods, 
particularly those developed by external researchers, will likely 
always be implemented on the CPU initially.  It is therefore 
desirable that such methods are able to benefit from CPU 
vectorization so that they do not negatively impact overall 

NAMD performance.  As a particularly surprising example, 
early detailed benchmarking of NAMD performance on Summit 
showed that among several of the algorithms that had not yet 
been migrated to the GPU, random number generators that are 
associated with the Langevin thermostat were consuming a 
significant fraction (15%) of the CPU runtime, which was 
already limiting the efficacy of GPU acceleration and overall 
NAMD performance.  The Gaussian random number 
distribution required by the Langevin thermostat algorithm 
involves costly floating point arithmetic that is aptly suited to 
vectorization.  
 

Stochastic Velocity Rescaling  
Significant performance gains are sometimes available through 
more efficient algorithms.  The Langevin thermostat used for 
simulating at a desired temperature requires for each time step 
generating up to 3N Gaussian distributed random numbers (up 
to three per atom) and an additional calculation of the rigid bond 
constraints, both of which are substantial fractions of the overall 
cost of performing integration on the CPU.  An alternative 
approach, the stochastic velocity rescaling thermostat of Bussi, 
Donadio, and Parrinello [13], gives NAMD as much as a 20% 
improvement in performance over the Langevin thermostat.  
Stochastic velocity rescaling is a relatively simple correction to 
the classic Berendsen thermostat to achieve true sampling of the 
canonical distribution (as does Langevin), but requires as few as 
two Gaussian distributed random numbers be calculated every 
twenty time steps.  Furthermore, the rescaling preserves 
holonomic constraints so that no additional calculation of the 
rigid bond constraints are required. Unlike the Langevin 
thermostat, which requires no additional communication, the 
stochastic velocity rescaling thermostat does require a reduction 
operation to determine the temperature of the system followed 
by a broadcast of the new scaling coefficient, the calculation of 
which requires the two Gaussian distributed random numbers.  
However, the newly introduced communication is required no 
more frequently than every twenty time steps and can easily be 
piggybacked on other communication already being performed 
by NAMD. 
 

4. Performance Results 
 

In this section, we show preliminary results from benchmarking 
NAMD on Summit. Note that at the time these results were 
collected, Summit did not have final versions of its software 
stack and was still undergoing development and testing. 

In order to benchmark NAMD performance for large 
simulations, we use freely distributable synthetic benchmarks by 
replicating the 1.06M atom STMV benchmark (satellite tobacco 
mosaic virus - the first full virus simulation performed with 
NAMD in 2006).  Two benchmarks we show in this section 
were formed by tiling the 216.832 A cubic cell: a 5x2x2 system 
of 21 million atoms and a 7x6x5 system of 224 million atoms. 
The benchmarks use rigid water and bonds to hydrogens to 
enable a 2 fs time step and use a 12 A cutoff distance with PME 
every three steps using a 2 A grid and 8th order interpolation. 
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Pressure control with a relaxed reduction-broadcast barrier is 
enabled to avoid global synchronization [14]. 

Figure 4 shows strong scaling of NAMD on the quarter of the 
Summit system. GPUs on Summit provides about 8x 
performance compared to CPU only runs. The 21M atom 
simulation achieves about 128 nanoseconds per day, and the 
224M atom simulation achieves close to 32 nanoseconds per 
day performance. In these early runs on Summit, SMT2 and 
SMT4 have not shown any performance benefit, therefore we 
use SMT1. Particular sections of the code that might benefit 
from SMT need to be studied in detail on why SMT has not 
provided better performance. Figure 5 shows that stochastic 
velocity rescaling improves performance about 10% compared 
to Langevin damping as discussed in the previous section. 
Average performance is further improved over original results 
by using a special “bsub” job submission flag to isolate the 
GPFS file system daemon from NAMD CPU threads by pinning 
it to a CPU core reserved for use by system software and the 
operating system itself. Trajectory output is written only at the 
end of the simulation once, therefore it is not included in the 
performance results. 
 
