
Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

Using Accelerator Directives to Adapt Science

Applications for State-of-the-Art HPC Architectures

John E. Stone

Theoretical and Computational Biophysics Group

Beckman Institute for Advanced Science and Technology

University of Illinois at Urbana-Champaign

http://www.ks.uiuc.edu/Research/gpu/

WACCPD 2017: Fourth Workshop on Accelerator Programming Using Directives

9:15am-10:00am, Room 710-712, Colorado Convention Center,

Denver, CO, Monday Nov 13th, 2017

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

Overview
• My perspective about directive-based accelerator

programming today and in the near-term ramp up to
exascale computing

• Based on our ongoing work developing VMD and NAMD
molecular modeling tools supported by our NIH-funded
center since the mid-90’s

• What is a person like me doing using directives? I’m
the same guy that likes to give talks about CUDA and
OpenCL, x86 intrinsics, and similarly lower level
programming techniques. Why am I here?

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

Spoilers:
• Directives are a key solution in the “all options on the table” type

of approach that I believe is required as we work toward exascale
computing

• There aren’t enough HPC developers in the world to write
everything entirely in low level APIs fast enough to keep pace

• Science is an ever changing landscape – significant
methodological developments come every few years in active fields
like biomolecular modeling…

• Code gets (re)written for new science methodologies before
you’ve finished optimizing the old code for the previous
science method!?!?!?!

• Hardware is still changing very rapidly, and more disruptively
than during the blissful heyday of “Peak Moore’s Law”

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

MD Simulation

VMD – “Visual Molecular Dynamics”

Cell-Scale Modeling

• Visualization and analysis of:

– Molecular dynamics simulations

– Lattice cell simulations

– Quantum chemistry calculations

– Sequence information

• User extensible scripting and plugins

• http://www.ks.uiuc.edu/Research/vmd/

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

Goal: A Computational Microscope
Study the molecular machines in living cells

Ribosome: target for antibiotics Poliovirus

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

Exemplary Hetereogeneous

Computing Challenges
• Tuning, adapting, or developing software for

multiple processor types

• Decomposition of problem(s) and load balancing
work across heterogeneous resources for best
overall performance and work-efficiency

• Managing data placement in disjoint memory
systems with varying performance attributes

• Transferring data between processors, memory
systems, interconnect, and I/O devices

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

Major Approaches For Programming

Hybrid Architectures
• Use drop-in libraries in place of CPU-only libraries

– Little or no code development

– Examples: MAGMA, BLAS-variants, FFT libraries, etc.

– Speedups limited by Amdahl’s Law and overheads associated with
data movement between CPUs and GPU accelerators

• Generate accelerator code as a variant of CPU source, e.g.
using OpenMP and OpenACC directives, and similar

• Write lower-level accelerator-specific code, e.g. using
CUDA, OpenCL, other approaches

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

Challenges Adapting Large Software Systems

for State-of-the-Art Hardware Platforms

• Initial focus on key computational kernels eventually gives way to the
need to optimize an ocean of less critical routines, due to
observance of Amdahl’s Law

• Even though these less critical routines might be easily ported to
CUDA or similar, the sheer number of routines often poses a
challenge

• Need a low-cost approach for getting “some” speedup out of these
second-tier routines

• In many cases, it is completely sufficient to achieve memory-
bandwidth-bound GPU performance with an existing algorithm

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

Amdahl’s Law and Role of Directives

• Initial partitioning of algorithm(s) between host CPUs and accelerators
is typically based on initial performance balance point

• Time passes and accelerators get MUCH faster…

• Formerly harmless CPU code ends up limiting overall performance!

