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Overview 
• My perspective about directive-based accelerator 

programming today and in the near-term ramp up to 
exascale computing 

• Based on our ongoing work developing VMD and NAMD 
molecular modeling tools supported by our NIH-funded 
center since the mid-90’s 

• What is a person like me doing using directives?  I’m 
the same guy that likes to give talks about CUDA and 
OpenCL, x86 intrinsics, and similarly lower level 
programming techniques.  Why am I here? 
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Spoilers: 
• Directives are a key solution in the “all options on the table” type 

of approach that I believe is required as we work toward exascale 
computing 

• There aren’t enough HPC developers in the world to write 
everything entirely in low level APIs fast enough to keep pace 

• Science is an ever changing landscape – significant 
methodological developments come every few years in active fields 
like biomolecular modeling… 

• Code gets (re)written for new science methodologies before 
you’ve finished optimizing the old code for the previous 
science method!?!?!?! 

• Hardware is still changing very rapidly, and more disruptively 
than during the blissful heyday of “Peak Moore’s Law” 

 



Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics 

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu 

MD Simulation 

VMD – “Visual Molecular Dynamics” 

Cell-Scale Modeling 

• Visualization and analysis of: 

– Molecular dynamics simulations 

– Lattice cell simulations 

– Quantum chemistry calculations 

– Sequence information 

• User extensible scripting and plugins 

• http://www.ks.uiuc.edu/Research/vmd/ 
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Goal: A Computational Microscope 
Study the molecular machines in living cells 

Ribosome: target for antibiotics Poliovirus 
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Exemplary Hetereogeneous  

Computing Challenges 
• Tuning, adapting, or developing software for 

multiple processor types 

• Decomposition of problem(s) and load balancing 
work across heterogeneous resources for best 
overall performance and work-efficiency 

• Managing data placement in disjoint memory 
systems with varying performance attributes 

• Transferring data between processors, memory 
systems, interconnect, and I/O devices 
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Major Approaches For Programming 

Hybrid Architectures 
• Use drop-in libraries in place of CPU-only libraries 

– Little or no code development 

– Examples: MAGMA, BLAS-variants, FFT libraries, etc. 

– Speedups limited by Amdahl’s Law and overheads associated with 
data movement between CPUs and GPU accelerators 

• Generate accelerator code as a variant of CPU source, e.g. 
using OpenMP and OpenACC directives, and similar 

• Write lower-level accelerator-specific code, e.g. using 
CUDA, OpenCL, other approaches 
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Challenges Adapting Large Software Systems 

for State-of-the-Art Hardware Platforms 

• Initial focus on key computational kernels eventually gives way to the 
need to optimize an ocean of less critical routines, due to 
observance of Amdahl’s Law 

• Even though these less critical routines might be easily ported to 
CUDA or similar, the sheer number of routines often poses a 
challenge 

• Need a low-cost approach for getting “some” speedup out of these 
second-tier routines 

• In many cases, it is completely sufficient to achieve memory-
bandwidth-bound GPU performance with an existing algorithm 
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Amdahl’s Law and Role of Directives 

• Initial partitioning of algorithm(s) between host CPUs and accelerators 
is typically based on initial performance balance point 

• Time passes and accelerators get MUCH faster… 

• Formerly harmless CPU code ends up limiting overall performance! 

• Need to address bottlenecks in increasing fraction of code 

• Directives provide low cost, low burden, approach to improve 
incrementally vs. status quo  

• Directives are complementary to lower level approaches such as 
CPU intrinsics, CUDA, OpenCL, and they all need to coexist and 
interoperate very gracefully alongside each other 



Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics 

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu 

Multilevel Summation on the GPU: 

An Amdahl’s Law Example From Our Previous Work 

Computational steps CPU (s) w/ GPU (s) Speedup 

Short-range cutoff 480.07 14.87 32.3 

Long-range anterpolation 0.18 

restriction 0.16 

lattice cutoff 49.47 1.36 36.4 

prolongation 0.17 

interpolation 3.47 

Total 533.52 20.21 26.4 

Performance profile for 0.5 Å map of potential for  1.5 M atoms. 

Hardware platform is Intel QX6700 CPU and NVIDIA GTX 280. 

Accelerate  short-range cutoff  and  lattice cutoff  parts 
 

Multilevel summation of electrostatic potentials using graphics processing units. 