Figure 4: NAMD strong scaling performance on Summit using up to 
1K nodes.  The upper and lower lines of each line type indicate results 
for the 21M atom and 224M atom simulations, respectively. 

 
 

Figure 5: NAMD strong scaling results comparing stochastic velocity 
rescaling to Langevin damping. 

 
 

5. Challenges and Ongoing Work 
 

The single most important performance enhancement is to 
offload the integrator and related routines to the GPU.  The 
Volta generation of GPU is now so fast that NAMD is held back 
by any computational work remaining on the CPU that scales 
with the number of atoms, effectively a modern-day version of 
Amdahl’s Law.  Depending on the simulation parameters, the 
floating point operations required for the CPU-based integrator 
can be less than 1% of the total computational work.  
Furthermore, NAMD patches were not implemented to be 
migratable units of work and the force calculation performed on 
GPUs requires little enough time as to render the measurement-
based Charm++ load balancing ineffective.  Offloading the 
integrator will help to restore the expected balance of 
computational work.  Adoption of the fundamental NAMD 
atomic data structures to SOA form will need to proceed in pace 
with the integrator GPU offloading. 
 
Although much of the integrator work is exceedingly data 
parallel, there are other parts of the integrator algorithms that are 
more difficult to implement on the GPU, in particular the rigid 
bond constraint calculation and the pressure reduction 
accumulations over so-called hydrogen groups.  The rigid bond 
constraint implementation in NAMD, using successive bond 
relaxation, does not expose sufficient data parallelism desired 
for GPU implementation.  Alternative algorithms that provide 
better data parallelism, such as matrix-SHAKE [14] and P-
LINCS [15], are currently under investigation. 
 
More broadly, NAMD, and biomolecular simulation in general, 
faces substantial challenges arising from the direction 
supercomputer architectures are going and strong-scaling needs 
of biophysicists. Each simulation time step is one or two 
femtoseconds, and so billions of steps are needed to simulate 
trajectories of microseconds duration.  So, it is clear that we 
need to simulate hundreds of nanoseconds per day. Assuming a 
femtosecond timestep, 100 ns/day requires a timestep to be 
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completed in less than a millisecond. With the planned advances 
in NAMD, this will be achieved for single-node runs easily. But 
for larger molecular systems, one has to use multiple nodes. 
Typical simulations of interest range from 100,000 to 10-million 
atom systems, with a few heroic simulations over hundred 
million atoms.  Indeed, in the past, NAMD has demonstrated 
that it can complete a timestep in less than 250 microseconds on 
the BlueGene/Q machine simulating 92,000 atoms using 16,000 
cores. This machine had slow low-power cores coupled with 
relatively fast network. However, as individual compute nodes 
get fatter, often without corresponding increase in across-node 
bandwidth, with relatively high kernel startup overheads, it will 
be challenging to meet and exceed these strong scaling targets. 
In terms of Summit itself, one can restate the challenge 
concretely: to obtain good scaling for one million atoms 
simulated on a few hundred nodes. One of the key techniques 
for achieving the strong scaling in the past was adaptive 
communication-computation overlap, which depended on firing 
small force calculation computations, taking tens of 
microseconds, as soon as their data was available.  It will 
require a combination of provisioning of higher bandwidth, low-
overhead communication of short messages, and ability to fire 
short kernels on subsets of GPGPU cores under program control 
and with low overhead, along with significant software 
experimentation and modification, to break through these strong 
scaling challenges in the future.  

Fault tolerance is another challenge in large-scale systems. 
Charm++ provides various fault tolerance strategies to handle 
hard and soft errors: checkpoint/restart, message logging, 
proactive evacuation and targeted protection for silent data 
corruption [14]. Nevertheless NAMD uses its own periodic 
disk-based checkpointing of simulation state, which allows a 
simulation to be continued after faults. Particularly when the job 
schedulers start allowing applications to recover from failures 
and continue running, NAMD would benefit from Charm++’s 
fault tolerance strategies. 