• Need to address bottlenecks in increasing fraction of code

• Directives provide low cost, low burden, approach to improve
incrementally vs. status quo

• Directives are complementary to lower level approaches such as
CPU intrinsics, CUDA, OpenCL, and they all need to coexist and
interoperate very gracefully alongside each other

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

Multilevel Summation on the GPU:

An Amdahl’s Law Example From Our Previous Work

Computational steps CPU (s) w/ GPU (s) Speedup

Short-range cutoff 480.07 14.87 32.3

Long-range anterpolation 0.18

restriction 0.16

lattice cutoff 49.47 1.36 36.4

prolongation 0.17

interpolation 3.47

Total 533.52 20.21 26.4

Performance profile for 0.5 Å map of potential for 1.5 M atoms.

Hardware platform is Intel QX6700 CPU and NVIDIA GTX 280.

Accelerate short-range cutoff and lattice cutoff parts

Multilevel summation of electrostatic potentials using graphics processing units.

D. Hardy, J. Stone, K. Schulten. J. Parallel Computing, 35:164-177, 2009.

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

How Do Directives Fit In?
• Single code base is typically maintained

• Almost “deceptively” simple to use

• Easy route for incremental, “gradual buy in”

• Rapid development cycle, but success often follows
minor refactoring and/or changes to data structure layout

• Higher abstraction level than other techniques for
programming accelerators

• In many cases, performance can be “good enough”
due to memory-bandwidth limits, or based on return on
developer time or some other metric

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

Why Not Use Directives Exclusively?
• Some projects do…but:

– Back-end runtimes for compiler directives sometimes have
unexpected extra overheads that could be a showstopper in
critical algorithm steps

– High abstraction level may mean lack of access to hardware
features exposed only via CUDA or other lower level APIs

– Fortunately, interoperability APIs enable directive-based
approaches to be used side-by-side with hand-coded kernels,
libraries, etc.

– Presently, sometimes-important capabilities like JIT
compilation of runtime-generated kernels only exist within
lower level APIs such as CUDA and OpenCL

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

What Do Existing Accelerated

Applications Look Like?
I’ll provide examples from digging into modern versions of VMD and
NAMD that both have already incorporated acceleration in a deep way.

Questions:

• How much code needs to be “fast”

• What fraction runs on accelerator now?

• Using directives, how much more coverage can be achieved, and
with what speedup?

• Do I lose access to any points of execution or resource control that
are critical for the application’s performance?

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

VMD: 10 Years of GPU-Accelerated Computing

• Has stood the test of time

• Modeling, Visualization,
Rendering, and Analysis

Blast from the past:

CUDA starting with version 0.7 !!!

Quad core Intel QX6700, three NVIDIA

GeForce 8800GTX GPUs, RHEL4 Linux

Accelerating molecular modeling applications with graphics

processors. J. Stone, J. Phillips, P. Freddolino, D. Hardy, L.

Trabuco, K. Schulten. J. Comp. Chem., 28:2618-2640, 2007.

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

VMD Petascale Visualization and Analysis
• Analyze/visualize large trajectories too large to

transfer off-site:

– User-defined parallel analysis operations, data types

– Parallel rendering, movie making

• Supports GPU-accelerated Cray XK7 nodes for both

visualization and analysis:

– GPU accelerated trajectory analysis w/ CUDA

– OpenGL and GPU ray tracing for visualization and

movie rendering

• Parallel I/O rates up to 275 GB/sec on 8192 Cray

XE6 nodes – can read in 231 TB in 15 minutes!

Parallel VMD currently available on:

ORNL Titan, NCSA Blue Waters, Indiana Big Red II,

CSCS Piz Daint, and similar systems

NCSA Blue Waters Hybrid Cray XE6 / XK7

22,640 XE6 dual-Opteron CPU nodes

4,224 XK7 nodes w/ Telsa K20X GPUs

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

GPUs Can Reduce MDFF Trajectory Analysis

Runtimes from Hours to Minutes

GPUs enable laptops and

desktop workstations to

handle tasks that would have

previously required a cluster,

or a very long wait…

GPU-accelerated petascale

supercomputers enable

analyses that were previously

impractical, allowing detailed

study of very large structures

such as viruses GPU-accelerated MDFF Cross Correlation Timeline

Regions with poor fit Regions with good fit

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

Parallel MDFF Cross Correlation Analysis on Cray XK7

Rabbit Hemorrhagic Disease Virus (RHDV)

Traj. frames 10,000

Structure

component

selections

720

Single-node XK7

(projected)

336 hours (14 days)

128-node XK7 3.2 hours

105x speedup

2048-node XK7 19.5 minutes

1035x speedup

Relative CC

Calculation of 7M CCs would take

5 years using serial CPU algorithm!
Stone et al., Faraday Discuss., 169:265-283, 2014.