D. Hardy, J. Stone, K. Schulten. J. Parallel Computing, 35:164-177, 2009. 
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How Do Directives Fit In? 
• Single code base is typically maintained 

• Almost “deceptively” simple to use 

• Easy route for incremental, “gradual buy in”  

• Rapid development cycle, but success often follows 
minor refactoring and/or changes to data structure layout 

• Higher abstraction level than other techniques for 
programming accelerators 

• In many cases, performance can be “good enough” 
due to memory-bandwidth limits, or based on return on 
developer time or some other metric 
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Why Not Use Directives Exclusively? 
• Some projects do…but: 

– Back-end runtimes for compiler directives sometimes have 
unexpected extra overheads that could be a showstopper in 
critical algorithm steps 

– High abstraction level may mean lack of access to hardware 
features exposed only via CUDA or other lower level APIs 

– Fortunately, interoperability APIs enable directive-based 
approaches to be used side-by-side with hand-coded kernels, 
libraries, etc. 

– Presently, sometimes-important capabilities like JIT 
compilation of runtime-generated kernels only exist within 
lower level APIs such as CUDA and OpenCL 
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What Do Existing Accelerated 

Applications Look Like? 
I’ll provide examples from digging into modern versions of VMD and 
NAMD that both have already incorporated acceleration in a deep way. 

 

Questions: 

• How much code needs to be “fast” 

• What fraction runs on accelerator now? 

• Using directives, how much more coverage can be achieved, and 
with what speedup? 

• Do I lose access to any points of execution or resource control that 
are critical for the application’s performance? 
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VMD: 10 Years of GPU-Accelerated Computing 

• Has stood the test of time 

• Modeling, Visualization, 
Rendering, and Analysis 

Blast from the past:  

CUDA starting with version 0.7 !!! 

Quad core Intel QX6700, three NVIDIA 

GeForce 8800GTX GPUs,  RHEL4 Linux 

Accelerating molecular modeling applications with graphics 

processors.  J. Stone, J. Phillips, P. Freddolino, D. Hardy, L. 

Trabuco, K. Schulten. J. Comp. Chem., 28:2618-2640, 2007. 
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VMD Petascale Visualization and Analysis 
• Analyze/visualize large trajectories too large to 

transfer off-site: 

– User-defined parallel analysis operations, data types 

– Parallel rendering, movie making 

• Supports GPU-accelerated Cray XK7 nodes for both 

visualization and analysis: 

– GPU accelerated trajectory analysis w/ CUDA 

– OpenGL and GPU ray tracing for visualization and 

movie rendering 

• Parallel I/O rates up to 275 GB/sec on 8192 Cray 

XE6 nodes – can read in 231 TB in 15 minutes! 

Parallel VMD currently available on:  

ORNL Titan, NCSA Blue Waters, Indiana Big Red II, 

CSCS Piz Daint, and similar systems 

 

NCSA Blue Waters Hybrid Cray XE6 / XK7 

22,640 XE6 dual-Opteron CPU nodes 

4,224 XK7 nodes w/ Telsa K20X GPUs 
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GPUs Can Reduce MDFF Trajectory Analysis 

Runtimes from Hours to Minutes 

GPUs enable laptops and 

desktop workstations to 

handle tasks that would have 

previously required a cluster, 

or a very long wait… 

 

GPU-accelerated petascale 

supercomputers enable 

analyses that were previously 

impractical, allowing detailed 

study of very large structures 

such as viruses GPU-accelerated MDFF Cross Correlation Timeline 

Regions with poor fit               Regions with good fit 
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Parallel MDFF Cross Correlation Analysis on Cray XK7  

Rabbit Hemorrhagic Disease Virus (RHDV) 

Traj. frames 10,000 

Structure 

component 

selections 

720 

Single-node XK7 

(projected) 

336 hours (14 days) 

128-node XK7 3.2 hours 

105x speedup 

2048-node XK7 19.5 minutes 

1035x speedup 

Relative CC 

Calculation of 7M CCs would take        

5 years using serial CPU algorithm! 
Stone et al., Faraday Discuss., 169:265-283, 2014. 

Time 

RHDV colored 

by relative CC 
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Example of VMD Module Connectivity 

• Early progress focused acceleration 
efforts on handful of high level 
analysis routines that were the most 
computationally demanding 

• Future hardware requires pervasive 
acceleration 

• Top image shows script interface 
links to top level analytical routines 

• Bottom image shows links among 
subset of data analytics algorithms to 
leaf-node functions 



Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics 

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu 

VMD Software Decomposition 

VMD Core                    (~230,000 LoC) 

• C++:                            140,000 LoC 

• Headers:                      36,000 LoC 

• C:                                 14,000 LoC 

• Tcl bindings:                 12,000 LoC 

• Python bindings:            8,000 LoC 

Hand-coded accelerator and vectorization: 