6. Conclusion 
 

NAMD is one of the most scalable and impactful molecular 
dynamics applications. NAMD is supported in many different 
architectures and major supercomputers in the U.S., including 
very recently on Summit. As one of the ORNL’s Center for 
Accelerated Application Readiness (CAAR) projects, 
performance optimization of NAMD on Summit’s CPU-GPU 
architecture continues. In this paper, we have shown some of the 
optimizations implemented and preliminary results from scaling 
NAMD on a quarter of the full Summit system, and we have 
also identified immediate challenges. 
 

7. Acknowledgment 

First and foremost, we acknowledge the recent passing of two 
members of the NAMD team:  Prof. Klaus Schulten established 
the Theoretical and Computational Biophysics Group (TCBG) 
and led the collaborative NIH Center for Macromolecular 
Modeling and Bioinformatics, the home of NAMD, from 1992 

until his passing in late 2016; and Antti-Pekka Hynninen 
contributed to GPU kernel development in NAMD through the 
IBM/NVIDIA Center of Excellence program at Oak Ridge 
National Laboratory and then at NVIDIA until his passing in 
2017.  We thank Sameer Kumar for his help in optimizing 
NAMD on IBM systems.  We thank Brian Radak of the TCBG 
for his implementation of stochastic velocity rescaling.  Over 
the years, many other students and staff of the Parallel 
Programming Laboratory and the TCBG at the University of 
Illinois have contributed to NAMD software to make this 
project a success. 
 
This work was supported by the National Institutes of Health 
grant NIH P41-GM104601 “Center for Macromolecular 
Modeling and Bioinformatics.” This research is part of the Blue 
Waters sustained-petascale computing project, which is 
supported by the National Science Foundation (awards OCI-
0725070 and ACI-1238993) and the state of Illinois. Blue 
Waters is a joint effort of the University of Illinois at Urbana-
Champaign and its National Center for Supercomputing 
Applications. This research used resources of the Oak Ridge 
Leadership Computing Facility at the Oak Ridge National 
Laboratory, which is supported by the Office of Science of the 
U.S. Department of Energy under Contract No. DE-AC05-
00OR22725.  We thank Tjerk Straatsma for his assistance as the 
point of contact for our Center for Accelerated Application 
Readiness project. 
 
8. References 

 
1.  J. C. Phillips, Y. Sun, N. Jain, E. J. Bohm, and L. V. Kalé, 

“Mapping to Irregular Torus Topologies and Other Techniques for 
Petascale Biomolecular Simulation.,” SC ... conference 
proceedings. SC (Conference: Supercomputing), vol. 2014, pp. 
81–91, 2012. 

2. W. Jiang et al., “Generalized Scalable Multiple Copy Algorithms 
for Molecular Dynamics Simulations in NAMD.,” Computer 
physics communications, vol. 185, no. 3, pp. 908–916. 

3.  “Summit,” https: //www.olcf.ornl.gov/olcf-resources/compute-
systems/summit/. 2016. 

4. S. K. Sadasivam, B. W. Thompto, R. Kalla, and W. J. Starke, 
“IBM Power9 Processor Architecture,” IEEE Micro, vol. 37, no. 
2. 

5.  J. C. Phillips et al., “Scalable molecular dynamics with NAMD.,” 
Journal of computational chemistry, vol. 26, no. 16, pp. 1781–
1802. 

6. J. E. Stone, J. C. Phillips, P. L. Freddolino, D. J. Hardy, L. G. 
Trabuco, and K. Schulten, “Accelerating molecular modeling 
applications with graphics processors,” J. Comput. Chem., vol. 28, 
no. 16, pp. 2618–2640. 

7. J. C. Phillips, J. E. Stone, and K. Schulten, “Adapting a Message-
Driven Parallel Application to GPU-Accelerated Clusters,” SC 
’08: Proceedings of the 2008 ACM/IEEE Conference on 
Supercomputing. Austin, Texas, 01-Nov-2008. 

8. B. Acun et al., “Parallel Programming with Migratable Objects: 
Charm++ in Practice,” in SC14: International Conference for 
High Performance Computing, Networking, Storage and Analysis, 
2014. 