Time

RHDV colored

by relative CC

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

Example of VMD Module Connectivity

• Early progress focused acceleration
efforts on handful of high level
analysis routines that were the most
computationally demanding

• Future hardware requires pervasive
acceleration

• Top image shows script interface
links to top level analytical routines

• Bottom image shows links among
subset of data analytics algorithms to
leaf-node functions

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

VMD Software Decomposition

VMD Core (~230,000 LoC)

• C++: 140,000 LoC

• Headers: 36,000 LoC

• C: 14,000 LoC

• Tcl bindings: 12,000 LoC

• Python bindings: 8,000 LoC

Hand-coded accelerator and vectorization:

• CUDA: 17,000 LoC

• Intel x86 intrinsics: 2,500 LoC

• IBM POWER intrinsics: 500 LoC

• ARM NEON intrinsics: 100 LoC

Externally developed collective

variables module:

• C++: 20,000 LOC

• Headers: 11,000 LOC

Internally+externally developed scripts

• Tcl / Python scripts: 284,000 LoC

VMD “plugin” shared lib modules:

• C: 102,000 LoC

• C++: 36,000 LoC

• Headers: 17,000 LoC

• CUDA: 5,000 LoC

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

VMD Software Decomposition

Type of Code

C++

C

CUDA

Headers

• All hand-written accelerated or
vectorized code (CUDA + CPU
intrinsics) represents only 9% of
core VMD source code

• Percent coverage of leaf-node
analytical functions is lower yet

• Need to evolve VMD toward high
coverage of performance-critical
analysis code with fine-grained
parallelism on accelerators and
vectorization

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

Directive-Based Parallel Programming

with OpenACC
• Annotate loop nests in existing code with #pragma compiler directives:

– Annotate opportunities for parallelism

– Annotate points where host-GPU memory transfers are best performed,
indicate propagation of data

• Evolve original code structure to improve efficacy of parallelization
– Eliminate false dependencies between loop iterations

– Revise algorithms or constructs that create excess data movement

• How well does this work if we stick with “low cost, low burden”
philosophy I claim to support?

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

Clustering Analysis of Molecular

Dynamics Trajectories

GPU-Accelerated Molecular Dynamics Clustering Analysis with

OpenACC. J.E. Stone, J.R. Perilla, C. K. Cassidy, and K. Schulten.

In, Robert Farber, ed., Parallel Programming with OpenACC, Morgan

Kaufmann, Chapter 11, pp. 215-240, 2016.

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

Serial QCP RMSD Inner Product Loop

• Simple example where

directive based parallelism

can be applied easily and

effectively

• Such a loop is inherently a

memory-bandwidth-bound

algorithm, so that’s the goal

for acceleration

 for (int l=0; l<cnt; l++) {

 double x1, x2, y1, y2, z1, z2;

 x1 = crdx1[l];

 y1 = crdy1[l];

 z1 = crdz1[l];

 G1 += x1*x1 + y1*y1 + z1*z1;

 x2 = crdx2[l];

 y2 = crdy2[l];

 z2 = crdz2[l];

 G2 += x2*x2 + y2*y2 + z2*z2;

 a0 += x1 * x2;

 a1 += x1 * y2;

 a2 += x1 * z2;

 a3 += y1 * x2;

 a4 += y1 * y2;

 a5 += y1 * z2;

 a6 += z1 * x2;

 a7 += z1 * y2;

 a8 += z1 * z2;