• CUDA:                          17,000 LoC 

• Intel x86 intrinsics:         2,500 LoC 

• IBM POWER intrinsics:     500 LoC 

• ARM NEON intrinsics:      100 LoC 

Externally developed collective 

variables module:  

• C++:        20,000 LOC 

• Headers: 11,000 LOC 

 

Internally+externally developed scripts  

• Tcl / Python scripts: 284,000 LoC 

 

VMD “plugin” shared lib modules: 

• C:          102,000 LoC 

• C++:        36,000 LoC 

• Headers: 17,000 LoC 

• CUDA:       5,000 LoC 
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VMD Software Decomposition 

Type of Code 

C++

C

CUDA

Headers

• All hand-written accelerated or 
vectorized code (CUDA + CPU 
intrinsics) represents only 9% of 
core VMD source code 

• Percent coverage of leaf-node 
analytical functions is lower yet 

• Need to evolve VMD toward high 
coverage of performance-critical 
analysis code with fine-grained 
parallelism on accelerators and 
vectorization 
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Directive-Based Parallel Programming 

with OpenACC 
• Annotate loop nests in existing code with #pragma compiler directives: 

– Annotate opportunities for parallelism 

– Annotate points where host-GPU memory transfers are best performed, 
indicate propagation of data 

• Evolve original code structure to improve efficacy of parallelization 
– Eliminate false dependencies between loop iterations 

– Revise algorithms or constructs that create excess data movement 

 

• How well does this work if we stick with “low cost, low burden” 
philosophy I claim to support? 
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Clustering Analysis of Molecular 

Dynamics Trajectories 

GPU-Accelerated Molecular Dynamics Clustering Analysis with 

OpenACC. J.E. Stone, J.R. Perilla, C. K. Cassidy, and K. Schulten.           

In, Robert Farber, ed., Parallel Programming with OpenACC, Morgan 

Kaufmann, Chapter 11, pp. 215-240, 2016. 
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Serial QCP RMSD Inner Product Loop 

• Simple example where 

directive based parallelism 

can be applied easily and 

effectively  

• Such a loop is inherently a 

memory-bandwidth-bound 

algorithm, so that’s the goal 

for acceleration 

 

 for (int l=0; l<cnt; l++) { 

    double x1, x2, y1, y2, z1, z2; 

    x1 = crdx1[l]; 

    y1 = crdy1[l]; 

    z1 = crdz1[l]; 

 

    G1 += x1*x1 + y1*y1 + z1*z1; 

 

    x2 = crdx2[l]; 

    y2 = crdy2[l]; 

    z2 = crdz2[l]; 

 

    G2 += x2*x2 + y2*y2 + z2*z2; 

 

    a0 += x1 * x2; 

    a1 += x1 * y2; 

    a2 += x1 * z2; 

 

    a3 += y1 * x2; 

    a4 += y1 * y2; 

    a5 += y1 * z2; 

 

    a6 += z1 * x2; 

    a7 += z1 * y2; 

    a8 += z1 * z2; 

  } 
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OpenACC QCP RMSD Inner Product Loop 

• Simple example where 

directive based parallelism 

can be applied easily and 

effectively  

• Such a loop is inherently a 

memory-bandwidth-bound 

algorithm, so that’s the goal 

for acceleration 

 

// excerpted code that has been abridged for brevity… 

void rmsdmat_qcp_acc(int cnt, int padcnt, int framecrdsz, 

                                         int framecount, const float * restrict crds, 

long i, j, k; 

#pragma acc kernels copyin(crds[0:tsz]), copy(rmsdmat[0:msz]) 

  for (k=0; k<(framecount*(framecount-1))/2; k++) { 

    // compute triangular matrix index ‘k’ in a helper function 

    // to ensure that the compiler doesn’t think that we have 

    // conflicts or dependencies between loop iterations  

    acc_idx2sub_tril(long(framecount-1), k, &i, &j); 

    long x1addr = j * 3L * framecrdsz; 

    long x2addr = i * 3L * framecrdsz; 

 

#pragma acc loop vector(256) 

    for (long l=0; l<cnt; l++) { 

    // abridged for brevity ... 

 

    rmsdmat[k]=rmsd; // store linearized triangular matrix 

  } 

} 
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OpenACC QCP RMSD Inner Product Loop 

Performance Results 

• Xeon 2867W v3, w/ hand-coded AVX and FMA intrinsics: 20.7s 

• Tesla K80 w/ OpenACC: 6.5s  (3.2x speedup) 

• OpenACC on K80 achieved 65% of theoretical peak memory 

bandwidth, with 2016 compiler and just a few lines of #pragma 

directives.  Excellent speedup for minimal changes to code. 