9. L. Kalé et al., “NAMD2: Greater Scalability for Parallel 
Molecular Dynamics,” Journal of Computational Physics, vol. 
151, pp. 283–312, 1996. 

10. J. E. Stone, A.-P. Hynninen, J. C. Phillips, and K. Schulten, “Early 



IBM J. Res. & Dev.Acun et al.: Scalable Molecular Dynamics with NAMD on the Summit System Page | 8 

 

Experiences Porting the NAMD and VMD Molecular Simulation 
and Analysis Software to GPU-Accelerated OpenPOWER 
Platforms.,” High performance computing : 31st International 
Conference, ISC High Performance 2016, Frankfurt, Germany, 
June 19-23, 2016, Proceedings. ISC High Performance 
(Conference) (31st : 2016 : Frankfurt, Germany), vol. 9945, pp. 
188–206, Jun. 2016. 

11.  S. Kumar et al., “PAMI: A parallel active message interface for 
the BlueGene/Q supercomputer,” Proceedings of 26th IEEE 
International Parallel and Distributed Processing Symposium 
(IPDPS). Shanghai, China, 01-May-2012. 

12. S. Kumar, Y. Sun, and L. V. Kale, “Acceleration of an 
Asynchronous Message Driven Programming Paradigm on IBM 
Blue Gene/Q,” in 2013 IEEE 27th International Symposium on 
Parallel and Distributed Processing, 2013. 

13. G. Bussi, D. Donadio, and M. Parrinello, “Canonical sampling 
through velocity rescaling,” The Journal of Chemical Physics, vol. 
126, no. 1, Jan. 2007. 

14. B. Acun, R. Buch, L. V. Kale, J. Phillips,  “NAMD: Scalable 
Molecular Dynamics Based on the Charm++ Parallel Runtime 
System,” Exascale Scientific Applications: Scalability and 
Performance Portability. Chapman and Hall/CRC, 2017. 

15. R. Elber, A. P. Ruymgaart, and B. Hess, “SHAKE 
parallelization.,” The European physical journal. Special topics, 
vol. 200, no. 1, pp. 211–223, Nov. 2011. 

16. B. Hess, “P-LINCS: A parallel linear constraint solver for 
molecular simulation,” Journal of Chemical Theory and 
Computation, vol. 4, no. 1, pp. 116–122. 

 
Bilge Acun IBM Research Division, IBM T. J. Watson Research 
Center, Yorktown Heights, NY, 10598, USA 
(Bilge.Acun2@ibm.com). Dr. Acun received a B.S. degree in 
2012 from the Department of Computer Science at Bilkent 
University in Ankara, Turkey and a Ph.D. in 2017 from the 
Department of Computer Science at University of Illinois at 
Urbana-Champaign in Illinois, USA. Her dissertation focused 
on improving the energy efficiency of the large scale systems. 
She joined IBM as a Research Staff Member after completing 
her Ph.D. Her research interests include improving the 
performance of massively parallel applications, parallel 
runtimes, energy efficiency and variability in large scale 
systems. 
 
David J. Hardy Theoretical and Computational Biophysics 
Group, Beckman Institute, University of Illinois at Urbana-
Champaign, Urbana, IL 61801, USA (dhardy@ks.uiuc.edu).  
Dr. Hardy received a B.S. in Mathematics and Computer 
Science in 1994 from Truman State University, an M.S. in 
Computer Science in 1997 from the Missouri University of 
Science and Technology, and a Ph.D. in Computer Science in 
2006 from the University of Illinois at Urbana-Champaign.  He 
develops the NAMD parallel molecular dynamics application.  
His research interests include fast methods for calculating 
electrostatics, numerical methods for time integration, and GPU 
computing. 
 