 }

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

OpenACC QCP RMSD Inner Product Loop

• Simple example where

directive based parallelism

can be applied easily and

effectively

• Such a loop is inherently a

memory-bandwidth-bound

algorithm, so that’s the goal

for acceleration

// excerpted code that has been abridged for brevity…

void rmsdmat_qcp_acc(int cnt, int padcnt, int framecrdsz,

 int framecount, const float * restrict crds,

long i, j, k;

#pragma acc kernels copyin(crds[0:tsz]), copy(rmsdmat[0:msz])

 for (k=0; k<(framecount*(framecount-1))/2; k++) {

 // compute triangular matrix index ‘k’ in a helper function

 // to ensure that the compiler doesn’t think that we have

 // conflicts or dependencies between loop iterations

 acc_idx2sub_tril(long(framecount-1), k, &i, &j);

 long x1addr = j * 3L * framecrdsz;

 long x2addr = i * 3L * framecrdsz;

#pragma acc loop vector(256)

 for (long l=0; l<cnt; l++) {

 // abridged for brevity ...

 rmsdmat[k]=rmsd; // store linearized triangular matrix

 }

}

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

OpenACC QCP RMSD Inner Product Loop

Performance Results

• Xeon 2867W v3, w/ hand-coded AVX and FMA intrinsics: 20.7s

• Tesla K80 w/ OpenACC: 6.5s (3.2x speedup)

• OpenACC on K80 achieved 65% of theoretical peak memory

bandwidth, with 2016 compiler and just a few lines of #pragma

directives. Excellent speedup for minimal changes to code.

• Future OpenACC compiler revs should provide higher

performance yet

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

Caveat Emptor

• Compilers are not all equal…

• …sometimes they make me want to scream…

• …but they all improve with time

• If we begin using directives now to close the gap on

impending doom arising from Amdahl’s Law, the

compilers should be robust and performant when it

really counts

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

Directives and Hardware Evolution

• Ongoing hardware advancements are addressing
ease-of-use gaps that remained a problem for
both directives and hand-coded kernels

• Unified memory: eliminate many cases where
programmer used to have to hand-code memory
transfers explicitly, blurs CPU/GPU boundary

• What about distributing data structures across
multiple NVLink-connected GPUs?

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

Performance Tuning, Profiling Wish List

• Some simple examples on my wish list:
– Make directive runtimes more composable with external resource

management, tasking frameworks, and runtime systems, interop APIs
are already a start, to build more commonality there.

– Help profiling tools to clearly identify functions, call chains, and
resources associated with code produced by compiler directives and
their runtime system(s), to clearly differentiate from hand-coded
kernels, and resources used by other runtimes

– Allow directive-based programming systems support things like
application-determined hardware scheduling priorities that
encompass both hand-coded and directive-generated kernels

– Allow programmer oversight about what resources directive kernels
are allowed to use, CPU affinity, etc

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

Using CPUs to Optimize Accelerator Performance

• Optimization strategy:

– Use the CPU to “regularize” the GPU workload

– Use optimal/fixed-size data structures, idealize layout for

GPU traversal

– Handle exceptional or irregular work units on the CPUs;

GPUs processes the bulk of the work concurrently

– On average, the GPUs are kept highly occupied,

attaining a high fraction of peak performance

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

Heterogeneous Compute Node

Simulation of reaction diffusion processes over biologically relevant size and time scales using multi-GPU workstations

Michael J. Hallock, John E. Stone, Elijah Roberts, Corey Fry, and Zaida Luthey-Schulten.