• Future OpenACC compiler revs should provide higher 

performance yet 



Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics 

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu 

Caveat Emptor 

• Compilers are not all equal… 

• …sometimes they make me want to scream… 

• …but they all improve with time 

• If we begin using directives now to close the gap on 

impending doom arising from Amdahl’s Law, the 

compilers should be robust and performant when it 

really counts  
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Directives and Hardware Evolution 

• Ongoing hardware advancements are addressing 
ease-of-use gaps that remained a problem for 
both directives and hand-coded kernels 

• Unified memory: eliminate many cases where 
programmer used to have to hand-code memory 
transfers explicitly, blurs CPU/GPU boundary 

• What about distributing data structures across 
multiple NVLink-connected GPUs? 
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Performance Tuning, Profiling Wish List 

• Some simple examples on my wish list: 
– Make directive runtimes more composable with external resource 

management, tasking frameworks, and runtime systems, interop APIs 
are already a start, to build more commonality there. 

– Help profiling tools to clearly identify functions, call chains, and 
resources associated with code produced by compiler directives and 
their runtime system(s), to clearly differentiate from hand-coded 
kernels, and resources used by other runtimes 

– Allow directive-based programming systems support things like 
application-determined hardware scheduling priorities that 
encompass both hand-coded and directive-generated kernels  

– Allow programmer oversight about what resources directive kernels 
are allowed to use, CPU affinity, etc 
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Using CPUs to Optimize Accelerator Performance 

• Optimization strategy:  

– Use the CPU to “regularize” the GPU workload 

– Use optimal/fixed-size data structures, idealize layout for 

GPU traversal 

– Handle exceptional or irregular work units on the CPUs; 

GPUs processes the bulk of the work concurrently 

– On average, the GPUs are kept highly occupied, 

attaining a high fraction of peak performance 
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Heterogeneous Compute Node 

Simulation of reaction diffusion processes over biologically relevant size and time scales using multi-GPU workstations 

Michael J. Hallock, John E. Stone, Elijah Roberts, Corey Fry, and Zaida Luthey-Schulten. 

Journal of Parallel Computing, 40:86-99, 2014. 

http://dx.doi.org/10.1016/j.parco.2014.03.009 

• Dense PCIe-based         

multi-GPU compute node 

• Application would ideally 

exploit all of the CPU, 

GPU, and I/O resources 

concurrently… 

 (I/O devs not shown) 

 

 

~12GB/s 
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IBM S822LC w/ NVLink 
“Minsky” 
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Ongoing VMD Work on POWER 

• Early observations about P8+CUDA+NVLink: 

– P8 single-thread perf more of an issue than on x86 for small untuned 

parts of existing code – greater need for GPU offload of formerly 

insignificant host code 

– P8+CUDA NUMA-correctness w/ NVLink much more important 

than PCIe (e.g. x86) due to larger benefits/penalties when NVLink 

is used effectively vs. not 

– P8 “Minsky” systems get extra benefits for algorithms that have lots 

of host-GPU DMA transfers, where the NVLink interconnect speeds 

greatly outpeform PCIe 
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Benefits of P8+NVLink for VMD 

• Rapid access to host-side data too large to fit entirely in P100 
GPU memory 

– Many existing VMD CUDA kernels already used this strategy w/ 
PCIe, performance gains from NVLink are large and immediate 

• Rapid peer-to-peer GPU data transfers: 

– Bypass host whenever possible, perform nearest-neighbor 
exchanges for pairwise calculations, e.g. those that arise in 
algorithms for simulation trajectory clustering 

– Use aggregate GPU memory to collectively store/cache large data: 
• Distribute time-varying trajectory timesteps among memories of multiple GPUs 

• High-fidelity ray tracing of scenes containing massive amounts of geometry 
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Directives and Potential Hardware Evolution 

Think of ORNL Summit node as an “entry point” to potential future possibilities… 

Questions: 
• Would the need for ongoing growth in memory bandwidth among tightly connected 

accelerators w/ HBM predict even denser nodes? 
– Leadership systems use 6-GPU nodes now, how many in 2022 or thereafter? 

• As accelerated systems advance, will directives encompass peer-to-peer 
accelerator operations better? 

• What if future accelerators can directly RDMA to remote accelerators (over a 
communication fabric) via memory accesses? 

• In the future, will directives make it easier to program potentially complex collective 
operations, reductions, fine-grained distributed-shared-memory data structures 
among multiple accelerators? 

 



Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics 

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu 

“When I was a young man, my goal was to look with mathematical and computational means at the 

inside of cells, one atom at a time, to decipher how living systems work. That is what I strived for and 

I never deflected from this goal.” – Klaus Schulten  
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