Laxmikant V. Kale Department of Computer Science, 
University of Illinois at Urbana-Champaign, Urbana, IL 61801, 
USA (kale@illinois.edu). Prof. Kale received the B.Tech degree 
in Electronics Engineering from Benares Hindu University, 
Varanasi, India in 1977, and a M.E. degree in Computer Science 
from Indian Institute of Science in Bangalore, India, in 1979. He 

received a Ph.D. in computer science in from State University of 
New York, Stony Brook, in 1985. He joined the faculty of the 
University of Illinois at Urbana-Champaign in 1985, where he is 
now the Paul and Cynthia Saylor Professor of Computer Science 
and the director of the Parallel Programming Laboratory. Prof. 
Kale has been working on various aspects of parallel computing, 
with a focus on enhancing performance and productivity via 
adaptive runtime systems, and with the belief that only 
interdisciplinary research involving multiple CSE and other 
applications can bring back well-honed abstractions into 
Computer Science that will have a long-term impact on the 
state-of-art. His collaborations include the widely used Gordon-
Bell award winning (SC 2002) biomolecular simulation program 
NAMD, computational cosmology (ChaNGa), and quantum 
chemistry (OpenAtom). He takes pride in his group's success in 
distributing and supporting software embodying the research 
ideas, including Charm++, and Adaptive MPI. Prof. Kale is a 
fellow of the ACM and IEEE, and a co-winner of the 2012 IEEE 
Sidney Fernbach award. 
 
Ke Li Nvidia Corporation, Santa Clara, CA 95051, USA 
(kel@nvidia.com). Dr. Li received a B.S. degree in Electrical 
Engineering in 2011 from Fudan University, China and a Ph.D. 
degree in Electrical Engineering in 2017 from Washington 
University in St. Louis, USA. His dissertation focused on 
enabling novel PET (Positron Emission Tomography) systems 
by using GPU parallel computing to achieve near real time 
reconstruction. He joined Nvidia in 2017 as a senior developer 
technology engineer. He is interested in high performance 
computing applications for molecular dynamics, medical 
imaging with deep learning focus. 
 
James C. Phillips NCSA Blue Waters Project Office, University 
of Illinois at Urbana-Champaign, Urbana IL 61801, USA 
(jcphill@illinois.edu). Dr. Phillips received a B.S. in Physics 
and Mathematics in 1993 from Marquette University in 
Milwaukee, WI, and an M.S. in 1994 and a Ph.D. in 2002, both 
in Physics, from the University of Illinois at Urbana-
Champaign. From 1999-2017 he was the lead NAMD developer 
at the Theoretical and Computational Biophysics Group at the 
Beckman Institute, University of Illinois at Urbana-Champaign. 
During this time Dr. Phillips received a 2002 Gordon Bell 
Award and NAMD PIs Klaus Schulten and Laxmikant Kale 
shared the 2012 IEEE Sidney Fernbach Award recognizing the 
contributions of NAMD to high performance computing. Dr. 
Phillips is now the quality assurance lead in the Blue Waters 
Project Office of the National Center for Supercomputing 
Applications, where he is working to ensure the scientific 
productivity of the next several generations of supercomputers. 
 

John E. Stone Theoretical and Computational Biophysics 
Group, Beckman Institute, University of Illinois at Urbana-
Champaign, Urbana, IL 61801, USA (johns@ks.uiuc.edu).  Mr. 
Stone received B.S. and M.S. degrees in Computer Science from 
the Missouri University of Science and Technology in 1994, and 
1998. Mr. Stone is the lead developer of VMD, a high 
performance molecular visualization tool used by researchers all 
over the world. His research interests include molecular 
visualization, GPU computing, parallel computing, ray tracing, 



IBM J. Res. & Dev.Acun et al.: Scalable Molecular Dynamics with NAMD on the Summit System Page | 9 

 

haptics, virtual environments, and immersive visualization. Mr. 
Stone was inducted as an NVIDIA CUDA Fellow in 2010. In 
2015 Mr. Stone joined the Khronos Group Advisory Panel for 
the Vulkan Graphics API. In 2017 and 2018 Mr. Stone was 

awarded as an IBM Champion for Power, for innovative thought 
leadership in the technical community.  Mr. Stone is a member 
of ACM and IEEE.

 
 