Journal of Parallel Computing, 40:86-99, 2014.

http://dx.doi.org/10.1016/j.parco.2014.03.009

• Dense PCIe-based

multi-GPU compute node

• Application would ideally

exploit all of the CPU,

GPU, and I/O resources

concurrently…

 (I/O devs not shown)

~12GB/s

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

IBM S822LC w/ NVLink
“Minsky”

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

Ongoing VMD Work on POWER

• Early observations about P8+CUDA+NVLink:

– P8 single-thread perf more of an issue than on x86 for small untuned

parts of existing code – greater need for GPU offload of formerly

insignificant host code

– P8+CUDA NUMA-correctness w/ NVLink much more important

than PCIe (e.g. x86) due to larger benefits/penalties when NVLink

is used effectively vs. not

– P8 “Minsky” systems get extra benefits for algorithms that have lots

of host-GPU DMA transfers, where the NVLink interconnect speeds

greatly outpeform PCIe

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

Benefits of P8+NVLink for VMD

• Rapid access to host-side data too large to fit entirely in P100
GPU memory

– Many existing VMD CUDA kernels already used this strategy w/
PCIe, performance gains from NVLink are large and immediate

• Rapid peer-to-peer GPU data transfers:

– Bypass host whenever possible, perform nearest-neighbor
exchanges for pairwise calculations, e.g. those that arise in
algorithms for simulation trajectory clustering

– Use aggregate GPU memory to collectively store/cache large data:
• Distribute time-varying trajectory timesteps among memories of multiple GPUs

• High-fidelity ray tracing of scenes containing massive amounts of geometry

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

Directives and Potential Hardware Evolution

Think of ORNL Summit node as an “entry point” to potential future possibilities…

Questions:
• Would the need for ongoing growth in memory bandwidth among tightly connected

accelerators w/ HBM predict even denser nodes?
– Leadership systems use 6-GPU nodes now, how many in 2022 or thereafter?

• As accelerated systems advance, will directives encompass peer-to-peer
accelerator operations better?

• What if future accelerators can directly RDMA to remote accelerators (over a
communication fabric) via memory accesses?

• In the future, will directives make it easier to program potentially complex collective
operations, reductions, fine-grained distributed-shared-memory data structures
among multiple accelerators?

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

“When I was a young man, my goal was to look with mathematical and computational means at the

inside of cells, one atom at a time, to decipher how living systems work. That is what I strived for and

I never deflected from this goal.” – Klaus Schulten

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

Acknowledgements
• Theoretical and Computational Biophysics Group, University of

Illinois at Urbana-Champaign

• NVIDIA, PGI, and DOE’s ORNL OLCF OpenACC teams/members

• Funding:

– NIH support: P41GM104601

– NSF Blue Waters:

NSF OCI 07-25070, PRAC “The Computational Microscope”,

ACI-1238993, ACI-1440026

– DOE INCITE, ORNL Titan: DE-AC05-00OR22725

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

Related Publications
http://www.ks.uiuc.edu/Research/gpu/

• Challenges of Integrating Stochastic Dynamics and Cryo-electron Tomograms in Whole-cell Simulations.

T. M. Earnest, R. Watanabe, J. E. Stone, J. Mahamid, W. Baumeister, E. Villa, and Z. Luthey-Schulten.

J. Physical Chemistry B, 121(15): 3871-3881, 2017.

• Early Experiences Porting the NAMD and VMD Molecular Simulation and Analysis Software to GPU-Accelerated

OpenPOWER Platforms. J. E. Stone, A.-P. Hynninen, J. C. Phillips, and K. Schulten. International Workshop on

OpenPOWER for HPC (IWOPH'16), LNCS 9945, pp. 188-206, 2016.

• Immersive Molecular Visualization with Omnidirectional Stereoscopic Ray Tracing and Remote Rendering. J. E.

Stone, W. R. Sherman, and K. Schulten. High Performance Data Analysis and Visualization Workshop, IEEE

International Parallel and Distributed Processing Symposium Workshop (IPDPSW), pp. 1048-1057, 2016.

• High Performance Molecular Visualization: In-Situ and Parallel Rendering with EGL. J. E. Stone, P. Messmer, R.

Sisneros, and K. Schulten. High Performance Data Analysis and Visualization Workshop, IEEE International Parallel and

Distributed Processing Symposium Workshop (IPDPSW), pp. 1014-1023, 2016.

• Evaluation of Emerging Energy-Efficient Heterogeneous Computing Platforms for Biomolecular and Cellular

Simulation Workloads. J. E. Stone, M. J. Hallock, J. C. Phillips, J. R. Peterson, Z. Luthey-Schulten, and K.

Schulten.25th International Heterogeneity in Computing Workshop, IEEE International Parallel and Distributed

Processing Symposium Workshop (IPDPSW), pp. 89-100, 2016.

• Atomic Detail Visualization of Photosynthetic Membranes with GPU-Accelerated Ray Tracing. J. E. Stone, M.

Sener, K. L. Vandivort, A. Barragan, A. Singharoy, I. Teo, J. V. Ribeiro, B. Isralewitz, B. Liu, B.-C. Goh, J. C. Phillips, C.

MacGregor-Chatwin, M. P. Johnson, L. F. Kourkoutis, C. Neil Hunter, and K. Schulten. J. Parallel Computing, 55:17-27,

2016.

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

Related Publications
http://www.ks.uiuc.edu/Research/gpu/

• Chemical Visualization of Human Pathogens: the Retroviral Capsids. Juan R. Perilla, Boon
Chong Goh, John E. Stone, and Klaus Schulten. SC'15 Visualization and Data Analytics Showcase,
2015.

• Visualization of Energy Conversion Processes in a Light Harvesting Organelle at Atomic Detail.
M. Sener, J. E. Stone, A. Barragan, A. Singharoy, I. Teo, K. L. Vandivort, B. Isralewitz, B. Liu, B. Goh, J.
C. Phillips, L. F. Kourkoutis, C. N. Hunter, and K. Schulten. SC'14
Visualization and Data Analytics Showcase, 2014.
***Winner of the SC'14 Visualization and Data Analytics Showcase

• Runtime and Architecture Support for Efficient Data Exchange in Multi-Accelerator Applications.
J. Cabezas, I. Gelado, J. E. Stone, N. Navarro, D. B. Kirk, and W. Hwu. IEEE Transactions on
Parallel and Distributed Systems, 26(5):1405-1418, 2015.

• Unlocking the Full Potential of the Cray XK7 Accelerator. M. D. Klein and J. E. Stone. Cray
Users Group, Lugano Switzerland, May 2014.

• GPU-Accelerated Analysis and Visualization of Large Structures Solved by Molecular Dynamics
Flexible Fitting. J. E. Stone, R. McGreevy, B. Isralewitz, and K. Schulten. Faraday Discussions,
169:265-283, 2014.

• Simulation of reaction diffusion processes over biologically relevant size and time scales using
multi-GPU workstations. M. J. Hallock, J. E. Stone, E. Roberts, C. Fry, and Z. Luthey-Schulten.
Journal of Parallel Computing, 40:86-99, 2014.

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

Related Publications
http://www.ks.uiuc.edu/Research/gpu/

• GPU-Accelerated Molecular Visualization on Petascale Supercomputing Platforms.
J. Stone, K. L. Vandivort, and K. Schulten. UltraVis'13: Proceedings of the 8th International Workshop
on Ultrascale Visualization, pp. 6:1-6:8, 2013.

• Early Experiences Scaling VMD Molecular Visualization and Analysis Jobs on Blue Waters.
J. Stone, B. Isralewitz, and K. Schulten. In proceedings, Extreme Scaling Workshop, 2013.

• Lattice Microbes: High‐performance stochastic simulation method for the reaction‐diffusion
master equation. E. Roberts, J. Stone, and Z. Luthey‐Schulten.
J. Computational Chemistry 34 (3), 245-255, 2013.

• Fast Visualization of Gaussian Density Surfaces for Molecular Dynamics and Particle System
Trajectories. M. Krone, J. Stone, T. Ertl, and K. Schulten. EuroVis Short Papers, pp. 67-71, 2012.

• Immersive Out-of-Core Visualization of Large-Size and Long-Timescale Molecular Dynamics
Trajectories. J. Stone, K. L. Vandivort, and K. Schulten. G. Bebis et al. (Eds.): 7th International
Symposium on Visual Computing (ISVC 2011), LNCS 6939, pp. 1-12, 2011.

• Fast Analysis of Molecular Dynamics Trajectories with Graphics Processing Units – Radial
Distribution Functions. B. Levine, J. Stone, and A. Kohlmeyer. J. Comp. Physics, 230(9):3556-
3569, 2011.

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

Related Publications
http://www.ks.uiuc.edu/Research/gpu/

• Quantifying the Impact of GPUs on Performance and Energy Efficiency in HPC Clusters.

J. Enos, C. Steffen, J. Fullop, M. Showerman, G. Shi, K. Esler, V. Kindratenko, J. Stone,

J Phillips. International Conference on Green Computing, pp. 317-324, 2010.

• GPU-accelerated molecular modeling coming of age. J. Stone, D. Hardy, I. Ufimtsev,

K. Schulten. J. Molecular Graphics and Modeling, 29:116-125, 2010.

• OpenCL: A Parallel Programming Standard for Heterogeneous Computing.

J. Stone, D. Gohara, G. Shi. Computing in Science and Engineering, 12(3):66-73, 2010.

• An Asymmetric Distributed Shared Memory Model for Heterogeneous Computing

Systems. I. Gelado, J. Stone, J. Cabezas, S. Patel, N. Navarro, W. Hwu. ASPLOS ’10:

Proceedings of the 15th International Conference on Architectural Support for Programming

Languages and Operating Systems, pp. 347-358, 2010.

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

Related Publications
http://www.ks.uiuc.edu/Research/gpu/

• GPU Clusters for High Performance Computing. V. Kindratenko, J. Enos, G. Shi, M. Showerman,

G. Arnold, J. Stone, J. Phillips, W. Hwu. Workshop on Parallel Programming on Accelerator Clusters

(PPAC), In Proceedings IEEE Cluster 2009, pp. 1-8, Aug. 2009.

• Long time-scale simulations of in vivo diffusion using GPU hardware. E. Roberts, J. Stone, L.

Sepulveda, W. Hwu, Z. Luthey-Schulten. In IPDPS’09: Proceedings of the 2009 IEEE International

Symposium on Parallel & Distributed Computing, pp. 1-8, 2009.

• High Performance Computation and Interactive Display of Molecular Orbitals on GPUs and

Multi-core CPUs. J. E. Stone, J. Saam, D. Hardy, K. Vandivort, W. Hwu, K. Schulten, 2nd

Workshop on General-Purpose Computation on Graphics Pricessing Units (GPGPU-2), ACM

International Conference Proceeding Series, volume 383, pp. 9-18, 2009.

• Probing Biomolecular Machines with Graphics Processors. J. Phillips, J. Stone.

Communications of the ACM, 52(10):34-41, 2009.

• Multilevel summation of electrostatic potentials using graphics processing units. D. Hardy, J.

Stone, K. Schulten. J. Parallel Computing, 35:164-177, 2009.

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

Related Publications
http://www.ks.uiuc.edu/Research/gpu/

• Adapting a message-driven parallel application to GPU-accelerated clusters.

J. Phillips, J. Stone, K. Schulten. Proceedings of the 2008 ACM/IEEE Conference on Supercomputing,

IEEE Press, 2008.

• GPU acceleration of cutoff pair potentials for molecular modeling applications.

C. Rodrigues, D. Hardy, J. Stone, K. Schulten, and W. Hwu. Proceedings of the 2008 Conference On

Computing Frontiers, pp. 273-282, 2008.

• GPU computing. J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, J. Phillips. Proceedings of

the IEEE, 96:879-899, 2008.

• Accelerating molecular modeling applications with graphics processors. J. Stone, J. Phillips, P.

Freddolino, D. Hardy, L. Trabuco, K. Schulten. J. Comp. Chem., 28:2618-2640, 2007.

• Continuous fluorescence microphotolysis and correlation spectroscopy. A. Arkhipov, J. Hüve, M.

Kahms, R. Peters, K. Schulten. Biophysical Journal, 93:4006-4017, 2007.

